1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop reroller. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AliasSetTracker.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpander.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "loop-reroll" 41 42 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 43 44 static cl::opt<unsigned> 45 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, 46 cl::desc("The maximum increment for loop rerolling")); 47 48 static cl::opt<unsigned> 49 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 50 cl::Hidden, 51 cl::desc("The maximum number of failures to tolerate" 52 " during fuzzy matching. (default: 400)")); 53 54 // This loop re-rolling transformation aims to transform loops like this: 55 // 56 // int foo(int a); 57 // void bar(int *x) { 58 // for (int i = 0; i < 500; i += 3) { 59 // foo(i); 60 // foo(i+1); 61 // foo(i+2); 62 // } 63 // } 64 // 65 // into a loop like this: 66 // 67 // void bar(int *x) { 68 // for (int i = 0; i < 500; ++i) 69 // foo(i); 70 // } 71 // 72 // It does this by looking for loops that, besides the latch code, are composed 73 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 74 // to the induction variable, and where each DAG is isomorphic to the DAG 75 // rooted at the induction variable (excepting the sub-DAGs which root the 76 // other induction-variable increments). In other words, we're looking for loop 77 // bodies of the form: 78 // 79 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 80 // f(%iv) 81 // %iv.1 = add %iv, 1 <-- a root increment 82 // f(%iv.1) 83 // %iv.2 = add %iv, 2 <-- a root increment 84 // f(%iv.2) 85 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 86 // f(%iv.scale_m_1) 87 // ... 88 // %iv.next = add %iv, scale 89 // %cmp = icmp(%iv, ...) 90 // br %cmp, header, exit 91 // 92 // where each f(i) is a set of instructions that, collectively, are a function 93 // only of i (and other loop-invariant values). 94 // 95 // As a special case, we can also reroll loops like this: 96 // 97 // int foo(int); 98 // void bar(int *x) { 99 // for (int i = 0; i < 500; ++i) { 100 // x[3*i] = foo(0); 101 // x[3*i+1] = foo(0); 102 // x[3*i+2] = foo(0); 103 // } 104 // } 105 // 106 // into this: 107 // 108 // void bar(int *x) { 109 // for (int i = 0; i < 1500; ++i) 110 // x[i] = foo(0); 111 // } 112 // 113 // in which case, we're looking for inputs like this: 114 // 115 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 116 // %scaled.iv = mul %iv, scale 117 // f(%scaled.iv) 118 // %scaled.iv.1 = add %scaled.iv, 1 119 // f(%scaled.iv.1) 120 // %scaled.iv.2 = add %scaled.iv, 2 121 // f(%scaled.iv.2) 122 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 123 // f(%scaled.iv.scale_m_1) 124 // ... 125 // %iv.next = add %iv, 1 126 // %cmp = icmp(%iv, ...) 127 // br %cmp, header, exit 128 129 namespace { 130 enum IterationLimits { 131 /// The maximum number of iterations that we'll try and reroll. 132 IL_MaxRerollIterations = 32, 133 /// The bitvector index used by loop induction variables and other 134 /// instructions that belong to all iterations. 135 IL_All, 136 IL_End 137 }; 138 139 class LoopReroll : public LoopPass { 140 public: 141 static char ID; // Pass ID, replacement for typeid 142 LoopReroll() : LoopPass(ID) { 143 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 getLoopAnalysisUsage(AU); 151 } 152 153 protected: 154 AliasAnalysis *AA; 155 LoopInfo *LI; 156 ScalarEvolution *SE; 157 TargetLibraryInfo *TLI; 158 DominatorTree *DT; 159 bool PreserveLCSSA; 160 161 typedef SmallVector<Instruction *, 16> SmallInstructionVector; 162 typedef SmallSet<Instruction *, 16> SmallInstructionSet; 163 164 // Map between induction variable and its increment 165 DenseMap<Instruction *, int64_t> IVToIncMap; 166 167 // A chain of isomorphic instructions, identified by a single-use PHI 168 // representing a reduction. Only the last value may be used outside the 169 // loop. 170 struct SimpleLoopReduction { 171 SimpleLoopReduction(Instruction *P, Loop *L) 172 : Valid(false), Instructions(1, P) { 173 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 174 add(L); 175 } 176 177 bool valid() const { 178 return Valid; 179 } 180 181 Instruction *getPHI() const { 182 assert(Valid && "Using invalid reduction"); 183 return Instructions.front(); 184 } 185 186 Instruction *getReducedValue() const { 187 assert(Valid && "Using invalid reduction"); 188 return Instructions.back(); 189 } 190 191 Instruction *get(size_t i) const { 192 assert(Valid && "Using invalid reduction"); 193 return Instructions[i+1]; 194 } 195 196 Instruction *operator [] (size_t i) const { return get(i); } 197 198 // The size, ignoring the initial PHI. 199 size_t size() const { 200 assert(Valid && "Using invalid reduction"); 201 return Instructions.size()-1; 202 } 203 204 typedef SmallInstructionVector::iterator iterator; 205 typedef SmallInstructionVector::const_iterator const_iterator; 206 207 iterator begin() { 208 assert(Valid && "Using invalid reduction"); 209 return std::next(Instructions.begin()); 210 } 211 212 const_iterator begin() const { 213 assert(Valid && "Using invalid reduction"); 214 return std::next(Instructions.begin()); 215 } 216 217 iterator end() { return Instructions.end(); } 218 const_iterator end() const { return Instructions.end(); } 219 220 protected: 221 bool Valid; 222 SmallInstructionVector Instructions; 223 224 void add(Loop *L); 225 }; 226 227 // The set of all reductions, and state tracking of possible reductions 228 // during loop instruction processing. 229 struct ReductionTracker { 230 typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector; 231 232 // Add a new possible reduction. 233 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 234 235 // Setup to track possible reductions corresponding to the provided 236 // rerolling scale. Only reductions with a number of non-PHI instructions 237 // that is divisible by the scale are considered. Three instructions sets 238 // are filled in: 239 // - A set of all possible instructions in eligible reductions. 240 // - A set of all PHIs in eligible reductions 241 // - A set of all reduced values (last instructions) in eligible 242 // reductions. 243 void restrictToScale(uint64_t Scale, 244 SmallInstructionSet &PossibleRedSet, 245 SmallInstructionSet &PossibleRedPHISet, 246 SmallInstructionSet &PossibleRedLastSet) { 247 PossibleRedIdx.clear(); 248 PossibleRedIter.clear(); 249 Reds.clear(); 250 251 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 252 if (PossibleReds[i].size() % Scale == 0) { 253 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 254 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 255 256 PossibleRedSet.insert(PossibleReds[i].getPHI()); 257 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 258 for (Instruction *J : PossibleReds[i]) { 259 PossibleRedSet.insert(J); 260 PossibleRedIdx[J] = i; 261 } 262 } 263 } 264 265 // The functions below are used while processing the loop instructions. 266 267 // Are the two instructions both from reductions, and furthermore, from 268 // the same reduction? 269 bool isPairInSame(Instruction *J1, Instruction *J2) { 270 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 271 if (J1I != PossibleRedIdx.end()) { 272 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 273 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 274 return true; 275 } 276 277 return false; 278 } 279 280 // The two provided instructions, the first from the base iteration, and 281 // the second from iteration i, form a matched pair. If these are part of 282 // a reduction, record that fact. 283 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 284 if (PossibleRedIdx.count(J1)) { 285 assert(PossibleRedIdx.count(J2) && 286 "Recording reduction vs. non-reduction instruction?"); 287 288 PossibleRedIter[J1] = 0; 289 PossibleRedIter[J2] = i; 290 291 int Idx = PossibleRedIdx[J1]; 292 assert(Idx == PossibleRedIdx[J2] && 293 "Recording pair from different reductions?"); 294 Reds.insert(Idx); 295 } 296 } 297 298 // The functions below can be called after we've finished processing all 299 // instructions in the loop, and we know which reductions were selected. 300 301 bool validateSelected(); 302 void replaceSelected(); 303 304 protected: 305 // The vector of all possible reductions (for any scale). 306 SmallReductionVector PossibleReds; 307 308 DenseMap<Instruction *, int> PossibleRedIdx; 309 DenseMap<Instruction *, int> PossibleRedIter; 310 DenseSet<int> Reds; 311 }; 312 313 // A DAGRootSet models an induction variable being used in a rerollable 314 // loop. For example, 315 // 316 // x[i*3+0] = y1 317 // x[i*3+1] = y2 318 // x[i*3+2] = y3 319 // 320 // Base instruction -> i*3 321 // +---+----+ 322 // / | \ 323 // ST[y1] +1 +2 <-- Roots 324 // | | 325 // ST[y2] ST[y3] 326 // 327 // There may be multiple DAGRoots, for example: 328 // 329 // x[i*2+0] = ... (1) 330 // x[i*2+1] = ... (1) 331 // x[i*2+4] = ... (2) 332 // x[i*2+5] = ... (2) 333 // x[(i+1234)*2+5678] = ... (3) 334 // x[(i+1234)*2+5679] = ... (3) 335 // 336 // The loop will be rerolled by adding a new loop induction variable, 337 // one for the Base instruction in each DAGRootSet. 338 // 339 struct DAGRootSet { 340 Instruction *BaseInst; 341 SmallInstructionVector Roots; 342 // The instructions between IV and BaseInst (but not including BaseInst). 343 SmallInstructionSet SubsumedInsts; 344 }; 345 346 // The set of all DAG roots, and state tracking of all roots 347 // for a particular induction variable. 348 struct DAGRootTracker { 349 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 350 ScalarEvolution *SE, AliasAnalysis *AA, 351 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 352 bool PreserveLCSSA, 353 DenseMap<Instruction *, int64_t> &IncrMap) 354 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 355 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap) {} 356 357 /// Stage 1: Find all the DAG roots for the induction variable. 358 bool findRoots(); 359 /// Stage 2: Validate if the found roots are valid. 360 bool validate(ReductionTracker &Reductions); 361 /// Stage 3: Assuming validate() returned true, perform the 362 /// replacement. 363 /// @param IterCount The maximum iteration count of L. 364 void replace(const SCEV *IterCount); 365 366 protected: 367 typedef MapVector<Instruction*, BitVector> UsesTy; 368 369 bool findRootsRecursive(Instruction *IVU, 370 SmallInstructionSet SubsumedInsts); 371 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 372 bool collectPossibleRoots(Instruction *Base, 373 std::map<int64_t,Instruction*> &Roots); 374 375 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 376 void collectInLoopUserSet(const SmallInstructionVector &Roots, 377 const SmallInstructionSet &Exclude, 378 const SmallInstructionSet &Final, 379 DenseSet<Instruction *> &Users); 380 void collectInLoopUserSet(Instruction *Root, 381 const SmallInstructionSet &Exclude, 382 const SmallInstructionSet &Final, 383 DenseSet<Instruction *> &Users); 384 385 UsesTy::iterator nextInstr(int Val, UsesTy &In, 386 const SmallInstructionSet &Exclude, 387 UsesTy::iterator *StartI=nullptr); 388 bool isBaseInst(Instruction *I); 389 bool isRootInst(Instruction *I); 390 bool instrDependsOn(Instruction *I, 391 UsesTy::iterator Start, 392 UsesTy::iterator End); 393 void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount); 394 395 LoopReroll *Parent; 396 397 // Members of Parent, replicated here for brevity. 398 Loop *L; 399 ScalarEvolution *SE; 400 AliasAnalysis *AA; 401 TargetLibraryInfo *TLI; 402 DominatorTree *DT; 403 LoopInfo *LI; 404 bool PreserveLCSSA; 405 406 // The loop induction variable. 407 Instruction *IV; 408 // Loop step amount. 409 int64_t Inc; 410 // Loop reroll count; if Inc == 1, this records the scaling applied 411 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 412 // If Inc is not 1, Scale = Inc. 413 uint64_t Scale; 414 // The roots themselves. 415 SmallVector<DAGRootSet,16> RootSets; 416 // All increment instructions for IV. 417 SmallInstructionVector LoopIncs; 418 // Map of all instructions in the loop (in order) to the iterations 419 // they are used in (or specially, IL_All for instructions 420 // used in the loop increment mechanism). 421 UsesTy Uses; 422 // Map between induction variable and its increment 423 DenseMap<Instruction *, int64_t> &IVToIncMap; 424 }; 425 426 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 427 void collectPossibleReductions(Loop *L, 428 ReductionTracker &Reductions); 429 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, 430 ReductionTracker &Reductions); 431 }; 432 } 433 434 char LoopReroll::ID = 0; 435 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 436 INITIALIZE_PASS_DEPENDENCY(LoopPass) 437 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 438 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 439 440 Pass *llvm::createLoopRerollPass() { 441 return new LoopReroll; 442 } 443 444 // Returns true if the provided instruction is used outside the given loop. 445 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 446 // non-loop blocks to be outside the loop. 447 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 448 for (User *U : I->users()) { 449 if (!L->contains(cast<Instruction>(U))) 450 return true; 451 } 452 return false; 453 } 454 455 static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE, 456 const SCEV *SCEVExpr, 457 Instruction &IV) { 458 const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr); 459 460 // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)), 461 // Return c1. 462 if (!MulSCEV && IV.getType()->isPointerTy()) 463 if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) { 464 const PointerType *PTy = cast<PointerType>(IV.getType()); 465 Type *ElTy = PTy->getElementType(); 466 const SCEV *SizeOfExpr = 467 SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy); 468 if (IncSCEV->getValue()->getValue().isNegative()) { 469 const SCEV *NewSCEV = 470 SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr); 471 return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV)); 472 } else { 473 return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr)); 474 } 475 } 476 477 if (!MulSCEV) 478 return nullptr; 479 480 // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant, 481 // Return c. 482 const SCEVConstant *CIncSCEV = nullptr; 483 for (const SCEV *Operand : MulSCEV->operands()) { 484 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) { 485 CIncSCEV = Constant; 486 } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) { 487 Type *AllocTy; 488 if (!Unknown->isSizeOf(AllocTy)) 489 break; 490 } else { 491 return nullptr; 492 } 493 } 494 return CIncSCEV; 495 } 496 497 // Collect the list of loop induction variables with respect to which it might 498 // be possible to reroll the loop. 499 void LoopReroll::collectPossibleIVs(Loop *L, 500 SmallInstructionVector &PossibleIVs) { 501 BasicBlock *Header = L->getHeader(); 502 for (BasicBlock::iterator I = Header->begin(), 503 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 504 if (!isa<PHINode>(I)) 505 continue; 506 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 507 continue; 508 509 if (const SCEVAddRecExpr *PHISCEV = 510 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 511 if (PHISCEV->getLoop() != L) 512 continue; 513 if (!PHISCEV->isAffine()) 514 continue; 515 const SCEVConstant *IncSCEV = nullptr; 516 if (I->getType()->isPointerTy()) 517 IncSCEV = 518 getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I); 519 else 520 IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 521 if (IncSCEV) { 522 const APInt &AInt = IncSCEV->getValue()->getValue().abs(); 523 if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc)) 524 continue; 525 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 526 DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 527 << "\n"); 528 PossibleIVs.push_back(&*I); 529 } 530 } 531 } 532 } 533 534 // Add the remainder of the reduction-variable chain to the instruction vector 535 // (the initial PHINode has already been added). If successful, the object is 536 // marked as valid. 537 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 538 assert(!Valid && "Cannot add to an already-valid chain"); 539 540 // The reduction variable must be a chain of single-use instructions 541 // (including the PHI), except for the last value (which is used by the PHI 542 // and also outside the loop). 543 Instruction *C = Instructions.front(); 544 if (C->user_empty()) 545 return; 546 547 do { 548 C = cast<Instruction>(*C->user_begin()); 549 if (C->hasOneUse()) { 550 if (!C->isBinaryOp()) 551 return; 552 553 if (!(isa<PHINode>(Instructions.back()) || 554 C->isSameOperationAs(Instructions.back()))) 555 return; 556 557 Instructions.push_back(C); 558 } 559 } while (C->hasOneUse()); 560 561 if (Instructions.size() < 2 || 562 !C->isSameOperationAs(Instructions.back()) || 563 C->use_empty()) 564 return; 565 566 // C is now the (potential) last instruction in the reduction chain. 567 for (User *U : C->users()) { 568 // The only in-loop user can be the initial PHI. 569 if (L->contains(cast<Instruction>(U))) 570 if (cast<Instruction>(U) != Instructions.front()) 571 return; 572 } 573 574 Instructions.push_back(C); 575 Valid = true; 576 } 577 578 // Collect the vector of possible reduction variables. 579 void LoopReroll::collectPossibleReductions(Loop *L, 580 ReductionTracker &Reductions) { 581 BasicBlock *Header = L->getHeader(); 582 for (BasicBlock::iterator I = Header->begin(), 583 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 584 if (!isa<PHINode>(I)) 585 continue; 586 if (!I->getType()->isSingleValueType()) 587 continue; 588 589 SimpleLoopReduction SLR(&*I, L); 590 if (!SLR.valid()) 591 continue; 592 593 DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " << 594 SLR.size() << " chained instructions)\n"); 595 Reductions.addSLR(SLR); 596 } 597 } 598 599 // Collect the set of all users of the provided root instruction. This set of 600 // users contains not only the direct users of the root instruction, but also 601 // all users of those users, and so on. There are two exceptions: 602 // 603 // 1. Instructions in the set of excluded instructions are never added to the 604 // use set (even if they are users). This is used, for example, to exclude 605 // including root increments in the use set of the primary IV. 606 // 607 // 2. Instructions in the set of final instructions are added to the use set 608 // if they are users, but their users are not added. This is used, for 609 // example, to prevent a reduction update from forcing all later reduction 610 // updates into the use set. 611 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 612 Instruction *Root, const SmallInstructionSet &Exclude, 613 const SmallInstructionSet &Final, 614 DenseSet<Instruction *> &Users) { 615 SmallInstructionVector Queue(1, Root); 616 while (!Queue.empty()) { 617 Instruction *I = Queue.pop_back_val(); 618 if (!Users.insert(I).second) 619 continue; 620 621 if (!Final.count(I)) 622 for (Use &U : I->uses()) { 623 Instruction *User = cast<Instruction>(U.getUser()); 624 if (PHINode *PN = dyn_cast<PHINode>(User)) { 625 // Ignore "wrap-around" uses to PHIs of this loop's header. 626 if (PN->getIncomingBlock(U) == L->getHeader()) 627 continue; 628 } 629 630 if (L->contains(User) && !Exclude.count(User)) { 631 Queue.push_back(User); 632 } 633 } 634 635 // We also want to collect single-user "feeder" values. 636 for (User::op_iterator OI = I->op_begin(), 637 OIE = I->op_end(); OI != OIE; ++OI) { 638 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 639 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 640 !Final.count(Op)) 641 Queue.push_back(Op); 642 } 643 } 644 } 645 646 // Collect all of the users of all of the provided root instructions (combined 647 // into a single set). 648 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 649 const SmallInstructionVector &Roots, 650 const SmallInstructionSet &Exclude, 651 const SmallInstructionSet &Final, 652 DenseSet<Instruction *> &Users) { 653 for (SmallInstructionVector::const_iterator I = Roots.begin(), 654 IE = Roots.end(); I != IE; ++I) 655 collectInLoopUserSet(*I, Exclude, Final, Users); 656 } 657 658 static bool isSimpleLoadStore(Instruction *I) { 659 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 660 return LI->isSimple(); 661 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 662 return SI->isSimple(); 663 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 664 return !MI->isVolatile(); 665 return false; 666 } 667 668 /// Return true if IVU is a "simple" arithmetic operation. 669 /// This is used for narrowing the search space for DAGRoots; only arithmetic 670 /// and GEPs can be part of a DAGRoot. 671 static bool isSimpleArithmeticOp(User *IVU) { 672 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 673 switch (I->getOpcode()) { 674 default: return false; 675 case Instruction::Add: 676 case Instruction::Sub: 677 case Instruction::Mul: 678 case Instruction::Shl: 679 case Instruction::AShr: 680 case Instruction::LShr: 681 case Instruction::GetElementPtr: 682 case Instruction::Trunc: 683 case Instruction::ZExt: 684 case Instruction::SExt: 685 return true; 686 } 687 } 688 return false; 689 } 690 691 static bool isLoopIncrement(User *U, Instruction *IV) { 692 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 693 694 if ((BO && BO->getOpcode() != Instruction::Add) || 695 (!BO && !isa<GetElementPtrInst>(U))) 696 return false; 697 698 for (auto *UU : U->users()) { 699 PHINode *PN = dyn_cast<PHINode>(UU); 700 if (PN && PN == IV) 701 return true; 702 } 703 return false; 704 } 705 706 bool LoopReroll::DAGRootTracker:: 707 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 708 SmallInstructionVector BaseUsers; 709 710 for (auto *I : Base->users()) { 711 ConstantInt *CI = nullptr; 712 713 if (isLoopIncrement(I, IV)) { 714 LoopIncs.push_back(cast<Instruction>(I)); 715 continue; 716 } 717 718 // The root nodes must be either GEPs, ORs or ADDs. 719 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 720 if (BO->getOpcode() == Instruction::Add || 721 BO->getOpcode() == Instruction::Or) 722 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 723 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 724 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 725 CI = dyn_cast<ConstantInt>(LastOperand); 726 } 727 728 if (!CI) { 729 if (Instruction *II = dyn_cast<Instruction>(I)) { 730 BaseUsers.push_back(II); 731 continue; 732 } else { 733 DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n"); 734 return false; 735 } 736 } 737 738 int64_t V = std::abs(CI->getValue().getSExtValue()); 739 if (Roots.find(V) != Roots.end()) 740 // No duplicates, please. 741 return false; 742 743 Roots[V] = cast<Instruction>(I); 744 } 745 746 if (Roots.empty()) 747 return false; 748 749 // If we found non-loop-inc, non-root users of Base, assume they are 750 // for the zeroth root index. This is because "add %a, 0" gets optimized 751 // away. 752 if (BaseUsers.size()) { 753 if (Roots.find(0) != Roots.end()) { 754 DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 755 return false; 756 } 757 Roots[0] = Base; 758 } 759 760 // Calculate the number of users of the base, or lowest indexed, iteration. 761 unsigned NumBaseUses = BaseUsers.size(); 762 if (NumBaseUses == 0) 763 NumBaseUses = Roots.begin()->second->getNumUses(); 764 765 // Check that every node has the same number of users. 766 for (auto &KV : Roots) { 767 if (KV.first == 0) 768 continue; 769 if (KV.second->getNumUses() != NumBaseUses) { 770 DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 771 << "#Base=" << NumBaseUses << ", #Root=" << 772 KV.second->getNumUses() << "\n"); 773 return false; 774 } 775 } 776 777 return true; 778 } 779 780 bool LoopReroll::DAGRootTracker:: 781 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 782 // Does the user look like it could be part of a root set? 783 // All its users must be simple arithmetic ops. 784 if (I->getNumUses() > IL_MaxRerollIterations) 785 return false; 786 787 if ((I->getOpcode() == Instruction::Mul || 788 I->getOpcode() == Instruction::PHI) && 789 I != IV && 790 findRootsBase(I, SubsumedInsts)) 791 return true; 792 793 SubsumedInsts.insert(I); 794 795 for (User *V : I->users()) { 796 Instruction *I = dyn_cast<Instruction>(V); 797 if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end()) 798 continue; 799 800 if (!I || !isSimpleArithmeticOp(I) || 801 !findRootsRecursive(I, SubsumedInsts)) 802 return false; 803 } 804 return true; 805 } 806 807 bool LoopReroll::DAGRootTracker:: 808 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 809 810 // The base instruction needs to be a multiply so 811 // that we can erase it. 812 if (IVU->getOpcode() != Instruction::Mul && 813 IVU->getOpcode() != Instruction::PHI) 814 return false; 815 816 std::map<int64_t, Instruction*> V; 817 if (!collectPossibleRoots(IVU, V)) 818 return false; 819 820 // If we didn't get a root for index zero, then IVU must be 821 // subsumed. 822 if (V.find(0) == V.end()) 823 SubsumedInsts.insert(IVU); 824 825 // Partition the vector into monotonically increasing indexes. 826 DAGRootSet DRS; 827 DRS.BaseInst = nullptr; 828 829 for (auto &KV : V) { 830 if (!DRS.BaseInst) { 831 DRS.BaseInst = KV.second; 832 DRS.SubsumedInsts = SubsumedInsts; 833 } else if (DRS.Roots.empty()) { 834 DRS.Roots.push_back(KV.second); 835 } else if (V.find(KV.first - 1) != V.end()) { 836 DRS.Roots.push_back(KV.second); 837 } else { 838 // Linear sequence terminated. 839 RootSets.push_back(DRS); 840 DRS.BaseInst = KV.second; 841 DRS.SubsumedInsts = SubsumedInsts; 842 DRS.Roots.clear(); 843 } 844 } 845 RootSets.push_back(DRS); 846 847 return true; 848 } 849 850 bool LoopReroll::DAGRootTracker::findRoots() { 851 Inc = IVToIncMap[IV]; 852 853 assert(RootSets.empty() && "Unclean state!"); 854 if (std::abs(Inc) == 1) { 855 for (auto *IVU : IV->users()) { 856 if (isLoopIncrement(IVU, IV)) 857 LoopIncs.push_back(cast<Instruction>(IVU)); 858 } 859 if (!findRootsRecursive(IV, SmallInstructionSet())) 860 return false; 861 LoopIncs.push_back(IV); 862 } else { 863 if (!findRootsBase(IV, SmallInstructionSet())) 864 return false; 865 } 866 867 // Ensure all sets have the same size. 868 if (RootSets.empty()) { 869 DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 870 return false; 871 } 872 for (auto &V : RootSets) { 873 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 874 DEBUG(dbgs() 875 << "LRR: Aborting because not all root sets have the same size\n"); 876 return false; 877 } 878 } 879 880 // And ensure all loop iterations are consecutive. We rely on std::map 881 // providing ordered traversal. 882 for (auto &V : RootSets) { 883 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst)); 884 if (!ADR) 885 return false; 886 887 // Consider a DAGRootSet with N-1 roots (so N different values including 888 // BaseInst). 889 // Define d = Roots[0] - BaseInst, which should be the same as 890 // Roots[I] - Roots[I-1] for all I in [1..N). 891 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 892 // loop iteration J. 893 // 894 // Now, For the loop iterations to be consecutive: 895 // D = d * N 896 897 unsigned N = V.Roots.size() + 1; 898 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR); 899 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 900 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) { 901 DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n"); 902 return false; 903 } 904 } 905 Scale = RootSets[0].Roots.size() + 1; 906 907 if (Scale > IL_MaxRerollIterations) { 908 DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 909 << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations 910 << "\n"); 911 return false; 912 } 913 914 DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n"); 915 916 return true; 917 } 918 919 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 920 // Populate the MapVector with all instructions in the block, in order first, 921 // so we can iterate over the contents later in perfect order. 922 for (auto &I : *L->getHeader()) { 923 Uses[&I].resize(IL_End); 924 } 925 926 SmallInstructionSet Exclude; 927 for (auto &DRS : RootSets) { 928 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 929 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 930 Exclude.insert(DRS.BaseInst); 931 } 932 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 933 934 for (auto &DRS : RootSets) { 935 DenseSet<Instruction*> VBase; 936 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 937 for (auto *I : VBase) { 938 Uses[I].set(0); 939 } 940 941 unsigned Idx = 1; 942 for (auto *Root : DRS.Roots) { 943 DenseSet<Instruction*> V; 944 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 945 946 // While we're here, check the use sets are the same size. 947 if (V.size() != VBase.size()) { 948 DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 949 return false; 950 } 951 952 for (auto *I : V) { 953 Uses[I].set(Idx); 954 } 955 ++Idx; 956 } 957 958 // Make sure our subsumed instructions are remembered too. 959 for (auto *I : DRS.SubsumedInsts) { 960 Uses[I].set(IL_All); 961 } 962 } 963 964 // Make sure the loop increments are also accounted for. 965 966 Exclude.clear(); 967 for (auto &DRS : RootSets) { 968 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 969 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 970 Exclude.insert(DRS.BaseInst); 971 } 972 973 DenseSet<Instruction*> V; 974 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 975 for (auto *I : V) { 976 Uses[I].set(IL_All); 977 } 978 979 return true; 980 981 } 982 983 /// Get the next instruction in "In" that is a member of set Val. 984 /// Start searching from StartI, and do not return anything in Exclude. 985 /// If StartI is not given, start from In.begin(). 986 LoopReroll::DAGRootTracker::UsesTy::iterator 987 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 988 const SmallInstructionSet &Exclude, 989 UsesTy::iterator *StartI) { 990 UsesTy::iterator I = StartI ? *StartI : In.begin(); 991 while (I != In.end() && (I->second.test(Val) == 0 || 992 Exclude.count(I->first) != 0)) 993 ++I; 994 return I; 995 } 996 997 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 998 for (auto &DRS : RootSets) { 999 if (DRS.BaseInst == I) 1000 return true; 1001 } 1002 return false; 1003 } 1004 1005 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1006 for (auto &DRS : RootSets) { 1007 if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end()) 1008 return true; 1009 } 1010 return false; 1011 } 1012 1013 /// Return true if instruction I depends on any instruction between 1014 /// Start and End. 1015 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1016 UsesTy::iterator Start, 1017 UsesTy::iterator End) { 1018 for (auto *U : I->users()) { 1019 for (auto It = Start; It != End; ++It) 1020 if (U == It->first) 1021 return true; 1022 } 1023 return false; 1024 } 1025 1026 static bool isIgnorableInst(const Instruction *I) { 1027 if (isa<DbgInfoIntrinsic>(I)) 1028 return true; 1029 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1030 if (!II) 1031 return false; 1032 switch (II->getIntrinsicID()) { 1033 default: 1034 return false; 1035 case llvm::Intrinsic::annotation: 1036 case Intrinsic::ptr_annotation: 1037 case Intrinsic::var_annotation: 1038 // TODO: the following intrinsics may also be whitelisted: 1039 // lifetime_start, lifetime_end, invariant_start, invariant_end 1040 return true; 1041 } 1042 return false; 1043 } 1044 1045 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1046 // We now need to check for equivalence of the use graph of each root with 1047 // that of the primary induction variable (excluding the roots). Our goal 1048 // here is not to solve the full graph isomorphism problem, but rather to 1049 // catch common cases without a lot of work. As a result, we will assume 1050 // that the relative order of the instructions in each unrolled iteration 1051 // is the same (although we will not make an assumption about how the 1052 // different iterations are intermixed). Note that while the order must be 1053 // the same, the instructions may not be in the same basic block. 1054 1055 // An array of just the possible reductions for this scale factor. When we 1056 // collect the set of all users of some root instructions, these reduction 1057 // instructions are treated as 'final' (their uses are not considered). 1058 // This is important because we don't want the root use set to search down 1059 // the reduction chain. 1060 SmallInstructionSet PossibleRedSet; 1061 SmallInstructionSet PossibleRedLastSet; 1062 SmallInstructionSet PossibleRedPHISet; 1063 Reductions.restrictToScale(Scale, PossibleRedSet, 1064 PossibleRedPHISet, PossibleRedLastSet); 1065 1066 // Populate "Uses" with where each instruction is used. 1067 if (!collectUsedInstructions(PossibleRedSet)) 1068 return false; 1069 1070 // Make sure we mark the reduction PHIs as used in all iterations. 1071 for (auto *I : PossibleRedPHISet) { 1072 Uses[I].set(IL_All); 1073 } 1074 1075 // Make sure all instructions in the loop are in one and only one 1076 // set. 1077 for (auto &KV : Uses) { 1078 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1079 DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1080 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1081 return false; 1082 } 1083 } 1084 1085 DEBUG( 1086 for (auto &KV : Uses) { 1087 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1088 } 1089 ); 1090 1091 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1092 // In addition to regular aliasing information, we need to look for 1093 // instructions from later (future) iterations that have side effects 1094 // preventing us from reordering them past other instructions with side 1095 // effects. 1096 bool FutureSideEffects = false; 1097 AliasSetTracker AST(*AA); 1098 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1099 DenseMap<Value *, Value *> BaseMap; 1100 1101 // Compare iteration Iter to the base. 1102 SmallInstructionSet Visited; 1103 auto BaseIt = nextInstr(0, Uses, Visited); 1104 auto RootIt = nextInstr(Iter, Uses, Visited); 1105 auto LastRootIt = Uses.begin(); 1106 1107 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1108 Instruction *BaseInst = BaseIt->first; 1109 Instruction *RootInst = RootIt->first; 1110 1111 // Skip over the IV or root instructions; only match their users. 1112 bool Continue = false; 1113 if (isBaseInst(BaseInst)) { 1114 Visited.insert(BaseInst); 1115 BaseIt = nextInstr(0, Uses, Visited); 1116 Continue = true; 1117 } 1118 if (isRootInst(RootInst)) { 1119 LastRootIt = RootIt; 1120 Visited.insert(RootInst); 1121 RootIt = nextInstr(Iter, Uses, Visited); 1122 Continue = true; 1123 } 1124 if (Continue) continue; 1125 1126 if (!BaseInst->isSameOperationAs(RootInst)) { 1127 // Last chance saloon. We don't try and solve the full isomorphism 1128 // problem, but try and at least catch the case where two instructions 1129 // *of different types* are round the wrong way. We won't be able to 1130 // efficiently tell, given two ADD instructions, which way around we 1131 // should match them, but given an ADD and a SUB, we can at least infer 1132 // which one is which. 1133 // 1134 // This should allow us to deal with a greater subset of the isomorphism 1135 // problem. It does however change a linear algorithm into a quadratic 1136 // one, so limit the number of probes we do. 1137 auto TryIt = RootIt; 1138 unsigned N = NumToleratedFailedMatches; 1139 while (TryIt != Uses.end() && 1140 !BaseInst->isSameOperationAs(TryIt->first) && 1141 N--) { 1142 ++TryIt; 1143 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1144 } 1145 1146 if (TryIt == Uses.end() || TryIt == RootIt || 1147 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1148 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1149 " vs. " << *RootInst << "\n"); 1150 return false; 1151 } 1152 1153 RootIt = TryIt; 1154 RootInst = TryIt->first; 1155 } 1156 1157 // All instructions between the last root and this root 1158 // may belong to some other iteration. If they belong to a 1159 // future iteration, then they're dangerous to alias with. 1160 // 1161 // Note that because we allow a limited amount of flexibility in the order 1162 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1163 // case we've already checked this set of instructions so we shouldn't 1164 // do anything. 1165 for (; LastRootIt < RootIt; ++LastRootIt) { 1166 Instruction *I = LastRootIt->first; 1167 if (LastRootIt->second.find_first() < (int)Iter) 1168 continue; 1169 if (I->mayWriteToMemory()) 1170 AST.add(I); 1171 // Note: This is specifically guarded by a check on isa<PHINode>, 1172 // which while a valid (somewhat arbitrary) micro-optimization, is 1173 // needed because otherwise isSafeToSpeculativelyExecute returns 1174 // false on PHI nodes. 1175 if (!isa<PHINode>(I) && !isSimpleLoadStore(I) && 1176 !isSafeToSpeculativelyExecute(I)) 1177 // Intervening instructions cause side effects. 1178 FutureSideEffects = true; 1179 } 1180 1181 // Make sure that this instruction, which is in the use set of this 1182 // root instruction, does not also belong to the base set or the set of 1183 // some other root instruction. 1184 if (RootIt->second.count() > 1) { 1185 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1186 " vs. " << *RootInst << " (prev. case overlap)\n"); 1187 return false; 1188 } 1189 1190 // Make sure that we don't alias with any instruction in the alias set 1191 // tracker. If we do, then we depend on a future iteration, and we 1192 // can't reroll. 1193 if (RootInst->mayReadFromMemory()) 1194 for (auto &K : AST) { 1195 if (K.aliasesUnknownInst(RootInst, *AA)) { 1196 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1197 " vs. " << *RootInst << " (depends on future store)\n"); 1198 return false; 1199 } 1200 } 1201 1202 // If we've past an instruction from a future iteration that may have 1203 // side effects, and this instruction might also, then we can't reorder 1204 // them, and this matching fails. As an exception, we allow the alias 1205 // set tracker to handle regular (simple) load/store dependencies. 1206 if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) && 1207 !isSafeToSpeculativelyExecute(BaseInst)) || 1208 (!isSimpleLoadStore(RootInst) && 1209 !isSafeToSpeculativelyExecute(RootInst)))) { 1210 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1211 " vs. " << *RootInst << 1212 " (side effects prevent reordering)\n"); 1213 return false; 1214 } 1215 1216 // For instructions that are part of a reduction, if the operation is 1217 // associative, then don't bother matching the operands (because we 1218 // already know that the instructions are isomorphic, and the order 1219 // within the iteration does not matter). For non-associative reductions, 1220 // we do need to match the operands, because we need to reject 1221 // out-of-order instructions within an iteration! 1222 // For example (assume floating-point addition), we need to reject this: 1223 // x += a[i]; x += b[i]; 1224 // x += a[i+1]; x += b[i+1]; 1225 // x += b[i+2]; x += a[i+2]; 1226 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1227 1228 if (!(InReduction && BaseInst->isAssociative())) { 1229 bool Swapped = false, SomeOpMatched = false; 1230 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1231 Value *Op2 = RootInst->getOperand(j); 1232 1233 // If this is part of a reduction (and the operation is not 1234 // associatve), then we match all operands, but not those that are 1235 // part of the reduction. 1236 if (InReduction) 1237 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1238 if (Reductions.isPairInSame(RootInst, Op2I)) 1239 continue; 1240 1241 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1242 if (BMI != BaseMap.end()) { 1243 Op2 = BMI->second; 1244 } else { 1245 for (auto &DRS : RootSets) { 1246 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1247 Op2 = DRS.BaseInst; 1248 break; 1249 } 1250 } 1251 } 1252 1253 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1254 // If we've not already decided to swap the matched operands, and 1255 // we've not already matched our first operand (note that we could 1256 // have skipped matching the first operand because it is part of a 1257 // reduction above), and the instruction is commutative, then try 1258 // the swapped match. 1259 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1260 BaseInst->getOperand(!j) == Op2) { 1261 Swapped = true; 1262 } else { 1263 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1264 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1265 return false; 1266 } 1267 } 1268 1269 SomeOpMatched = true; 1270 } 1271 } 1272 1273 if ((!PossibleRedLastSet.count(BaseInst) && 1274 hasUsesOutsideLoop(BaseInst, L)) || 1275 (!PossibleRedLastSet.count(RootInst) && 1276 hasUsesOutsideLoop(RootInst, L))) { 1277 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1278 " vs. " << *RootInst << " (uses outside loop)\n"); 1279 return false; 1280 } 1281 1282 Reductions.recordPair(BaseInst, RootInst, Iter); 1283 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1284 1285 LastRootIt = RootIt; 1286 Visited.insert(BaseInst); 1287 Visited.insert(RootInst); 1288 BaseIt = nextInstr(0, Uses, Visited); 1289 RootIt = nextInstr(Iter, Uses, Visited); 1290 } 1291 assert (BaseIt == Uses.end() && RootIt == Uses.end() && 1292 "Mismatched set sizes!"); 1293 } 1294 1295 DEBUG(dbgs() << "LRR: Matched all iteration increments for " << 1296 *IV << "\n"); 1297 1298 return true; 1299 } 1300 1301 void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) { 1302 BasicBlock *Header = L->getHeader(); 1303 // Remove instructions associated with non-base iterations. 1304 for (BasicBlock::reverse_iterator J = Header->rbegin(); 1305 J != Header->rend();) { 1306 unsigned I = Uses[&*J].find_first(); 1307 if (I > 0 && I < IL_All) { 1308 Instruction *D = &*J; 1309 DEBUG(dbgs() << "LRR: removing: " << *D << "\n"); 1310 D->eraseFromParent(); 1311 continue; 1312 } 1313 1314 ++J; 1315 } 1316 1317 // We need to create a new induction variable for each different BaseInst. 1318 for (auto &DRS : RootSets) 1319 // Insert the new induction variable. 1320 replaceIV(DRS.BaseInst, IV, IterCount); 1321 1322 SimplifyInstructionsInBlock(Header, TLI); 1323 DeleteDeadPHIs(Header, TLI); 1324 } 1325 1326 void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst, 1327 Instruction *InstIV, 1328 const SCEV *IterCount) { 1329 BasicBlock *Header = L->getHeader(); 1330 int64_t Inc = IVToIncMap[InstIV]; 1331 bool Negative = Inc < 0; 1332 1333 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst)); 1334 const SCEV *Start = RealIVSCEV->getStart(); 1335 1336 const SCEV *SizeOfExpr = nullptr; 1337 const SCEV *IncrExpr = 1338 SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1); 1339 if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) { 1340 Type *ElTy = PTy->getElementType(); 1341 SizeOfExpr = 1342 SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy); 1343 IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr); 1344 } 1345 const SCEV *NewIVSCEV = 1346 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1347 1348 { // Limit the lifetime of SCEVExpander. 1349 const DataLayout &DL = Header->getModule()->getDataLayout(); 1350 SCEVExpander Expander(*SE, DL, "reroll"); 1351 Value *NewIV = 1352 Expander.expandCodeFor(NewIVSCEV, InstIV->getType(), &Header->front()); 1353 1354 for (auto &KV : Uses) 1355 if (KV.second.find_first() == 0) 1356 KV.first->replaceUsesOfWith(Inst, NewIV); 1357 1358 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { 1359 // FIXME: Why do we need this check? 1360 if (Uses[BI].find_first() == IL_All) { 1361 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); 1362 1363 // Iteration count SCEV minus or plus 1 1364 const SCEV *MinusPlus1SCEV = 1365 SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1); 1366 if (Inst->getType()->isPointerTy()) { 1367 assert(SizeOfExpr && "SizeOfExpr is not initialized"); 1368 MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr); 1369 } 1370 1371 const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV); 1372 // Iteration count minus 1 1373 Value *ICMinusPlus1 = nullptr; 1374 if (isa<SCEVConstant>(ICMinusPlus1SCEV)) { 1375 ICMinusPlus1 = 1376 Expander.expandCodeFor(ICMinusPlus1SCEV, NewIV->getType(), BI); 1377 } else { 1378 BasicBlock *Preheader = L->getLoopPreheader(); 1379 if (!Preheader) 1380 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 1381 ICMinusPlus1 = Expander.expandCodeFor( 1382 ICMinusPlus1SCEV, NewIV->getType(), Preheader->getTerminator()); 1383 } 1384 1385 Value *Cond = 1386 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond"); 1387 BI->setCondition(Cond); 1388 1389 if (BI->getSuccessor(1) != Header) 1390 BI->swapSuccessors(); 1391 } 1392 } 1393 } 1394 } 1395 1396 // Validate the selected reductions. All iterations must have an isomorphic 1397 // part of the reduction chain and, for non-associative reductions, the chain 1398 // entries must appear in order. 1399 bool LoopReroll::ReductionTracker::validateSelected() { 1400 // For a non-associative reduction, the chain entries must appear in order. 1401 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); 1402 RI != RIE; ++RI) { 1403 int i = *RI; 1404 int PrevIter = 0, BaseCount = 0, Count = 0; 1405 for (Instruction *J : PossibleReds[i]) { 1406 // Note that all instructions in the chain must have been found because 1407 // all instructions in the function must have been assigned to some 1408 // iteration. 1409 int Iter = PossibleRedIter[J]; 1410 if (Iter != PrevIter && Iter != PrevIter + 1 && 1411 !PossibleReds[i].getReducedValue()->isAssociative()) { 1412 DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " << 1413 J << "\n"); 1414 return false; 1415 } 1416 1417 if (Iter != PrevIter) { 1418 if (Count != BaseCount) { 1419 DEBUG(dbgs() << "LRR: Iteration " << PrevIter << 1420 " reduction use count " << Count << 1421 " is not equal to the base use count " << 1422 BaseCount << "\n"); 1423 return false; 1424 } 1425 1426 Count = 0; 1427 } 1428 1429 ++Count; 1430 if (Iter == 0) 1431 ++BaseCount; 1432 1433 PrevIter = Iter; 1434 } 1435 } 1436 1437 return true; 1438 } 1439 1440 // For all selected reductions, remove all parts except those in the first 1441 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1442 // of the first-iteration reduced value (in other words, reroll the selected 1443 // reductions). 1444 void LoopReroll::ReductionTracker::replaceSelected() { 1445 // Fixup reductions to refer to the last instruction associated with the 1446 // first iteration (not the last). 1447 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); 1448 RI != RIE; ++RI) { 1449 int i = *RI; 1450 int j = 0; 1451 for (int e = PossibleReds[i].size(); j != e; ++j) 1452 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1453 --j; 1454 break; 1455 } 1456 1457 // Replace users with the new end-of-chain value. 1458 SmallInstructionVector Users; 1459 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1460 Users.push_back(cast<Instruction>(U)); 1461 } 1462 1463 for (SmallInstructionVector::iterator J = Users.begin(), 1464 JE = Users.end(); J != JE; ++J) 1465 (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1466 PossibleReds[i][j]); 1467 } 1468 } 1469 1470 // Reroll the provided loop with respect to the provided induction variable. 1471 // Generally, we're looking for a loop like this: 1472 // 1473 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1474 // f(%iv) 1475 // %iv.1 = add %iv, 1 <-- a root increment 1476 // f(%iv.1) 1477 // %iv.2 = add %iv, 2 <-- a root increment 1478 // f(%iv.2) 1479 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1480 // f(%iv.scale_m_1) 1481 // ... 1482 // %iv.next = add %iv, scale 1483 // %cmp = icmp(%iv, ...) 1484 // br %cmp, header, exit 1485 // 1486 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1487 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1488 // be intermixed with eachother. The restriction imposed by this algorithm is 1489 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1490 // etc. be the same. 1491 // 1492 // First, we collect the use set of %iv, excluding the other increment roots. 1493 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1494 // times, having collected the use set of f(%iv.(i+1)), during which we: 1495 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1496 // the next unmatched instruction in f(%iv.(i+1)). 1497 // - Ensure that both matched instructions don't have any external users 1498 // (with the exception of last-in-chain reduction instructions). 1499 // - Track the (aliasing) write set, and other side effects, of all 1500 // instructions that belong to future iterations that come before the matched 1501 // instructions. If the matched instructions read from that write set, then 1502 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1503 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1504 // if any of these future instructions had side effects (could not be 1505 // speculatively executed), and so do the matched instructions, when we 1506 // cannot reorder those side-effect-producing instructions, and rerolling 1507 // fails. 1508 // 1509 // Finally, we make sure that all loop instructions are either loop increment 1510 // roots, belong to simple latch code, parts of validated reductions, part of 1511 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1512 // have been validated), then we reroll the loop. 1513 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1514 const SCEV *IterCount, 1515 ReductionTracker &Reductions) { 1516 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1517 IVToIncMap); 1518 1519 if (!DAGRoots.findRoots()) 1520 return false; 1521 DEBUG(dbgs() << "LRR: Found all root induction increments for: " << 1522 *IV << "\n"); 1523 1524 if (!DAGRoots.validate(Reductions)) 1525 return false; 1526 if (!Reductions.validateSelected()) 1527 return false; 1528 // At this point, we've validated the rerolling, and we're committed to 1529 // making changes! 1530 1531 Reductions.replaceSelected(); 1532 DAGRoots.replace(IterCount); 1533 1534 ++NumRerolledLoops; 1535 return true; 1536 } 1537 1538 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1539 if (skipOptnoneFunction(L)) 1540 return false; 1541 1542 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1543 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1544 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1545 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1546 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1547 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1548 1549 BasicBlock *Header = L->getHeader(); 1550 DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << 1551 "] Loop %" << Header->getName() << " (" << 1552 L->getNumBlocks() << " block(s))\n"); 1553 1554 // For now, we'll handle only single BB loops. 1555 if (L->getNumBlocks() > 1) 1556 return false; 1557 1558 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1559 return false; 1560 1561 const SCEV *LIBETC = SE->getBackedgeTakenCount(L); 1562 const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType())); 1563 DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); 1564 1565 // First, we need to find the induction variable with respect to which we can 1566 // reroll (there may be several possible options). 1567 SmallInstructionVector PossibleIVs; 1568 IVToIncMap.clear(); 1569 collectPossibleIVs(L, PossibleIVs); 1570 1571 if (PossibleIVs.empty()) { 1572 DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1573 return false; 1574 } 1575 1576 ReductionTracker Reductions; 1577 collectPossibleReductions(L, Reductions); 1578 bool Changed = false; 1579 1580 // For each possible IV, collect the associated possible set of 'root' nodes 1581 // (i+1, i+2, etc.). 1582 for (SmallInstructionVector::iterator I = PossibleIVs.begin(), 1583 IE = PossibleIVs.end(); I != IE; ++I) 1584 if (reroll(*I, L, Header, IterCount, Reductions)) { 1585 Changed = true; 1586 break; 1587 } 1588 1589 // Trip count of L has changed so SE must be re-evaluated. 1590 if (Changed) 1591 SE->forgetLoop(L); 1592 1593 return Changed; 1594 } 1595