1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop reroller. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AliasSetTracker.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/LoopReroll.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <cstdlib> 63 #include <iterator> 64 #include <map> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "loop-reroll" 70 71 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 72 73 static cl::opt<unsigned> 74 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 75 cl::Hidden, 76 cl::desc("The maximum number of failures to tolerate" 77 " during fuzzy matching. (default: 400)")); 78 79 // This loop re-rolling transformation aims to transform loops like this: 80 // 81 // int foo(int a); 82 // void bar(int *x) { 83 // for (int i = 0; i < 500; i += 3) { 84 // foo(i); 85 // foo(i+1); 86 // foo(i+2); 87 // } 88 // } 89 // 90 // into a loop like this: 91 // 92 // void bar(int *x) { 93 // for (int i = 0; i < 500; ++i) 94 // foo(i); 95 // } 96 // 97 // It does this by looking for loops that, besides the latch code, are composed 98 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 99 // to the induction variable, and where each DAG is isomorphic to the DAG 100 // rooted at the induction variable (excepting the sub-DAGs which root the 101 // other induction-variable increments). In other words, we're looking for loop 102 // bodies of the form: 103 // 104 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 105 // f(%iv) 106 // %iv.1 = add %iv, 1 <-- a root increment 107 // f(%iv.1) 108 // %iv.2 = add %iv, 2 <-- a root increment 109 // f(%iv.2) 110 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 111 // f(%iv.scale_m_1) 112 // ... 113 // %iv.next = add %iv, scale 114 // %cmp = icmp(%iv, ...) 115 // br %cmp, header, exit 116 // 117 // where each f(i) is a set of instructions that, collectively, are a function 118 // only of i (and other loop-invariant values). 119 // 120 // As a special case, we can also reroll loops like this: 121 // 122 // int foo(int); 123 // void bar(int *x) { 124 // for (int i = 0; i < 500; ++i) { 125 // x[3*i] = foo(0); 126 // x[3*i+1] = foo(0); 127 // x[3*i+2] = foo(0); 128 // } 129 // } 130 // 131 // into this: 132 // 133 // void bar(int *x) { 134 // for (int i = 0; i < 1500; ++i) 135 // x[i] = foo(0); 136 // } 137 // 138 // in which case, we're looking for inputs like this: 139 // 140 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 141 // %scaled.iv = mul %iv, scale 142 // f(%scaled.iv) 143 // %scaled.iv.1 = add %scaled.iv, 1 144 // f(%scaled.iv.1) 145 // %scaled.iv.2 = add %scaled.iv, 2 146 // f(%scaled.iv.2) 147 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 148 // f(%scaled.iv.scale_m_1) 149 // ... 150 // %iv.next = add %iv, 1 151 // %cmp = icmp(%iv, ...) 152 // br %cmp, header, exit 153 154 namespace { 155 156 enum IterationLimits { 157 /// The maximum number of iterations that we'll try and reroll. 158 IL_MaxRerollIterations = 32, 159 /// The bitvector index used by loop induction variables and other 160 /// instructions that belong to all iterations. 161 IL_All, 162 IL_End 163 }; 164 165 class LoopRerollLegacyPass : public LoopPass { 166 public: 167 static char ID; // Pass ID, replacement for typeid 168 169 LoopRerollLegacyPass() : LoopPass(ID) { 170 initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry()); 171 } 172 173 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.addRequired<TargetLibraryInfoWrapperPass>(); 177 getLoopAnalysisUsage(AU); 178 } 179 }; 180 181 class LoopReroll { 182 public: 183 LoopReroll(AliasAnalysis *AA, LoopInfo *LI, ScalarEvolution *SE, 184 TargetLibraryInfo *TLI, DominatorTree *DT, bool PreserveLCSSA) 185 : AA(AA), LI(LI), SE(SE), TLI(TLI), DT(DT), 186 PreserveLCSSA(PreserveLCSSA) {} 187 bool runOnLoop(Loop *L); 188 189 protected: 190 AliasAnalysis *AA; 191 LoopInfo *LI; 192 ScalarEvolution *SE; 193 TargetLibraryInfo *TLI; 194 DominatorTree *DT; 195 bool PreserveLCSSA; 196 197 using SmallInstructionVector = SmallVector<Instruction *, 16>; 198 using SmallInstructionSet = SmallPtrSet<Instruction *, 16>; 199 200 // Map between induction variable and its increment 201 DenseMap<Instruction *, int64_t> IVToIncMap; 202 203 // For loop with multiple induction variable, remember the one used only to 204 // control the loop. 205 Instruction *LoopControlIV; 206 207 // A chain of isomorphic instructions, identified by a single-use PHI 208 // representing a reduction. Only the last value may be used outside the 209 // loop. 210 struct SimpleLoopReduction { 211 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) { 212 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 213 add(L); 214 } 215 216 bool valid() const { 217 return Valid; 218 } 219 220 Instruction *getPHI() const { 221 assert(Valid && "Using invalid reduction"); 222 return Instructions.front(); 223 } 224 225 Instruction *getReducedValue() const { 226 assert(Valid && "Using invalid reduction"); 227 return Instructions.back(); 228 } 229 230 Instruction *get(size_t i) const { 231 assert(Valid && "Using invalid reduction"); 232 return Instructions[i+1]; 233 } 234 235 Instruction *operator [] (size_t i) const { return get(i); } 236 237 // The size, ignoring the initial PHI. 238 size_t size() const { 239 assert(Valid && "Using invalid reduction"); 240 return Instructions.size()-1; 241 } 242 243 using iterator = SmallInstructionVector::iterator; 244 using const_iterator = SmallInstructionVector::const_iterator; 245 246 iterator begin() { 247 assert(Valid && "Using invalid reduction"); 248 return std::next(Instructions.begin()); 249 } 250 251 const_iterator begin() const { 252 assert(Valid && "Using invalid reduction"); 253 return std::next(Instructions.begin()); 254 } 255 256 iterator end() { return Instructions.end(); } 257 const_iterator end() const { return Instructions.end(); } 258 259 protected: 260 bool Valid = false; 261 SmallInstructionVector Instructions; 262 263 void add(Loop *L); 264 }; 265 266 // The set of all reductions, and state tracking of possible reductions 267 // during loop instruction processing. 268 struct ReductionTracker { 269 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>; 270 271 // Add a new possible reduction. 272 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 273 274 // Setup to track possible reductions corresponding to the provided 275 // rerolling scale. Only reductions with a number of non-PHI instructions 276 // that is divisible by the scale are considered. Three instructions sets 277 // are filled in: 278 // - A set of all possible instructions in eligible reductions. 279 // - A set of all PHIs in eligible reductions 280 // - A set of all reduced values (last instructions) in eligible 281 // reductions. 282 void restrictToScale(uint64_t Scale, 283 SmallInstructionSet &PossibleRedSet, 284 SmallInstructionSet &PossibleRedPHISet, 285 SmallInstructionSet &PossibleRedLastSet) { 286 PossibleRedIdx.clear(); 287 PossibleRedIter.clear(); 288 Reds.clear(); 289 290 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 291 if (PossibleReds[i].size() % Scale == 0) { 292 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 293 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 294 295 PossibleRedSet.insert(PossibleReds[i].getPHI()); 296 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 297 for (Instruction *J : PossibleReds[i]) { 298 PossibleRedSet.insert(J); 299 PossibleRedIdx[J] = i; 300 } 301 } 302 } 303 304 // The functions below are used while processing the loop instructions. 305 306 // Are the two instructions both from reductions, and furthermore, from 307 // the same reduction? 308 bool isPairInSame(Instruction *J1, Instruction *J2) { 309 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 310 if (J1I != PossibleRedIdx.end()) { 311 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 312 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 313 return true; 314 } 315 316 return false; 317 } 318 319 // The two provided instructions, the first from the base iteration, and 320 // the second from iteration i, form a matched pair. If these are part of 321 // a reduction, record that fact. 322 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 323 if (PossibleRedIdx.count(J1)) { 324 assert(PossibleRedIdx.count(J2) && 325 "Recording reduction vs. non-reduction instruction?"); 326 327 PossibleRedIter[J1] = 0; 328 PossibleRedIter[J2] = i; 329 330 int Idx = PossibleRedIdx[J1]; 331 assert(Idx == PossibleRedIdx[J2] && 332 "Recording pair from different reductions?"); 333 Reds.insert(Idx); 334 } 335 } 336 337 // The functions below can be called after we've finished processing all 338 // instructions in the loop, and we know which reductions were selected. 339 340 bool validateSelected(); 341 void replaceSelected(); 342 343 protected: 344 // The vector of all possible reductions (for any scale). 345 SmallReductionVector PossibleReds; 346 347 DenseMap<Instruction *, int> PossibleRedIdx; 348 DenseMap<Instruction *, int> PossibleRedIter; 349 DenseSet<int> Reds; 350 }; 351 352 // A DAGRootSet models an induction variable being used in a rerollable 353 // loop. For example, 354 // 355 // x[i*3+0] = y1 356 // x[i*3+1] = y2 357 // x[i*3+2] = y3 358 // 359 // Base instruction -> i*3 360 // +---+----+ 361 // / | \ 362 // ST[y1] +1 +2 <-- Roots 363 // | | 364 // ST[y2] ST[y3] 365 // 366 // There may be multiple DAGRoots, for example: 367 // 368 // x[i*2+0] = ... (1) 369 // x[i*2+1] = ... (1) 370 // x[i*2+4] = ... (2) 371 // x[i*2+5] = ... (2) 372 // x[(i+1234)*2+5678] = ... (3) 373 // x[(i+1234)*2+5679] = ... (3) 374 // 375 // The loop will be rerolled by adding a new loop induction variable, 376 // one for the Base instruction in each DAGRootSet. 377 // 378 struct DAGRootSet { 379 Instruction *BaseInst; 380 SmallInstructionVector Roots; 381 382 // The instructions between IV and BaseInst (but not including BaseInst). 383 SmallInstructionSet SubsumedInsts; 384 }; 385 386 // The set of all DAG roots, and state tracking of all roots 387 // for a particular induction variable. 388 struct DAGRootTracker { 389 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 390 ScalarEvolution *SE, AliasAnalysis *AA, 391 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 392 bool PreserveLCSSA, 393 DenseMap<Instruction *, int64_t> &IncrMap, 394 Instruction *LoopCtrlIV) 395 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 396 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 397 LoopControlIV(LoopCtrlIV) {} 398 399 /// Stage 1: Find all the DAG roots for the induction variable. 400 bool findRoots(); 401 402 /// Stage 2: Validate if the found roots are valid. 403 bool validate(ReductionTracker &Reductions); 404 405 /// Stage 3: Assuming validate() returned true, perform the 406 /// replacement. 407 /// @param BackedgeTakenCount The backedge-taken count of L. 408 void replace(const SCEV *BackedgeTakenCount); 409 410 protected: 411 using UsesTy = MapVector<Instruction *, BitVector>; 412 413 void findRootsRecursive(Instruction *IVU, 414 SmallInstructionSet SubsumedInsts); 415 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 416 bool collectPossibleRoots(Instruction *Base, 417 std::map<int64_t,Instruction*> &Roots); 418 bool validateRootSet(DAGRootSet &DRS); 419 420 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 421 void collectInLoopUserSet(const SmallInstructionVector &Roots, 422 const SmallInstructionSet &Exclude, 423 const SmallInstructionSet &Final, 424 DenseSet<Instruction *> &Users); 425 void collectInLoopUserSet(Instruction *Root, 426 const SmallInstructionSet &Exclude, 427 const SmallInstructionSet &Final, 428 DenseSet<Instruction *> &Users); 429 430 UsesTy::iterator nextInstr(int Val, UsesTy &In, 431 const SmallInstructionSet &Exclude, 432 UsesTy::iterator *StartI=nullptr); 433 bool isBaseInst(Instruction *I); 434 bool isRootInst(Instruction *I); 435 bool instrDependsOn(Instruction *I, 436 UsesTy::iterator Start, 437 UsesTy::iterator End); 438 void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr); 439 440 LoopReroll *Parent; 441 442 // Members of Parent, replicated here for brevity. 443 Loop *L; 444 ScalarEvolution *SE; 445 AliasAnalysis *AA; 446 TargetLibraryInfo *TLI; 447 DominatorTree *DT; 448 LoopInfo *LI; 449 bool PreserveLCSSA; 450 451 // The loop induction variable. 452 Instruction *IV; 453 454 // Loop step amount. 455 int64_t Inc; 456 457 // Loop reroll count; if Inc == 1, this records the scaling applied 458 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 459 // If Inc is not 1, Scale = Inc. 460 uint64_t Scale; 461 462 // The roots themselves. 463 SmallVector<DAGRootSet,16> RootSets; 464 465 // All increment instructions for IV. 466 SmallInstructionVector LoopIncs; 467 468 // Map of all instructions in the loop (in order) to the iterations 469 // they are used in (or specially, IL_All for instructions 470 // used in the loop increment mechanism). 471 UsesTy Uses; 472 473 // Map between induction variable and its increment 474 DenseMap<Instruction *, int64_t> &IVToIncMap; 475 476 Instruction *LoopControlIV; 477 }; 478 479 // Check if it is a compare-like instruction whose user is a branch 480 bool isCompareUsedByBranch(Instruction *I) { 481 auto *TI = I->getParent()->getTerminator(); 482 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 483 return false; 484 return I->hasOneUse() && TI->getOperand(0) == I; 485 }; 486 487 bool isLoopControlIV(Loop *L, Instruction *IV); 488 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 489 void collectPossibleReductions(Loop *L, 490 ReductionTracker &Reductions); 491 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, 492 const SCEV *BackedgeTakenCount, ReductionTracker &Reductions); 493 }; 494 495 } // end anonymous namespace 496 497 char LoopRerollLegacyPass::ID = 0; 498 499 INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", 500 false, false) 501 INITIALIZE_PASS_DEPENDENCY(LoopPass) 502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 503 INITIALIZE_PASS_END(LoopRerollLegacyPass, "loop-reroll", "Reroll loops", false, 504 false) 505 506 Pass *llvm::createLoopRerollPass() { return new LoopRerollLegacyPass; } 507 508 // Returns true if the provided instruction is used outside the given loop. 509 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 510 // non-loop blocks to be outside the loop. 511 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 512 for (User *U : I->users()) { 513 if (!L->contains(cast<Instruction>(U))) 514 return true; 515 } 516 return false; 517 } 518 519 // Check if an IV is only used to control the loop. There are two cases: 520 // 1. It only has one use which is loop increment, and the increment is only 521 // used by comparison and the PHI (could has sext with nsw in between), and the 522 // comparison is only used by branch. 523 // 2. It is used by loop increment and the comparison, the loop increment is 524 // only used by the PHI, and the comparison is used only by the branch. 525 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 526 unsigned IVUses = IV->getNumUses(); 527 if (IVUses != 2 && IVUses != 1) 528 return false; 529 530 for (auto *User : IV->users()) { 531 int32_t IncOrCmpUses = User->getNumUses(); 532 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 533 534 // User can only have one or two uses. 535 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 536 return false; 537 538 // Case 1 539 if (IVUses == 1) { 540 // The only user must be the loop increment. 541 // The loop increment must have two uses. 542 if (IsCompInst || IncOrCmpUses != 2) 543 return false; 544 } 545 546 // Case 2 547 if (IVUses == 2 && IncOrCmpUses != 1) 548 return false; 549 550 // The users of the IV must be a binary operation or a comparison 551 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 552 if (BO->getOpcode() == Instruction::Add) { 553 // Loop Increment 554 // User of Loop Increment should be either PHI or CMP 555 for (auto *UU : User->users()) { 556 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 557 if (PN != IV) 558 return false; 559 } 560 // Must be a CMP or an ext (of a value with nsw) then CMP 561 else { 562 Instruction *UUser = dyn_cast<Instruction>(UU); 563 // Skip SExt if we are extending an nsw value 564 // TODO: Allow ZExt too 565 if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() && 566 isa<SExtInst>(UUser)) 567 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 568 if (!isCompareUsedByBranch(UUser)) 569 return false; 570 } 571 } 572 } else 573 return false; 574 // Compare : can only have one use, and must be branch 575 } else if (!IsCompInst) 576 return false; 577 } 578 return true; 579 } 580 581 // Collect the list of loop induction variables with respect to which it might 582 // be possible to reroll the loop. 583 void LoopReroll::collectPossibleIVs(Loop *L, 584 SmallInstructionVector &PossibleIVs) { 585 BasicBlock *Header = L->getHeader(); 586 for (BasicBlock::iterator I = Header->begin(), 587 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 588 if (!isa<PHINode>(I)) 589 continue; 590 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 591 continue; 592 593 if (const SCEVAddRecExpr *PHISCEV = 594 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 595 if (PHISCEV->getLoop() != L) 596 continue; 597 if (!PHISCEV->isAffine()) 598 continue; 599 auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 600 if (IncSCEV) { 601 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 602 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 603 << "\n"); 604 605 if (isLoopControlIV(L, &*I)) { 606 assert(!LoopControlIV && "Found two loop control only IV"); 607 LoopControlIV = &(*I); 608 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I 609 << " = " << *PHISCEV << "\n"); 610 } else 611 PossibleIVs.push_back(&*I); 612 } 613 } 614 } 615 } 616 617 // Add the remainder of the reduction-variable chain to the instruction vector 618 // (the initial PHINode has already been added). If successful, the object is 619 // marked as valid. 620 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 621 assert(!Valid && "Cannot add to an already-valid chain"); 622 623 // The reduction variable must be a chain of single-use instructions 624 // (including the PHI), except for the last value (which is used by the PHI 625 // and also outside the loop). 626 Instruction *C = Instructions.front(); 627 if (C->user_empty()) 628 return; 629 630 do { 631 C = cast<Instruction>(*C->user_begin()); 632 if (C->hasOneUse()) { 633 if (!C->isBinaryOp()) 634 return; 635 636 if (!(isa<PHINode>(Instructions.back()) || 637 C->isSameOperationAs(Instructions.back()))) 638 return; 639 640 Instructions.push_back(C); 641 } 642 } while (C->hasOneUse()); 643 644 if (Instructions.size() < 2 || 645 !C->isSameOperationAs(Instructions.back()) || 646 C->use_empty()) 647 return; 648 649 // C is now the (potential) last instruction in the reduction chain. 650 for (User *U : C->users()) { 651 // The only in-loop user can be the initial PHI. 652 if (L->contains(cast<Instruction>(U))) 653 if (cast<Instruction>(U) != Instructions.front()) 654 return; 655 } 656 657 Instructions.push_back(C); 658 Valid = true; 659 } 660 661 // Collect the vector of possible reduction variables. 662 void LoopReroll::collectPossibleReductions(Loop *L, 663 ReductionTracker &Reductions) { 664 BasicBlock *Header = L->getHeader(); 665 for (BasicBlock::iterator I = Header->begin(), 666 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 667 if (!isa<PHINode>(I)) 668 continue; 669 if (!I->getType()->isSingleValueType()) 670 continue; 671 672 SimpleLoopReduction SLR(&*I, L); 673 if (!SLR.valid()) 674 continue; 675 676 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " 677 << SLR.size() << " chained instructions)\n"); 678 Reductions.addSLR(SLR); 679 } 680 } 681 682 // Collect the set of all users of the provided root instruction. This set of 683 // users contains not only the direct users of the root instruction, but also 684 // all users of those users, and so on. There are two exceptions: 685 // 686 // 1. Instructions in the set of excluded instructions are never added to the 687 // use set (even if they are users). This is used, for example, to exclude 688 // including root increments in the use set of the primary IV. 689 // 690 // 2. Instructions in the set of final instructions are added to the use set 691 // if they are users, but their users are not added. This is used, for 692 // example, to prevent a reduction update from forcing all later reduction 693 // updates into the use set. 694 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 695 Instruction *Root, const SmallInstructionSet &Exclude, 696 const SmallInstructionSet &Final, 697 DenseSet<Instruction *> &Users) { 698 SmallInstructionVector Queue(1, Root); 699 while (!Queue.empty()) { 700 Instruction *I = Queue.pop_back_val(); 701 if (!Users.insert(I).second) 702 continue; 703 704 if (!Final.count(I)) 705 for (Use &U : I->uses()) { 706 Instruction *User = cast<Instruction>(U.getUser()); 707 if (PHINode *PN = dyn_cast<PHINode>(User)) { 708 // Ignore "wrap-around" uses to PHIs of this loop's header. 709 if (PN->getIncomingBlock(U) == L->getHeader()) 710 continue; 711 } 712 713 if (L->contains(User) && !Exclude.count(User)) { 714 Queue.push_back(User); 715 } 716 } 717 718 // We also want to collect single-user "feeder" values. 719 for (Use &U : I->operands()) { 720 if (Instruction *Op = dyn_cast<Instruction>(U)) 721 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 722 !Final.count(Op)) 723 Queue.push_back(Op); 724 } 725 } 726 } 727 728 // Collect all of the users of all of the provided root instructions (combined 729 // into a single set). 730 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 731 const SmallInstructionVector &Roots, 732 const SmallInstructionSet &Exclude, 733 const SmallInstructionSet &Final, 734 DenseSet<Instruction *> &Users) { 735 for (Instruction *Root : Roots) 736 collectInLoopUserSet(Root, Exclude, Final, Users); 737 } 738 739 static bool isUnorderedLoadStore(Instruction *I) { 740 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 741 return LI->isUnordered(); 742 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 743 return SI->isUnordered(); 744 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 745 return !MI->isVolatile(); 746 return false; 747 } 748 749 /// Return true if IVU is a "simple" arithmetic operation. 750 /// This is used for narrowing the search space for DAGRoots; only arithmetic 751 /// and GEPs can be part of a DAGRoot. 752 static bool isSimpleArithmeticOp(User *IVU) { 753 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 754 switch (I->getOpcode()) { 755 default: return false; 756 case Instruction::Add: 757 case Instruction::Sub: 758 case Instruction::Mul: 759 case Instruction::Shl: 760 case Instruction::AShr: 761 case Instruction::LShr: 762 case Instruction::GetElementPtr: 763 case Instruction::Trunc: 764 case Instruction::ZExt: 765 case Instruction::SExt: 766 return true; 767 } 768 } 769 return false; 770 } 771 772 static bool isLoopIncrement(User *U, Instruction *IV) { 773 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 774 775 if ((BO && BO->getOpcode() != Instruction::Add) || 776 (!BO && !isa<GetElementPtrInst>(U))) 777 return false; 778 779 for (auto *UU : U->users()) { 780 PHINode *PN = dyn_cast<PHINode>(UU); 781 if (PN && PN == IV) 782 return true; 783 } 784 return false; 785 } 786 787 bool LoopReroll::DAGRootTracker:: 788 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 789 SmallInstructionVector BaseUsers; 790 791 for (auto *I : Base->users()) { 792 ConstantInt *CI = nullptr; 793 794 if (isLoopIncrement(I, IV)) { 795 LoopIncs.push_back(cast<Instruction>(I)); 796 continue; 797 } 798 799 // The root nodes must be either GEPs, ORs or ADDs. 800 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 801 if (BO->getOpcode() == Instruction::Add || 802 BO->getOpcode() == Instruction::Or) 803 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 804 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 805 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 806 CI = dyn_cast<ConstantInt>(LastOperand); 807 } 808 809 if (!CI) { 810 if (Instruction *II = dyn_cast<Instruction>(I)) { 811 BaseUsers.push_back(II); 812 continue; 813 } else { 814 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I 815 << "\n"); 816 return false; 817 } 818 } 819 820 int64_t V = std::abs(CI->getValue().getSExtValue()); 821 if (Roots.find(V) != Roots.end()) 822 // No duplicates, please. 823 return false; 824 825 Roots[V] = cast<Instruction>(I); 826 } 827 828 // Make sure we have at least two roots. 829 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) 830 return false; 831 832 // If we found non-loop-inc, non-root users of Base, assume they are 833 // for the zeroth root index. This is because "add %a, 0" gets optimized 834 // away. 835 if (BaseUsers.size()) { 836 if (Roots.find(0) != Roots.end()) { 837 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 838 return false; 839 } 840 Roots[0] = Base; 841 } 842 843 // Calculate the number of users of the base, or lowest indexed, iteration. 844 unsigned NumBaseUses = BaseUsers.size(); 845 if (NumBaseUses == 0) 846 NumBaseUses = Roots.begin()->second->getNumUses(); 847 848 // Check that every node has the same number of users. 849 for (auto &KV : Roots) { 850 if (KV.first == 0) 851 continue; 852 if (!KV.second->hasNUses(NumBaseUses)) { 853 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 854 << "#Base=" << NumBaseUses 855 << ", #Root=" << KV.second->getNumUses() << "\n"); 856 return false; 857 } 858 } 859 860 return true; 861 } 862 863 void LoopReroll::DAGRootTracker:: 864 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 865 // Does the user look like it could be part of a root set? 866 // All its users must be simple arithmetic ops. 867 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1)) 868 return; 869 870 if (I != IV && findRootsBase(I, SubsumedInsts)) 871 return; 872 873 SubsumedInsts.insert(I); 874 875 for (User *V : I->users()) { 876 Instruction *I = cast<Instruction>(V); 877 if (is_contained(LoopIncs, I)) 878 continue; 879 880 if (!isSimpleArithmeticOp(I)) 881 continue; 882 883 // The recursive call makes a copy of SubsumedInsts. 884 findRootsRecursive(I, SubsumedInsts); 885 } 886 } 887 888 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { 889 if (DRS.Roots.empty()) 890 return false; 891 892 // If the value of the base instruction is used outside the loop, we cannot 893 // reroll the loop. Check for other root instructions is unnecessary because 894 // they don't match any base instructions if their values are used outside. 895 if (hasUsesOutsideLoop(DRS.BaseInst, L)) 896 return false; 897 898 // Consider a DAGRootSet with N-1 roots (so N different values including 899 // BaseInst). 900 // Define d = Roots[0] - BaseInst, which should be the same as 901 // Roots[I] - Roots[I-1] for all I in [1..N). 902 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 903 // loop iteration J. 904 // 905 // Now, For the loop iterations to be consecutive: 906 // D = d * N 907 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 908 if (!ADR) 909 return false; 910 911 // Check that the first root is evenly spaced. 912 unsigned N = DRS.Roots.size() + 1; 913 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); 914 if (isa<SCEVCouldNotCompute>(StepSCEV) || StepSCEV->getType()->isPointerTy()) 915 return false; 916 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 917 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) 918 return false; 919 920 // Check that the remainling roots are evenly spaced. 921 for (unsigned i = 1; i < N - 1; ++i) { 922 const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]), 923 SE->getSCEV(DRS.Roots[i-1])); 924 if (NewStepSCEV != StepSCEV) 925 return false; 926 } 927 928 return true; 929 } 930 931 bool LoopReroll::DAGRootTracker:: 932 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 933 // The base of a RootSet must be an AddRec, so it can be erased. 934 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); 935 if (!IVU_ADR || IVU_ADR->getLoop() != L) 936 return false; 937 938 std::map<int64_t, Instruction*> V; 939 if (!collectPossibleRoots(IVU, V)) 940 return false; 941 942 // If we didn't get a root for index zero, then IVU must be 943 // subsumed. 944 if (V.find(0) == V.end()) 945 SubsumedInsts.insert(IVU); 946 947 // Partition the vector into monotonically increasing indexes. 948 DAGRootSet DRS; 949 DRS.BaseInst = nullptr; 950 951 SmallVector<DAGRootSet, 16> PotentialRootSets; 952 953 for (auto &KV : V) { 954 if (!DRS.BaseInst) { 955 DRS.BaseInst = KV.second; 956 DRS.SubsumedInsts = SubsumedInsts; 957 } else if (DRS.Roots.empty()) { 958 DRS.Roots.push_back(KV.second); 959 } else if (V.find(KV.first - 1) != V.end()) { 960 DRS.Roots.push_back(KV.second); 961 } else { 962 // Linear sequence terminated. 963 if (!validateRootSet(DRS)) 964 return false; 965 966 // Construct a new DAGRootSet with the next sequence. 967 PotentialRootSets.push_back(DRS); 968 DRS.BaseInst = KV.second; 969 DRS.Roots.clear(); 970 } 971 } 972 973 if (!validateRootSet(DRS)) 974 return false; 975 976 PotentialRootSets.push_back(DRS); 977 978 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); 979 980 return true; 981 } 982 983 bool LoopReroll::DAGRootTracker::findRoots() { 984 Inc = IVToIncMap[IV]; 985 986 assert(RootSets.empty() && "Unclean state!"); 987 if (std::abs(Inc) == 1) { 988 for (auto *IVU : IV->users()) { 989 if (isLoopIncrement(IVU, IV)) 990 LoopIncs.push_back(cast<Instruction>(IVU)); 991 } 992 findRootsRecursive(IV, SmallInstructionSet()); 993 LoopIncs.push_back(IV); 994 } else { 995 if (!findRootsBase(IV, SmallInstructionSet())) 996 return false; 997 } 998 999 // Ensure all sets have the same size. 1000 if (RootSets.empty()) { 1001 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 1002 return false; 1003 } 1004 for (auto &V : RootSets) { 1005 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 1006 LLVM_DEBUG( 1007 dbgs() 1008 << "LRR: Aborting because not all root sets have the same size\n"); 1009 return false; 1010 } 1011 } 1012 1013 Scale = RootSets[0].Roots.size() + 1; 1014 1015 if (Scale > IL_MaxRerollIterations) { 1016 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 1017 << "#Found=" << Scale 1018 << ", #Max=" << IL_MaxRerollIterations << "\n"); 1019 return false; 1020 } 1021 1022 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale 1023 << "\n"); 1024 1025 return true; 1026 } 1027 1028 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1029 // Populate the MapVector with all instructions in the block, in order first, 1030 // so we can iterate over the contents later in perfect order. 1031 for (auto &I : *L->getHeader()) { 1032 Uses[&I].resize(IL_End); 1033 } 1034 1035 SmallInstructionSet Exclude; 1036 for (auto &DRS : RootSets) { 1037 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1038 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1039 Exclude.insert(DRS.BaseInst); 1040 } 1041 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1042 1043 for (auto &DRS : RootSets) { 1044 DenseSet<Instruction*> VBase; 1045 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1046 for (auto *I : VBase) { 1047 Uses[I].set(0); 1048 } 1049 1050 unsigned Idx = 1; 1051 for (auto *Root : DRS.Roots) { 1052 DenseSet<Instruction*> V; 1053 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1054 1055 // While we're here, check the use sets are the same size. 1056 if (V.size() != VBase.size()) { 1057 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1058 return false; 1059 } 1060 1061 for (auto *I : V) { 1062 Uses[I].set(Idx); 1063 } 1064 ++Idx; 1065 } 1066 1067 // Make sure our subsumed instructions are remembered too. 1068 for (auto *I : DRS.SubsumedInsts) { 1069 Uses[I].set(IL_All); 1070 } 1071 } 1072 1073 // Make sure the loop increments are also accounted for. 1074 1075 Exclude.clear(); 1076 for (auto &DRS : RootSets) { 1077 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1078 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1079 Exclude.insert(DRS.BaseInst); 1080 } 1081 1082 DenseSet<Instruction*> V; 1083 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1084 for (auto *I : V) { 1085 if (I->mayHaveSideEffects()) { 1086 LLVM_DEBUG(dbgs() << "LRR: Aborting - " 1087 << "An instruction which does not belong to any root " 1088 << "sets must not have side effects: " << *I); 1089 return false; 1090 } 1091 Uses[I].set(IL_All); 1092 } 1093 1094 return true; 1095 } 1096 1097 /// Get the next instruction in "In" that is a member of set Val. 1098 /// Start searching from StartI, and do not return anything in Exclude. 1099 /// If StartI is not given, start from In.begin(). 1100 LoopReroll::DAGRootTracker::UsesTy::iterator 1101 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1102 const SmallInstructionSet &Exclude, 1103 UsesTy::iterator *StartI) { 1104 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1105 while (I != In.end() && (I->second.test(Val) == 0 || 1106 Exclude.contains(I->first))) 1107 ++I; 1108 return I; 1109 } 1110 1111 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1112 for (auto &DRS : RootSets) { 1113 if (DRS.BaseInst == I) 1114 return true; 1115 } 1116 return false; 1117 } 1118 1119 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1120 for (auto &DRS : RootSets) { 1121 if (is_contained(DRS.Roots, I)) 1122 return true; 1123 } 1124 return false; 1125 } 1126 1127 /// Return true if instruction I depends on any instruction between 1128 /// Start and End. 1129 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1130 UsesTy::iterator Start, 1131 UsesTy::iterator End) { 1132 for (auto *U : I->users()) { 1133 for (auto It = Start; It != End; ++It) 1134 if (U == It->first) 1135 return true; 1136 } 1137 return false; 1138 } 1139 1140 static bool isIgnorableInst(const Instruction *I) { 1141 if (isa<DbgInfoIntrinsic>(I)) 1142 return true; 1143 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1144 if (!II) 1145 return false; 1146 switch (II->getIntrinsicID()) { 1147 default: 1148 return false; 1149 case Intrinsic::annotation: 1150 case Intrinsic::ptr_annotation: 1151 case Intrinsic::var_annotation: 1152 // TODO: the following intrinsics may also be allowed: 1153 // lifetime_start, lifetime_end, invariant_start, invariant_end 1154 return true; 1155 } 1156 return false; 1157 } 1158 1159 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1160 // We now need to check for equivalence of the use graph of each root with 1161 // that of the primary induction variable (excluding the roots). Our goal 1162 // here is not to solve the full graph isomorphism problem, but rather to 1163 // catch common cases without a lot of work. As a result, we will assume 1164 // that the relative order of the instructions in each unrolled iteration 1165 // is the same (although we will not make an assumption about how the 1166 // different iterations are intermixed). Note that while the order must be 1167 // the same, the instructions may not be in the same basic block. 1168 1169 // An array of just the possible reductions for this scale factor. When we 1170 // collect the set of all users of some root instructions, these reduction 1171 // instructions are treated as 'final' (their uses are not considered). 1172 // This is important because we don't want the root use set to search down 1173 // the reduction chain. 1174 SmallInstructionSet PossibleRedSet; 1175 SmallInstructionSet PossibleRedLastSet; 1176 SmallInstructionSet PossibleRedPHISet; 1177 Reductions.restrictToScale(Scale, PossibleRedSet, 1178 PossibleRedPHISet, PossibleRedLastSet); 1179 1180 // Populate "Uses" with where each instruction is used. 1181 if (!collectUsedInstructions(PossibleRedSet)) 1182 return false; 1183 1184 // Make sure we mark the reduction PHIs as used in all iterations. 1185 for (auto *I : PossibleRedPHISet) { 1186 Uses[I].set(IL_All); 1187 } 1188 1189 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1190 // comment above LoopReroll::isLoopControlIV for more information. 1191 BasicBlock *Header = L->getHeader(); 1192 if (LoopControlIV && LoopControlIV != IV) { 1193 for (auto *U : LoopControlIV->users()) { 1194 Instruction *IVUser = dyn_cast<Instruction>(U); 1195 // IVUser could be loop increment or compare 1196 Uses[IVUser].set(IL_All); 1197 for (auto *UU : IVUser->users()) { 1198 Instruction *UUser = dyn_cast<Instruction>(UU); 1199 // UUser could be compare, PHI or branch 1200 Uses[UUser].set(IL_All); 1201 // Skip SExt 1202 if (isa<SExtInst>(UUser)) { 1203 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1204 Uses[UUser].set(IL_All); 1205 } 1206 // Is UUser a compare instruction? 1207 if (UU->hasOneUse()) { 1208 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1209 if (BI == cast<BranchInst>(Header->getTerminator())) 1210 Uses[BI].set(IL_All); 1211 } 1212 } 1213 } 1214 } 1215 1216 // Make sure all instructions in the loop are in one and only one 1217 // set. 1218 for (auto &KV : Uses) { 1219 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1220 LLVM_DEBUG( 1221 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1222 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1223 return false; 1224 } 1225 } 1226 1227 LLVM_DEBUG(for (auto &KV 1228 : Uses) { 1229 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1230 }); 1231 1232 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1233 // In addition to regular aliasing information, we need to look for 1234 // instructions from later (future) iterations that have side effects 1235 // preventing us from reordering them past other instructions with side 1236 // effects. 1237 bool FutureSideEffects = false; 1238 AliasSetTracker AST(*AA); 1239 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1240 DenseMap<Value *, Value *> BaseMap; 1241 1242 // Compare iteration Iter to the base. 1243 SmallInstructionSet Visited; 1244 auto BaseIt = nextInstr(0, Uses, Visited); 1245 auto RootIt = nextInstr(Iter, Uses, Visited); 1246 auto LastRootIt = Uses.begin(); 1247 1248 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1249 Instruction *BaseInst = BaseIt->first; 1250 Instruction *RootInst = RootIt->first; 1251 1252 // Skip over the IV or root instructions; only match their users. 1253 bool Continue = false; 1254 if (isBaseInst(BaseInst)) { 1255 Visited.insert(BaseInst); 1256 BaseIt = nextInstr(0, Uses, Visited); 1257 Continue = true; 1258 } 1259 if (isRootInst(RootInst)) { 1260 LastRootIt = RootIt; 1261 Visited.insert(RootInst); 1262 RootIt = nextInstr(Iter, Uses, Visited); 1263 Continue = true; 1264 } 1265 if (Continue) continue; 1266 1267 if (!BaseInst->isSameOperationAs(RootInst)) { 1268 // Last chance saloon. We don't try and solve the full isomorphism 1269 // problem, but try and at least catch the case where two instructions 1270 // *of different types* are round the wrong way. We won't be able to 1271 // efficiently tell, given two ADD instructions, which way around we 1272 // should match them, but given an ADD and a SUB, we can at least infer 1273 // which one is which. 1274 // 1275 // This should allow us to deal with a greater subset of the isomorphism 1276 // problem. It does however change a linear algorithm into a quadratic 1277 // one, so limit the number of probes we do. 1278 auto TryIt = RootIt; 1279 unsigned N = NumToleratedFailedMatches; 1280 while (TryIt != Uses.end() && 1281 !BaseInst->isSameOperationAs(TryIt->first) && 1282 N--) { 1283 ++TryIt; 1284 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1285 } 1286 1287 if (TryIt == Uses.end() || TryIt == RootIt || 1288 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1289 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1290 << *BaseInst << " vs. " << *RootInst << "\n"); 1291 return false; 1292 } 1293 1294 RootIt = TryIt; 1295 RootInst = TryIt->first; 1296 } 1297 1298 // All instructions between the last root and this root 1299 // may belong to some other iteration. If they belong to a 1300 // future iteration, then they're dangerous to alias with. 1301 // 1302 // Note that because we allow a limited amount of flexibility in the order 1303 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1304 // case we've already checked this set of instructions so we shouldn't 1305 // do anything. 1306 for (; LastRootIt < RootIt; ++LastRootIt) { 1307 Instruction *I = LastRootIt->first; 1308 if (LastRootIt->second.find_first() < (int)Iter) 1309 continue; 1310 if (I->mayWriteToMemory()) 1311 AST.add(I); 1312 // Note: This is specifically guarded by a check on isa<PHINode>, 1313 // which while a valid (somewhat arbitrary) micro-optimization, is 1314 // needed because otherwise isSafeToSpeculativelyExecute returns 1315 // false on PHI nodes. 1316 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && 1317 !isSafeToSpeculativelyExecute(I)) 1318 // Intervening instructions cause side effects. 1319 FutureSideEffects = true; 1320 } 1321 1322 // Make sure that this instruction, which is in the use set of this 1323 // root instruction, does not also belong to the base set or the set of 1324 // some other root instruction. 1325 if (RootIt->second.count() > 1) { 1326 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1327 << " vs. " << *RootInst << " (prev. case overlap)\n"); 1328 return false; 1329 } 1330 1331 // Make sure that we don't alias with any instruction in the alias set 1332 // tracker. If we do, then we depend on a future iteration, and we 1333 // can't reroll. 1334 if (RootInst->mayReadFromMemory()) 1335 for (auto &K : AST) { 1336 if (K.aliasesUnknownInst(RootInst, *AA)) { 1337 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1338 << *BaseInst << " vs. " << *RootInst 1339 << " (depends on future store)\n"); 1340 return false; 1341 } 1342 } 1343 1344 // If we've past an instruction from a future iteration that may have 1345 // side effects, and this instruction might also, then we can't reorder 1346 // them, and this matching fails. As an exception, we allow the alias 1347 // set tracker to handle regular (unordered) load/store dependencies. 1348 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && 1349 !isSafeToSpeculativelyExecute(BaseInst)) || 1350 (!isUnorderedLoadStore(RootInst) && 1351 !isSafeToSpeculativelyExecute(RootInst)))) { 1352 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1353 << " vs. " << *RootInst 1354 << " (side effects prevent reordering)\n"); 1355 return false; 1356 } 1357 1358 // For instructions that are part of a reduction, if the operation is 1359 // associative, then don't bother matching the operands (because we 1360 // already know that the instructions are isomorphic, and the order 1361 // within the iteration does not matter). For non-associative reductions, 1362 // we do need to match the operands, because we need to reject 1363 // out-of-order instructions within an iteration! 1364 // For example (assume floating-point addition), we need to reject this: 1365 // x += a[i]; x += b[i]; 1366 // x += a[i+1]; x += b[i+1]; 1367 // x += b[i+2]; x += a[i+2]; 1368 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1369 1370 if (!(InReduction && BaseInst->isAssociative())) { 1371 bool Swapped = false, SomeOpMatched = false; 1372 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1373 Value *Op2 = RootInst->getOperand(j); 1374 1375 // If this is part of a reduction (and the operation is not 1376 // associatve), then we match all operands, but not those that are 1377 // part of the reduction. 1378 if (InReduction) 1379 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1380 if (Reductions.isPairInSame(RootInst, Op2I)) 1381 continue; 1382 1383 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1384 if (BMI != BaseMap.end()) { 1385 Op2 = BMI->second; 1386 } else { 1387 for (auto &DRS : RootSets) { 1388 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1389 Op2 = DRS.BaseInst; 1390 break; 1391 } 1392 } 1393 } 1394 1395 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1396 // If we've not already decided to swap the matched operands, and 1397 // we've not already matched our first operand (note that we could 1398 // have skipped matching the first operand because it is part of a 1399 // reduction above), and the instruction is commutative, then try 1400 // the swapped match. 1401 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1402 BaseInst->getOperand(!j) == Op2) { 1403 Swapped = true; 1404 } else { 1405 LLVM_DEBUG(dbgs() 1406 << "LRR: iteration root match failed at " << *BaseInst 1407 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1408 return false; 1409 } 1410 } 1411 1412 SomeOpMatched = true; 1413 } 1414 } 1415 1416 if ((!PossibleRedLastSet.count(BaseInst) && 1417 hasUsesOutsideLoop(BaseInst, L)) || 1418 (!PossibleRedLastSet.count(RootInst) && 1419 hasUsesOutsideLoop(RootInst, L))) { 1420 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1421 << " vs. " << *RootInst << " (uses outside loop)\n"); 1422 return false; 1423 } 1424 1425 Reductions.recordPair(BaseInst, RootInst, Iter); 1426 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1427 1428 LastRootIt = RootIt; 1429 Visited.insert(BaseInst); 1430 Visited.insert(RootInst); 1431 BaseIt = nextInstr(0, Uses, Visited); 1432 RootIt = nextInstr(Iter, Uses, Visited); 1433 } 1434 assert(BaseIt == Uses.end() && RootIt == Uses.end() && 1435 "Mismatched set sizes!"); 1436 } 1437 1438 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV 1439 << "\n"); 1440 1441 return true; 1442 } 1443 1444 void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) { 1445 BasicBlock *Header = L->getHeader(); 1446 1447 // Compute the start and increment for each BaseInst before we start erasing 1448 // instructions. 1449 SmallVector<const SCEV *, 8> StartExprs; 1450 SmallVector<const SCEV *, 8> IncrExprs; 1451 for (auto &DRS : RootSets) { 1452 const SCEVAddRecExpr *IVSCEV = 1453 cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 1454 StartExprs.push_back(IVSCEV->getStart()); 1455 IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV)); 1456 } 1457 1458 // Remove instructions associated with non-base iterations. 1459 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); 1460 J != JE;) { 1461 unsigned I = Uses[&*J].find_first(); 1462 if (I > 0 && I < IL_All) { 1463 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n"); 1464 J++->eraseFromParent(); 1465 continue; 1466 } 1467 1468 ++J; 1469 } 1470 1471 // Rewrite each BaseInst using SCEV. 1472 for (size_t i = 0, e = RootSets.size(); i != e; ++i) 1473 // Insert the new induction variable. 1474 replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]); 1475 1476 { // Limit the lifetime of SCEVExpander. 1477 BranchInst *BI = cast<BranchInst>(Header->getTerminator()); 1478 const DataLayout &DL = Header->getModule()->getDataLayout(); 1479 SCEVExpander Expander(*SE, DL, "reroll"); 1480 auto Zero = SE->getZero(BackedgeTakenCount->getType()); 1481 auto One = SE->getOne(BackedgeTakenCount->getType()); 1482 auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap); 1483 Value *NewIV = 1484 Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(), 1485 Header->getFirstNonPHIOrDbg()); 1486 // FIXME: This arithmetic can overflow. 1487 auto TripCount = SE->getAddExpr(BackedgeTakenCount, One); 1488 auto ScaledTripCount = SE->getMulExpr( 1489 TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale)); 1490 auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One); 1491 Value *TakenCount = 1492 Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(), 1493 Header->getFirstNonPHIOrDbg()); 1494 Value *Cond = 1495 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond"); 1496 BI->setCondition(Cond); 1497 1498 if (BI->getSuccessor(1) != Header) 1499 BI->swapSuccessors(); 1500 } 1501 1502 SimplifyInstructionsInBlock(Header, TLI); 1503 DeleteDeadPHIs(Header, TLI); 1504 } 1505 1506 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS, 1507 const SCEV *Start, 1508 const SCEV *IncrExpr) { 1509 BasicBlock *Header = L->getHeader(); 1510 Instruction *Inst = DRS.BaseInst; 1511 1512 const SCEV *NewIVSCEV = 1513 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1514 1515 { // Limit the lifetime of SCEVExpander. 1516 const DataLayout &DL = Header->getModule()->getDataLayout(); 1517 SCEVExpander Expander(*SE, DL, "reroll"); 1518 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), 1519 Header->getFirstNonPHIOrDbg()); 1520 1521 for (auto &KV : Uses) 1522 if (KV.second.find_first() == 0) 1523 KV.first->replaceUsesOfWith(Inst, NewIV); 1524 } 1525 } 1526 1527 // Validate the selected reductions. All iterations must have an isomorphic 1528 // part of the reduction chain and, for non-associative reductions, the chain 1529 // entries must appear in order. 1530 bool LoopReroll::ReductionTracker::validateSelected() { 1531 // For a non-associative reduction, the chain entries must appear in order. 1532 for (int i : Reds) { 1533 int PrevIter = 0, BaseCount = 0, Count = 0; 1534 for (Instruction *J : PossibleReds[i]) { 1535 // Note that all instructions in the chain must have been found because 1536 // all instructions in the function must have been assigned to some 1537 // iteration. 1538 int Iter = PossibleRedIter[J]; 1539 if (Iter != PrevIter && Iter != PrevIter + 1 && 1540 !PossibleReds[i].getReducedValue()->isAssociative()) { 1541 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " 1542 << J << "\n"); 1543 return false; 1544 } 1545 1546 if (Iter != PrevIter) { 1547 if (Count != BaseCount) { 1548 LLVM_DEBUG(dbgs() 1549 << "LRR: Iteration " << PrevIter << " reduction use count " 1550 << Count << " is not equal to the base use count " 1551 << BaseCount << "\n"); 1552 return false; 1553 } 1554 1555 Count = 0; 1556 } 1557 1558 ++Count; 1559 if (Iter == 0) 1560 ++BaseCount; 1561 1562 PrevIter = Iter; 1563 } 1564 } 1565 1566 return true; 1567 } 1568 1569 // For all selected reductions, remove all parts except those in the first 1570 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1571 // of the first-iteration reduced value (in other words, reroll the selected 1572 // reductions). 1573 void LoopReroll::ReductionTracker::replaceSelected() { 1574 // Fixup reductions to refer to the last instruction associated with the 1575 // first iteration (not the last). 1576 for (int i : Reds) { 1577 int j = 0; 1578 for (int e = PossibleReds[i].size(); j != e; ++j) 1579 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1580 --j; 1581 break; 1582 } 1583 1584 // Replace users with the new end-of-chain value. 1585 SmallInstructionVector Users; 1586 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1587 Users.push_back(cast<Instruction>(U)); 1588 } 1589 1590 for (Instruction *User : Users) 1591 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1592 PossibleReds[i][j]); 1593 } 1594 } 1595 1596 // Reroll the provided loop with respect to the provided induction variable. 1597 // Generally, we're looking for a loop like this: 1598 // 1599 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1600 // f(%iv) 1601 // %iv.1 = add %iv, 1 <-- a root increment 1602 // f(%iv.1) 1603 // %iv.2 = add %iv, 2 <-- a root increment 1604 // f(%iv.2) 1605 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1606 // f(%iv.scale_m_1) 1607 // ... 1608 // %iv.next = add %iv, scale 1609 // %cmp = icmp(%iv, ...) 1610 // br %cmp, header, exit 1611 // 1612 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1613 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1614 // be intermixed with eachother. The restriction imposed by this algorithm is 1615 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1616 // etc. be the same. 1617 // 1618 // First, we collect the use set of %iv, excluding the other increment roots. 1619 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1620 // times, having collected the use set of f(%iv.(i+1)), during which we: 1621 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1622 // the next unmatched instruction in f(%iv.(i+1)). 1623 // - Ensure that both matched instructions don't have any external users 1624 // (with the exception of last-in-chain reduction instructions). 1625 // - Track the (aliasing) write set, and other side effects, of all 1626 // instructions that belong to future iterations that come before the matched 1627 // instructions. If the matched instructions read from that write set, then 1628 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1629 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1630 // if any of these future instructions had side effects (could not be 1631 // speculatively executed), and so do the matched instructions, when we 1632 // cannot reorder those side-effect-producing instructions, and rerolling 1633 // fails. 1634 // 1635 // Finally, we make sure that all loop instructions are either loop increment 1636 // roots, belong to simple latch code, parts of validated reductions, part of 1637 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1638 // have been validated), then we reroll the loop. 1639 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1640 const SCEV *BackedgeTakenCount, 1641 ReductionTracker &Reductions) { 1642 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1643 IVToIncMap, LoopControlIV); 1644 1645 if (!DAGRoots.findRoots()) 1646 return false; 1647 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV 1648 << "\n"); 1649 1650 if (!DAGRoots.validate(Reductions)) 1651 return false; 1652 if (!Reductions.validateSelected()) 1653 return false; 1654 // At this point, we've validated the rerolling, and we're committed to 1655 // making changes! 1656 1657 Reductions.replaceSelected(); 1658 DAGRoots.replace(BackedgeTakenCount); 1659 1660 ++NumRerolledLoops; 1661 return true; 1662 } 1663 1664 bool LoopReroll::runOnLoop(Loop *L) { 1665 BasicBlock *Header = L->getHeader(); 1666 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %" 1667 << Header->getName() << " (" << L->getNumBlocks() 1668 << " block(s))\n"); 1669 1670 // For now, we'll handle only single BB loops. 1671 if (L->getNumBlocks() > 1) 1672 return false; 1673 1674 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1675 return false; 1676 1677 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1678 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1679 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount 1680 << "\n"); 1681 1682 // First, we need to find the induction variable with respect to which we can 1683 // reroll (there may be several possible options). 1684 SmallInstructionVector PossibleIVs; 1685 IVToIncMap.clear(); 1686 LoopControlIV = nullptr; 1687 collectPossibleIVs(L, PossibleIVs); 1688 1689 if (PossibleIVs.empty()) { 1690 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1691 return false; 1692 } 1693 1694 ReductionTracker Reductions; 1695 collectPossibleReductions(L, Reductions); 1696 bool Changed = false; 1697 1698 // For each possible IV, collect the associated possible set of 'root' nodes 1699 // (i+1, i+2, etc.). 1700 for (Instruction *PossibleIV : PossibleIVs) 1701 if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) { 1702 Changed = true; 1703 break; 1704 } 1705 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1706 1707 // Trip count of L has changed so SE must be re-evaluated. 1708 if (Changed) 1709 SE->forgetLoop(L); 1710 1711 return Changed; 1712 } 1713 1714 bool LoopRerollLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 1715 if (skipLoop(L)) 1716 return false; 1717 1718 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1719 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1720 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1721 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 1722 *L->getHeader()->getParent()); 1723 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1724 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1725 1726 return LoopReroll(AA, LI, SE, TLI, DT, PreserveLCSSA).runOnLoop(L); 1727 } 1728 1729 PreservedAnalyses LoopRerollPass::run(Loop &L, LoopAnalysisManager &AM, 1730 LoopStandardAnalysisResults &AR, 1731 LPMUpdater &U) { 1732 return LoopReroll(&AR.AA, &AR.LI, &AR.SE, &AR.TLI, &AR.DT, true).runOnLoop(&L) 1733 ? getLoopPassPreservedAnalyses() 1734 : PreservedAnalyses::all(); 1735 } 1736