1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop reroller. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AliasSetTracker.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpander.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Use.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 #include <cassert> 59 #include <cstddef> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <iterator> 63 #include <map> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "loop-reroll" 69 70 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 71 72 static cl::opt<unsigned> 73 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 74 cl::Hidden, 75 cl::desc("The maximum number of failures to tolerate" 76 " during fuzzy matching. (default: 400)")); 77 78 // This loop re-rolling transformation aims to transform loops like this: 79 // 80 // int foo(int a); 81 // void bar(int *x) { 82 // for (int i = 0; i < 500; i += 3) { 83 // foo(i); 84 // foo(i+1); 85 // foo(i+2); 86 // } 87 // } 88 // 89 // into a loop like this: 90 // 91 // void bar(int *x) { 92 // for (int i = 0; i < 500; ++i) 93 // foo(i); 94 // } 95 // 96 // It does this by looking for loops that, besides the latch code, are composed 97 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 98 // to the induction variable, and where each DAG is isomorphic to the DAG 99 // rooted at the induction variable (excepting the sub-DAGs which root the 100 // other induction-variable increments). In other words, we're looking for loop 101 // bodies of the form: 102 // 103 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 104 // f(%iv) 105 // %iv.1 = add %iv, 1 <-- a root increment 106 // f(%iv.1) 107 // %iv.2 = add %iv, 2 <-- a root increment 108 // f(%iv.2) 109 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 110 // f(%iv.scale_m_1) 111 // ... 112 // %iv.next = add %iv, scale 113 // %cmp = icmp(%iv, ...) 114 // br %cmp, header, exit 115 // 116 // where each f(i) is a set of instructions that, collectively, are a function 117 // only of i (and other loop-invariant values). 118 // 119 // As a special case, we can also reroll loops like this: 120 // 121 // int foo(int); 122 // void bar(int *x) { 123 // for (int i = 0; i < 500; ++i) { 124 // x[3*i] = foo(0); 125 // x[3*i+1] = foo(0); 126 // x[3*i+2] = foo(0); 127 // } 128 // } 129 // 130 // into this: 131 // 132 // void bar(int *x) { 133 // for (int i = 0; i < 1500; ++i) 134 // x[i] = foo(0); 135 // } 136 // 137 // in which case, we're looking for inputs like this: 138 // 139 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 140 // %scaled.iv = mul %iv, scale 141 // f(%scaled.iv) 142 // %scaled.iv.1 = add %scaled.iv, 1 143 // f(%scaled.iv.1) 144 // %scaled.iv.2 = add %scaled.iv, 2 145 // f(%scaled.iv.2) 146 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 147 // f(%scaled.iv.scale_m_1) 148 // ... 149 // %iv.next = add %iv, 1 150 // %cmp = icmp(%iv, ...) 151 // br %cmp, header, exit 152 153 namespace { 154 155 enum IterationLimits { 156 /// The maximum number of iterations that we'll try and reroll. 157 IL_MaxRerollIterations = 32, 158 /// The bitvector index used by loop induction variables and other 159 /// instructions that belong to all iterations. 160 IL_All, 161 IL_End 162 }; 163 164 class LoopReroll : public LoopPass { 165 public: 166 static char ID; // Pass ID, replacement for typeid 167 168 LoopReroll() : LoopPass(ID) { 169 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 170 } 171 172 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.addRequired<TargetLibraryInfoWrapperPass>(); 176 getLoopAnalysisUsage(AU); 177 } 178 179 protected: 180 AliasAnalysis *AA; 181 LoopInfo *LI; 182 ScalarEvolution *SE; 183 TargetLibraryInfo *TLI; 184 DominatorTree *DT; 185 bool PreserveLCSSA; 186 187 using SmallInstructionVector = SmallVector<Instruction *, 16>; 188 using SmallInstructionSet = SmallPtrSet<Instruction *, 16>; 189 190 // Map between induction variable and its increment 191 DenseMap<Instruction *, int64_t> IVToIncMap; 192 193 // For loop with multiple induction variable, remember the one used only to 194 // control the loop. 195 Instruction *LoopControlIV; 196 197 // A chain of isomorphic instructions, identified by a single-use PHI 198 // representing a reduction. Only the last value may be used outside the 199 // loop. 200 struct SimpleLoopReduction { 201 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) { 202 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 203 add(L); 204 } 205 206 bool valid() const { 207 return Valid; 208 } 209 210 Instruction *getPHI() const { 211 assert(Valid && "Using invalid reduction"); 212 return Instructions.front(); 213 } 214 215 Instruction *getReducedValue() const { 216 assert(Valid && "Using invalid reduction"); 217 return Instructions.back(); 218 } 219 220 Instruction *get(size_t i) const { 221 assert(Valid && "Using invalid reduction"); 222 return Instructions[i+1]; 223 } 224 225 Instruction *operator [] (size_t i) const { return get(i); } 226 227 // The size, ignoring the initial PHI. 228 size_t size() const { 229 assert(Valid && "Using invalid reduction"); 230 return Instructions.size()-1; 231 } 232 233 using iterator = SmallInstructionVector::iterator; 234 using const_iterator = SmallInstructionVector::const_iterator; 235 236 iterator begin() { 237 assert(Valid && "Using invalid reduction"); 238 return std::next(Instructions.begin()); 239 } 240 241 const_iterator begin() const { 242 assert(Valid && "Using invalid reduction"); 243 return std::next(Instructions.begin()); 244 } 245 246 iterator end() { return Instructions.end(); } 247 const_iterator end() const { return Instructions.end(); } 248 249 protected: 250 bool Valid = false; 251 SmallInstructionVector Instructions; 252 253 void add(Loop *L); 254 }; 255 256 // The set of all reductions, and state tracking of possible reductions 257 // during loop instruction processing. 258 struct ReductionTracker { 259 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>; 260 261 // Add a new possible reduction. 262 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 263 264 // Setup to track possible reductions corresponding to the provided 265 // rerolling scale. Only reductions with a number of non-PHI instructions 266 // that is divisible by the scale are considered. Three instructions sets 267 // are filled in: 268 // - A set of all possible instructions in eligible reductions. 269 // - A set of all PHIs in eligible reductions 270 // - A set of all reduced values (last instructions) in eligible 271 // reductions. 272 void restrictToScale(uint64_t Scale, 273 SmallInstructionSet &PossibleRedSet, 274 SmallInstructionSet &PossibleRedPHISet, 275 SmallInstructionSet &PossibleRedLastSet) { 276 PossibleRedIdx.clear(); 277 PossibleRedIter.clear(); 278 Reds.clear(); 279 280 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 281 if (PossibleReds[i].size() % Scale == 0) { 282 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 283 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 284 285 PossibleRedSet.insert(PossibleReds[i].getPHI()); 286 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 287 for (Instruction *J : PossibleReds[i]) { 288 PossibleRedSet.insert(J); 289 PossibleRedIdx[J] = i; 290 } 291 } 292 } 293 294 // The functions below are used while processing the loop instructions. 295 296 // Are the two instructions both from reductions, and furthermore, from 297 // the same reduction? 298 bool isPairInSame(Instruction *J1, Instruction *J2) { 299 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 300 if (J1I != PossibleRedIdx.end()) { 301 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 302 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 303 return true; 304 } 305 306 return false; 307 } 308 309 // The two provided instructions, the first from the base iteration, and 310 // the second from iteration i, form a matched pair. If these are part of 311 // a reduction, record that fact. 312 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 313 if (PossibleRedIdx.count(J1)) { 314 assert(PossibleRedIdx.count(J2) && 315 "Recording reduction vs. non-reduction instruction?"); 316 317 PossibleRedIter[J1] = 0; 318 PossibleRedIter[J2] = i; 319 320 int Idx = PossibleRedIdx[J1]; 321 assert(Idx == PossibleRedIdx[J2] && 322 "Recording pair from different reductions?"); 323 Reds.insert(Idx); 324 } 325 } 326 327 // The functions below can be called after we've finished processing all 328 // instructions in the loop, and we know which reductions were selected. 329 330 bool validateSelected(); 331 void replaceSelected(); 332 333 protected: 334 // The vector of all possible reductions (for any scale). 335 SmallReductionVector PossibleReds; 336 337 DenseMap<Instruction *, int> PossibleRedIdx; 338 DenseMap<Instruction *, int> PossibleRedIter; 339 DenseSet<int> Reds; 340 }; 341 342 // A DAGRootSet models an induction variable being used in a rerollable 343 // loop. For example, 344 // 345 // x[i*3+0] = y1 346 // x[i*3+1] = y2 347 // x[i*3+2] = y3 348 // 349 // Base instruction -> i*3 350 // +---+----+ 351 // / | \ 352 // ST[y1] +1 +2 <-- Roots 353 // | | 354 // ST[y2] ST[y3] 355 // 356 // There may be multiple DAGRoots, for example: 357 // 358 // x[i*2+0] = ... (1) 359 // x[i*2+1] = ... (1) 360 // x[i*2+4] = ... (2) 361 // x[i*2+5] = ... (2) 362 // x[(i+1234)*2+5678] = ... (3) 363 // x[(i+1234)*2+5679] = ... (3) 364 // 365 // The loop will be rerolled by adding a new loop induction variable, 366 // one for the Base instruction in each DAGRootSet. 367 // 368 struct DAGRootSet { 369 Instruction *BaseInst; 370 SmallInstructionVector Roots; 371 372 // The instructions between IV and BaseInst (but not including BaseInst). 373 SmallInstructionSet SubsumedInsts; 374 }; 375 376 // The set of all DAG roots, and state tracking of all roots 377 // for a particular induction variable. 378 struct DAGRootTracker { 379 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 380 ScalarEvolution *SE, AliasAnalysis *AA, 381 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 382 bool PreserveLCSSA, 383 DenseMap<Instruction *, int64_t> &IncrMap, 384 Instruction *LoopCtrlIV) 385 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 386 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 387 LoopControlIV(LoopCtrlIV) {} 388 389 /// Stage 1: Find all the DAG roots for the induction variable. 390 bool findRoots(); 391 392 /// Stage 2: Validate if the found roots are valid. 393 bool validate(ReductionTracker &Reductions); 394 395 /// Stage 3: Assuming validate() returned true, perform the 396 /// replacement. 397 /// @param BackedgeTakenCount The backedge-taken count of L. 398 void replace(const SCEV *BackedgeTakenCount); 399 400 protected: 401 using UsesTy = MapVector<Instruction *, BitVector>; 402 403 void findRootsRecursive(Instruction *IVU, 404 SmallInstructionSet SubsumedInsts); 405 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 406 bool collectPossibleRoots(Instruction *Base, 407 std::map<int64_t,Instruction*> &Roots); 408 bool validateRootSet(DAGRootSet &DRS); 409 410 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 411 void collectInLoopUserSet(const SmallInstructionVector &Roots, 412 const SmallInstructionSet &Exclude, 413 const SmallInstructionSet &Final, 414 DenseSet<Instruction *> &Users); 415 void collectInLoopUserSet(Instruction *Root, 416 const SmallInstructionSet &Exclude, 417 const SmallInstructionSet &Final, 418 DenseSet<Instruction *> &Users); 419 420 UsesTy::iterator nextInstr(int Val, UsesTy &In, 421 const SmallInstructionSet &Exclude, 422 UsesTy::iterator *StartI=nullptr); 423 bool isBaseInst(Instruction *I); 424 bool isRootInst(Instruction *I); 425 bool instrDependsOn(Instruction *I, 426 UsesTy::iterator Start, 427 UsesTy::iterator End); 428 void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr); 429 430 LoopReroll *Parent; 431 432 // Members of Parent, replicated here for brevity. 433 Loop *L; 434 ScalarEvolution *SE; 435 AliasAnalysis *AA; 436 TargetLibraryInfo *TLI; 437 DominatorTree *DT; 438 LoopInfo *LI; 439 bool PreserveLCSSA; 440 441 // The loop induction variable. 442 Instruction *IV; 443 444 // Loop step amount. 445 int64_t Inc; 446 447 // Loop reroll count; if Inc == 1, this records the scaling applied 448 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 449 // If Inc is not 1, Scale = Inc. 450 uint64_t Scale; 451 452 // The roots themselves. 453 SmallVector<DAGRootSet,16> RootSets; 454 455 // All increment instructions for IV. 456 SmallInstructionVector LoopIncs; 457 458 // Map of all instructions in the loop (in order) to the iterations 459 // they are used in (or specially, IL_All for instructions 460 // used in the loop increment mechanism). 461 UsesTy Uses; 462 463 // Map between induction variable and its increment 464 DenseMap<Instruction *, int64_t> &IVToIncMap; 465 466 Instruction *LoopControlIV; 467 }; 468 469 // Check if it is a compare-like instruction whose user is a branch 470 bool isCompareUsedByBranch(Instruction *I) { 471 auto *TI = I->getParent()->getTerminator(); 472 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 473 return false; 474 return I->hasOneUse() && TI->getOperand(0) == I; 475 }; 476 477 bool isLoopControlIV(Loop *L, Instruction *IV); 478 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 479 void collectPossibleReductions(Loop *L, 480 ReductionTracker &Reductions); 481 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, 482 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions); 483 }; 484 485 } // end anonymous namespace 486 487 char LoopReroll::ID = 0; 488 489 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 490 INITIALIZE_PASS_DEPENDENCY(LoopPass) 491 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 492 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 493 494 Pass *llvm::createLoopRerollPass() { 495 return new LoopReroll; 496 } 497 498 // Returns true if the provided instruction is used outside the given loop. 499 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 500 // non-loop blocks to be outside the loop. 501 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 502 for (User *U : I->users()) { 503 if (!L->contains(cast<Instruction>(U))) 504 return true; 505 } 506 return false; 507 } 508 509 // Check if an IV is only used to control the loop. There are two cases: 510 // 1. It only has one use which is loop increment, and the increment is only 511 // used by comparison and the PHI (could has sext with nsw in between), and the 512 // comparison is only used by branch. 513 // 2. It is used by loop increment and the comparison, the loop increment is 514 // only used by the PHI, and the comparison is used only by the branch. 515 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 516 unsigned IVUses = IV->getNumUses(); 517 if (IVUses != 2 && IVUses != 1) 518 return false; 519 520 for (auto *User : IV->users()) { 521 int32_t IncOrCmpUses = User->getNumUses(); 522 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 523 524 // User can only have one or two uses. 525 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 526 return false; 527 528 // Case 1 529 if (IVUses == 1) { 530 // The only user must be the loop increment. 531 // The loop increment must have two uses. 532 if (IsCompInst || IncOrCmpUses != 2) 533 return false; 534 } 535 536 // Case 2 537 if (IVUses == 2 && IncOrCmpUses != 1) 538 return false; 539 540 // The users of the IV must be a binary operation or a comparison 541 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 542 if (BO->getOpcode() == Instruction::Add) { 543 // Loop Increment 544 // User of Loop Increment should be either PHI or CMP 545 for (auto *UU : User->users()) { 546 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 547 if (PN != IV) 548 return false; 549 } 550 // Must be a CMP or an ext (of a value with nsw) then CMP 551 else { 552 Instruction *UUser = dyn_cast<Instruction>(UU); 553 // Skip SExt if we are extending an nsw value 554 // TODO: Allow ZExt too 555 if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() && 556 isa<SExtInst>(UUser)) 557 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 558 if (!isCompareUsedByBranch(UUser)) 559 return false; 560 } 561 } 562 } else 563 return false; 564 // Compare : can only have one use, and must be branch 565 } else if (!IsCompInst) 566 return false; 567 } 568 return true; 569 } 570 571 // Collect the list of loop induction variables with respect to which it might 572 // be possible to reroll the loop. 573 void LoopReroll::collectPossibleIVs(Loop *L, 574 SmallInstructionVector &PossibleIVs) { 575 BasicBlock *Header = L->getHeader(); 576 for (BasicBlock::iterator I = Header->begin(), 577 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 578 if (!isa<PHINode>(I)) 579 continue; 580 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 581 continue; 582 583 if (const SCEVAddRecExpr *PHISCEV = 584 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 585 if (PHISCEV->getLoop() != L) 586 continue; 587 if (!PHISCEV->isAffine()) 588 continue; 589 auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 590 if (IncSCEV) { 591 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 592 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 593 << "\n"); 594 595 if (isLoopControlIV(L, &*I)) { 596 assert(!LoopControlIV && "Found two loop control only IV"); 597 LoopControlIV = &(*I); 598 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I 599 << " = " << *PHISCEV << "\n"); 600 } else 601 PossibleIVs.push_back(&*I); 602 } 603 } 604 } 605 } 606 607 // Add the remainder of the reduction-variable chain to the instruction vector 608 // (the initial PHINode has already been added). If successful, the object is 609 // marked as valid. 610 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 611 assert(!Valid && "Cannot add to an already-valid chain"); 612 613 // The reduction variable must be a chain of single-use instructions 614 // (including the PHI), except for the last value (which is used by the PHI 615 // and also outside the loop). 616 Instruction *C = Instructions.front(); 617 if (C->user_empty()) 618 return; 619 620 do { 621 C = cast<Instruction>(*C->user_begin()); 622 if (C->hasOneUse()) { 623 if (!C->isBinaryOp()) 624 return; 625 626 if (!(isa<PHINode>(Instructions.back()) || 627 C->isSameOperationAs(Instructions.back()))) 628 return; 629 630 Instructions.push_back(C); 631 } 632 } while (C->hasOneUse()); 633 634 if (Instructions.size() < 2 || 635 !C->isSameOperationAs(Instructions.back()) || 636 C->use_empty()) 637 return; 638 639 // C is now the (potential) last instruction in the reduction chain. 640 for (User *U : C->users()) { 641 // The only in-loop user can be the initial PHI. 642 if (L->contains(cast<Instruction>(U))) 643 if (cast<Instruction>(U) != Instructions.front()) 644 return; 645 } 646 647 Instructions.push_back(C); 648 Valid = true; 649 } 650 651 // Collect the vector of possible reduction variables. 652 void LoopReroll::collectPossibleReductions(Loop *L, 653 ReductionTracker &Reductions) { 654 BasicBlock *Header = L->getHeader(); 655 for (BasicBlock::iterator I = Header->begin(), 656 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 657 if (!isa<PHINode>(I)) 658 continue; 659 if (!I->getType()->isSingleValueType()) 660 continue; 661 662 SimpleLoopReduction SLR(&*I, L); 663 if (!SLR.valid()) 664 continue; 665 666 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " 667 << SLR.size() << " chained instructions)\n"); 668 Reductions.addSLR(SLR); 669 } 670 } 671 672 // Collect the set of all users of the provided root instruction. This set of 673 // users contains not only the direct users of the root instruction, but also 674 // all users of those users, and so on. There are two exceptions: 675 // 676 // 1. Instructions in the set of excluded instructions are never added to the 677 // use set (even if they are users). This is used, for example, to exclude 678 // including root increments in the use set of the primary IV. 679 // 680 // 2. Instructions in the set of final instructions are added to the use set 681 // if they are users, but their users are not added. This is used, for 682 // example, to prevent a reduction update from forcing all later reduction 683 // updates into the use set. 684 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 685 Instruction *Root, const SmallInstructionSet &Exclude, 686 const SmallInstructionSet &Final, 687 DenseSet<Instruction *> &Users) { 688 SmallInstructionVector Queue(1, Root); 689 while (!Queue.empty()) { 690 Instruction *I = Queue.pop_back_val(); 691 if (!Users.insert(I).second) 692 continue; 693 694 if (!Final.count(I)) 695 for (Use &U : I->uses()) { 696 Instruction *User = cast<Instruction>(U.getUser()); 697 if (PHINode *PN = dyn_cast<PHINode>(User)) { 698 // Ignore "wrap-around" uses to PHIs of this loop's header. 699 if (PN->getIncomingBlock(U) == L->getHeader()) 700 continue; 701 } 702 703 if (L->contains(User) && !Exclude.count(User)) { 704 Queue.push_back(User); 705 } 706 } 707 708 // We also want to collect single-user "feeder" values. 709 for (User::op_iterator OI = I->op_begin(), 710 OIE = I->op_end(); OI != OIE; ++OI) { 711 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 712 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 713 !Final.count(Op)) 714 Queue.push_back(Op); 715 } 716 } 717 } 718 719 // Collect all of the users of all of the provided root instructions (combined 720 // into a single set). 721 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 722 const SmallInstructionVector &Roots, 723 const SmallInstructionSet &Exclude, 724 const SmallInstructionSet &Final, 725 DenseSet<Instruction *> &Users) { 726 for (Instruction *Root : Roots) 727 collectInLoopUserSet(Root, Exclude, Final, Users); 728 } 729 730 static bool isUnorderedLoadStore(Instruction *I) { 731 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 732 return LI->isUnordered(); 733 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 734 return SI->isUnordered(); 735 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 736 return !MI->isVolatile(); 737 return false; 738 } 739 740 /// Return true if IVU is a "simple" arithmetic operation. 741 /// This is used for narrowing the search space for DAGRoots; only arithmetic 742 /// and GEPs can be part of a DAGRoot. 743 static bool isSimpleArithmeticOp(User *IVU) { 744 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 745 switch (I->getOpcode()) { 746 default: return false; 747 case Instruction::Add: 748 case Instruction::Sub: 749 case Instruction::Mul: 750 case Instruction::Shl: 751 case Instruction::AShr: 752 case Instruction::LShr: 753 case Instruction::GetElementPtr: 754 case Instruction::Trunc: 755 case Instruction::ZExt: 756 case Instruction::SExt: 757 return true; 758 } 759 } 760 return false; 761 } 762 763 static bool isLoopIncrement(User *U, Instruction *IV) { 764 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 765 766 if ((BO && BO->getOpcode() != Instruction::Add) || 767 (!BO && !isa<GetElementPtrInst>(U))) 768 return false; 769 770 for (auto *UU : U->users()) { 771 PHINode *PN = dyn_cast<PHINode>(UU); 772 if (PN && PN == IV) 773 return true; 774 } 775 return false; 776 } 777 778 bool LoopReroll::DAGRootTracker:: 779 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 780 SmallInstructionVector BaseUsers; 781 782 for (auto *I : Base->users()) { 783 ConstantInt *CI = nullptr; 784 785 if (isLoopIncrement(I, IV)) { 786 LoopIncs.push_back(cast<Instruction>(I)); 787 continue; 788 } 789 790 // The root nodes must be either GEPs, ORs or ADDs. 791 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 792 if (BO->getOpcode() == Instruction::Add || 793 BO->getOpcode() == Instruction::Or) 794 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 795 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 796 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 797 CI = dyn_cast<ConstantInt>(LastOperand); 798 } 799 800 if (!CI) { 801 if (Instruction *II = dyn_cast<Instruction>(I)) { 802 BaseUsers.push_back(II); 803 continue; 804 } else { 805 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I 806 << "\n"); 807 return false; 808 } 809 } 810 811 int64_t V = std::abs(CI->getValue().getSExtValue()); 812 if (Roots.find(V) != Roots.end()) 813 // No duplicates, please. 814 return false; 815 816 Roots[V] = cast<Instruction>(I); 817 } 818 819 // Make sure we have at least two roots. 820 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) 821 return false; 822 823 // If we found non-loop-inc, non-root users of Base, assume they are 824 // for the zeroth root index. This is because "add %a, 0" gets optimized 825 // away. 826 if (BaseUsers.size()) { 827 if (Roots.find(0) != Roots.end()) { 828 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 829 return false; 830 } 831 Roots[0] = Base; 832 } 833 834 // Calculate the number of users of the base, or lowest indexed, iteration. 835 unsigned NumBaseUses = BaseUsers.size(); 836 if (NumBaseUses == 0) 837 NumBaseUses = Roots.begin()->second->getNumUses(); 838 839 // Check that every node has the same number of users. 840 for (auto &KV : Roots) { 841 if (KV.first == 0) 842 continue; 843 if (!KV.second->hasNUses(NumBaseUses)) { 844 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 845 << "#Base=" << NumBaseUses 846 << ", #Root=" << KV.second->getNumUses() << "\n"); 847 return false; 848 } 849 } 850 851 return true; 852 } 853 854 void LoopReroll::DAGRootTracker:: 855 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 856 // Does the user look like it could be part of a root set? 857 // All its users must be simple arithmetic ops. 858 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1)) 859 return; 860 861 if (I != IV && findRootsBase(I, SubsumedInsts)) 862 return; 863 864 SubsumedInsts.insert(I); 865 866 for (User *V : I->users()) { 867 Instruction *I = cast<Instruction>(V); 868 if (is_contained(LoopIncs, I)) 869 continue; 870 871 if (!isSimpleArithmeticOp(I)) 872 continue; 873 874 // The recursive call makes a copy of SubsumedInsts. 875 findRootsRecursive(I, SubsumedInsts); 876 } 877 } 878 879 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { 880 if (DRS.Roots.empty()) 881 return false; 882 883 // If the value of the base instruction is used outside the loop, we cannot 884 // reroll the loop. Check for other root instructions is unnecessary because 885 // they don't match any base instructions if their values are used outside. 886 if (hasUsesOutsideLoop(DRS.BaseInst, L)) 887 return false; 888 889 // Consider a DAGRootSet with N-1 roots (so N different values including 890 // BaseInst). 891 // Define d = Roots[0] - BaseInst, which should be the same as 892 // Roots[I] - Roots[I-1] for all I in [1..N). 893 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 894 // loop iteration J. 895 // 896 // Now, For the loop iterations to be consecutive: 897 // D = d * N 898 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 899 if (!ADR) 900 return false; 901 902 // Check that the first root is evenly spaced. 903 unsigned N = DRS.Roots.size() + 1; 904 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); 905 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 906 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) 907 return false; 908 909 // Check that the remainling roots are evenly spaced. 910 for (unsigned i = 1; i < N - 1; ++i) { 911 const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]), 912 SE->getSCEV(DRS.Roots[i-1])); 913 if (NewStepSCEV != StepSCEV) 914 return false; 915 } 916 917 return true; 918 } 919 920 bool LoopReroll::DAGRootTracker:: 921 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 922 // The base of a RootSet must be an AddRec, so it can be erased. 923 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); 924 if (!IVU_ADR || IVU_ADR->getLoop() != L) 925 return false; 926 927 std::map<int64_t, Instruction*> V; 928 if (!collectPossibleRoots(IVU, V)) 929 return false; 930 931 // If we didn't get a root for index zero, then IVU must be 932 // subsumed. 933 if (V.find(0) == V.end()) 934 SubsumedInsts.insert(IVU); 935 936 // Partition the vector into monotonically increasing indexes. 937 DAGRootSet DRS; 938 DRS.BaseInst = nullptr; 939 940 SmallVector<DAGRootSet, 16> PotentialRootSets; 941 942 for (auto &KV : V) { 943 if (!DRS.BaseInst) { 944 DRS.BaseInst = KV.second; 945 DRS.SubsumedInsts = SubsumedInsts; 946 } else if (DRS.Roots.empty()) { 947 DRS.Roots.push_back(KV.second); 948 } else if (V.find(KV.first - 1) != V.end()) { 949 DRS.Roots.push_back(KV.second); 950 } else { 951 // Linear sequence terminated. 952 if (!validateRootSet(DRS)) 953 return false; 954 955 // Construct a new DAGRootSet with the next sequence. 956 PotentialRootSets.push_back(DRS); 957 DRS.BaseInst = KV.second; 958 DRS.Roots.clear(); 959 } 960 } 961 962 if (!validateRootSet(DRS)) 963 return false; 964 965 PotentialRootSets.push_back(DRS); 966 967 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); 968 969 return true; 970 } 971 972 bool LoopReroll::DAGRootTracker::findRoots() { 973 Inc = IVToIncMap[IV]; 974 975 assert(RootSets.empty() && "Unclean state!"); 976 if (std::abs(Inc) == 1) { 977 for (auto *IVU : IV->users()) { 978 if (isLoopIncrement(IVU, IV)) 979 LoopIncs.push_back(cast<Instruction>(IVU)); 980 } 981 findRootsRecursive(IV, SmallInstructionSet()); 982 LoopIncs.push_back(IV); 983 } else { 984 if (!findRootsBase(IV, SmallInstructionSet())) 985 return false; 986 } 987 988 // Ensure all sets have the same size. 989 if (RootSets.empty()) { 990 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 991 return false; 992 } 993 for (auto &V : RootSets) { 994 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 995 LLVM_DEBUG( 996 dbgs() 997 << "LRR: Aborting because not all root sets have the same size\n"); 998 return false; 999 } 1000 } 1001 1002 Scale = RootSets[0].Roots.size() + 1; 1003 1004 if (Scale > IL_MaxRerollIterations) { 1005 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 1006 << "#Found=" << Scale 1007 << ", #Max=" << IL_MaxRerollIterations << "\n"); 1008 return false; 1009 } 1010 1011 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale 1012 << "\n"); 1013 1014 return true; 1015 } 1016 1017 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1018 // Populate the MapVector with all instructions in the block, in order first, 1019 // so we can iterate over the contents later in perfect order. 1020 for (auto &I : *L->getHeader()) { 1021 Uses[&I].resize(IL_End); 1022 } 1023 1024 SmallInstructionSet Exclude; 1025 for (auto &DRS : RootSets) { 1026 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1027 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1028 Exclude.insert(DRS.BaseInst); 1029 } 1030 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1031 1032 for (auto &DRS : RootSets) { 1033 DenseSet<Instruction*> VBase; 1034 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1035 for (auto *I : VBase) { 1036 Uses[I].set(0); 1037 } 1038 1039 unsigned Idx = 1; 1040 for (auto *Root : DRS.Roots) { 1041 DenseSet<Instruction*> V; 1042 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1043 1044 // While we're here, check the use sets are the same size. 1045 if (V.size() != VBase.size()) { 1046 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1047 return false; 1048 } 1049 1050 for (auto *I : V) { 1051 Uses[I].set(Idx); 1052 } 1053 ++Idx; 1054 } 1055 1056 // Make sure our subsumed instructions are remembered too. 1057 for (auto *I : DRS.SubsumedInsts) { 1058 Uses[I].set(IL_All); 1059 } 1060 } 1061 1062 // Make sure the loop increments are also accounted for. 1063 1064 Exclude.clear(); 1065 for (auto &DRS : RootSets) { 1066 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1067 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1068 Exclude.insert(DRS.BaseInst); 1069 } 1070 1071 DenseSet<Instruction*> V; 1072 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1073 for (auto *I : V) { 1074 Uses[I].set(IL_All); 1075 } 1076 1077 return true; 1078 } 1079 1080 /// Get the next instruction in "In" that is a member of set Val. 1081 /// Start searching from StartI, and do not return anything in Exclude. 1082 /// If StartI is not given, start from In.begin(). 1083 LoopReroll::DAGRootTracker::UsesTy::iterator 1084 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1085 const SmallInstructionSet &Exclude, 1086 UsesTy::iterator *StartI) { 1087 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1088 while (I != In.end() && (I->second.test(Val) == 0 || 1089 Exclude.count(I->first) != 0)) 1090 ++I; 1091 return I; 1092 } 1093 1094 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1095 for (auto &DRS : RootSets) { 1096 if (DRS.BaseInst == I) 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1103 for (auto &DRS : RootSets) { 1104 if (is_contained(DRS.Roots, I)) 1105 return true; 1106 } 1107 return false; 1108 } 1109 1110 /// Return true if instruction I depends on any instruction between 1111 /// Start and End. 1112 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1113 UsesTy::iterator Start, 1114 UsesTy::iterator End) { 1115 for (auto *U : I->users()) { 1116 for (auto It = Start; It != End; ++It) 1117 if (U == It->first) 1118 return true; 1119 } 1120 return false; 1121 } 1122 1123 static bool isIgnorableInst(const Instruction *I) { 1124 if (isa<DbgInfoIntrinsic>(I)) 1125 return true; 1126 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1127 if (!II) 1128 return false; 1129 switch (II->getIntrinsicID()) { 1130 default: 1131 return false; 1132 case Intrinsic::annotation: 1133 case Intrinsic::ptr_annotation: 1134 case Intrinsic::var_annotation: 1135 // TODO: the following intrinsics may also be whitelisted: 1136 // lifetime_start, lifetime_end, invariant_start, invariant_end 1137 return true; 1138 } 1139 return false; 1140 } 1141 1142 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1143 // We now need to check for equivalence of the use graph of each root with 1144 // that of the primary induction variable (excluding the roots). Our goal 1145 // here is not to solve the full graph isomorphism problem, but rather to 1146 // catch common cases without a lot of work. As a result, we will assume 1147 // that the relative order of the instructions in each unrolled iteration 1148 // is the same (although we will not make an assumption about how the 1149 // different iterations are intermixed). Note that while the order must be 1150 // the same, the instructions may not be in the same basic block. 1151 1152 // An array of just the possible reductions for this scale factor. When we 1153 // collect the set of all users of some root instructions, these reduction 1154 // instructions are treated as 'final' (their uses are not considered). 1155 // This is important because we don't want the root use set to search down 1156 // the reduction chain. 1157 SmallInstructionSet PossibleRedSet; 1158 SmallInstructionSet PossibleRedLastSet; 1159 SmallInstructionSet PossibleRedPHISet; 1160 Reductions.restrictToScale(Scale, PossibleRedSet, 1161 PossibleRedPHISet, PossibleRedLastSet); 1162 1163 // Populate "Uses" with where each instruction is used. 1164 if (!collectUsedInstructions(PossibleRedSet)) 1165 return false; 1166 1167 // Make sure we mark the reduction PHIs as used in all iterations. 1168 for (auto *I : PossibleRedPHISet) { 1169 Uses[I].set(IL_All); 1170 } 1171 1172 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1173 // comment above LoopReroll::isLoopControlIV for more information. 1174 BasicBlock *Header = L->getHeader(); 1175 if (LoopControlIV && LoopControlIV != IV) { 1176 for (auto *U : LoopControlIV->users()) { 1177 Instruction *IVUser = dyn_cast<Instruction>(U); 1178 // IVUser could be loop increment or compare 1179 Uses[IVUser].set(IL_All); 1180 for (auto *UU : IVUser->users()) { 1181 Instruction *UUser = dyn_cast<Instruction>(UU); 1182 // UUser could be compare, PHI or branch 1183 Uses[UUser].set(IL_All); 1184 // Skip SExt 1185 if (isa<SExtInst>(UUser)) { 1186 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1187 Uses[UUser].set(IL_All); 1188 } 1189 // Is UUser a compare instruction? 1190 if (UU->hasOneUse()) { 1191 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1192 if (BI == cast<BranchInst>(Header->getTerminator())) 1193 Uses[BI].set(IL_All); 1194 } 1195 } 1196 } 1197 } 1198 1199 // Make sure all instructions in the loop are in one and only one 1200 // set. 1201 for (auto &KV : Uses) { 1202 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1203 LLVM_DEBUG( 1204 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1205 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1206 return false; 1207 } 1208 } 1209 1210 LLVM_DEBUG(for (auto &KV 1211 : Uses) { 1212 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1213 }); 1214 1215 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1216 // In addition to regular aliasing information, we need to look for 1217 // instructions from later (future) iterations that have side effects 1218 // preventing us from reordering them past other instructions with side 1219 // effects. 1220 bool FutureSideEffects = false; 1221 AliasSetTracker AST(*AA); 1222 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1223 DenseMap<Value *, Value *> BaseMap; 1224 1225 // Compare iteration Iter to the base. 1226 SmallInstructionSet Visited; 1227 auto BaseIt = nextInstr(0, Uses, Visited); 1228 auto RootIt = nextInstr(Iter, Uses, Visited); 1229 auto LastRootIt = Uses.begin(); 1230 1231 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1232 Instruction *BaseInst = BaseIt->first; 1233 Instruction *RootInst = RootIt->first; 1234 1235 // Skip over the IV or root instructions; only match their users. 1236 bool Continue = false; 1237 if (isBaseInst(BaseInst)) { 1238 Visited.insert(BaseInst); 1239 BaseIt = nextInstr(0, Uses, Visited); 1240 Continue = true; 1241 } 1242 if (isRootInst(RootInst)) { 1243 LastRootIt = RootIt; 1244 Visited.insert(RootInst); 1245 RootIt = nextInstr(Iter, Uses, Visited); 1246 Continue = true; 1247 } 1248 if (Continue) continue; 1249 1250 if (!BaseInst->isSameOperationAs(RootInst)) { 1251 // Last chance saloon. We don't try and solve the full isomorphism 1252 // problem, but try and at least catch the case where two instructions 1253 // *of different types* are round the wrong way. We won't be able to 1254 // efficiently tell, given two ADD instructions, which way around we 1255 // should match them, but given an ADD and a SUB, we can at least infer 1256 // which one is which. 1257 // 1258 // This should allow us to deal with a greater subset of the isomorphism 1259 // problem. It does however change a linear algorithm into a quadratic 1260 // one, so limit the number of probes we do. 1261 auto TryIt = RootIt; 1262 unsigned N = NumToleratedFailedMatches; 1263 while (TryIt != Uses.end() && 1264 !BaseInst->isSameOperationAs(TryIt->first) && 1265 N--) { 1266 ++TryIt; 1267 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1268 } 1269 1270 if (TryIt == Uses.end() || TryIt == RootIt || 1271 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1272 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1273 << *BaseInst << " vs. " << *RootInst << "\n"); 1274 return false; 1275 } 1276 1277 RootIt = TryIt; 1278 RootInst = TryIt->first; 1279 } 1280 1281 // All instructions between the last root and this root 1282 // may belong to some other iteration. If they belong to a 1283 // future iteration, then they're dangerous to alias with. 1284 // 1285 // Note that because we allow a limited amount of flexibility in the order 1286 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1287 // case we've already checked this set of instructions so we shouldn't 1288 // do anything. 1289 for (; LastRootIt < RootIt; ++LastRootIt) { 1290 Instruction *I = LastRootIt->first; 1291 if (LastRootIt->second.find_first() < (int)Iter) 1292 continue; 1293 if (I->mayWriteToMemory()) 1294 AST.add(I); 1295 // Note: This is specifically guarded by a check on isa<PHINode>, 1296 // which while a valid (somewhat arbitrary) micro-optimization, is 1297 // needed because otherwise isSafeToSpeculativelyExecute returns 1298 // false on PHI nodes. 1299 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && 1300 !isSafeToSpeculativelyExecute(I)) 1301 // Intervening instructions cause side effects. 1302 FutureSideEffects = true; 1303 } 1304 1305 // Make sure that this instruction, which is in the use set of this 1306 // root instruction, does not also belong to the base set or the set of 1307 // some other root instruction. 1308 if (RootIt->second.count() > 1) { 1309 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1310 << " vs. " << *RootInst << " (prev. case overlap)\n"); 1311 return false; 1312 } 1313 1314 // Make sure that we don't alias with any instruction in the alias set 1315 // tracker. If we do, then we depend on a future iteration, and we 1316 // can't reroll. 1317 if (RootInst->mayReadFromMemory()) 1318 for (auto &K : AST) { 1319 if (K.aliasesUnknownInst(RootInst, *AA)) { 1320 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1321 << *BaseInst << " vs. " << *RootInst 1322 << " (depends on future store)\n"); 1323 return false; 1324 } 1325 } 1326 1327 // If we've past an instruction from a future iteration that may have 1328 // side effects, and this instruction might also, then we can't reorder 1329 // them, and this matching fails. As an exception, we allow the alias 1330 // set tracker to handle regular (unordered) load/store dependencies. 1331 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && 1332 !isSafeToSpeculativelyExecute(BaseInst)) || 1333 (!isUnorderedLoadStore(RootInst) && 1334 !isSafeToSpeculativelyExecute(RootInst)))) { 1335 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1336 << " vs. " << *RootInst 1337 << " (side effects prevent reordering)\n"); 1338 return false; 1339 } 1340 1341 // For instructions that are part of a reduction, if the operation is 1342 // associative, then don't bother matching the operands (because we 1343 // already know that the instructions are isomorphic, and the order 1344 // within the iteration does not matter). For non-associative reductions, 1345 // we do need to match the operands, because we need to reject 1346 // out-of-order instructions within an iteration! 1347 // For example (assume floating-point addition), we need to reject this: 1348 // x += a[i]; x += b[i]; 1349 // x += a[i+1]; x += b[i+1]; 1350 // x += b[i+2]; x += a[i+2]; 1351 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1352 1353 if (!(InReduction && BaseInst->isAssociative())) { 1354 bool Swapped = false, SomeOpMatched = false; 1355 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1356 Value *Op2 = RootInst->getOperand(j); 1357 1358 // If this is part of a reduction (and the operation is not 1359 // associatve), then we match all operands, but not those that are 1360 // part of the reduction. 1361 if (InReduction) 1362 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1363 if (Reductions.isPairInSame(RootInst, Op2I)) 1364 continue; 1365 1366 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1367 if (BMI != BaseMap.end()) { 1368 Op2 = BMI->second; 1369 } else { 1370 for (auto &DRS : RootSets) { 1371 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1372 Op2 = DRS.BaseInst; 1373 break; 1374 } 1375 } 1376 } 1377 1378 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1379 // If we've not already decided to swap the matched operands, and 1380 // we've not already matched our first operand (note that we could 1381 // have skipped matching the first operand because it is part of a 1382 // reduction above), and the instruction is commutative, then try 1383 // the swapped match. 1384 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1385 BaseInst->getOperand(!j) == Op2) { 1386 Swapped = true; 1387 } else { 1388 LLVM_DEBUG(dbgs() 1389 << "LRR: iteration root match failed at " << *BaseInst 1390 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1391 return false; 1392 } 1393 } 1394 1395 SomeOpMatched = true; 1396 } 1397 } 1398 1399 if ((!PossibleRedLastSet.count(BaseInst) && 1400 hasUsesOutsideLoop(BaseInst, L)) || 1401 (!PossibleRedLastSet.count(RootInst) && 1402 hasUsesOutsideLoop(RootInst, L))) { 1403 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1404 << " vs. " << *RootInst << " (uses outside loop)\n"); 1405 return false; 1406 } 1407 1408 Reductions.recordPair(BaseInst, RootInst, Iter); 1409 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1410 1411 LastRootIt = RootIt; 1412 Visited.insert(BaseInst); 1413 Visited.insert(RootInst); 1414 BaseIt = nextInstr(0, Uses, Visited); 1415 RootIt = nextInstr(Iter, Uses, Visited); 1416 } 1417 assert(BaseIt == Uses.end() && RootIt == Uses.end() && 1418 "Mismatched set sizes!"); 1419 } 1420 1421 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV 1422 << "\n"); 1423 1424 return true; 1425 } 1426 1427 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) { 1428 BasicBlock *Header = L->getHeader(); 1429 1430 // Compute the start and increment for each BaseInst before we start erasing 1431 // instructions. 1432 SmallVector<const SCEV *, 8> StartExprs; 1433 SmallVector<const SCEV *, 8> IncrExprs; 1434 for (auto &DRS : RootSets) { 1435 const SCEVAddRecExpr *IVSCEV = 1436 cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 1437 StartExprs.push_back(IVSCEV->getStart()); 1438 IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV)); 1439 } 1440 1441 // Remove instructions associated with non-base iterations. 1442 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); 1443 J != JE;) { 1444 unsigned I = Uses[&*J].find_first(); 1445 if (I > 0 && I < IL_All) { 1446 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n"); 1447 J++->eraseFromParent(); 1448 continue; 1449 } 1450 1451 ++J; 1452 } 1453 1454 // Rewrite each BaseInst using SCEV. 1455 for (size_t i = 0, e = RootSets.size(); i != e; ++i) 1456 // Insert the new induction variable. 1457 replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]); 1458 1459 { // Limit the lifetime of SCEVExpander. 1460 BranchInst *BI = cast<BranchInst>(Header->getTerminator()); 1461 const DataLayout &DL = Header->getModule()->getDataLayout(); 1462 SCEVExpander Expander(*SE, DL, "reroll"); 1463 auto Zero = SE->getZero(BackedgeTakenCount->getType()); 1464 auto One = SE->getOne(BackedgeTakenCount->getType()); 1465 auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap); 1466 Value *NewIV = 1467 Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(), 1468 Header->getFirstNonPHIOrDbg()); 1469 // FIXME: This arithmetic can overflow. 1470 auto TripCount = SE->getAddExpr(BackedgeTakenCount, One); 1471 auto ScaledTripCount = SE->getMulExpr( 1472 TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale)); 1473 auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One); 1474 Value *TakenCount = 1475 Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(), 1476 Header->getFirstNonPHIOrDbg()); 1477 Value *Cond = 1478 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond"); 1479 BI->setCondition(Cond); 1480 1481 if (BI->getSuccessor(1) != Header) 1482 BI->swapSuccessors(); 1483 } 1484 1485 SimplifyInstructionsInBlock(Header, TLI); 1486 DeleteDeadPHIs(Header, TLI); 1487 } 1488 1489 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS, 1490 const SCEV *Start, 1491 const SCEV *IncrExpr) { 1492 BasicBlock *Header = L->getHeader(); 1493 Instruction *Inst = DRS.BaseInst; 1494 1495 const SCEV *NewIVSCEV = 1496 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1497 1498 { // Limit the lifetime of SCEVExpander. 1499 const DataLayout &DL = Header->getModule()->getDataLayout(); 1500 SCEVExpander Expander(*SE, DL, "reroll"); 1501 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), 1502 Header->getFirstNonPHIOrDbg()); 1503 1504 for (auto &KV : Uses) 1505 if (KV.second.find_first() == 0) 1506 KV.first->replaceUsesOfWith(Inst, NewIV); 1507 } 1508 } 1509 1510 // Validate the selected reductions. All iterations must have an isomorphic 1511 // part of the reduction chain and, for non-associative reductions, the chain 1512 // entries must appear in order. 1513 bool LoopReroll::ReductionTracker::validateSelected() { 1514 // For a non-associative reduction, the chain entries must appear in order. 1515 for (int i : Reds) { 1516 int PrevIter = 0, BaseCount = 0, Count = 0; 1517 for (Instruction *J : PossibleReds[i]) { 1518 // Note that all instructions in the chain must have been found because 1519 // all instructions in the function must have been assigned to some 1520 // iteration. 1521 int Iter = PossibleRedIter[J]; 1522 if (Iter != PrevIter && Iter != PrevIter + 1 && 1523 !PossibleReds[i].getReducedValue()->isAssociative()) { 1524 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " 1525 << J << "\n"); 1526 return false; 1527 } 1528 1529 if (Iter != PrevIter) { 1530 if (Count != BaseCount) { 1531 LLVM_DEBUG(dbgs() 1532 << "LRR: Iteration " << PrevIter << " reduction use count " 1533 << Count << " is not equal to the base use count " 1534 << BaseCount << "\n"); 1535 return false; 1536 } 1537 1538 Count = 0; 1539 } 1540 1541 ++Count; 1542 if (Iter == 0) 1543 ++BaseCount; 1544 1545 PrevIter = Iter; 1546 } 1547 } 1548 1549 return true; 1550 } 1551 1552 // For all selected reductions, remove all parts except those in the first 1553 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1554 // of the first-iteration reduced value (in other words, reroll the selected 1555 // reductions). 1556 void LoopReroll::ReductionTracker::replaceSelected() { 1557 // Fixup reductions to refer to the last instruction associated with the 1558 // first iteration (not the last). 1559 for (int i : Reds) { 1560 int j = 0; 1561 for (int e = PossibleReds[i].size(); j != e; ++j) 1562 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1563 --j; 1564 break; 1565 } 1566 1567 // Replace users with the new end-of-chain value. 1568 SmallInstructionVector Users; 1569 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1570 Users.push_back(cast<Instruction>(U)); 1571 } 1572 1573 for (Instruction *User : Users) 1574 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1575 PossibleReds[i][j]); 1576 } 1577 } 1578 1579 // Reroll the provided loop with respect to the provided induction variable. 1580 // Generally, we're looking for a loop like this: 1581 // 1582 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1583 // f(%iv) 1584 // %iv.1 = add %iv, 1 <-- a root increment 1585 // f(%iv.1) 1586 // %iv.2 = add %iv, 2 <-- a root increment 1587 // f(%iv.2) 1588 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1589 // f(%iv.scale_m_1) 1590 // ... 1591 // %iv.next = add %iv, scale 1592 // %cmp = icmp(%iv, ...) 1593 // br %cmp, header, exit 1594 // 1595 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1596 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1597 // be intermixed with eachother. The restriction imposed by this algorithm is 1598 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1599 // etc. be the same. 1600 // 1601 // First, we collect the use set of %iv, excluding the other increment roots. 1602 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1603 // times, having collected the use set of f(%iv.(i+1)), during which we: 1604 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1605 // the next unmatched instruction in f(%iv.(i+1)). 1606 // - Ensure that both matched instructions don't have any external users 1607 // (with the exception of last-in-chain reduction instructions). 1608 // - Track the (aliasing) write set, and other side effects, of all 1609 // instructions that belong to future iterations that come before the matched 1610 // instructions. If the matched instructions read from that write set, then 1611 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1612 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1613 // if any of these future instructions had side effects (could not be 1614 // speculatively executed), and so do the matched instructions, when we 1615 // cannot reorder those side-effect-producing instructions, and rerolling 1616 // fails. 1617 // 1618 // Finally, we make sure that all loop instructions are either loop increment 1619 // roots, belong to simple latch code, parts of validated reductions, part of 1620 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1621 // have been validated), then we reroll the loop. 1622 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1623 const SCEV *BackedgeTakenCount, 1624 ReductionTracker &Reductions) { 1625 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1626 IVToIncMap, LoopControlIV); 1627 1628 if (!DAGRoots.findRoots()) 1629 return false; 1630 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV 1631 << "\n"); 1632 1633 if (!DAGRoots.validate(Reductions)) 1634 return false; 1635 if (!Reductions.validateSelected()) 1636 return false; 1637 // At this point, we've validated the rerolling, and we're committed to 1638 // making changes! 1639 1640 Reductions.replaceSelected(); 1641 DAGRoots.replace(BackedgeTakenCount); 1642 1643 ++NumRerolledLoops; 1644 return true; 1645 } 1646 1647 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1648 if (skipLoop(L)) 1649 return false; 1650 1651 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1652 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1653 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1654 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 1655 *L->getHeader()->getParent()); 1656 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1657 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1658 1659 BasicBlock *Header = L->getHeader(); 1660 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %" 1661 << Header->getName() << " (" << L->getNumBlocks() 1662 << " block(s))\n"); 1663 1664 // For now, we'll handle only single BB loops. 1665 if (L->getNumBlocks() > 1) 1666 return false; 1667 1668 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1669 return false; 1670 1671 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1672 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1673 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount 1674 << "\n"); 1675 1676 // First, we need to find the induction variable with respect to which we can 1677 // reroll (there may be several possible options). 1678 SmallInstructionVector PossibleIVs; 1679 IVToIncMap.clear(); 1680 LoopControlIV = nullptr; 1681 collectPossibleIVs(L, PossibleIVs); 1682 1683 if (PossibleIVs.empty()) { 1684 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1685 return false; 1686 } 1687 1688 ReductionTracker Reductions; 1689 collectPossibleReductions(L, Reductions); 1690 bool Changed = false; 1691 1692 // For each possible IV, collect the associated possible set of 'root' nodes 1693 // (i+1, i+2, etc.). 1694 for (Instruction *PossibleIV : PossibleIVs) 1695 if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) { 1696 Changed = true; 1697 break; 1698 } 1699 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1700 1701 // Trip count of L has changed so SE must be re-evaluated. 1702 if (Changed) 1703 SE->forgetLoop(L); 1704 1705 return Changed; 1706 } 1707