1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopRotation.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/BasicAliasAnalysis.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Scalar/LoopPassManager.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 #include "llvm/Transforms/Utils/LoopUtils.h" 40 #include "llvm/Transforms/Utils/SSAUpdater.h" 41 #include "llvm/Transforms/Utils/ValueMapper.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-rotate" 45 46 static cl::opt<unsigned> DefaultRotationThreshold( 47 "rotation-max-header-size", cl::init(16), cl::Hidden, 48 cl::desc("The default maximum header size for automatic loop rotation")); 49 50 STATISTIC(NumRotated, "Number of loops rotated"); 51 52 namespace { 53 /// A simple loop rotation transformation. 54 class LoopRotate { 55 const unsigned MaxHeaderSize; 56 LoopInfo *LI; 57 const TargetTransformInfo *TTI; 58 AssumptionCache *AC; 59 DominatorTree *DT; 60 ScalarEvolution *SE; 61 const SimplifyQuery &SQ; 62 63 public: 64 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI, 65 const TargetTransformInfo *TTI, AssumptionCache *AC, 66 DominatorTree *DT, ScalarEvolution *SE, const SimplifyQuery &SQ) 67 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), 68 SQ(SQ) {} 69 bool processLoop(Loop *L); 70 71 private: 72 bool rotateLoop(Loop *L, bool SimplifiedLatch); 73 bool simplifyLoopLatch(Loop *L); 74 }; 75 } // end anonymous namespace 76 77 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 78 /// old header into the preheader. If there were uses of the values produced by 79 /// these instruction that were outside of the loop, we have to insert PHI nodes 80 /// to merge the two values. Do this now. 81 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 82 BasicBlock *OrigPreheader, 83 ValueToValueMapTy &ValueMap, 84 SmallVectorImpl<PHINode*> *InsertedPHIs) { 85 // Remove PHI node entries that are no longer live. 86 BasicBlock::iterator I, E = OrigHeader->end(); 87 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 88 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 89 90 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 91 // as necessary. 92 SSAUpdater SSA(InsertedPHIs); 93 for (I = OrigHeader->begin(); I != E; ++I) { 94 Value *OrigHeaderVal = &*I; 95 96 // If there are no uses of the value (e.g. because it returns void), there 97 // is nothing to rewrite. 98 if (OrigHeaderVal->use_empty()) 99 continue; 100 101 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 102 103 // The value now exits in two versions: the initial value in the preheader 104 // and the loop "next" value in the original header. 105 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 106 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 107 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 108 109 // Visit each use of the OrigHeader instruction. 110 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 111 UE = OrigHeaderVal->use_end(); 112 UI != UE;) { 113 // Grab the use before incrementing the iterator. 114 Use &U = *UI; 115 116 // Increment the iterator before removing the use from the list. 117 ++UI; 118 119 // SSAUpdater can't handle a non-PHI use in the same block as an 120 // earlier def. We can easily handle those cases manually. 121 Instruction *UserInst = cast<Instruction>(U.getUser()); 122 if (!isa<PHINode>(UserInst)) { 123 BasicBlock *UserBB = UserInst->getParent(); 124 125 // The original users in the OrigHeader are already using the 126 // original definitions. 127 if (UserBB == OrigHeader) 128 continue; 129 130 // Users in the OrigPreHeader need to use the value to which the 131 // original definitions are mapped. 132 if (UserBB == OrigPreheader) { 133 U = OrigPreHeaderVal; 134 continue; 135 } 136 } 137 138 // Anything else can be handled by SSAUpdater. 139 SSA.RewriteUse(U); 140 } 141 142 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug 143 // intrinsics. 144 LLVMContext &C = OrigHeader->getContext(); 145 if (auto *VAM = ValueAsMetadata::getIfExists(OrigHeaderVal)) { 146 if (auto *MAV = MetadataAsValue::getIfExists(C, VAM)) { 147 for (auto UI = MAV->use_begin(), E = MAV->use_end(); UI != E;) { 148 // Grab the use before incrementing the iterator. Otherwise, altering 149 // the Use will invalidate the iterator. 150 Use &U = *UI++; 151 DbgInfoIntrinsic *UserInst = dyn_cast<DbgInfoIntrinsic>(U.getUser()); 152 if (!UserInst) 153 continue; 154 155 // The original users in the OrigHeader are already using the original 156 // definitions. 157 BasicBlock *UserBB = UserInst->getParent(); 158 if (UserBB == OrigHeader) 159 continue; 160 161 // Users in the OrigPreHeader need to use the value to which the 162 // original definitions are mapped and anything else can be handled by 163 // the SSAUpdater. To avoid adding PHINodes, check if the value is 164 // available in UserBB, if not substitute undef. 165 Value *NewVal; 166 if (UserBB == OrigPreheader) 167 NewVal = OrigPreHeaderVal; 168 else if (SSA.HasValueForBlock(UserBB)) 169 NewVal = SSA.GetValueInMiddleOfBlock(UserBB); 170 else 171 NewVal = UndefValue::get(OrigHeaderVal->getType()); 172 U = MetadataAsValue::get(C, ValueAsMetadata::get(NewVal)); 173 } 174 } 175 } 176 } 177 } 178 179 /// Propagate dbg.value intrinsics through the newly inserted Phis. 180 static void insertDebugValues(BasicBlock *OrigHeader, 181 SmallVectorImpl<PHINode*> &InsertedPHIs) { 182 ValueToValueMapTy DbgValueMap; 183 184 // Map existing PHI nodes to their dbg.values. 185 for (auto &I : *OrigHeader) { 186 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) { 187 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 188 DbgValueMap.insert({Loc, DbgII}); 189 } 190 } 191 192 // Then iterate through the new PHIs and look to see if they use one of the 193 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 194 // propagate the info through the new PHI. 195 LLVMContext &C = OrigHeader->getContext(); 196 for (auto PHI : InsertedPHIs) { 197 for (auto VI : PHI->operand_values()) { 198 auto V = DbgValueMap.find(VI); 199 if (V != DbgValueMap.end()) { 200 auto *DbgII = cast<DbgInfoIntrinsic>(V->second); 201 Instruction *NewDbgII = DbgII->clone(); 202 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 203 NewDbgII->setOperand(0, PhiMAV); 204 BasicBlock *Parent = PHI->getParent(); 205 NewDbgII->insertBefore(Parent->getFirstNonPHIOrDbgOrLifetime()); 206 } 207 } 208 } 209 } 210 211 /// Rotate loop LP. Return true if the loop is rotated. 212 /// 213 /// \param SimplifiedLatch is true if the latch was just folded into the final 214 /// loop exit. In this case we may want to rotate even though the new latch is 215 /// now an exiting branch. This rotation would have happened had the latch not 216 /// been simplified. However, if SimplifiedLatch is false, then we avoid 217 /// rotating loops in which the latch exits to avoid excessive or endless 218 /// rotation. LoopRotate should be repeatable and converge to a canonical 219 /// form. This property is satisfied because simplifying the loop latch can only 220 /// happen once across multiple invocations of the LoopRotate pass. 221 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { 222 // If the loop has only one block then there is not much to rotate. 223 if (L->getBlocks().size() == 1) 224 return false; 225 226 BasicBlock *OrigHeader = L->getHeader(); 227 BasicBlock *OrigLatch = L->getLoopLatch(); 228 229 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 230 if (!BI || BI->isUnconditional()) 231 return false; 232 233 // If the loop header is not one of the loop exiting blocks then 234 // either this loop is already rotated or it is not 235 // suitable for loop rotation transformations. 236 if (!L->isLoopExiting(OrigHeader)) 237 return false; 238 239 // If the loop latch already contains a branch that leaves the loop then the 240 // loop is already rotated. 241 if (!OrigLatch) 242 return false; 243 244 // Rotate if either the loop latch does *not* exit the loop, or if the loop 245 // latch was just simplified. 246 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 247 return false; 248 249 // Check size of original header and reject loop if it is very big or we can't 250 // duplicate blocks inside it. 251 { 252 SmallPtrSet<const Value *, 32> EphValues; 253 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 254 255 CodeMetrics Metrics; 256 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 257 if (Metrics.notDuplicatable) { 258 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 259 << " instructions: "; 260 L->dump()); 261 return false; 262 } 263 if (Metrics.convergent) { 264 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 265 "instructions: "; 266 L->dump()); 267 return false; 268 } 269 if (Metrics.NumInsts > MaxHeaderSize) 270 return false; 271 } 272 273 // Now, this loop is suitable for rotation. 274 BasicBlock *OrigPreheader = L->getLoopPreheader(); 275 276 // If the loop could not be converted to canonical form, it must have an 277 // indirectbr in it, just give up. 278 if (!OrigPreheader) 279 return false; 280 281 // Anything ScalarEvolution may know about this loop or the PHI nodes 282 // in its header will soon be invalidated. 283 if (SE) 284 SE->forgetLoop(L); 285 286 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 287 288 // Find new Loop header. NewHeader is a Header's one and only successor 289 // that is inside loop. Header's other successor is outside the 290 // loop. Otherwise loop is not suitable for rotation. 291 BasicBlock *Exit = BI->getSuccessor(0); 292 BasicBlock *NewHeader = BI->getSuccessor(1); 293 if (L->contains(Exit)) 294 std::swap(Exit, NewHeader); 295 assert(NewHeader && "Unable to determine new loop header"); 296 assert(L->contains(NewHeader) && !L->contains(Exit) && 297 "Unable to determine loop header and exit blocks"); 298 299 // This code assumes that the new header has exactly one predecessor. 300 // Remove any single-entry PHI nodes in it. 301 assert(NewHeader->getSinglePredecessor() && 302 "New header doesn't have one pred!"); 303 FoldSingleEntryPHINodes(NewHeader); 304 305 // Begin by walking OrigHeader and populating ValueMap with an entry for 306 // each Instruction. 307 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 308 ValueToValueMapTy ValueMap; 309 310 // For PHI nodes, the value available in OldPreHeader is just the 311 // incoming value from OldPreHeader. 312 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 313 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 314 315 // For the rest of the instructions, either hoist to the OrigPreheader if 316 // possible or create a clone in the OldPreHeader if not. 317 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 318 while (I != E) { 319 Instruction *Inst = &*I++; 320 321 // If the instruction's operands are invariant and it doesn't read or write 322 // memory, then it is safe to hoist. Doing this doesn't change the order of 323 // execution in the preheader, but does prevent the instruction from 324 // executing in each iteration of the loop. This means it is safe to hoist 325 // something that might trap, but isn't safe to hoist something that reads 326 // memory (without proving that the loop doesn't write). 327 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() && 328 !Inst->mayWriteToMemory() && !isa<TerminatorInst>(Inst) && 329 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) { 330 Inst->moveBefore(LoopEntryBranch); 331 continue; 332 } 333 334 // Otherwise, create a duplicate of the instruction. 335 Instruction *C = Inst->clone(); 336 337 // Eagerly remap the operands of the instruction. 338 RemapInstruction(C, ValueMap, 339 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 340 341 // With the operands remapped, see if the instruction constant folds or is 342 // otherwise simplifyable. This commonly occurs because the entry from PHI 343 // nodes allows icmps and other instructions to fold. 344 Value *V = SimplifyInstruction(C, SQ); 345 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 346 // If so, then delete the temporary instruction and stick the folded value 347 // in the map. 348 ValueMap[Inst] = V; 349 if (!C->mayHaveSideEffects()) { 350 C->deleteValue(); 351 C = nullptr; 352 } 353 } else { 354 ValueMap[Inst] = C; 355 } 356 if (C) { 357 // Otherwise, stick the new instruction into the new block! 358 C->setName(Inst->getName()); 359 C->insertBefore(LoopEntryBranch); 360 361 if (auto *II = dyn_cast<IntrinsicInst>(C)) 362 if (II->getIntrinsicID() == Intrinsic::assume) 363 AC->registerAssumption(II); 364 } 365 } 366 367 // Along with all the other instructions, we just cloned OrigHeader's 368 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 369 // successors by duplicating their incoming values for OrigHeader. 370 TerminatorInst *TI = OrigHeader->getTerminator(); 371 for (BasicBlock *SuccBB : TI->successors()) 372 for (BasicBlock::iterator BI = SuccBB->begin(); 373 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 374 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 375 376 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 377 // OrigPreHeader's old terminator (the original branch into the loop), and 378 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 379 LoopEntryBranch->eraseFromParent(); 380 381 382 SmallVector<PHINode*, 2> InsertedPHIs; 383 // If there were any uses of instructions in the duplicated block outside the 384 // loop, update them, inserting PHI nodes as required 385 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, 386 &InsertedPHIs); 387 388 // Attach dbg.value intrinsics to the new phis if that phi uses a value that 389 // previously had debug metadata attached. This keeps the debug info 390 // up-to-date in the loop body. 391 if (!InsertedPHIs.empty()) 392 insertDebugValues(OrigHeader, InsertedPHIs); 393 394 // NewHeader is now the header of the loop. 395 L->moveToHeader(NewHeader); 396 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 397 398 // At this point, we've finished our major CFG changes. As part of cloning 399 // the loop into the preheader we've simplified instructions and the 400 // duplicated conditional branch may now be branching on a constant. If it is 401 // branching on a constant and if that constant means that we enter the loop, 402 // then we fold away the cond branch to an uncond branch. This simplifies the 403 // loop in cases important for nested loops, and it also means we don't have 404 // to split as many edges. 405 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 406 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 407 if (!isa<ConstantInt>(PHBI->getCondition()) || 408 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) != 409 NewHeader) { 410 // The conditional branch can't be folded, handle the general case. 411 // Update DominatorTree to reflect the CFG change we just made. Then split 412 // edges as necessary to preserve LoopSimplify form. 413 if (DT) { 414 // Everything that was dominated by the old loop header is now dominated 415 // by the original loop preheader. Conceptually the header was merged 416 // into the preheader, even though we reuse the actual block as a new 417 // loop latch. 418 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 419 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 420 OrigHeaderNode->end()); 421 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 422 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 423 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 424 425 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 426 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 427 428 // Update OrigHeader to be dominated by the new header block. 429 DT->changeImmediateDominator(OrigHeader, OrigLatch); 430 } 431 432 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 433 // thus is not a preheader anymore. 434 // Split the edge to form a real preheader. 435 BasicBlock *NewPH = SplitCriticalEdge( 436 OrigPreheader, NewHeader, 437 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 438 NewPH->setName(NewHeader->getName() + ".lr.ph"); 439 440 // Preserve canonical loop form, which means that 'Exit' should have only 441 // one predecessor. Note that Exit could be an exit block for multiple 442 // nested loops, causing both of the edges to now be critical and need to 443 // be split. 444 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 445 bool SplitLatchEdge = false; 446 for (BasicBlock *ExitPred : ExitPreds) { 447 // We only need to split loop exit edges. 448 Loop *PredLoop = LI->getLoopFor(ExitPred); 449 if (!PredLoop || PredLoop->contains(Exit)) 450 continue; 451 if (isa<IndirectBrInst>(ExitPred->getTerminator())) 452 continue; 453 SplitLatchEdge |= L->getLoopLatch() == ExitPred; 454 BasicBlock *ExitSplit = SplitCriticalEdge( 455 ExitPred, Exit, 456 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 457 ExitSplit->moveBefore(Exit); 458 } 459 assert(SplitLatchEdge && 460 "Despite splitting all preds, failed to split latch exit?"); 461 } else { 462 // We can fold the conditional branch in the preheader, this makes things 463 // simpler. The first step is to remove the extra edge to the Exit block. 464 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 465 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 466 NewBI->setDebugLoc(PHBI->getDebugLoc()); 467 PHBI->eraseFromParent(); 468 469 // With our CFG finalized, update DomTree if it is available. 470 if (DT) { 471 // Update OrigHeader to be dominated by the new header block. 472 DT->changeImmediateDominator(NewHeader, OrigPreheader); 473 DT->changeImmediateDominator(OrigHeader, OrigLatch); 474 475 // Brute force incremental dominator tree update. Call 476 // findNearestCommonDominator on all CFG predecessors of each child of the 477 // original header. 478 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 479 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 480 OrigHeaderNode->end()); 481 bool Changed; 482 do { 483 Changed = false; 484 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 485 DomTreeNode *Node = HeaderChildren[I]; 486 BasicBlock *BB = Node->getBlock(); 487 488 pred_iterator PI = pred_begin(BB); 489 BasicBlock *NearestDom = *PI; 490 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 491 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 492 493 // Remember if this changes the DomTree. 494 if (Node->getIDom()->getBlock() != NearestDom) { 495 DT->changeImmediateDominator(BB, NearestDom); 496 Changed = true; 497 } 498 } 499 500 // If the dominator changed, this may have an effect on other 501 // predecessors, continue until we reach a fixpoint. 502 } while (Changed); 503 } 504 } 505 506 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 507 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 508 509 // Now that the CFG and DomTree are in a consistent state again, try to merge 510 // the OrigHeader block into OrigLatch. This will succeed if they are 511 // connected by an unconditional branch. This is just a cleanup so the 512 // emitted code isn't too gross in this common case. 513 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 514 515 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 516 517 ++NumRotated; 518 return true; 519 } 520 521 /// Determine whether the instructions in this range may be safely and cheaply 522 /// speculated. This is not an important enough situation to develop complex 523 /// heuristics. We handle a single arithmetic instruction along with any type 524 /// conversions. 525 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 526 BasicBlock::iterator End, Loop *L) { 527 bool seenIncrement = false; 528 bool MultiExitLoop = false; 529 530 if (!L->getExitingBlock()) 531 MultiExitLoop = true; 532 533 for (BasicBlock::iterator I = Begin; I != End; ++I) { 534 535 if (!isSafeToSpeculativelyExecute(&*I)) 536 return false; 537 538 if (isa<DbgInfoIntrinsic>(I)) 539 continue; 540 541 switch (I->getOpcode()) { 542 default: 543 return false; 544 case Instruction::GetElementPtr: 545 // GEPs are cheap if all indices are constant. 546 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 547 return false; 548 // fall-thru to increment case 549 LLVM_FALLTHROUGH; 550 case Instruction::Add: 551 case Instruction::Sub: 552 case Instruction::And: 553 case Instruction::Or: 554 case Instruction::Xor: 555 case Instruction::Shl: 556 case Instruction::LShr: 557 case Instruction::AShr: { 558 Value *IVOpnd = 559 !isa<Constant>(I->getOperand(0)) 560 ? I->getOperand(0) 561 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr; 562 if (!IVOpnd) 563 return false; 564 565 // If increment operand is used outside of the loop, this speculation 566 // could cause extra live range interference. 567 if (MultiExitLoop) { 568 for (User *UseI : IVOpnd->users()) { 569 auto *UserInst = cast<Instruction>(UseI); 570 if (!L->contains(UserInst)) 571 return false; 572 } 573 } 574 575 if (seenIncrement) 576 return false; 577 seenIncrement = true; 578 break; 579 } 580 case Instruction::Trunc: 581 case Instruction::ZExt: 582 case Instruction::SExt: 583 // ignore type conversions 584 break; 585 } 586 } 587 return true; 588 } 589 590 /// Fold the loop tail into the loop exit by speculating the loop tail 591 /// instructions. Typically, this is a single post-increment. In the case of a 592 /// simple 2-block loop, hoisting the increment can be much better than 593 /// duplicating the entire loop header. In the case of loops with early exits, 594 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 595 /// canonical form so downstream passes can handle it. 596 /// 597 /// I don't believe this invalidates SCEV. 598 bool LoopRotate::simplifyLoopLatch(Loop *L) { 599 BasicBlock *Latch = L->getLoopLatch(); 600 if (!Latch || Latch->hasAddressTaken()) 601 return false; 602 603 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 604 if (!Jmp || !Jmp->isUnconditional()) 605 return false; 606 607 BasicBlock *LastExit = Latch->getSinglePredecessor(); 608 if (!LastExit || !L->isLoopExiting(LastExit)) 609 return false; 610 611 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 612 if (!BI) 613 return false; 614 615 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 616 return false; 617 618 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 619 << LastExit->getName() << "\n"); 620 621 // Hoist the instructions from Latch into LastExit. 622 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 623 Latch->begin(), Jmp->getIterator()); 624 625 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 626 BasicBlock *Header = Jmp->getSuccessor(0); 627 assert(Header == L->getHeader() && "expected a backward branch"); 628 629 // Remove Latch from the CFG so that LastExit becomes the new Latch. 630 BI->setSuccessor(FallThruPath, Header); 631 Latch->replaceSuccessorsPhiUsesWith(LastExit); 632 Jmp->eraseFromParent(); 633 634 // Nuke the Latch block. 635 assert(Latch->empty() && "unable to evacuate Latch"); 636 LI->removeBlock(Latch); 637 if (DT) 638 DT->eraseNode(Latch); 639 Latch->eraseFromParent(); 640 return true; 641 } 642 643 /// Rotate \c L, and return true if any modification was made. 644 bool LoopRotate::processLoop(Loop *L) { 645 // Save the loop metadata. 646 MDNode *LoopMD = L->getLoopID(); 647 648 // Simplify the loop latch before attempting to rotate the header 649 // upward. Rotation may not be needed if the loop tail can be folded into the 650 // loop exit. 651 bool SimplifiedLatch = simplifyLoopLatch(L); 652 653 bool MadeChange = rotateLoop(L, SimplifiedLatch); 654 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && 655 "Loop latch should be exiting after loop-rotate."); 656 657 // Restore the loop metadata. 658 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 659 if ((MadeChange || SimplifiedLatch) && LoopMD) 660 L->setLoopID(LoopMD); 661 662 return MadeChange; 663 } 664 665 LoopRotatePass::LoopRotatePass(bool EnableHeaderDuplication) 666 : EnableHeaderDuplication(EnableHeaderDuplication) {} 667 668 PreservedAnalyses LoopRotatePass::run(Loop &L, LoopAnalysisManager &AM, 669 LoopStandardAnalysisResults &AR, 670 LPMUpdater &) { 671 int Threshold = EnableHeaderDuplication ? DefaultRotationThreshold : 0; 672 const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); 673 const SimplifyQuery SQ = getBestSimplifyQuery(AR, DL); 674 LoopRotate LR(Threshold, &AR.LI, &AR.TTI, &AR.AC, &AR.DT, &AR.SE, 675 SQ); 676 677 bool Changed = LR.processLoop(&L); 678 if (!Changed) 679 return PreservedAnalyses::all(); 680 681 return getLoopPassPreservedAnalyses(); 682 } 683 684 namespace { 685 686 class LoopRotateLegacyPass : public LoopPass { 687 unsigned MaxHeaderSize; 688 689 public: 690 static char ID; // Pass ID, replacement for typeid 691 LoopRotateLegacyPass(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 692 initializeLoopRotateLegacyPassPass(*PassRegistry::getPassRegistry()); 693 if (SpecifiedMaxHeaderSize == -1) 694 MaxHeaderSize = DefaultRotationThreshold; 695 else 696 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 697 } 698 699 // LCSSA form makes instruction renaming easier. 700 void getAnalysisUsage(AnalysisUsage &AU) const override { 701 AU.addRequired<AssumptionCacheTracker>(); 702 AU.addRequired<TargetTransformInfoWrapperPass>(); 703 getLoopAnalysisUsage(AU); 704 } 705 706 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 707 if (skipLoop(L)) 708 return false; 709 Function &F = *L->getHeader()->getParent(); 710 711 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 712 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 713 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 714 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 715 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 716 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 717 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 718 const SimplifyQuery SQ = getBestSimplifyQuery(*this, F); 719 LoopRotate LR(MaxHeaderSize, LI, TTI, AC, DT, SE, SQ); 720 return LR.processLoop(L); 721 } 722 }; 723 } 724 725 char LoopRotateLegacyPass::ID = 0; 726 INITIALIZE_PASS_BEGIN(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", 727 false, false) 728 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 729 INITIALIZE_PASS_DEPENDENCY(LoopPass) 730 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 731 INITIALIZE_PASS_END(LoopRotateLegacyPass, "loop-rotate", "Rotate Loops", false, 732 false) 733 734 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 735 return new LoopRotateLegacyPass(MaxHeaderSize); 736 } 737