1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements Loop Rotation Pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/BasicAliasAnalysis.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CodeMetrics.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 #include "llvm/Transforms/Utils/ValueMapper.h" 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-rotate" 43 44 static cl::opt<unsigned> 45 DefaultRotationThreshold("rotation-max-header-size", cl::init(16), cl::Hidden, 46 cl::desc("The default maximum header size for automatic loop rotation")); 47 48 STATISTIC(NumRotated, "Number of loops rotated"); 49 50 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the 51 /// old header into the preheader. If there were uses of the values produced by 52 /// these instruction that were outside of the loop, we have to insert PHI nodes 53 /// to merge the two values. Do this now. 54 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, 55 BasicBlock *OrigPreheader, 56 ValueToValueMapTy &ValueMap) { 57 // Remove PHI node entries that are no longer live. 58 BasicBlock::iterator I, E = OrigHeader->end(); 59 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I) 60 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader)); 61 62 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes 63 // as necessary. 64 SSAUpdater SSA; 65 for (I = OrigHeader->begin(); I != E; ++I) { 66 Value *OrigHeaderVal = &*I; 67 68 // If there are no uses of the value (e.g. because it returns void), there 69 // is nothing to rewrite. 70 if (OrigHeaderVal->use_empty()) 71 continue; 72 73 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal); 74 75 // The value now exits in two versions: the initial value in the preheader 76 // and the loop "next" value in the original header. 77 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName()); 78 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal); 79 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal); 80 81 // Visit each use of the OrigHeader instruction. 82 for (Value::use_iterator UI = OrigHeaderVal->use_begin(), 83 UE = OrigHeaderVal->use_end(); UI != UE; ) { 84 // Grab the use before incrementing the iterator. 85 Use &U = *UI; 86 87 // Increment the iterator before removing the use from the list. 88 ++UI; 89 90 // SSAUpdater can't handle a non-PHI use in the same block as an 91 // earlier def. We can easily handle those cases manually. 92 Instruction *UserInst = cast<Instruction>(U.getUser()); 93 if (!isa<PHINode>(UserInst)) { 94 BasicBlock *UserBB = UserInst->getParent(); 95 96 // The original users in the OrigHeader are already using the 97 // original definitions. 98 if (UserBB == OrigHeader) 99 continue; 100 101 // Users in the OrigPreHeader need to use the value to which the 102 // original definitions are mapped. 103 if (UserBB == OrigPreheader) { 104 U = OrigPreHeaderVal; 105 continue; 106 } 107 } 108 109 // Anything else can be handled by SSAUpdater. 110 SSA.RewriteUse(U); 111 } 112 } 113 } 114 115 /// Rotate loop LP. Return true if the loop is rotated. 116 /// 117 /// \param SimplifiedLatch is true if the latch was just folded into the final 118 /// loop exit. In this case we may want to rotate even though the new latch is 119 /// now an exiting branch. This rotation would have happened had the latch not 120 /// been simplified. However, if SimplifiedLatch is false, then we avoid 121 /// rotating loops in which the latch exits to avoid excessive or endless 122 /// rotation. LoopRotate should be repeatable and converge to a canonical 123 /// form. This property is satisfied because simplifying the loop latch can only 124 /// happen once across multiple invocations of the LoopRotate pass. 125 static bool rotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 126 const TargetTransformInfo *TTI, AssumptionCache *AC, 127 DominatorTree *DT, ScalarEvolution *SE, 128 bool SimplifiedLatch) { 129 // If the loop has only one block then there is not much to rotate. 130 if (L->getBlocks().size() == 1) 131 return false; 132 133 BasicBlock *OrigHeader = L->getHeader(); 134 BasicBlock *OrigLatch = L->getLoopLatch(); 135 136 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator()); 137 if (!BI || BI->isUnconditional()) 138 return false; 139 140 // If the loop header is not one of the loop exiting blocks then 141 // either this loop is already rotated or it is not 142 // suitable for loop rotation transformations. 143 if (!L->isLoopExiting(OrigHeader)) 144 return false; 145 146 // If the loop latch already contains a branch that leaves the loop then the 147 // loop is already rotated. 148 if (!OrigLatch) 149 return false; 150 151 // Rotate if either the loop latch does *not* exit the loop, or if the loop 152 // latch was just simplified. 153 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch) 154 return false; 155 156 // Check size of original header and reject loop if it is very big or we can't 157 // duplicate blocks inside it. 158 { 159 SmallPtrSet<const Value *, 32> EphValues; 160 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 161 162 CodeMetrics Metrics; 163 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues); 164 if (Metrics.notDuplicatable) { 165 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" 166 << " instructions: "; L->dump()); 167 return false; 168 } 169 if (Metrics.convergent) { 170 DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " 171 "instructions: "; L->dump()); 172 return false; 173 } 174 if (Metrics.NumInsts > MaxHeaderSize) 175 return false; 176 } 177 178 // Now, this loop is suitable for rotation. 179 BasicBlock *OrigPreheader = L->getLoopPreheader(); 180 181 // If the loop could not be converted to canonical form, it must have an 182 // indirectbr in it, just give up. 183 if (!OrigPreheader) 184 return false; 185 186 // Anything ScalarEvolution may know about this loop or the PHI nodes 187 // in its header will soon be invalidated. 188 if (SE) 189 SE->forgetLoop(L); 190 191 DEBUG(dbgs() << "LoopRotation: rotating "; L->dump()); 192 193 // Find new Loop header. NewHeader is a Header's one and only successor 194 // that is inside loop. Header's other successor is outside the 195 // loop. Otherwise loop is not suitable for rotation. 196 BasicBlock *Exit = BI->getSuccessor(0); 197 BasicBlock *NewHeader = BI->getSuccessor(1); 198 if (L->contains(Exit)) 199 std::swap(Exit, NewHeader); 200 assert(NewHeader && "Unable to determine new loop header"); 201 assert(L->contains(NewHeader) && !L->contains(Exit) && 202 "Unable to determine loop header and exit blocks"); 203 204 // This code assumes that the new header has exactly one predecessor. 205 // Remove any single-entry PHI nodes in it. 206 assert(NewHeader->getSinglePredecessor() && 207 "New header doesn't have one pred!"); 208 FoldSingleEntryPHINodes(NewHeader); 209 210 // Begin by walking OrigHeader and populating ValueMap with an entry for 211 // each Instruction. 212 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); 213 ValueToValueMapTy ValueMap; 214 215 // For PHI nodes, the value available in OldPreHeader is just the 216 // incoming value from OldPreHeader. 217 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I) 218 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader); 219 220 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 221 222 // For the rest of the instructions, either hoist to the OrigPreheader if 223 // possible or create a clone in the OldPreHeader if not. 224 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator(); 225 while (I != E) { 226 Instruction *Inst = &*I++; 227 228 // If the instruction's operands are invariant and it doesn't read or write 229 // memory, then it is safe to hoist. Doing this doesn't change the order of 230 // execution in the preheader, but does prevent the instruction from 231 // executing in each iteration of the loop. This means it is safe to hoist 232 // something that might trap, but isn't safe to hoist something that reads 233 // memory (without proving that the loop doesn't write). 234 if (L->hasLoopInvariantOperands(Inst) && 235 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() && 236 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) && 237 !isa<AllocaInst>(Inst)) { 238 Inst->moveBefore(LoopEntryBranch); 239 continue; 240 } 241 242 // Otherwise, create a duplicate of the instruction. 243 Instruction *C = Inst->clone(); 244 245 // Eagerly remap the operands of the instruction. 246 RemapInstruction(C, ValueMap, 247 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 248 249 // With the operands remapped, see if the instruction constant folds or is 250 // otherwise simplifyable. This commonly occurs because the entry from PHI 251 // nodes allows icmps and other instructions to fold. 252 // FIXME: Provide TLI, DT, AC to SimplifyInstruction. 253 Value *V = SimplifyInstruction(C, DL); 254 if (V && LI->replacementPreservesLCSSAForm(C, V)) { 255 // If so, then delete the temporary instruction and stick the folded value 256 // in the map. 257 delete C; 258 ValueMap[Inst] = V; 259 } else { 260 // Otherwise, stick the new instruction into the new block! 261 C->setName(Inst->getName()); 262 C->insertBefore(LoopEntryBranch); 263 ValueMap[Inst] = C; 264 } 265 } 266 267 // Along with all the other instructions, we just cloned OrigHeader's 268 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's 269 // successors by duplicating their incoming values for OrigHeader. 270 TerminatorInst *TI = OrigHeader->getTerminator(); 271 for (BasicBlock *SuccBB : TI->successors()) 272 for (BasicBlock::iterator BI = SuccBB->begin(); 273 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 274 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader); 275 276 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove 277 // OrigPreHeader's old terminator (the original branch into the loop), and 278 // remove the corresponding incoming values from the PHI nodes in OrigHeader. 279 LoopEntryBranch->eraseFromParent(); 280 281 // If there were any uses of instructions in the duplicated block outside the 282 // loop, update them, inserting PHI nodes as required 283 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap); 284 285 // NewHeader is now the header of the loop. 286 L->moveToHeader(NewHeader); 287 assert(L->getHeader() == NewHeader && "Latch block is our new header"); 288 289 290 // At this point, we've finished our major CFG changes. As part of cloning 291 // the loop into the preheader we've simplified instructions and the 292 // duplicated conditional branch may now be branching on a constant. If it is 293 // branching on a constant and if that constant means that we enter the loop, 294 // then we fold away the cond branch to an uncond branch. This simplifies the 295 // loop in cases important for nested loops, and it also means we don't have 296 // to split as many edges. 297 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator()); 298 assert(PHBI->isConditional() && "Should be clone of BI condbr!"); 299 if (!isa<ConstantInt>(PHBI->getCondition()) || 300 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) 301 != NewHeader) { 302 // The conditional branch can't be folded, handle the general case. 303 // Update DominatorTree to reflect the CFG change we just made. Then split 304 // edges as necessary to preserve LoopSimplify form. 305 if (DT) { 306 // Everything that was dominated by the old loop header is now dominated 307 // by the original loop preheader. Conceptually the header was merged 308 // into the preheader, even though we reuse the actual block as a new 309 // loop latch. 310 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 311 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 312 OrigHeaderNode->end()); 313 DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader); 314 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) 315 DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode); 316 317 assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode); 318 assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode); 319 320 // Update OrigHeader to be dominated by the new header block. 321 DT->changeImmediateDominator(OrigHeader, OrigLatch); 322 } 323 324 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and 325 // thus is not a preheader anymore. 326 // Split the edge to form a real preheader. 327 BasicBlock *NewPH = SplitCriticalEdge( 328 OrigPreheader, NewHeader, 329 CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 330 NewPH->setName(NewHeader->getName() + ".lr.ph"); 331 332 // Preserve canonical loop form, which means that 'Exit' should have only 333 // one predecessor. Note that Exit could be an exit block for multiple 334 // nested loops, causing both of the edges to now be critical and need to 335 // be split. 336 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit)); 337 bool SplitLatchEdge = false; 338 for (SmallVectorImpl<BasicBlock *>::iterator PI = ExitPreds.begin(), 339 PE = ExitPreds.end(); 340 PI != PE; ++PI) { 341 // We only need to split loop exit edges. 342 Loop *PredLoop = LI->getLoopFor(*PI); 343 if (!PredLoop || PredLoop->contains(Exit)) 344 continue; 345 if (isa<IndirectBrInst>((*PI)->getTerminator())) 346 continue; 347 SplitLatchEdge |= L->getLoopLatch() == *PI; 348 BasicBlock *ExitSplit = SplitCriticalEdge( 349 *PI, Exit, CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA()); 350 ExitSplit->moveBefore(Exit); 351 } 352 assert(SplitLatchEdge && 353 "Despite splitting all preds, failed to split latch exit?"); 354 } else { 355 // We can fold the conditional branch in the preheader, this makes things 356 // simpler. The first step is to remove the extra edge to the Exit block. 357 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/); 358 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI); 359 NewBI->setDebugLoc(PHBI->getDebugLoc()); 360 PHBI->eraseFromParent(); 361 362 // With our CFG finalized, update DomTree if it is available. 363 if (DT) { 364 // Update OrigHeader to be dominated by the new header block. 365 DT->changeImmediateDominator(NewHeader, OrigPreheader); 366 DT->changeImmediateDominator(OrigHeader, OrigLatch); 367 368 // Brute force incremental dominator tree update. Call 369 // findNearestCommonDominator on all CFG predecessors of each child of the 370 // original header. 371 DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader); 372 SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(), 373 OrigHeaderNode->end()); 374 bool Changed; 375 do { 376 Changed = false; 377 for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { 378 DomTreeNode *Node = HeaderChildren[I]; 379 BasicBlock *BB = Node->getBlock(); 380 381 pred_iterator PI = pred_begin(BB); 382 BasicBlock *NearestDom = *PI; 383 for (pred_iterator PE = pred_end(BB); PI != PE; ++PI) 384 NearestDom = DT->findNearestCommonDominator(NearestDom, *PI); 385 386 // Remember if this changes the DomTree. 387 if (Node->getIDom()->getBlock() != NearestDom) { 388 DT->changeImmediateDominator(BB, NearestDom); 389 Changed = true; 390 } 391 } 392 393 // If the dominator changed, this may have an effect on other 394 // predecessors, continue until we reach a fixpoint. 395 } while (Changed); 396 } 397 } 398 399 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation"); 400 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation"); 401 402 // Now that the CFG and DomTree are in a consistent state again, try to merge 403 // the OrigHeader block into OrigLatch. This will succeed if they are 404 // connected by an unconditional branch. This is just a cleanup so the 405 // emitted code isn't too gross in this common case. 406 MergeBlockIntoPredecessor(OrigHeader, DT, LI); 407 408 DEBUG(dbgs() << "LoopRotation: into "; L->dump()); 409 410 ++NumRotated; 411 return true; 412 } 413 414 /// Determine whether the instructions in this range may be safely and cheaply 415 /// speculated. This is not an important enough situation to develop complex 416 /// heuristics. We handle a single arithmetic instruction along with any type 417 /// conversions. 418 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, 419 BasicBlock::iterator End, Loop *L) { 420 bool seenIncrement = false; 421 bool MultiExitLoop = false; 422 423 if (!L->getExitingBlock()) 424 MultiExitLoop = true; 425 426 for (BasicBlock::iterator I = Begin; I != End; ++I) { 427 428 if (!isSafeToSpeculativelyExecute(&*I)) 429 return false; 430 431 if (isa<DbgInfoIntrinsic>(I)) 432 continue; 433 434 switch (I->getOpcode()) { 435 default: 436 return false; 437 case Instruction::GetElementPtr: 438 // GEPs are cheap if all indices are constant. 439 if (!cast<GEPOperator>(I)->hasAllConstantIndices()) 440 return false; 441 // fall-thru to increment case 442 case Instruction::Add: 443 case Instruction::Sub: 444 case Instruction::And: 445 case Instruction::Or: 446 case Instruction::Xor: 447 case Instruction::Shl: 448 case Instruction::LShr: 449 case Instruction::AShr: { 450 Value *IVOpnd = !isa<Constant>(I->getOperand(0)) 451 ? I->getOperand(0) 452 : !isa<Constant>(I->getOperand(1)) 453 ? I->getOperand(1) 454 : nullptr; 455 if (!IVOpnd) 456 return false; 457 458 // If increment operand is used outside of the loop, this speculation 459 // could cause extra live range interference. 460 if (MultiExitLoop) { 461 for (User *UseI : IVOpnd->users()) { 462 auto *UserInst = cast<Instruction>(UseI); 463 if (!L->contains(UserInst)) 464 return false; 465 } 466 } 467 468 if (seenIncrement) 469 return false; 470 seenIncrement = true; 471 break; 472 } 473 case Instruction::Trunc: 474 case Instruction::ZExt: 475 case Instruction::SExt: 476 // ignore type conversions 477 break; 478 } 479 } 480 return true; 481 } 482 483 /// Fold the loop tail into the loop exit by speculating the loop tail 484 /// instructions. Typically, this is a single post-increment. In the case of a 485 /// simple 2-block loop, hoisting the increment can be much better than 486 /// duplicating the entire loop header. In the case of loops with early exits, 487 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in 488 /// canonical form so downstream passes can handle it. 489 /// 490 /// I don't believe this invalidates SCEV. 491 static bool simplifyLoopLatch(Loop *L, LoopInfo *LI, DominatorTree *DT) { 492 BasicBlock *Latch = L->getLoopLatch(); 493 if (!Latch || Latch->hasAddressTaken()) 494 return false; 495 496 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator()); 497 if (!Jmp || !Jmp->isUnconditional()) 498 return false; 499 500 BasicBlock *LastExit = Latch->getSinglePredecessor(); 501 if (!LastExit || !L->isLoopExiting(LastExit)) 502 return false; 503 504 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator()); 505 if (!BI) 506 return false; 507 508 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L)) 509 return false; 510 511 DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " 512 << LastExit->getName() << "\n"); 513 514 // Hoist the instructions from Latch into LastExit. 515 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(), 516 Latch->begin(), Jmp->getIterator()); 517 518 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1; 519 BasicBlock *Header = Jmp->getSuccessor(0); 520 assert(Header == L->getHeader() && "expected a backward branch"); 521 522 // Remove Latch from the CFG so that LastExit becomes the new Latch. 523 BI->setSuccessor(FallThruPath, Header); 524 Latch->replaceSuccessorsPhiUsesWith(LastExit); 525 Jmp->eraseFromParent(); 526 527 // Nuke the Latch block. 528 assert(Latch->empty() && "unable to evacuate Latch"); 529 LI->removeBlock(Latch); 530 if (DT) 531 DT->eraseNode(Latch); 532 Latch->eraseFromParent(); 533 return true; 534 } 535 536 /// Rotate \c L as many times as possible. Return true if the loop is rotated 537 /// at least once. 538 static bool iterativelyRotateLoop(Loop *L, unsigned MaxHeaderSize, LoopInfo *LI, 539 const TargetTransformInfo *TTI, 540 AssumptionCache *AC, DominatorTree *DT, 541 ScalarEvolution *SE) { 542 // Save the loop metadata. 543 MDNode *LoopMD = L->getLoopID(); 544 545 // Simplify the loop latch before attempting to rotate the header 546 // upward. Rotation may not be needed if the loop tail can be folded into the 547 // loop exit. 548 bool SimplifiedLatch = simplifyLoopLatch(L, LI, DT); 549 550 // One loop can be rotated multiple times. 551 bool MadeChange = false; 552 while (rotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE, SimplifiedLatch)) { 553 MadeChange = true; 554 SimplifiedLatch = false; 555 } 556 557 // Restore the loop metadata. 558 // NB! We presume LoopRotation DOESN'T ADD its own metadata. 559 if ((MadeChange || SimplifiedLatch) && LoopMD) 560 L->setLoopID(LoopMD); 561 562 return MadeChange; 563 } 564 565 namespace { 566 567 class LoopRotate : public LoopPass { 568 unsigned MaxHeaderSize; 569 570 public: 571 static char ID; // Pass ID, replacement for typeid 572 LoopRotate(int SpecifiedMaxHeaderSize = -1) : LoopPass(ID) { 573 initializeLoopRotatePass(*PassRegistry::getPassRegistry()); 574 if (SpecifiedMaxHeaderSize == -1) 575 MaxHeaderSize = DefaultRotationThreshold; 576 else 577 MaxHeaderSize = unsigned(SpecifiedMaxHeaderSize); 578 } 579 580 // LCSSA form makes instruction renaming easier. 581 void getAnalysisUsage(AnalysisUsage &AU) const override { 582 AU.addRequired<AssumptionCacheTracker>(); 583 AU.addRequired<TargetTransformInfoWrapperPass>(); 584 getLoopAnalysisUsage(AU); 585 } 586 587 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 588 if (skipOptnoneFunction(L)) 589 return false; 590 Function &F = *L->getHeader()->getParent(); 591 592 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 593 const auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 594 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 595 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 596 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 597 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 598 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 599 600 return iterativelyRotateLoop(L, MaxHeaderSize, LI, TTI, AC, DT, SE); 601 } 602 }; 603 } 604 605 char LoopRotate::ID = 0; 606 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 607 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 608 INITIALIZE_PASS_DEPENDENCY(LoopPass) 609 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 610 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false) 611 612 Pass *llvm::createLoopRotatePass(int MaxHeaderSize) { 613 return new LoopRotate(MaxHeaderSize); 614 } 615