1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop reroller. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AliasSetTracker.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpander.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "loop-reroll" 41 42 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 43 44 static cl::opt<unsigned> 45 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, 46 cl::desc("The maximum increment for loop rerolling")); 47 48 static cl::opt<unsigned> 49 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 50 cl::Hidden, 51 cl::desc("The maximum number of failures to tolerate" 52 " during fuzzy matching. (default: 400)")); 53 54 // This loop re-rolling transformation aims to transform loops like this: 55 // 56 // int foo(int a); 57 // void bar(int *x) { 58 // for (int i = 0; i < 500; i += 3) { 59 // foo(i); 60 // foo(i+1); 61 // foo(i+2); 62 // } 63 // } 64 // 65 // into a loop like this: 66 // 67 // void bar(int *x) { 68 // for (int i = 0; i < 500; ++i) 69 // foo(i); 70 // } 71 // 72 // It does this by looking for loops that, besides the latch code, are composed 73 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 74 // to the induction variable, and where each DAG is isomorphic to the DAG 75 // rooted at the induction variable (excepting the sub-DAGs which root the 76 // other induction-variable increments). In other words, we're looking for loop 77 // bodies of the form: 78 // 79 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 80 // f(%iv) 81 // %iv.1 = add %iv, 1 <-- a root increment 82 // f(%iv.1) 83 // %iv.2 = add %iv, 2 <-- a root increment 84 // f(%iv.2) 85 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 86 // f(%iv.scale_m_1) 87 // ... 88 // %iv.next = add %iv, scale 89 // %cmp = icmp(%iv, ...) 90 // br %cmp, header, exit 91 // 92 // where each f(i) is a set of instructions that, collectively, are a function 93 // only of i (and other loop-invariant values). 94 // 95 // As a special case, we can also reroll loops like this: 96 // 97 // int foo(int); 98 // void bar(int *x) { 99 // for (int i = 0; i < 500; ++i) { 100 // x[3*i] = foo(0); 101 // x[3*i+1] = foo(0); 102 // x[3*i+2] = foo(0); 103 // } 104 // } 105 // 106 // into this: 107 // 108 // void bar(int *x) { 109 // for (int i = 0; i < 1500; ++i) 110 // x[i] = foo(0); 111 // } 112 // 113 // in which case, we're looking for inputs like this: 114 // 115 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 116 // %scaled.iv = mul %iv, scale 117 // f(%scaled.iv) 118 // %scaled.iv.1 = add %scaled.iv, 1 119 // f(%scaled.iv.1) 120 // %scaled.iv.2 = add %scaled.iv, 2 121 // f(%scaled.iv.2) 122 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 123 // f(%scaled.iv.scale_m_1) 124 // ... 125 // %iv.next = add %iv, 1 126 // %cmp = icmp(%iv, ...) 127 // br %cmp, header, exit 128 129 namespace { 130 enum IterationLimits { 131 /// The maximum number of iterations that we'll try and reroll. 132 IL_MaxRerollIterations = 32, 133 /// The bitvector index used by loop induction variables and other 134 /// instructions that belong to all iterations. 135 IL_All, 136 IL_End 137 }; 138 139 class LoopReroll : public LoopPass { 140 public: 141 static char ID; // Pass ID, replacement for typeid 142 LoopReroll() : LoopPass(ID) { 143 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 getLoopAnalysisUsage(AU); 151 } 152 153 protected: 154 AliasAnalysis *AA; 155 LoopInfo *LI; 156 ScalarEvolution *SE; 157 TargetLibraryInfo *TLI; 158 DominatorTree *DT; 159 bool PreserveLCSSA; 160 161 typedef SmallVector<Instruction *, 16> SmallInstructionVector; 162 typedef SmallSet<Instruction *, 16> SmallInstructionSet; 163 164 // Map between induction variable and its increment 165 DenseMap<Instruction *, int64_t> IVToIncMap; 166 // For loop with multiple induction variable, remember the one used only to 167 // control the loop. 168 Instruction *LoopControlIV; 169 170 // A chain of isomorphic instructions, identified by a single-use PHI 171 // representing a reduction. Only the last value may be used outside the 172 // loop. 173 struct SimpleLoopReduction { 174 SimpleLoopReduction(Instruction *P, Loop *L) 175 : Valid(false), Instructions(1, P) { 176 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 177 add(L); 178 } 179 180 bool valid() const { 181 return Valid; 182 } 183 184 Instruction *getPHI() const { 185 assert(Valid && "Using invalid reduction"); 186 return Instructions.front(); 187 } 188 189 Instruction *getReducedValue() const { 190 assert(Valid && "Using invalid reduction"); 191 return Instructions.back(); 192 } 193 194 Instruction *get(size_t i) const { 195 assert(Valid && "Using invalid reduction"); 196 return Instructions[i+1]; 197 } 198 199 Instruction *operator [] (size_t i) const { return get(i); } 200 201 // The size, ignoring the initial PHI. 202 size_t size() const { 203 assert(Valid && "Using invalid reduction"); 204 return Instructions.size()-1; 205 } 206 207 typedef SmallInstructionVector::iterator iterator; 208 typedef SmallInstructionVector::const_iterator const_iterator; 209 210 iterator begin() { 211 assert(Valid && "Using invalid reduction"); 212 return std::next(Instructions.begin()); 213 } 214 215 const_iterator begin() const { 216 assert(Valid && "Using invalid reduction"); 217 return std::next(Instructions.begin()); 218 } 219 220 iterator end() { return Instructions.end(); } 221 const_iterator end() const { return Instructions.end(); } 222 223 protected: 224 bool Valid; 225 SmallInstructionVector Instructions; 226 227 void add(Loop *L); 228 }; 229 230 // The set of all reductions, and state tracking of possible reductions 231 // during loop instruction processing. 232 struct ReductionTracker { 233 typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector; 234 235 // Add a new possible reduction. 236 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 237 238 // Setup to track possible reductions corresponding to the provided 239 // rerolling scale. Only reductions with a number of non-PHI instructions 240 // that is divisible by the scale are considered. Three instructions sets 241 // are filled in: 242 // - A set of all possible instructions in eligible reductions. 243 // - A set of all PHIs in eligible reductions 244 // - A set of all reduced values (last instructions) in eligible 245 // reductions. 246 void restrictToScale(uint64_t Scale, 247 SmallInstructionSet &PossibleRedSet, 248 SmallInstructionSet &PossibleRedPHISet, 249 SmallInstructionSet &PossibleRedLastSet) { 250 PossibleRedIdx.clear(); 251 PossibleRedIter.clear(); 252 Reds.clear(); 253 254 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 255 if (PossibleReds[i].size() % Scale == 0) { 256 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 257 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 258 259 PossibleRedSet.insert(PossibleReds[i].getPHI()); 260 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 261 for (Instruction *J : PossibleReds[i]) { 262 PossibleRedSet.insert(J); 263 PossibleRedIdx[J] = i; 264 } 265 } 266 } 267 268 // The functions below are used while processing the loop instructions. 269 270 // Are the two instructions both from reductions, and furthermore, from 271 // the same reduction? 272 bool isPairInSame(Instruction *J1, Instruction *J2) { 273 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 274 if (J1I != PossibleRedIdx.end()) { 275 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 276 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 277 return true; 278 } 279 280 return false; 281 } 282 283 // The two provided instructions, the first from the base iteration, and 284 // the second from iteration i, form a matched pair. If these are part of 285 // a reduction, record that fact. 286 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 287 if (PossibleRedIdx.count(J1)) { 288 assert(PossibleRedIdx.count(J2) && 289 "Recording reduction vs. non-reduction instruction?"); 290 291 PossibleRedIter[J1] = 0; 292 PossibleRedIter[J2] = i; 293 294 int Idx = PossibleRedIdx[J1]; 295 assert(Idx == PossibleRedIdx[J2] && 296 "Recording pair from different reductions?"); 297 Reds.insert(Idx); 298 } 299 } 300 301 // The functions below can be called after we've finished processing all 302 // instructions in the loop, and we know which reductions were selected. 303 304 bool validateSelected(); 305 void replaceSelected(); 306 307 protected: 308 // The vector of all possible reductions (for any scale). 309 SmallReductionVector PossibleReds; 310 311 DenseMap<Instruction *, int> PossibleRedIdx; 312 DenseMap<Instruction *, int> PossibleRedIter; 313 DenseSet<int> Reds; 314 }; 315 316 // A DAGRootSet models an induction variable being used in a rerollable 317 // loop. For example, 318 // 319 // x[i*3+0] = y1 320 // x[i*3+1] = y2 321 // x[i*3+2] = y3 322 // 323 // Base instruction -> i*3 324 // +---+----+ 325 // / | \ 326 // ST[y1] +1 +2 <-- Roots 327 // | | 328 // ST[y2] ST[y3] 329 // 330 // There may be multiple DAGRoots, for example: 331 // 332 // x[i*2+0] = ... (1) 333 // x[i*2+1] = ... (1) 334 // x[i*2+4] = ... (2) 335 // x[i*2+5] = ... (2) 336 // x[(i+1234)*2+5678] = ... (3) 337 // x[(i+1234)*2+5679] = ... (3) 338 // 339 // The loop will be rerolled by adding a new loop induction variable, 340 // one for the Base instruction in each DAGRootSet. 341 // 342 struct DAGRootSet { 343 Instruction *BaseInst; 344 SmallInstructionVector Roots; 345 // The instructions between IV and BaseInst (but not including BaseInst). 346 SmallInstructionSet SubsumedInsts; 347 }; 348 349 // The set of all DAG roots, and state tracking of all roots 350 // for a particular induction variable. 351 struct DAGRootTracker { 352 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 353 ScalarEvolution *SE, AliasAnalysis *AA, 354 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 355 bool PreserveLCSSA, 356 DenseMap<Instruction *, int64_t> &IncrMap, 357 Instruction *LoopCtrlIV) 358 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 359 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 360 LoopControlIV(LoopCtrlIV) {} 361 362 /// Stage 1: Find all the DAG roots for the induction variable. 363 bool findRoots(); 364 /// Stage 2: Validate if the found roots are valid. 365 bool validate(ReductionTracker &Reductions); 366 /// Stage 3: Assuming validate() returned true, perform the 367 /// replacement. 368 /// @param IterCount The maximum iteration count of L. 369 void replace(const SCEV *IterCount); 370 371 protected: 372 typedef MapVector<Instruction*, BitVector> UsesTy; 373 374 bool findRootsRecursive(Instruction *IVU, 375 SmallInstructionSet SubsumedInsts); 376 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 377 bool collectPossibleRoots(Instruction *Base, 378 std::map<int64_t,Instruction*> &Roots); 379 380 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 381 void collectInLoopUserSet(const SmallInstructionVector &Roots, 382 const SmallInstructionSet &Exclude, 383 const SmallInstructionSet &Final, 384 DenseSet<Instruction *> &Users); 385 void collectInLoopUserSet(Instruction *Root, 386 const SmallInstructionSet &Exclude, 387 const SmallInstructionSet &Final, 388 DenseSet<Instruction *> &Users); 389 390 UsesTy::iterator nextInstr(int Val, UsesTy &In, 391 const SmallInstructionSet &Exclude, 392 UsesTy::iterator *StartI=nullptr); 393 bool isBaseInst(Instruction *I); 394 bool isRootInst(Instruction *I); 395 bool instrDependsOn(Instruction *I, 396 UsesTy::iterator Start, 397 UsesTy::iterator End); 398 void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount); 399 void updateNonLoopCtrlIncr(); 400 401 LoopReroll *Parent; 402 403 // Members of Parent, replicated here for brevity. 404 Loop *L; 405 ScalarEvolution *SE; 406 AliasAnalysis *AA; 407 TargetLibraryInfo *TLI; 408 DominatorTree *DT; 409 LoopInfo *LI; 410 bool PreserveLCSSA; 411 412 // The loop induction variable. 413 Instruction *IV; 414 // Loop step amount. 415 int64_t Inc; 416 // Loop reroll count; if Inc == 1, this records the scaling applied 417 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 418 // If Inc is not 1, Scale = Inc. 419 uint64_t Scale; 420 // The roots themselves. 421 SmallVector<DAGRootSet,16> RootSets; 422 // All increment instructions for IV. 423 SmallInstructionVector LoopIncs; 424 // Map of all instructions in the loop (in order) to the iterations 425 // they are used in (or specially, IL_All for instructions 426 // used in the loop increment mechanism). 427 UsesTy Uses; 428 // Map between induction variable and its increment 429 DenseMap<Instruction *, int64_t> &IVToIncMap; 430 Instruction *LoopControlIV; 431 }; 432 433 // Check if it is a compare-like instruction whose user is a branch 434 bool isCompareUsedByBranch(Instruction *I) { 435 auto *TI = I->getParent()->getTerminator(); 436 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 437 return false; 438 return I->hasOneUse() && TI->getOperand(0) == I; 439 }; 440 441 bool isLoopControlIV(Loop *L, Instruction *IV); 442 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 443 void collectPossibleReductions(Loop *L, 444 ReductionTracker &Reductions); 445 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, 446 ReductionTracker &Reductions); 447 }; 448 } 449 450 char LoopReroll::ID = 0; 451 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 452 INITIALIZE_PASS_DEPENDENCY(LoopPass) 453 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 454 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 455 456 Pass *llvm::createLoopRerollPass() { 457 return new LoopReroll; 458 } 459 460 // Returns true if the provided instruction is used outside the given loop. 461 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 462 // non-loop blocks to be outside the loop. 463 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 464 for (User *U : I->users()) { 465 if (!L->contains(cast<Instruction>(U))) 466 return true; 467 } 468 return false; 469 } 470 471 static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE, 472 const SCEV *SCEVExpr, 473 Instruction &IV) { 474 const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr); 475 476 // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)), 477 // Return c1. 478 if (!MulSCEV && IV.getType()->isPointerTy()) 479 if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) { 480 const PointerType *PTy = cast<PointerType>(IV.getType()); 481 Type *ElTy = PTy->getElementType(); 482 const SCEV *SizeOfExpr = 483 SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy); 484 if (IncSCEV->getValue()->getValue().isNegative()) { 485 const SCEV *NewSCEV = 486 SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr); 487 return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV)); 488 } else { 489 return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr)); 490 } 491 } 492 493 if (!MulSCEV) 494 return nullptr; 495 496 // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant, 497 // Return c. 498 const SCEVConstant *CIncSCEV = nullptr; 499 for (const SCEV *Operand : MulSCEV->operands()) { 500 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) { 501 CIncSCEV = Constant; 502 } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) { 503 Type *AllocTy; 504 if (!Unknown->isSizeOf(AllocTy)) 505 break; 506 } else { 507 return nullptr; 508 } 509 } 510 return CIncSCEV; 511 } 512 513 // Check if an IV is only used to control the loop. There are two cases: 514 // 1. It only has one use which is loop increment, and the increment is only 515 // used by comparison and the PHI (could has sext with nsw in between), and the 516 // comparison is only used by branch. 517 // 2. It is used by loop increment and the comparison, the loop increment is 518 // only used by the PHI, and the comparison is used only by the branch. 519 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 520 unsigned IVUses = IV->getNumUses(); 521 if (IVUses != 2 && IVUses != 1) 522 return false; 523 524 for (auto *User : IV->users()) { 525 int32_t IncOrCmpUses = User->getNumUses(); 526 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 527 528 // User can only have one or two uses. 529 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 530 return false; 531 532 // Case 1 533 if (IVUses == 1) { 534 // The only user must be the loop increment. 535 // The loop increment must have two uses. 536 if (IsCompInst || IncOrCmpUses != 2) 537 return false; 538 } 539 540 // Case 2 541 if (IVUses == 2 && IncOrCmpUses != 1) 542 return false; 543 544 // The users of the IV must be a binary operation or a comparison 545 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 546 if (BO->getOpcode() == Instruction::Add) { 547 // Loop Increment 548 // User of Loop Increment should be either PHI or CMP 549 for (auto *UU : User->users()) { 550 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 551 if (PN != IV) 552 return false; 553 } 554 // Must be a CMP or an ext (of a value with nsw) then CMP 555 else { 556 Instruction *UUser = dyn_cast<Instruction>(UU); 557 // Skip SExt if we are extending an nsw value 558 // TODO: Allow ZExt too 559 if (BO->hasNoSignedWrap() && UUser && UUser->getNumUses() == 1 && 560 isa<SExtInst>(UUser)) 561 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 562 if (!isCompareUsedByBranch(UUser)) 563 return false; 564 } 565 } 566 } else 567 return false; 568 // Compare : can only have one use, and must be branch 569 } else if (!IsCompInst) 570 return false; 571 } 572 return true; 573 } 574 575 // Collect the list of loop induction variables with respect to which it might 576 // be possible to reroll the loop. 577 void LoopReroll::collectPossibleIVs(Loop *L, 578 SmallInstructionVector &PossibleIVs) { 579 BasicBlock *Header = L->getHeader(); 580 for (BasicBlock::iterator I = Header->begin(), 581 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 582 if (!isa<PHINode>(I)) 583 continue; 584 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 585 continue; 586 587 if (const SCEVAddRecExpr *PHISCEV = 588 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 589 if (PHISCEV->getLoop() != L) 590 continue; 591 if (!PHISCEV->isAffine()) 592 continue; 593 const SCEVConstant *IncSCEV = nullptr; 594 if (I->getType()->isPointerTy()) 595 IncSCEV = 596 getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I); 597 else 598 IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 599 if (IncSCEV) { 600 const APInt &AInt = IncSCEV->getValue()->getValue().abs(); 601 if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc)) 602 continue; 603 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 604 DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 605 << "\n"); 606 607 if (isLoopControlIV(L, &*I)) { 608 assert(!LoopControlIV && "Found two loop control only IV"); 609 LoopControlIV = &(*I); 610 DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = " 611 << *PHISCEV << "\n"); 612 } else 613 PossibleIVs.push_back(&*I); 614 } 615 } 616 } 617 } 618 619 // Add the remainder of the reduction-variable chain to the instruction vector 620 // (the initial PHINode has already been added). If successful, the object is 621 // marked as valid. 622 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 623 assert(!Valid && "Cannot add to an already-valid chain"); 624 625 // The reduction variable must be a chain of single-use instructions 626 // (including the PHI), except for the last value (which is used by the PHI 627 // and also outside the loop). 628 Instruction *C = Instructions.front(); 629 if (C->user_empty()) 630 return; 631 632 do { 633 C = cast<Instruction>(*C->user_begin()); 634 if (C->hasOneUse()) { 635 if (!C->isBinaryOp()) 636 return; 637 638 if (!(isa<PHINode>(Instructions.back()) || 639 C->isSameOperationAs(Instructions.back()))) 640 return; 641 642 Instructions.push_back(C); 643 } 644 } while (C->hasOneUse()); 645 646 if (Instructions.size() < 2 || 647 !C->isSameOperationAs(Instructions.back()) || 648 C->use_empty()) 649 return; 650 651 // C is now the (potential) last instruction in the reduction chain. 652 for (User *U : C->users()) { 653 // The only in-loop user can be the initial PHI. 654 if (L->contains(cast<Instruction>(U))) 655 if (cast<Instruction>(U) != Instructions.front()) 656 return; 657 } 658 659 Instructions.push_back(C); 660 Valid = true; 661 } 662 663 // Collect the vector of possible reduction variables. 664 void LoopReroll::collectPossibleReductions(Loop *L, 665 ReductionTracker &Reductions) { 666 BasicBlock *Header = L->getHeader(); 667 for (BasicBlock::iterator I = Header->begin(), 668 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 669 if (!isa<PHINode>(I)) 670 continue; 671 if (!I->getType()->isSingleValueType()) 672 continue; 673 674 SimpleLoopReduction SLR(&*I, L); 675 if (!SLR.valid()) 676 continue; 677 678 DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " << 679 SLR.size() << " chained instructions)\n"); 680 Reductions.addSLR(SLR); 681 } 682 } 683 684 // Collect the set of all users of the provided root instruction. This set of 685 // users contains not only the direct users of the root instruction, but also 686 // all users of those users, and so on. There are two exceptions: 687 // 688 // 1. Instructions in the set of excluded instructions are never added to the 689 // use set (even if they are users). This is used, for example, to exclude 690 // including root increments in the use set of the primary IV. 691 // 692 // 2. Instructions in the set of final instructions are added to the use set 693 // if they are users, but their users are not added. This is used, for 694 // example, to prevent a reduction update from forcing all later reduction 695 // updates into the use set. 696 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 697 Instruction *Root, const SmallInstructionSet &Exclude, 698 const SmallInstructionSet &Final, 699 DenseSet<Instruction *> &Users) { 700 SmallInstructionVector Queue(1, Root); 701 while (!Queue.empty()) { 702 Instruction *I = Queue.pop_back_val(); 703 if (!Users.insert(I).second) 704 continue; 705 706 if (!Final.count(I)) 707 for (Use &U : I->uses()) { 708 Instruction *User = cast<Instruction>(U.getUser()); 709 if (PHINode *PN = dyn_cast<PHINode>(User)) { 710 // Ignore "wrap-around" uses to PHIs of this loop's header. 711 if (PN->getIncomingBlock(U) == L->getHeader()) 712 continue; 713 } 714 715 if (L->contains(User) && !Exclude.count(User)) { 716 Queue.push_back(User); 717 } 718 } 719 720 // We also want to collect single-user "feeder" values. 721 for (User::op_iterator OI = I->op_begin(), 722 OIE = I->op_end(); OI != OIE; ++OI) { 723 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 724 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 725 !Final.count(Op)) 726 Queue.push_back(Op); 727 } 728 } 729 } 730 731 // Collect all of the users of all of the provided root instructions (combined 732 // into a single set). 733 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 734 const SmallInstructionVector &Roots, 735 const SmallInstructionSet &Exclude, 736 const SmallInstructionSet &Final, 737 DenseSet<Instruction *> &Users) { 738 for (SmallInstructionVector::const_iterator I = Roots.begin(), 739 IE = Roots.end(); I != IE; ++I) 740 collectInLoopUserSet(*I, Exclude, Final, Users); 741 } 742 743 static bool isSimpleLoadStore(Instruction *I) { 744 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 745 return LI->isSimple(); 746 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 747 return SI->isSimple(); 748 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 749 return !MI->isVolatile(); 750 return false; 751 } 752 753 /// Return true if IVU is a "simple" arithmetic operation. 754 /// This is used for narrowing the search space for DAGRoots; only arithmetic 755 /// and GEPs can be part of a DAGRoot. 756 static bool isSimpleArithmeticOp(User *IVU) { 757 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 758 switch (I->getOpcode()) { 759 default: return false; 760 case Instruction::Add: 761 case Instruction::Sub: 762 case Instruction::Mul: 763 case Instruction::Shl: 764 case Instruction::AShr: 765 case Instruction::LShr: 766 case Instruction::GetElementPtr: 767 case Instruction::Trunc: 768 case Instruction::ZExt: 769 case Instruction::SExt: 770 return true; 771 } 772 } 773 return false; 774 } 775 776 static bool isLoopIncrement(User *U, Instruction *IV) { 777 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 778 779 if ((BO && BO->getOpcode() != Instruction::Add) || 780 (!BO && !isa<GetElementPtrInst>(U))) 781 return false; 782 783 for (auto *UU : U->users()) { 784 PHINode *PN = dyn_cast<PHINode>(UU); 785 if (PN && PN == IV) 786 return true; 787 } 788 return false; 789 } 790 791 bool LoopReroll::DAGRootTracker:: 792 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 793 SmallInstructionVector BaseUsers; 794 795 for (auto *I : Base->users()) { 796 ConstantInt *CI = nullptr; 797 798 if (isLoopIncrement(I, IV)) { 799 LoopIncs.push_back(cast<Instruction>(I)); 800 continue; 801 } 802 803 // The root nodes must be either GEPs, ORs or ADDs. 804 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 805 if (BO->getOpcode() == Instruction::Add || 806 BO->getOpcode() == Instruction::Or) 807 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 808 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 809 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 810 CI = dyn_cast<ConstantInt>(LastOperand); 811 } 812 813 if (!CI) { 814 if (Instruction *II = dyn_cast<Instruction>(I)) { 815 BaseUsers.push_back(II); 816 continue; 817 } else { 818 DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n"); 819 return false; 820 } 821 } 822 823 int64_t V = std::abs(CI->getValue().getSExtValue()); 824 if (Roots.find(V) != Roots.end()) 825 // No duplicates, please. 826 return false; 827 828 Roots[V] = cast<Instruction>(I); 829 } 830 831 if (Roots.empty()) 832 return false; 833 834 // If we found non-loop-inc, non-root users of Base, assume they are 835 // for the zeroth root index. This is because "add %a, 0" gets optimized 836 // away. 837 if (BaseUsers.size()) { 838 if (Roots.find(0) != Roots.end()) { 839 DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 840 return false; 841 } 842 Roots[0] = Base; 843 } 844 845 // Calculate the number of users of the base, or lowest indexed, iteration. 846 unsigned NumBaseUses = BaseUsers.size(); 847 if (NumBaseUses == 0) 848 NumBaseUses = Roots.begin()->second->getNumUses(); 849 850 // Check that every node has the same number of users. 851 for (auto &KV : Roots) { 852 if (KV.first == 0) 853 continue; 854 if (KV.second->getNumUses() != NumBaseUses) { 855 DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 856 << "#Base=" << NumBaseUses << ", #Root=" << 857 KV.second->getNumUses() << "\n"); 858 return false; 859 } 860 } 861 862 return true; 863 } 864 865 bool LoopReroll::DAGRootTracker:: 866 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 867 // Does the user look like it could be part of a root set? 868 // All its users must be simple arithmetic ops. 869 if (I->getNumUses() > IL_MaxRerollIterations) 870 return false; 871 872 if ((I->getOpcode() == Instruction::Mul || 873 I->getOpcode() == Instruction::PHI) && 874 I != IV && 875 findRootsBase(I, SubsumedInsts)) 876 return true; 877 878 SubsumedInsts.insert(I); 879 880 for (User *V : I->users()) { 881 Instruction *I = dyn_cast<Instruction>(V); 882 if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end()) 883 continue; 884 885 if (!I || !isSimpleArithmeticOp(I) || 886 !findRootsRecursive(I, SubsumedInsts)) 887 return false; 888 } 889 return true; 890 } 891 892 bool LoopReroll::DAGRootTracker:: 893 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 894 895 // The base instruction needs to be a multiply so 896 // that we can erase it. 897 if (IVU->getOpcode() != Instruction::Mul && 898 IVU->getOpcode() != Instruction::PHI) 899 return false; 900 901 std::map<int64_t, Instruction*> V; 902 if (!collectPossibleRoots(IVU, V)) 903 return false; 904 905 // If we didn't get a root for index zero, then IVU must be 906 // subsumed. 907 if (V.find(0) == V.end()) 908 SubsumedInsts.insert(IVU); 909 910 // Partition the vector into monotonically increasing indexes. 911 DAGRootSet DRS; 912 DRS.BaseInst = nullptr; 913 914 for (auto &KV : V) { 915 if (!DRS.BaseInst) { 916 DRS.BaseInst = KV.second; 917 DRS.SubsumedInsts = SubsumedInsts; 918 } else if (DRS.Roots.empty()) { 919 DRS.Roots.push_back(KV.second); 920 } else if (V.find(KV.first - 1) != V.end()) { 921 DRS.Roots.push_back(KV.second); 922 } else { 923 // Linear sequence terminated. 924 RootSets.push_back(DRS); 925 DRS.BaseInst = KV.second; 926 DRS.SubsumedInsts = SubsumedInsts; 927 DRS.Roots.clear(); 928 } 929 } 930 RootSets.push_back(DRS); 931 932 return true; 933 } 934 935 bool LoopReroll::DAGRootTracker::findRoots() { 936 Inc = IVToIncMap[IV]; 937 938 assert(RootSets.empty() && "Unclean state!"); 939 if (std::abs(Inc) == 1) { 940 for (auto *IVU : IV->users()) { 941 if (isLoopIncrement(IVU, IV)) 942 LoopIncs.push_back(cast<Instruction>(IVU)); 943 } 944 if (!findRootsRecursive(IV, SmallInstructionSet())) 945 return false; 946 LoopIncs.push_back(IV); 947 } else { 948 if (!findRootsBase(IV, SmallInstructionSet())) 949 return false; 950 } 951 952 // Ensure all sets have the same size. 953 if (RootSets.empty()) { 954 DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 955 return false; 956 } 957 for (auto &V : RootSets) { 958 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 959 DEBUG(dbgs() 960 << "LRR: Aborting because not all root sets have the same size\n"); 961 return false; 962 } 963 } 964 965 // And ensure all loop iterations are consecutive. We rely on std::map 966 // providing ordered traversal. 967 for (auto &V : RootSets) { 968 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst)); 969 if (!ADR) 970 return false; 971 972 // Consider a DAGRootSet with N-1 roots (so N different values including 973 // BaseInst). 974 // Define d = Roots[0] - BaseInst, which should be the same as 975 // Roots[I] - Roots[I-1] for all I in [1..N). 976 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 977 // loop iteration J. 978 // 979 // Now, For the loop iterations to be consecutive: 980 // D = d * N 981 982 unsigned N = V.Roots.size() + 1; 983 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR); 984 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 985 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) { 986 DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n"); 987 return false; 988 } 989 } 990 Scale = RootSets[0].Roots.size() + 1; 991 992 if (Scale > IL_MaxRerollIterations) { 993 DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 994 << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations 995 << "\n"); 996 return false; 997 } 998 999 DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n"); 1000 1001 return true; 1002 } 1003 1004 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1005 // Populate the MapVector with all instructions in the block, in order first, 1006 // so we can iterate over the contents later in perfect order. 1007 for (auto &I : *L->getHeader()) { 1008 Uses[&I].resize(IL_End); 1009 } 1010 1011 SmallInstructionSet Exclude; 1012 for (auto &DRS : RootSets) { 1013 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1014 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1015 Exclude.insert(DRS.BaseInst); 1016 } 1017 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1018 1019 for (auto &DRS : RootSets) { 1020 DenseSet<Instruction*> VBase; 1021 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1022 for (auto *I : VBase) { 1023 Uses[I].set(0); 1024 } 1025 1026 unsigned Idx = 1; 1027 for (auto *Root : DRS.Roots) { 1028 DenseSet<Instruction*> V; 1029 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1030 1031 // While we're here, check the use sets are the same size. 1032 if (V.size() != VBase.size()) { 1033 DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1034 return false; 1035 } 1036 1037 for (auto *I : V) { 1038 Uses[I].set(Idx); 1039 } 1040 ++Idx; 1041 } 1042 1043 // Make sure our subsumed instructions are remembered too. 1044 for (auto *I : DRS.SubsumedInsts) { 1045 Uses[I].set(IL_All); 1046 } 1047 } 1048 1049 // Make sure the loop increments are also accounted for. 1050 1051 Exclude.clear(); 1052 for (auto &DRS : RootSets) { 1053 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1054 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1055 Exclude.insert(DRS.BaseInst); 1056 } 1057 1058 DenseSet<Instruction*> V; 1059 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1060 for (auto *I : V) { 1061 Uses[I].set(IL_All); 1062 } 1063 1064 return true; 1065 1066 } 1067 1068 /// Get the next instruction in "In" that is a member of set Val. 1069 /// Start searching from StartI, and do not return anything in Exclude. 1070 /// If StartI is not given, start from In.begin(). 1071 LoopReroll::DAGRootTracker::UsesTy::iterator 1072 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1073 const SmallInstructionSet &Exclude, 1074 UsesTy::iterator *StartI) { 1075 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1076 while (I != In.end() && (I->second.test(Val) == 0 || 1077 Exclude.count(I->first) != 0)) 1078 ++I; 1079 return I; 1080 } 1081 1082 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1083 for (auto &DRS : RootSets) { 1084 if (DRS.BaseInst == I) 1085 return true; 1086 } 1087 return false; 1088 } 1089 1090 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1091 for (auto &DRS : RootSets) { 1092 if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end()) 1093 return true; 1094 } 1095 return false; 1096 } 1097 1098 /// Return true if instruction I depends on any instruction between 1099 /// Start and End. 1100 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1101 UsesTy::iterator Start, 1102 UsesTy::iterator End) { 1103 for (auto *U : I->users()) { 1104 for (auto It = Start; It != End; ++It) 1105 if (U == It->first) 1106 return true; 1107 } 1108 return false; 1109 } 1110 1111 static bool isIgnorableInst(const Instruction *I) { 1112 if (isa<DbgInfoIntrinsic>(I)) 1113 return true; 1114 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1115 if (!II) 1116 return false; 1117 switch (II->getIntrinsicID()) { 1118 default: 1119 return false; 1120 case llvm::Intrinsic::annotation: 1121 case Intrinsic::ptr_annotation: 1122 case Intrinsic::var_annotation: 1123 // TODO: the following intrinsics may also be whitelisted: 1124 // lifetime_start, lifetime_end, invariant_start, invariant_end 1125 return true; 1126 } 1127 return false; 1128 } 1129 1130 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1131 // We now need to check for equivalence of the use graph of each root with 1132 // that of the primary induction variable (excluding the roots). Our goal 1133 // here is not to solve the full graph isomorphism problem, but rather to 1134 // catch common cases without a lot of work. As a result, we will assume 1135 // that the relative order of the instructions in each unrolled iteration 1136 // is the same (although we will not make an assumption about how the 1137 // different iterations are intermixed). Note that while the order must be 1138 // the same, the instructions may not be in the same basic block. 1139 1140 // An array of just the possible reductions for this scale factor. When we 1141 // collect the set of all users of some root instructions, these reduction 1142 // instructions are treated as 'final' (their uses are not considered). 1143 // This is important because we don't want the root use set to search down 1144 // the reduction chain. 1145 SmallInstructionSet PossibleRedSet; 1146 SmallInstructionSet PossibleRedLastSet; 1147 SmallInstructionSet PossibleRedPHISet; 1148 Reductions.restrictToScale(Scale, PossibleRedSet, 1149 PossibleRedPHISet, PossibleRedLastSet); 1150 1151 // Populate "Uses" with where each instruction is used. 1152 if (!collectUsedInstructions(PossibleRedSet)) 1153 return false; 1154 1155 // Make sure we mark the reduction PHIs as used in all iterations. 1156 for (auto *I : PossibleRedPHISet) { 1157 Uses[I].set(IL_All); 1158 } 1159 1160 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1161 // comment above LoopReroll::isLoopControlIV for more information. 1162 BasicBlock *Header = L->getHeader(); 1163 if (LoopControlIV && LoopControlIV != IV) { 1164 for (auto *U : LoopControlIV->users()) { 1165 Instruction *IVUser = dyn_cast<Instruction>(U); 1166 // IVUser could be loop increment or compare 1167 Uses[IVUser].set(IL_All); 1168 for (auto *UU : IVUser->users()) { 1169 Instruction *UUser = dyn_cast<Instruction>(UU); 1170 // UUser could be compare, PHI or branch 1171 Uses[UUser].set(IL_All); 1172 // Skip SExt 1173 if (isa<SExtInst>(UUser)) { 1174 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1175 Uses[UUser].set(IL_All); 1176 } 1177 // Is UUser a compare instruction? 1178 if (UU->hasOneUse()) { 1179 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1180 if (BI == cast<BranchInst>(Header->getTerminator())) 1181 Uses[BI].set(IL_All); 1182 } 1183 } 1184 } 1185 } 1186 1187 // Make sure all instructions in the loop are in one and only one 1188 // set. 1189 for (auto &KV : Uses) { 1190 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1191 DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1192 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1193 return false; 1194 } 1195 } 1196 1197 DEBUG( 1198 for (auto &KV : Uses) { 1199 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1200 } 1201 ); 1202 1203 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1204 // In addition to regular aliasing information, we need to look for 1205 // instructions from later (future) iterations that have side effects 1206 // preventing us from reordering them past other instructions with side 1207 // effects. 1208 bool FutureSideEffects = false; 1209 AliasSetTracker AST(*AA); 1210 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1211 DenseMap<Value *, Value *> BaseMap; 1212 1213 // Compare iteration Iter to the base. 1214 SmallInstructionSet Visited; 1215 auto BaseIt = nextInstr(0, Uses, Visited); 1216 auto RootIt = nextInstr(Iter, Uses, Visited); 1217 auto LastRootIt = Uses.begin(); 1218 1219 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1220 Instruction *BaseInst = BaseIt->first; 1221 Instruction *RootInst = RootIt->first; 1222 1223 // Skip over the IV or root instructions; only match their users. 1224 bool Continue = false; 1225 if (isBaseInst(BaseInst)) { 1226 Visited.insert(BaseInst); 1227 BaseIt = nextInstr(0, Uses, Visited); 1228 Continue = true; 1229 } 1230 if (isRootInst(RootInst)) { 1231 LastRootIt = RootIt; 1232 Visited.insert(RootInst); 1233 RootIt = nextInstr(Iter, Uses, Visited); 1234 Continue = true; 1235 } 1236 if (Continue) continue; 1237 1238 if (!BaseInst->isSameOperationAs(RootInst)) { 1239 // Last chance saloon. We don't try and solve the full isomorphism 1240 // problem, but try and at least catch the case where two instructions 1241 // *of different types* are round the wrong way. We won't be able to 1242 // efficiently tell, given two ADD instructions, which way around we 1243 // should match them, but given an ADD and a SUB, we can at least infer 1244 // which one is which. 1245 // 1246 // This should allow us to deal with a greater subset of the isomorphism 1247 // problem. It does however change a linear algorithm into a quadratic 1248 // one, so limit the number of probes we do. 1249 auto TryIt = RootIt; 1250 unsigned N = NumToleratedFailedMatches; 1251 while (TryIt != Uses.end() && 1252 !BaseInst->isSameOperationAs(TryIt->first) && 1253 N--) { 1254 ++TryIt; 1255 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1256 } 1257 1258 if (TryIt == Uses.end() || TryIt == RootIt || 1259 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1260 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1261 " vs. " << *RootInst << "\n"); 1262 return false; 1263 } 1264 1265 RootIt = TryIt; 1266 RootInst = TryIt->first; 1267 } 1268 1269 // All instructions between the last root and this root 1270 // may belong to some other iteration. If they belong to a 1271 // future iteration, then they're dangerous to alias with. 1272 // 1273 // Note that because we allow a limited amount of flexibility in the order 1274 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1275 // case we've already checked this set of instructions so we shouldn't 1276 // do anything. 1277 for (; LastRootIt < RootIt; ++LastRootIt) { 1278 Instruction *I = LastRootIt->first; 1279 if (LastRootIt->second.find_first() < (int)Iter) 1280 continue; 1281 if (I->mayWriteToMemory()) 1282 AST.add(I); 1283 // Note: This is specifically guarded by a check on isa<PHINode>, 1284 // which while a valid (somewhat arbitrary) micro-optimization, is 1285 // needed because otherwise isSafeToSpeculativelyExecute returns 1286 // false on PHI nodes. 1287 if (!isa<PHINode>(I) && !isSimpleLoadStore(I) && 1288 !isSafeToSpeculativelyExecute(I)) 1289 // Intervening instructions cause side effects. 1290 FutureSideEffects = true; 1291 } 1292 1293 // Make sure that this instruction, which is in the use set of this 1294 // root instruction, does not also belong to the base set or the set of 1295 // some other root instruction. 1296 if (RootIt->second.count() > 1) { 1297 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1298 " vs. " << *RootInst << " (prev. case overlap)\n"); 1299 return false; 1300 } 1301 1302 // Make sure that we don't alias with any instruction in the alias set 1303 // tracker. If we do, then we depend on a future iteration, and we 1304 // can't reroll. 1305 if (RootInst->mayReadFromMemory()) 1306 for (auto &K : AST) { 1307 if (K.aliasesUnknownInst(RootInst, *AA)) { 1308 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1309 " vs. " << *RootInst << " (depends on future store)\n"); 1310 return false; 1311 } 1312 } 1313 1314 // If we've past an instruction from a future iteration that may have 1315 // side effects, and this instruction might also, then we can't reorder 1316 // them, and this matching fails. As an exception, we allow the alias 1317 // set tracker to handle regular (simple) load/store dependencies. 1318 if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) && 1319 !isSafeToSpeculativelyExecute(BaseInst)) || 1320 (!isSimpleLoadStore(RootInst) && 1321 !isSafeToSpeculativelyExecute(RootInst)))) { 1322 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1323 " vs. " << *RootInst << 1324 " (side effects prevent reordering)\n"); 1325 return false; 1326 } 1327 1328 // For instructions that are part of a reduction, if the operation is 1329 // associative, then don't bother matching the operands (because we 1330 // already know that the instructions are isomorphic, and the order 1331 // within the iteration does not matter). For non-associative reductions, 1332 // we do need to match the operands, because we need to reject 1333 // out-of-order instructions within an iteration! 1334 // For example (assume floating-point addition), we need to reject this: 1335 // x += a[i]; x += b[i]; 1336 // x += a[i+1]; x += b[i+1]; 1337 // x += b[i+2]; x += a[i+2]; 1338 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1339 1340 if (!(InReduction && BaseInst->isAssociative())) { 1341 bool Swapped = false, SomeOpMatched = false; 1342 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1343 Value *Op2 = RootInst->getOperand(j); 1344 1345 // If this is part of a reduction (and the operation is not 1346 // associatve), then we match all operands, but not those that are 1347 // part of the reduction. 1348 if (InReduction) 1349 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1350 if (Reductions.isPairInSame(RootInst, Op2I)) 1351 continue; 1352 1353 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1354 if (BMI != BaseMap.end()) { 1355 Op2 = BMI->second; 1356 } else { 1357 for (auto &DRS : RootSets) { 1358 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1359 Op2 = DRS.BaseInst; 1360 break; 1361 } 1362 } 1363 } 1364 1365 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1366 // If we've not already decided to swap the matched operands, and 1367 // we've not already matched our first operand (note that we could 1368 // have skipped matching the first operand because it is part of a 1369 // reduction above), and the instruction is commutative, then try 1370 // the swapped match. 1371 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1372 BaseInst->getOperand(!j) == Op2) { 1373 Swapped = true; 1374 } else { 1375 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1376 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1377 return false; 1378 } 1379 } 1380 1381 SomeOpMatched = true; 1382 } 1383 } 1384 1385 if ((!PossibleRedLastSet.count(BaseInst) && 1386 hasUsesOutsideLoop(BaseInst, L)) || 1387 (!PossibleRedLastSet.count(RootInst) && 1388 hasUsesOutsideLoop(RootInst, L))) { 1389 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1390 " vs. " << *RootInst << " (uses outside loop)\n"); 1391 return false; 1392 } 1393 1394 Reductions.recordPair(BaseInst, RootInst, Iter); 1395 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1396 1397 LastRootIt = RootIt; 1398 Visited.insert(BaseInst); 1399 Visited.insert(RootInst); 1400 BaseIt = nextInstr(0, Uses, Visited); 1401 RootIt = nextInstr(Iter, Uses, Visited); 1402 } 1403 assert (BaseIt == Uses.end() && RootIt == Uses.end() && 1404 "Mismatched set sizes!"); 1405 } 1406 1407 DEBUG(dbgs() << "LRR: Matched all iteration increments for " << 1408 *IV << "\n"); 1409 1410 return true; 1411 } 1412 1413 void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) { 1414 BasicBlock *Header = L->getHeader(); 1415 // Remove instructions associated with non-base iterations. 1416 for (BasicBlock::reverse_iterator J = Header->rbegin(); 1417 J != Header->rend();) { 1418 unsigned I = Uses[&*J].find_first(); 1419 if (I > 0 && I < IL_All) { 1420 Instruction *D = &*J; 1421 DEBUG(dbgs() << "LRR: removing: " << *D << "\n"); 1422 D->eraseFromParent(); 1423 continue; 1424 } 1425 1426 ++J; 1427 } 1428 1429 bool HasTwoIVs = LoopControlIV && LoopControlIV != IV; 1430 1431 if (HasTwoIVs) { 1432 updateNonLoopCtrlIncr(); 1433 replaceIV(LoopControlIV, LoopControlIV, IterCount); 1434 } else 1435 // We need to create a new induction variable for each different BaseInst. 1436 for (auto &DRS : RootSets) 1437 // Insert the new induction variable. 1438 replaceIV(DRS.BaseInst, IV, IterCount); 1439 1440 SimplifyInstructionsInBlock(Header, TLI); 1441 DeleteDeadPHIs(Header, TLI); 1442 } 1443 1444 // For non-loop-control IVs, we only need to update the last increment 1445 // with right amount, then we are done. 1446 void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() { 1447 const SCEV *NewInc = nullptr; 1448 for (auto *LoopInc : LoopIncs) { 1449 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc); 1450 const SCEVConstant *COp = nullptr; 1451 if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) { 1452 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1453 } else { 1454 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0))); 1455 if (!COp) 1456 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1457 } 1458 1459 assert(COp && "Didn't find constant operand of LoopInc!\n"); 1460 1461 const APInt &AInt = COp->getValue()->getValue(); 1462 const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale); 1463 if (AInt.isNegative()) { 1464 NewInc = SE->getNegativeSCEV(COp); 1465 NewInc = SE->getUDivExpr(NewInc, ScaleSCEV); 1466 NewInc = SE->getNegativeSCEV(NewInc); 1467 } else 1468 NewInc = SE->getUDivExpr(COp, ScaleSCEV); 1469 1470 LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue()); 1471 } 1472 } 1473 1474 void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst, 1475 Instruction *InstIV, 1476 const SCEV *IterCount) { 1477 BasicBlock *Header = L->getHeader(); 1478 int64_t Inc = IVToIncMap[InstIV]; 1479 bool NeedNewIV = InstIV == LoopControlIV; 1480 bool Negative = !NeedNewIV && Inc < 0; 1481 1482 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst)); 1483 const SCEV *Start = RealIVSCEV->getStart(); 1484 1485 if (NeedNewIV) 1486 Start = SE->getConstant(Start->getType(), 0); 1487 1488 const SCEV *SizeOfExpr = nullptr; 1489 const SCEV *IncrExpr = 1490 SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1); 1491 if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) { 1492 Type *ElTy = PTy->getElementType(); 1493 SizeOfExpr = 1494 SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy); 1495 IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr); 1496 } 1497 const SCEV *NewIVSCEV = 1498 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1499 1500 { // Limit the lifetime of SCEVExpander. 1501 const DataLayout &DL = Header->getModule()->getDataLayout(); 1502 SCEVExpander Expander(*SE, DL, "reroll"); 1503 Value *NewIV = 1504 Expander.expandCodeFor(NewIVSCEV, InstIV->getType(), &Header->front()); 1505 1506 for (auto &KV : Uses) 1507 if (KV.second.find_first() == 0) 1508 KV.first->replaceUsesOfWith(Inst, NewIV); 1509 1510 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { 1511 // FIXME: Why do we need this check? 1512 if (Uses[BI].find_first() == IL_All) { 1513 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); 1514 1515 if (NeedNewIV) 1516 ICSCEV = SE->getMulExpr(IterCount, 1517 SE->getConstant(IterCount->getType(), Scale)); 1518 1519 // Iteration count SCEV minus or plus 1 1520 const SCEV *MinusPlus1SCEV = 1521 SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1); 1522 if (Inst->getType()->isPointerTy()) { 1523 assert(SizeOfExpr && "SizeOfExpr is not initialized"); 1524 MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr); 1525 } 1526 1527 const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV); 1528 // Iteration count minus 1 1529 Instruction *InsertPtr = nullptr; 1530 if (isa<SCEVConstant>(ICMinusPlus1SCEV)) { 1531 InsertPtr = BI; 1532 } else { 1533 BasicBlock *Preheader = L->getLoopPreheader(); 1534 if (!Preheader) 1535 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 1536 InsertPtr = Preheader->getTerminator(); 1537 } 1538 1539 if (!isa<PointerType>(NewIV->getType()) && NeedNewIV && 1540 (SE->getTypeSizeInBits(NewIV->getType()) < 1541 SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) { 1542 IRBuilder<> Builder(BI); 1543 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 1544 NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType()); 1545 } 1546 Value *ICMinusPlus1 = Expander.expandCodeFor( 1547 ICMinusPlus1SCEV, NewIV->getType(), InsertPtr); 1548 1549 Value *Cond = 1550 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond"); 1551 BI->setCondition(Cond); 1552 1553 if (BI->getSuccessor(1) != Header) 1554 BI->swapSuccessors(); 1555 } 1556 } 1557 } 1558 } 1559 1560 // Validate the selected reductions. All iterations must have an isomorphic 1561 // part of the reduction chain and, for non-associative reductions, the chain 1562 // entries must appear in order. 1563 bool LoopReroll::ReductionTracker::validateSelected() { 1564 // For a non-associative reduction, the chain entries must appear in order. 1565 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); 1566 RI != RIE; ++RI) { 1567 int i = *RI; 1568 int PrevIter = 0, BaseCount = 0, Count = 0; 1569 for (Instruction *J : PossibleReds[i]) { 1570 // Note that all instructions in the chain must have been found because 1571 // all instructions in the function must have been assigned to some 1572 // iteration. 1573 int Iter = PossibleRedIter[J]; 1574 if (Iter != PrevIter && Iter != PrevIter + 1 && 1575 !PossibleReds[i].getReducedValue()->isAssociative()) { 1576 DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " << 1577 J << "\n"); 1578 return false; 1579 } 1580 1581 if (Iter != PrevIter) { 1582 if (Count != BaseCount) { 1583 DEBUG(dbgs() << "LRR: Iteration " << PrevIter << 1584 " reduction use count " << Count << 1585 " is not equal to the base use count " << 1586 BaseCount << "\n"); 1587 return false; 1588 } 1589 1590 Count = 0; 1591 } 1592 1593 ++Count; 1594 if (Iter == 0) 1595 ++BaseCount; 1596 1597 PrevIter = Iter; 1598 } 1599 } 1600 1601 return true; 1602 } 1603 1604 // For all selected reductions, remove all parts except those in the first 1605 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1606 // of the first-iteration reduced value (in other words, reroll the selected 1607 // reductions). 1608 void LoopReroll::ReductionTracker::replaceSelected() { 1609 // Fixup reductions to refer to the last instruction associated with the 1610 // first iteration (not the last). 1611 for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); 1612 RI != RIE; ++RI) { 1613 int i = *RI; 1614 int j = 0; 1615 for (int e = PossibleReds[i].size(); j != e; ++j) 1616 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1617 --j; 1618 break; 1619 } 1620 1621 // Replace users with the new end-of-chain value. 1622 SmallInstructionVector Users; 1623 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1624 Users.push_back(cast<Instruction>(U)); 1625 } 1626 1627 for (SmallInstructionVector::iterator J = Users.begin(), 1628 JE = Users.end(); J != JE; ++J) 1629 (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1630 PossibleReds[i][j]); 1631 } 1632 } 1633 1634 // Reroll the provided loop with respect to the provided induction variable. 1635 // Generally, we're looking for a loop like this: 1636 // 1637 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1638 // f(%iv) 1639 // %iv.1 = add %iv, 1 <-- a root increment 1640 // f(%iv.1) 1641 // %iv.2 = add %iv, 2 <-- a root increment 1642 // f(%iv.2) 1643 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1644 // f(%iv.scale_m_1) 1645 // ... 1646 // %iv.next = add %iv, scale 1647 // %cmp = icmp(%iv, ...) 1648 // br %cmp, header, exit 1649 // 1650 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1651 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1652 // be intermixed with eachother. The restriction imposed by this algorithm is 1653 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1654 // etc. be the same. 1655 // 1656 // First, we collect the use set of %iv, excluding the other increment roots. 1657 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1658 // times, having collected the use set of f(%iv.(i+1)), during which we: 1659 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1660 // the next unmatched instruction in f(%iv.(i+1)). 1661 // - Ensure that both matched instructions don't have any external users 1662 // (with the exception of last-in-chain reduction instructions). 1663 // - Track the (aliasing) write set, and other side effects, of all 1664 // instructions that belong to future iterations that come before the matched 1665 // instructions. If the matched instructions read from that write set, then 1666 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1667 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1668 // if any of these future instructions had side effects (could not be 1669 // speculatively executed), and so do the matched instructions, when we 1670 // cannot reorder those side-effect-producing instructions, and rerolling 1671 // fails. 1672 // 1673 // Finally, we make sure that all loop instructions are either loop increment 1674 // roots, belong to simple latch code, parts of validated reductions, part of 1675 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1676 // have been validated), then we reroll the loop. 1677 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1678 const SCEV *IterCount, 1679 ReductionTracker &Reductions) { 1680 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1681 IVToIncMap, LoopControlIV); 1682 1683 if (!DAGRoots.findRoots()) 1684 return false; 1685 DEBUG(dbgs() << "LRR: Found all root induction increments for: " << 1686 *IV << "\n"); 1687 1688 if (!DAGRoots.validate(Reductions)) 1689 return false; 1690 if (!Reductions.validateSelected()) 1691 return false; 1692 // At this point, we've validated the rerolling, and we're committed to 1693 // making changes! 1694 1695 Reductions.replaceSelected(); 1696 DAGRoots.replace(IterCount); 1697 1698 ++NumRerolledLoops; 1699 return true; 1700 } 1701 1702 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1703 if (skipLoop(L)) 1704 return false; 1705 1706 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1707 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1708 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1709 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1710 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1711 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1712 1713 BasicBlock *Header = L->getHeader(); 1714 DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << 1715 "] Loop %" << Header->getName() << " (" << 1716 L->getNumBlocks() << " block(s))\n"); 1717 1718 // For now, we'll handle only single BB loops. 1719 if (L->getNumBlocks() > 1) 1720 return false; 1721 1722 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1723 return false; 1724 1725 const SCEV *LIBETC = SE->getBackedgeTakenCount(L); 1726 const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType())); 1727 DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1728 DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); 1729 1730 // First, we need to find the induction variable with respect to which we can 1731 // reroll (there may be several possible options). 1732 SmallInstructionVector PossibleIVs; 1733 IVToIncMap.clear(); 1734 LoopControlIV = nullptr; 1735 collectPossibleIVs(L, PossibleIVs); 1736 1737 if (PossibleIVs.empty()) { 1738 DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1739 return false; 1740 } 1741 1742 ReductionTracker Reductions; 1743 collectPossibleReductions(L, Reductions); 1744 bool Changed = false; 1745 1746 // For each possible IV, collect the associated possible set of 'root' nodes 1747 // (i+1, i+2, etc.). 1748 for (SmallInstructionVector::iterator I = PossibleIVs.begin(), 1749 IE = PossibleIVs.end(); I != IE; ++I) 1750 if (reroll(*I, L, Header, IterCount, Reductions)) { 1751 Changed = true; 1752 break; 1753 } 1754 DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1755 1756 // Trip count of L has changed so SE must be re-evaluated. 1757 if (Changed) 1758 SE->forgetLoop(L); 1759 1760 return Changed; 1761 } 1762