1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop reroller. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AliasSetTracker.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpander.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/LoopUtils.h" 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <iterator> 62 #include <map> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "loop-reroll" 68 69 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 70 71 static cl::opt<unsigned> 72 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 73 cl::Hidden, 74 cl::desc("The maximum number of failures to tolerate" 75 " during fuzzy matching. (default: 400)")); 76 77 // This loop re-rolling transformation aims to transform loops like this: 78 // 79 // int foo(int a); 80 // void bar(int *x) { 81 // for (int i = 0; i < 500; i += 3) { 82 // foo(i); 83 // foo(i+1); 84 // foo(i+2); 85 // } 86 // } 87 // 88 // into a loop like this: 89 // 90 // void bar(int *x) { 91 // for (int i = 0; i < 500; ++i) 92 // foo(i); 93 // } 94 // 95 // It does this by looking for loops that, besides the latch code, are composed 96 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 97 // to the induction variable, and where each DAG is isomorphic to the DAG 98 // rooted at the induction variable (excepting the sub-DAGs which root the 99 // other induction-variable increments). In other words, we're looking for loop 100 // bodies of the form: 101 // 102 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 103 // f(%iv) 104 // %iv.1 = add %iv, 1 <-- a root increment 105 // f(%iv.1) 106 // %iv.2 = add %iv, 2 <-- a root increment 107 // f(%iv.2) 108 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 109 // f(%iv.scale_m_1) 110 // ... 111 // %iv.next = add %iv, scale 112 // %cmp = icmp(%iv, ...) 113 // br %cmp, header, exit 114 // 115 // where each f(i) is a set of instructions that, collectively, are a function 116 // only of i (and other loop-invariant values). 117 // 118 // As a special case, we can also reroll loops like this: 119 // 120 // int foo(int); 121 // void bar(int *x) { 122 // for (int i = 0; i < 500; ++i) { 123 // x[3*i] = foo(0); 124 // x[3*i+1] = foo(0); 125 // x[3*i+2] = foo(0); 126 // } 127 // } 128 // 129 // into this: 130 // 131 // void bar(int *x) { 132 // for (int i = 0; i < 1500; ++i) 133 // x[i] = foo(0); 134 // } 135 // 136 // in which case, we're looking for inputs like this: 137 // 138 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 139 // %scaled.iv = mul %iv, scale 140 // f(%scaled.iv) 141 // %scaled.iv.1 = add %scaled.iv, 1 142 // f(%scaled.iv.1) 143 // %scaled.iv.2 = add %scaled.iv, 2 144 // f(%scaled.iv.2) 145 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 146 // f(%scaled.iv.scale_m_1) 147 // ... 148 // %iv.next = add %iv, 1 149 // %cmp = icmp(%iv, ...) 150 // br %cmp, header, exit 151 152 namespace { 153 154 enum IterationLimits { 155 /// The maximum number of iterations that we'll try and reroll. 156 IL_MaxRerollIterations = 32, 157 /// The bitvector index used by loop induction variables and other 158 /// instructions that belong to all iterations. 159 IL_All, 160 IL_End 161 }; 162 163 class LoopReroll : public LoopPass { 164 public: 165 static char ID; // Pass ID, replacement for typeid 166 167 LoopReroll() : LoopPass(ID) { 168 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.addRequired<TargetLibraryInfoWrapperPass>(); 175 getLoopAnalysisUsage(AU); 176 } 177 178 protected: 179 AliasAnalysis *AA; 180 LoopInfo *LI; 181 ScalarEvolution *SE; 182 TargetLibraryInfo *TLI; 183 DominatorTree *DT; 184 bool PreserveLCSSA; 185 186 using SmallInstructionVector = SmallVector<Instruction *, 16>; 187 using SmallInstructionSet = SmallPtrSet<Instruction *, 16>; 188 189 // Map between induction variable and its increment 190 DenseMap<Instruction *, int64_t> IVToIncMap; 191 192 // For loop with multiple induction variable, remember the one used only to 193 // control the loop. 194 Instruction *LoopControlIV; 195 196 // A chain of isomorphic instructions, identified by a single-use PHI 197 // representing a reduction. Only the last value may be used outside the 198 // loop. 199 struct SimpleLoopReduction { 200 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) { 201 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 202 add(L); 203 } 204 205 bool valid() const { 206 return Valid; 207 } 208 209 Instruction *getPHI() const { 210 assert(Valid && "Using invalid reduction"); 211 return Instructions.front(); 212 } 213 214 Instruction *getReducedValue() const { 215 assert(Valid && "Using invalid reduction"); 216 return Instructions.back(); 217 } 218 219 Instruction *get(size_t i) const { 220 assert(Valid && "Using invalid reduction"); 221 return Instructions[i+1]; 222 } 223 224 Instruction *operator [] (size_t i) const { return get(i); } 225 226 // The size, ignoring the initial PHI. 227 size_t size() const { 228 assert(Valid && "Using invalid reduction"); 229 return Instructions.size()-1; 230 } 231 232 using iterator = SmallInstructionVector::iterator; 233 using const_iterator = SmallInstructionVector::const_iterator; 234 235 iterator begin() { 236 assert(Valid && "Using invalid reduction"); 237 return std::next(Instructions.begin()); 238 } 239 240 const_iterator begin() const { 241 assert(Valid && "Using invalid reduction"); 242 return std::next(Instructions.begin()); 243 } 244 245 iterator end() { return Instructions.end(); } 246 const_iterator end() const { return Instructions.end(); } 247 248 protected: 249 bool Valid = false; 250 SmallInstructionVector Instructions; 251 252 void add(Loop *L); 253 }; 254 255 // The set of all reductions, and state tracking of possible reductions 256 // during loop instruction processing. 257 struct ReductionTracker { 258 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>; 259 260 // Add a new possible reduction. 261 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 262 263 // Setup to track possible reductions corresponding to the provided 264 // rerolling scale. Only reductions with a number of non-PHI instructions 265 // that is divisible by the scale are considered. Three instructions sets 266 // are filled in: 267 // - A set of all possible instructions in eligible reductions. 268 // - A set of all PHIs in eligible reductions 269 // - A set of all reduced values (last instructions) in eligible 270 // reductions. 271 void restrictToScale(uint64_t Scale, 272 SmallInstructionSet &PossibleRedSet, 273 SmallInstructionSet &PossibleRedPHISet, 274 SmallInstructionSet &PossibleRedLastSet) { 275 PossibleRedIdx.clear(); 276 PossibleRedIter.clear(); 277 Reds.clear(); 278 279 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 280 if (PossibleReds[i].size() % Scale == 0) { 281 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 282 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 283 284 PossibleRedSet.insert(PossibleReds[i].getPHI()); 285 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 286 for (Instruction *J : PossibleReds[i]) { 287 PossibleRedSet.insert(J); 288 PossibleRedIdx[J] = i; 289 } 290 } 291 } 292 293 // The functions below are used while processing the loop instructions. 294 295 // Are the two instructions both from reductions, and furthermore, from 296 // the same reduction? 297 bool isPairInSame(Instruction *J1, Instruction *J2) { 298 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 299 if (J1I != PossibleRedIdx.end()) { 300 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 301 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 302 return true; 303 } 304 305 return false; 306 } 307 308 // The two provided instructions, the first from the base iteration, and 309 // the second from iteration i, form a matched pair. If these are part of 310 // a reduction, record that fact. 311 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 312 if (PossibleRedIdx.count(J1)) { 313 assert(PossibleRedIdx.count(J2) && 314 "Recording reduction vs. non-reduction instruction?"); 315 316 PossibleRedIter[J1] = 0; 317 PossibleRedIter[J2] = i; 318 319 int Idx = PossibleRedIdx[J1]; 320 assert(Idx == PossibleRedIdx[J2] && 321 "Recording pair from different reductions?"); 322 Reds.insert(Idx); 323 } 324 } 325 326 // The functions below can be called after we've finished processing all 327 // instructions in the loop, and we know which reductions were selected. 328 329 bool validateSelected(); 330 void replaceSelected(); 331 332 protected: 333 // The vector of all possible reductions (for any scale). 334 SmallReductionVector PossibleReds; 335 336 DenseMap<Instruction *, int> PossibleRedIdx; 337 DenseMap<Instruction *, int> PossibleRedIter; 338 DenseSet<int> Reds; 339 }; 340 341 // A DAGRootSet models an induction variable being used in a rerollable 342 // loop. For example, 343 // 344 // x[i*3+0] = y1 345 // x[i*3+1] = y2 346 // x[i*3+2] = y3 347 // 348 // Base instruction -> i*3 349 // +---+----+ 350 // / | \ 351 // ST[y1] +1 +2 <-- Roots 352 // | | 353 // ST[y2] ST[y3] 354 // 355 // There may be multiple DAGRoots, for example: 356 // 357 // x[i*2+0] = ... (1) 358 // x[i*2+1] = ... (1) 359 // x[i*2+4] = ... (2) 360 // x[i*2+5] = ... (2) 361 // x[(i+1234)*2+5678] = ... (3) 362 // x[(i+1234)*2+5679] = ... (3) 363 // 364 // The loop will be rerolled by adding a new loop induction variable, 365 // one for the Base instruction in each DAGRootSet. 366 // 367 struct DAGRootSet { 368 Instruction *BaseInst; 369 SmallInstructionVector Roots; 370 371 // The instructions between IV and BaseInst (but not including BaseInst). 372 SmallInstructionSet SubsumedInsts; 373 }; 374 375 // The set of all DAG roots, and state tracking of all roots 376 // for a particular induction variable. 377 struct DAGRootTracker { 378 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 379 ScalarEvolution *SE, AliasAnalysis *AA, 380 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 381 bool PreserveLCSSA, 382 DenseMap<Instruction *, int64_t> &IncrMap, 383 Instruction *LoopCtrlIV) 384 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 385 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 386 LoopControlIV(LoopCtrlIV) {} 387 388 /// Stage 1: Find all the DAG roots for the induction variable. 389 bool findRoots(); 390 391 /// Stage 2: Validate if the found roots are valid. 392 bool validate(ReductionTracker &Reductions); 393 394 /// Stage 3: Assuming validate() returned true, perform the 395 /// replacement. 396 /// @param BackedgeTakenCount The backedge-taken count of L. 397 void replace(const SCEV *BackedgeTakenCount); 398 399 protected: 400 using UsesTy = MapVector<Instruction *, BitVector>; 401 402 void findRootsRecursive(Instruction *IVU, 403 SmallInstructionSet SubsumedInsts); 404 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 405 bool collectPossibleRoots(Instruction *Base, 406 std::map<int64_t,Instruction*> &Roots); 407 bool validateRootSet(DAGRootSet &DRS); 408 409 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 410 void collectInLoopUserSet(const SmallInstructionVector &Roots, 411 const SmallInstructionSet &Exclude, 412 const SmallInstructionSet &Final, 413 DenseSet<Instruction *> &Users); 414 void collectInLoopUserSet(Instruction *Root, 415 const SmallInstructionSet &Exclude, 416 const SmallInstructionSet &Final, 417 DenseSet<Instruction *> &Users); 418 419 UsesTy::iterator nextInstr(int Val, UsesTy &In, 420 const SmallInstructionSet &Exclude, 421 UsesTy::iterator *StartI=nullptr); 422 bool isBaseInst(Instruction *I); 423 bool isRootInst(Instruction *I); 424 bool instrDependsOn(Instruction *I, 425 UsesTy::iterator Start, 426 UsesTy::iterator End); 427 void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr); 428 429 LoopReroll *Parent; 430 431 // Members of Parent, replicated here for brevity. 432 Loop *L; 433 ScalarEvolution *SE; 434 AliasAnalysis *AA; 435 TargetLibraryInfo *TLI; 436 DominatorTree *DT; 437 LoopInfo *LI; 438 bool PreserveLCSSA; 439 440 // The loop induction variable. 441 Instruction *IV; 442 443 // Loop step amount. 444 int64_t Inc; 445 446 // Loop reroll count; if Inc == 1, this records the scaling applied 447 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 448 // If Inc is not 1, Scale = Inc. 449 uint64_t Scale; 450 451 // The roots themselves. 452 SmallVector<DAGRootSet,16> RootSets; 453 454 // All increment instructions for IV. 455 SmallInstructionVector LoopIncs; 456 457 // Map of all instructions in the loop (in order) to the iterations 458 // they are used in (or specially, IL_All for instructions 459 // used in the loop increment mechanism). 460 UsesTy Uses; 461 462 // Map between induction variable and its increment 463 DenseMap<Instruction *, int64_t> &IVToIncMap; 464 465 Instruction *LoopControlIV; 466 }; 467 468 // Check if it is a compare-like instruction whose user is a branch 469 bool isCompareUsedByBranch(Instruction *I) { 470 auto *TI = I->getParent()->getTerminator(); 471 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 472 return false; 473 return I->hasOneUse() && TI->getOperand(0) == I; 474 }; 475 476 bool isLoopControlIV(Loop *L, Instruction *IV); 477 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 478 void collectPossibleReductions(Loop *L, 479 ReductionTracker &Reductions); 480 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, 481 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions); 482 }; 483 484 } // end anonymous namespace 485 486 char LoopReroll::ID = 0; 487 488 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 489 INITIALIZE_PASS_DEPENDENCY(LoopPass) 490 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 491 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 492 493 Pass *llvm::createLoopRerollPass() { 494 return new LoopReroll; 495 } 496 497 // Returns true if the provided instruction is used outside the given loop. 498 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 499 // non-loop blocks to be outside the loop. 500 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 501 for (User *U : I->users()) { 502 if (!L->contains(cast<Instruction>(U))) 503 return true; 504 } 505 return false; 506 } 507 508 // Check if an IV is only used to control the loop. There are two cases: 509 // 1. It only has one use which is loop increment, and the increment is only 510 // used by comparison and the PHI (could has sext with nsw in between), and the 511 // comparison is only used by branch. 512 // 2. It is used by loop increment and the comparison, the loop increment is 513 // only used by the PHI, and the comparison is used only by the branch. 514 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 515 unsigned IVUses = IV->getNumUses(); 516 if (IVUses != 2 && IVUses != 1) 517 return false; 518 519 for (auto *User : IV->users()) { 520 int32_t IncOrCmpUses = User->getNumUses(); 521 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 522 523 // User can only have one or two uses. 524 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 525 return false; 526 527 // Case 1 528 if (IVUses == 1) { 529 // The only user must be the loop increment. 530 // The loop increment must have two uses. 531 if (IsCompInst || IncOrCmpUses != 2) 532 return false; 533 } 534 535 // Case 2 536 if (IVUses == 2 && IncOrCmpUses != 1) 537 return false; 538 539 // The users of the IV must be a binary operation or a comparison 540 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 541 if (BO->getOpcode() == Instruction::Add) { 542 // Loop Increment 543 // User of Loop Increment should be either PHI or CMP 544 for (auto *UU : User->users()) { 545 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 546 if (PN != IV) 547 return false; 548 } 549 // Must be a CMP or an ext (of a value with nsw) then CMP 550 else { 551 Instruction *UUser = dyn_cast<Instruction>(UU); 552 // Skip SExt if we are extending an nsw value 553 // TODO: Allow ZExt too 554 if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() && 555 isa<SExtInst>(UUser)) 556 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 557 if (!isCompareUsedByBranch(UUser)) 558 return false; 559 } 560 } 561 } else 562 return false; 563 // Compare : can only have one use, and must be branch 564 } else if (!IsCompInst) 565 return false; 566 } 567 return true; 568 } 569 570 // Collect the list of loop induction variables with respect to which it might 571 // be possible to reroll the loop. 572 void LoopReroll::collectPossibleIVs(Loop *L, 573 SmallInstructionVector &PossibleIVs) { 574 BasicBlock *Header = L->getHeader(); 575 for (BasicBlock::iterator I = Header->begin(), 576 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 577 if (!isa<PHINode>(I)) 578 continue; 579 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 580 continue; 581 582 if (const SCEVAddRecExpr *PHISCEV = 583 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 584 if (PHISCEV->getLoop() != L) 585 continue; 586 if (!PHISCEV->isAffine()) 587 continue; 588 auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 589 if (IncSCEV) { 590 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 591 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 592 << "\n"); 593 594 if (isLoopControlIV(L, &*I)) { 595 assert(!LoopControlIV && "Found two loop control only IV"); 596 LoopControlIV = &(*I); 597 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I 598 << " = " << *PHISCEV << "\n"); 599 } else 600 PossibleIVs.push_back(&*I); 601 } 602 } 603 } 604 } 605 606 // Add the remainder of the reduction-variable chain to the instruction vector 607 // (the initial PHINode has already been added). If successful, the object is 608 // marked as valid. 609 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 610 assert(!Valid && "Cannot add to an already-valid chain"); 611 612 // The reduction variable must be a chain of single-use instructions 613 // (including the PHI), except for the last value (which is used by the PHI 614 // and also outside the loop). 615 Instruction *C = Instructions.front(); 616 if (C->user_empty()) 617 return; 618 619 do { 620 C = cast<Instruction>(*C->user_begin()); 621 if (C->hasOneUse()) { 622 if (!C->isBinaryOp()) 623 return; 624 625 if (!(isa<PHINode>(Instructions.back()) || 626 C->isSameOperationAs(Instructions.back()))) 627 return; 628 629 Instructions.push_back(C); 630 } 631 } while (C->hasOneUse()); 632 633 if (Instructions.size() < 2 || 634 !C->isSameOperationAs(Instructions.back()) || 635 C->use_empty()) 636 return; 637 638 // C is now the (potential) last instruction in the reduction chain. 639 for (User *U : C->users()) { 640 // The only in-loop user can be the initial PHI. 641 if (L->contains(cast<Instruction>(U))) 642 if (cast<Instruction>(U) != Instructions.front()) 643 return; 644 } 645 646 Instructions.push_back(C); 647 Valid = true; 648 } 649 650 // Collect the vector of possible reduction variables. 651 void LoopReroll::collectPossibleReductions(Loop *L, 652 ReductionTracker &Reductions) { 653 BasicBlock *Header = L->getHeader(); 654 for (BasicBlock::iterator I = Header->begin(), 655 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 656 if (!isa<PHINode>(I)) 657 continue; 658 if (!I->getType()->isSingleValueType()) 659 continue; 660 661 SimpleLoopReduction SLR(&*I, L); 662 if (!SLR.valid()) 663 continue; 664 665 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " 666 << SLR.size() << " chained instructions)\n"); 667 Reductions.addSLR(SLR); 668 } 669 } 670 671 // Collect the set of all users of the provided root instruction. This set of 672 // users contains not only the direct users of the root instruction, but also 673 // all users of those users, and so on. There are two exceptions: 674 // 675 // 1. Instructions in the set of excluded instructions are never added to the 676 // use set (even if they are users). This is used, for example, to exclude 677 // including root increments in the use set of the primary IV. 678 // 679 // 2. Instructions in the set of final instructions are added to the use set 680 // if they are users, but their users are not added. This is used, for 681 // example, to prevent a reduction update from forcing all later reduction 682 // updates into the use set. 683 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 684 Instruction *Root, const SmallInstructionSet &Exclude, 685 const SmallInstructionSet &Final, 686 DenseSet<Instruction *> &Users) { 687 SmallInstructionVector Queue(1, Root); 688 while (!Queue.empty()) { 689 Instruction *I = Queue.pop_back_val(); 690 if (!Users.insert(I).second) 691 continue; 692 693 if (!Final.count(I)) 694 for (Use &U : I->uses()) { 695 Instruction *User = cast<Instruction>(U.getUser()); 696 if (PHINode *PN = dyn_cast<PHINode>(User)) { 697 // Ignore "wrap-around" uses to PHIs of this loop's header. 698 if (PN->getIncomingBlock(U) == L->getHeader()) 699 continue; 700 } 701 702 if (L->contains(User) && !Exclude.count(User)) { 703 Queue.push_back(User); 704 } 705 } 706 707 // We also want to collect single-user "feeder" values. 708 for (User::op_iterator OI = I->op_begin(), 709 OIE = I->op_end(); OI != OIE; ++OI) { 710 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 711 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 712 !Final.count(Op)) 713 Queue.push_back(Op); 714 } 715 } 716 } 717 718 // Collect all of the users of all of the provided root instructions (combined 719 // into a single set). 720 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 721 const SmallInstructionVector &Roots, 722 const SmallInstructionSet &Exclude, 723 const SmallInstructionSet &Final, 724 DenseSet<Instruction *> &Users) { 725 for (Instruction *Root : Roots) 726 collectInLoopUserSet(Root, Exclude, Final, Users); 727 } 728 729 static bool isUnorderedLoadStore(Instruction *I) { 730 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 731 return LI->isUnordered(); 732 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 733 return SI->isUnordered(); 734 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 735 return !MI->isVolatile(); 736 return false; 737 } 738 739 /// Return true if IVU is a "simple" arithmetic operation. 740 /// This is used for narrowing the search space for DAGRoots; only arithmetic 741 /// and GEPs can be part of a DAGRoot. 742 static bool isSimpleArithmeticOp(User *IVU) { 743 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 744 switch (I->getOpcode()) { 745 default: return false; 746 case Instruction::Add: 747 case Instruction::Sub: 748 case Instruction::Mul: 749 case Instruction::Shl: 750 case Instruction::AShr: 751 case Instruction::LShr: 752 case Instruction::GetElementPtr: 753 case Instruction::Trunc: 754 case Instruction::ZExt: 755 case Instruction::SExt: 756 return true; 757 } 758 } 759 return false; 760 } 761 762 static bool isLoopIncrement(User *U, Instruction *IV) { 763 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 764 765 if ((BO && BO->getOpcode() != Instruction::Add) || 766 (!BO && !isa<GetElementPtrInst>(U))) 767 return false; 768 769 for (auto *UU : U->users()) { 770 PHINode *PN = dyn_cast<PHINode>(UU); 771 if (PN && PN == IV) 772 return true; 773 } 774 return false; 775 } 776 777 bool LoopReroll::DAGRootTracker:: 778 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 779 SmallInstructionVector BaseUsers; 780 781 for (auto *I : Base->users()) { 782 ConstantInt *CI = nullptr; 783 784 if (isLoopIncrement(I, IV)) { 785 LoopIncs.push_back(cast<Instruction>(I)); 786 continue; 787 } 788 789 // The root nodes must be either GEPs, ORs or ADDs. 790 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 791 if (BO->getOpcode() == Instruction::Add || 792 BO->getOpcode() == Instruction::Or) 793 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 794 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 795 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 796 CI = dyn_cast<ConstantInt>(LastOperand); 797 } 798 799 if (!CI) { 800 if (Instruction *II = dyn_cast<Instruction>(I)) { 801 BaseUsers.push_back(II); 802 continue; 803 } else { 804 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I 805 << "\n"); 806 return false; 807 } 808 } 809 810 int64_t V = std::abs(CI->getValue().getSExtValue()); 811 if (Roots.find(V) != Roots.end()) 812 // No duplicates, please. 813 return false; 814 815 Roots[V] = cast<Instruction>(I); 816 } 817 818 // Make sure we have at least two roots. 819 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) 820 return false; 821 822 // If we found non-loop-inc, non-root users of Base, assume they are 823 // for the zeroth root index. This is because "add %a, 0" gets optimized 824 // away. 825 if (BaseUsers.size()) { 826 if (Roots.find(0) != Roots.end()) { 827 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 828 return false; 829 } 830 Roots[0] = Base; 831 } 832 833 // Calculate the number of users of the base, or lowest indexed, iteration. 834 unsigned NumBaseUses = BaseUsers.size(); 835 if (NumBaseUses == 0) 836 NumBaseUses = Roots.begin()->second->getNumUses(); 837 838 // Check that every node has the same number of users. 839 for (auto &KV : Roots) { 840 if (KV.first == 0) 841 continue; 842 if (!KV.second->hasNUses(NumBaseUses)) { 843 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 844 << "#Base=" << NumBaseUses 845 << ", #Root=" << KV.second->getNumUses() << "\n"); 846 return false; 847 } 848 } 849 850 return true; 851 } 852 853 void LoopReroll::DAGRootTracker:: 854 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 855 // Does the user look like it could be part of a root set? 856 // All its users must be simple arithmetic ops. 857 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1)) 858 return; 859 860 if (I != IV && findRootsBase(I, SubsumedInsts)) 861 return; 862 863 SubsumedInsts.insert(I); 864 865 for (User *V : I->users()) { 866 Instruction *I = cast<Instruction>(V); 867 if (is_contained(LoopIncs, I)) 868 continue; 869 870 if (!isSimpleArithmeticOp(I)) 871 continue; 872 873 // The recursive call makes a copy of SubsumedInsts. 874 findRootsRecursive(I, SubsumedInsts); 875 } 876 } 877 878 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { 879 if (DRS.Roots.empty()) 880 return false; 881 882 // Consider a DAGRootSet with N-1 roots (so N different values including 883 // BaseInst). 884 // Define d = Roots[0] - BaseInst, which should be the same as 885 // Roots[I] - Roots[I-1] for all I in [1..N). 886 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 887 // loop iteration J. 888 // 889 // Now, For the loop iterations to be consecutive: 890 // D = d * N 891 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 892 if (!ADR) 893 return false; 894 895 // Check that the first root is evenly spaced. 896 unsigned N = DRS.Roots.size() + 1; 897 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); 898 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 899 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) 900 return false; 901 902 // Check that the remainling roots are evenly spaced. 903 for (unsigned i = 1; i < N - 1; ++i) { 904 const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]), 905 SE->getSCEV(DRS.Roots[i-1])); 906 if (NewStepSCEV != StepSCEV) 907 return false; 908 } 909 910 return true; 911 } 912 913 bool LoopReroll::DAGRootTracker:: 914 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 915 // The base of a RootSet must be an AddRec, so it can be erased. 916 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); 917 if (!IVU_ADR || IVU_ADR->getLoop() != L) 918 return false; 919 920 std::map<int64_t, Instruction*> V; 921 if (!collectPossibleRoots(IVU, V)) 922 return false; 923 924 // If we didn't get a root for index zero, then IVU must be 925 // subsumed. 926 if (V.find(0) == V.end()) 927 SubsumedInsts.insert(IVU); 928 929 // Partition the vector into monotonically increasing indexes. 930 DAGRootSet DRS; 931 DRS.BaseInst = nullptr; 932 933 SmallVector<DAGRootSet, 16> PotentialRootSets; 934 935 for (auto &KV : V) { 936 if (!DRS.BaseInst) { 937 DRS.BaseInst = KV.second; 938 DRS.SubsumedInsts = SubsumedInsts; 939 } else if (DRS.Roots.empty()) { 940 DRS.Roots.push_back(KV.second); 941 } else if (V.find(KV.first - 1) != V.end()) { 942 DRS.Roots.push_back(KV.second); 943 } else { 944 // Linear sequence terminated. 945 if (!validateRootSet(DRS)) 946 return false; 947 948 // Construct a new DAGRootSet with the next sequence. 949 PotentialRootSets.push_back(DRS); 950 DRS.BaseInst = KV.second; 951 DRS.Roots.clear(); 952 } 953 } 954 955 if (!validateRootSet(DRS)) 956 return false; 957 958 PotentialRootSets.push_back(DRS); 959 960 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); 961 962 return true; 963 } 964 965 bool LoopReroll::DAGRootTracker::findRoots() { 966 Inc = IVToIncMap[IV]; 967 968 assert(RootSets.empty() && "Unclean state!"); 969 if (std::abs(Inc) == 1) { 970 for (auto *IVU : IV->users()) { 971 if (isLoopIncrement(IVU, IV)) 972 LoopIncs.push_back(cast<Instruction>(IVU)); 973 } 974 findRootsRecursive(IV, SmallInstructionSet()); 975 LoopIncs.push_back(IV); 976 } else { 977 if (!findRootsBase(IV, SmallInstructionSet())) 978 return false; 979 } 980 981 // Ensure all sets have the same size. 982 if (RootSets.empty()) { 983 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 984 return false; 985 } 986 for (auto &V : RootSets) { 987 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 988 LLVM_DEBUG( 989 dbgs() 990 << "LRR: Aborting because not all root sets have the same size\n"); 991 return false; 992 } 993 } 994 995 Scale = RootSets[0].Roots.size() + 1; 996 997 if (Scale > IL_MaxRerollIterations) { 998 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 999 << "#Found=" << Scale 1000 << ", #Max=" << IL_MaxRerollIterations << "\n"); 1001 return false; 1002 } 1003 1004 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale 1005 << "\n"); 1006 1007 return true; 1008 } 1009 1010 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1011 // Populate the MapVector with all instructions in the block, in order first, 1012 // so we can iterate over the contents later in perfect order. 1013 for (auto &I : *L->getHeader()) { 1014 Uses[&I].resize(IL_End); 1015 } 1016 1017 SmallInstructionSet Exclude; 1018 for (auto &DRS : RootSets) { 1019 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1020 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1021 Exclude.insert(DRS.BaseInst); 1022 } 1023 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1024 1025 for (auto &DRS : RootSets) { 1026 DenseSet<Instruction*> VBase; 1027 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1028 for (auto *I : VBase) { 1029 Uses[I].set(0); 1030 } 1031 1032 unsigned Idx = 1; 1033 for (auto *Root : DRS.Roots) { 1034 DenseSet<Instruction*> V; 1035 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1036 1037 // While we're here, check the use sets are the same size. 1038 if (V.size() != VBase.size()) { 1039 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1040 return false; 1041 } 1042 1043 for (auto *I : V) { 1044 Uses[I].set(Idx); 1045 } 1046 ++Idx; 1047 } 1048 1049 // Make sure our subsumed instructions are remembered too. 1050 for (auto *I : DRS.SubsumedInsts) { 1051 Uses[I].set(IL_All); 1052 } 1053 } 1054 1055 // Make sure the loop increments are also accounted for. 1056 1057 Exclude.clear(); 1058 for (auto &DRS : RootSets) { 1059 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1060 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1061 Exclude.insert(DRS.BaseInst); 1062 } 1063 1064 DenseSet<Instruction*> V; 1065 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1066 for (auto *I : V) { 1067 Uses[I].set(IL_All); 1068 } 1069 1070 return true; 1071 } 1072 1073 /// Get the next instruction in "In" that is a member of set Val. 1074 /// Start searching from StartI, and do not return anything in Exclude. 1075 /// If StartI is not given, start from In.begin(). 1076 LoopReroll::DAGRootTracker::UsesTy::iterator 1077 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1078 const SmallInstructionSet &Exclude, 1079 UsesTy::iterator *StartI) { 1080 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1081 while (I != In.end() && (I->second.test(Val) == 0 || 1082 Exclude.count(I->first) != 0)) 1083 ++I; 1084 return I; 1085 } 1086 1087 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1088 for (auto &DRS : RootSets) { 1089 if (DRS.BaseInst == I) 1090 return true; 1091 } 1092 return false; 1093 } 1094 1095 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1096 for (auto &DRS : RootSets) { 1097 if (is_contained(DRS.Roots, I)) 1098 return true; 1099 } 1100 return false; 1101 } 1102 1103 /// Return true if instruction I depends on any instruction between 1104 /// Start and End. 1105 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1106 UsesTy::iterator Start, 1107 UsesTy::iterator End) { 1108 for (auto *U : I->users()) { 1109 for (auto It = Start; It != End; ++It) 1110 if (U == It->first) 1111 return true; 1112 } 1113 return false; 1114 } 1115 1116 static bool isIgnorableInst(const Instruction *I) { 1117 if (isa<DbgInfoIntrinsic>(I)) 1118 return true; 1119 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1120 if (!II) 1121 return false; 1122 switch (II->getIntrinsicID()) { 1123 default: 1124 return false; 1125 case Intrinsic::annotation: 1126 case Intrinsic::ptr_annotation: 1127 case Intrinsic::var_annotation: 1128 // TODO: the following intrinsics may also be whitelisted: 1129 // lifetime_start, lifetime_end, invariant_start, invariant_end 1130 return true; 1131 } 1132 return false; 1133 } 1134 1135 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1136 // We now need to check for equivalence of the use graph of each root with 1137 // that of the primary induction variable (excluding the roots). Our goal 1138 // here is not to solve the full graph isomorphism problem, but rather to 1139 // catch common cases without a lot of work. As a result, we will assume 1140 // that the relative order of the instructions in each unrolled iteration 1141 // is the same (although we will not make an assumption about how the 1142 // different iterations are intermixed). Note that while the order must be 1143 // the same, the instructions may not be in the same basic block. 1144 1145 // An array of just the possible reductions for this scale factor. When we 1146 // collect the set of all users of some root instructions, these reduction 1147 // instructions are treated as 'final' (their uses are not considered). 1148 // This is important because we don't want the root use set to search down 1149 // the reduction chain. 1150 SmallInstructionSet PossibleRedSet; 1151 SmallInstructionSet PossibleRedLastSet; 1152 SmallInstructionSet PossibleRedPHISet; 1153 Reductions.restrictToScale(Scale, PossibleRedSet, 1154 PossibleRedPHISet, PossibleRedLastSet); 1155 1156 // Populate "Uses" with where each instruction is used. 1157 if (!collectUsedInstructions(PossibleRedSet)) 1158 return false; 1159 1160 // Make sure we mark the reduction PHIs as used in all iterations. 1161 for (auto *I : PossibleRedPHISet) { 1162 Uses[I].set(IL_All); 1163 } 1164 1165 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1166 // comment above LoopReroll::isLoopControlIV for more information. 1167 BasicBlock *Header = L->getHeader(); 1168 if (LoopControlIV && LoopControlIV != IV) { 1169 for (auto *U : LoopControlIV->users()) { 1170 Instruction *IVUser = dyn_cast<Instruction>(U); 1171 // IVUser could be loop increment or compare 1172 Uses[IVUser].set(IL_All); 1173 for (auto *UU : IVUser->users()) { 1174 Instruction *UUser = dyn_cast<Instruction>(UU); 1175 // UUser could be compare, PHI or branch 1176 Uses[UUser].set(IL_All); 1177 // Skip SExt 1178 if (isa<SExtInst>(UUser)) { 1179 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1180 Uses[UUser].set(IL_All); 1181 } 1182 // Is UUser a compare instruction? 1183 if (UU->hasOneUse()) { 1184 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1185 if (BI == cast<BranchInst>(Header->getTerminator())) 1186 Uses[BI].set(IL_All); 1187 } 1188 } 1189 } 1190 } 1191 1192 // Make sure all instructions in the loop are in one and only one 1193 // set. 1194 for (auto &KV : Uses) { 1195 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1196 LLVM_DEBUG( 1197 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1198 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1199 return false; 1200 } 1201 } 1202 1203 LLVM_DEBUG(for (auto &KV 1204 : Uses) { 1205 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1206 }); 1207 1208 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1209 // In addition to regular aliasing information, we need to look for 1210 // instructions from later (future) iterations that have side effects 1211 // preventing us from reordering them past other instructions with side 1212 // effects. 1213 bool FutureSideEffects = false; 1214 AliasSetTracker AST(*AA); 1215 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1216 DenseMap<Value *, Value *> BaseMap; 1217 1218 // Compare iteration Iter to the base. 1219 SmallInstructionSet Visited; 1220 auto BaseIt = nextInstr(0, Uses, Visited); 1221 auto RootIt = nextInstr(Iter, Uses, Visited); 1222 auto LastRootIt = Uses.begin(); 1223 1224 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1225 Instruction *BaseInst = BaseIt->first; 1226 Instruction *RootInst = RootIt->first; 1227 1228 // Skip over the IV or root instructions; only match their users. 1229 bool Continue = false; 1230 if (isBaseInst(BaseInst)) { 1231 Visited.insert(BaseInst); 1232 BaseIt = nextInstr(0, Uses, Visited); 1233 Continue = true; 1234 } 1235 if (isRootInst(RootInst)) { 1236 LastRootIt = RootIt; 1237 Visited.insert(RootInst); 1238 RootIt = nextInstr(Iter, Uses, Visited); 1239 Continue = true; 1240 } 1241 if (Continue) continue; 1242 1243 if (!BaseInst->isSameOperationAs(RootInst)) { 1244 // Last chance saloon. We don't try and solve the full isomorphism 1245 // problem, but try and at least catch the case where two instructions 1246 // *of different types* are round the wrong way. We won't be able to 1247 // efficiently tell, given two ADD instructions, which way around we 1248 // should match them, but given an ADD and a SUB, we can at least infer 1249 // which one is which. 1250 // 1251 // This should allow us to deal with a greater subset of the isomorphism 1252 // problem. It does however change a linear algorithm into a quadratic 1253 // one, so limit the number of probes we do. 1254 auto TryIt = RootIt; 1255 unsigned N = NumToleratedFailedMatches; 1256 while (TryIt != Uses.end() && 1257 !BaseInst->isSameOperationAs(TryIt->first) && 1258 N--) { 1259 ++TryIt; 1260 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1261 } 1262 1263 if (TryIt == Uses.end() || TryIt == RootIt || 1264 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1265 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1266 << *BaseInst << " vs. " << *RootInst << "\n"); 1267 return false; 1268 } 1269 1270 RootIt = TryIt; 1271 RootInst = TryIt->first; 1272 } 1273 1274 // All instructions between the last root and this root 1275 // may belong to some other iteration. If they belong to a 1276 // future iteration, then they're dangerous to alias with. 1277 // 1278 // Note that because we allow a limited amount of flexibility in the order 1279 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1280 // case we've already checked this set of instructions so we shouldn't 1281 // do anything. 1282 for (; LastRootIt < RootIt; ++LastRootIt) { 1283 Instruction *I = LastRootIt->first; 1284 if (LastRootIt->second.find_first() < (int)Iter) 1285 continue; 1286 if (I->mayWriteToMemory()) 1287 AST.add(I); 1288 // Note: This is specifically guarded by a check on isa<PHINode>, 1289 // which while a valid (somewhat arbitrary) micro-optimization, is 1290 // needed because otherwise isSafeToSpeculativelyExecute returns 1291 // false on PHI nodes. 1292 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && 1293 !isSafeToSpeculativelyExecute(I)) 1294 // Intervening instructions cause side effects. 1295 FutureSideEffects = true; 1296 } 1297 1298 // Make sure that this instruction, which is in the use set of this 1299 // root instruction, does not also belong to the base set or the set of 1300 // some other root instruction. 1301 if (RootIt->second.count() > 1) { 1302 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1303 << " vs. " << *RootInst << " (prev. case overlap)\n"); 1304 return false; 1305 } 1306 1307 // Make sure that we don't alias with any instruction in the alias set 1308 // tracker. If we do, then we depend on a future iteration, and we 1309 // can't reroll. 1310 if (RootInst->mayReadFromMemory()) 1311 for (auto &K : AST) { 1312 if (K.aliasesUnknownInst(RootInst, *AA)) { 1313 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1314 << *BaseInst << " vs. " << *RootInst 1315 << " (depends on future store)\n"); 1316 return false; 1317 } 1318 } 1319 1320 // If we've past an instruction from a future iteration that may have 1321 // side effects, and this instruction might also, then we can't reorder 1322 // them, and this matching fails. As an exception, we allow the alias 1323 // set tracker to handle regular (unordered) load/store dependencies. 1324 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && 1325 !isSafeToSpeculativelyExecute(BaseInst)) || 1326 (!isUnorderedLoadStore(RootInst) && 1327 !isSafeToSpeculativelyExecute(RootInst)))) { 1328 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1329 << " vs. " << *RootInst 1330 << " (side effects prevent reordering)\n"); 1331 return false; 1332 } 1333 1334 // For instructions that are part of a reduction, if the operation is 1335 // associative, then don't bother matching the operands (because we 1336 // already know that the instructions are isomorphic, and the order 1337 // within the iteration does not matter). For non-associative reductions, 1338 // we do need to match the operands, because we need to reject 1339 // out-of-order instructions within an iteration! 1340 // For example (assume floating-point addition), we need to reject this: 1341 // x += a[i]; x += b[i]; 1342 // x += a[i+1]; x += b[i+1]; 1343 // x += b[i+2]; x += a[i+2]; 1344 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1345 1346 if (!(InReduction && BaseInst->isAssociative())) { 1347 bool Swapped = false, SomeOpMatched = false; 1348 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1349 Value *Op2 = RootInst->getOperand(j); 1350 1351 // If this is part of a reduction (and the operation is not 1352 // associatve), then we match all operands, but not those that are 1353 // part of the reduction. 1354 if (InReduction) 1355 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1356 if (Reductions.isPairInSame(RootInst, Op2I)) 1357 continue; 1358 1359 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1360 if (BMI != BaseMap.end()) { 1361 Op2 = BMI->second; 1362 } else { 1363 for (auto &DRS : RootSets) { 1364 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1365 Op2 = DRS.BaseInst; 1366 break; 1367 } 1368 } 1369 } 1370 1371 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1372 // If we've not already decided to swap the matched operands, and 1373 // we've not already matched our first operand (note that we could 1374 // have skipped matching the first operand because it is part of a 1375 // reduction above), and the instruction is commutative, then try 1376 // the swapped match. 1377 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1378 BaseInst->getOperand(!j) == Op2) { 1379 Swapped = true; 1380 } else { 1381 LLVM_DEBUG(dbgs() 1382 << "LRR: iteration root match failed at " << *BaseInst 1383 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1384 return false; 1385 } 1386 } 1387 1388 SomeOpMatched = true; 1389 } 1390 } 1391 1392 if ((!PossibleRedLastSet.count(BaseInst) && 1393 hasUsesOutsideLoop(BaseInst, L)) || 1394 (!PossibleRedLastSet.count(RootInst) && 1395 hasUsesOutsideLoop(RootInst, L))) { 1396 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1397 << " vs. " << *RootInst << " (uses outside loop)\n"); 1398 return false; 1399 } 1400 1401 Reductions.recordPair(BaseInst, RootInst, Iter); 1402 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1403 1404 LastRootIt = RootIt; 1405 Visited.insert(BaseInst); 1406 Visited.insert(RootInst); 1407 BaseIt = nextInstr(0, Uses, Visited); 1408 RootIt = nextInstr(Iter, Uses, Visited); 1409 } 1410 assert(BaseIt == Uses.end() && RootIt == Uses.end() && 1411 "Mismatched set sizes!"); 1412 } 1413 1414 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV 1415 << "\n"); 1416 1417 return true; 1418 } 1419 1420 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) { 1421 BasicBlock *Header = L->getHeader(); 1422 1423 // Compute the start and increment for each BaseInst before we start erasing 1424 // instructions. 1425 SmallVector<const SCEV *, 8> StartExprs; 1426 SmallVector<const SCEV *, 8> IncrExprs; 1427 for (auto &DRS : RootSets) { 1428 const SCEVAddRecExpr *IVSCEV = 1429 cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 1430 StartExprs.push_back(IVSCEV->getStart()); 1431 IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV)); 1432 } 1433 1434 // Remove instructions associated with non-base iterations. 1435 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); 1436 J != JE;) { 1437 unsigned I = Uses[&*J].find_first(); 1438 if (I > 0 && I < IL_All) { 1439 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n"); 1440 J++->eraseFromParent(); 1441 continue; 1442 } 1443 1444 ++J; 1445 } 1446 1447 // Rewrite each BaseInst using SCEV. 1448 for (size_t i = 0, e = RootSets.size(); i != e; ++i) 1449 // Insert the new induction variable. 1450 replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]); 1451 1452 { // Limit the lifetime of SCEVExpander. 1453 BranchInst *BI = cast<BranchInst>(Header->getTerminator()); 1454 const DataLayout &DL = Header->getModule()->getDataLayout(); 1455 SCEVExpander Expander(*SE, DL, "reroll"); 1456 auto Zero = SE->getZero(BackedgeTakenCount->getType()); 1457 auto One = SE->getOne(BackedgeTakenCount->getType()); 1458 auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap); 1459 Value *NewIV = 1460 Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(), 1461 Header->getFirstNonPHIOrDbg()); 1462 // FIXME: This arithmetic can overflow. 1463 auto TripCount = SE->getAddExpr(BackedgeTakenCount, One); 1464 auto ScaledTripCount = SE->getMulExpr( 1465 TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale)); 1466 auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One); 1467 Value *TakenCount = 1468 Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(), 1469 Header->getFirstNonPHIOrDbg()); 1470 Value *Cond = 1471 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond"); 1472 BI->setCondition(Cond); 1473 1474 if (BI->getSuccessor(1) != Header) 1475 BI->swapSuccessors(); 1476 } 1477 1478 SimplifyInstructionsInBlock(Header, TLI); 1479 DeleteDeadPHIs(Header, TLI); 1480 } 1481 1482 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS, 1483 const SCEV *Start, 1484 const SCEV *IncrExpr) { 1485 BasicBlock *Header = L->getHeader(); 1486 Instruction *Inst = DRS.BaseInst; 1487 1488 const SCEV *NewIVSCEV = 1489 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1490 1491 { // Limit the lifetime of SCEVExpander. 1492 const DataLayout &DL = Header->getModule()->getDataLayout(); 1493 SCEVExpander Expander(*SE, DL, "reroll"); 1494 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), 1495 Header->getFirstNonPHIOrDbg()); 1496 1497 for (auto &KV : Uses) 1498 if (KV.second.find_first() == 0) 1499 KV.first->replaceUsesOfWith(Inst, NewIV); 1500 } 1501 } 1502 1503 // Validate the selected reductions. All iterations must have an isomorphic 1504 // part of the reduction chain and, for non-associative reductions, the chain 1505 // entries must appear in order. 1506 bool LoopReroll::ReductionTracker::validateSelected() { 1507 // For a non-associative reduction, the chain entries must appear in order. 1508 for (int i : Reds) { 1509 int PrevIter = 0, BaseCount = 0, Count = 0; 1510 for (Instruction *J : PossibleReds[i]) { 1511 // Note that all instructions in the chain must have been found because 1512 // all instructions in the function must have been assigned to some 1513 // iteration. 1514 int Iter = PossibleRedIter[J]; 1515 if (Iter != PrevIter && Iter != PrevIter + 1 && 1516 !PossibleReds[i].getReducedValue()->isAssociative()) { 1517 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " 1518 << J << "\n"); 1519 return false; 1520 } 1521 1522 if (Iter != PrevIter) { 1523 if (Count != BaseCount) { 1524 LLVM_DEBUG(dbgs() 1525 << "LRR: Iteration " << PrevIter << " reduction use count " 1526 << Count << " is not equal to the base use count " 1527 << BaseCount << "\n"); 1528 return false; 1529 } 1530 1531 Count = 0; 1532 } 1533 1534 ++Count; 1535 if (Iter == 0) 1536 ++BaseCount; 1537 1538 PrevIter = Iter; 1539 } 1540 } 1541 1542 return true; 1543 } 1544 1545 // For all selected reductions, remove all parts except those in the first 1546 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1547 // of the first-iteration reduced value (in other words, reroll the selected 1548 // reductions). 1549 void LoopReroll::ReductionTracker::replaceSelected() { 1550 // Fixup reductions to refer to the last instruction associated with the 1551 // first iteration (not the last). 1552 for (int i : Reds) { 1553 int j = 0; 1554 for (int e = PossibleReds[i].size(); j != e; ++j) 1555 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1556 --j; 1557 break; 1558 } 1559 1560 // Replace users with the new end-of-chain value. 1561 SmallInstructionVector Users; 1562 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1563 Users.push_back(cast<Instruction>(U)); 1564 } 1565 1566 for (Instruction *User : Users) 1567 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1568 PossibleReds[i][j]); 1569 } 1570 } 1571 1572 // Reroll the provided loop with respect to the provided induction variable. 1573 // Generally, we're looking for a loop like this: 1574 // 1575 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1576 // f(%iv) 1577 // %iv.1 = add %iv, 1 <-- a root increment 1578 // f(%iv.1) 1579 // %iv.2 = add %iv, 2 <-- a root increment 1580 // f(%iv.2) 1581 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1582 // f(%iv.scale_m_1) 1583 // ... 1584 // %iv.next = add %iv, scale 1585 // %cmp = icmp(%iv, ...) 1586 // br %cmp, header, exit 1587 // 1588 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1589 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1590 // be intermixed with eachother. The restriction imposed by this algorithm is 1591 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1592 // etc. be the same. 1593 // 1594 // First, we collect the use set of %iv, excluding the other increment roots. 1595 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1596 // times, having collected the use set of f(%iv.(i+1)), during which we: 1597 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1598 // the next unmatched instruction in f(%iv.(i+1)). 1599 // - Ensure that both matched instructions don't have any external users 1600 // (with the exception of last-in-chain reduction instructions). 1601 // - Track the (aliasing) write set, and other side effects, of all 1602 // instructions that belong to future iterations that come before the matched 1603 // instructions. If the matched instructions read from that write set, then 1604 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1605 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1606 // if any of these future instructions had side effects (could not be 1607 // speculatively executed), and so do the matched instructions, when we 1608 // cannot reorder those side-effect-producing instructions, and rerolling 1609 // fails. 1610 // 1611 // Finally, we make sure that all loop instructions are either loop increment 1612 // roots, belong to simple latch code, parts of validated reductions, part of 1613 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1614 // have been validated), then we reroll the loop. 1615 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1616 const SCEV *BackedgeTakenCount, 1617 ReductionTracker &Reductions) { 1618 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1619 IVToIncMap, LoopControlIV); 1620 1621 if (!DAGRoots.findRoots()) 1622 return false; 1623 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV 1624 << "\n"); 1625 1626 if (!DAGRoots.validate(Reductions)) 1627 return false; 1628 if (!Reductions.validateSelected()) 1629 return false; 1630 // At this point, we've validated the rerolling, and we're committed to 1631 // making changes! 1632 1633 Reductions.replaceSelected(); 1634 DAGRoots.replace(BackedgeTakenCount); 1635 1636 ++NumRerolledLoops; 1637 return true; 1638 } 1639 1640 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1641 if (skipLoop(L)) 1642 return false; 1643 1644 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1645 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1646 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1647 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1648 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1649 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1650 1651 BasicBlock *Header = L->getHeader(); 1652 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %" 1653 << Header->getName() << " (" << L->getNumBlocks() 1654 << " block(s))\n"); 1655 1656 // For now, we'll handle only single BB loops. 1657 if (L->getNumBlocks() > 1) 1658 return false; 1659 1660 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1661 return false; 1662 1663 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1664 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1665 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount 1666 << "\n"); 1667 1668 // First, we need to find the induction variable with respect to which we can 1669 // reroll (there may be several possible options). 1670 SmallInstructionVector PossibleIVs; 1671 IVToIncMap.clear(); 1672 LoopControlIV = nullptr; 1673 collectPossibleIVs(L, PossibleIVs); 1674 1675 if (PossibleIVs.empty()) { 1676 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1677 return false; 1678 } 1679 1680 ReductionTracker Reductions; 1681 collectPossibleReductions(L, Reductions); 1682 bool Changed = false; 1683 1684 // For each possible IV, collect the associated possible set of 'root' nodes 1685 // (i+1, i+2, etc.). 1686 for (Instruction *PossibleIV : PossibleIVs) 1687 if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) { 1688 Changed = true; 1689 break; 1690 } 1691 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1692 1693 // Trip count of L has changed so SE must be re-evaluated. 1694 if (Changed) 1695 SE->forgetLoop(L); 1696 1697 return Changed; 1698 } 1699