1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop reroller. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AliasSetTracker.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpander.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/LoopUtils.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "loop-reroll" 41 42 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 43 44 static cl::opt<unsigned> 45 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, 46 cl::desc("The maximum increment for loop rerolling")); 47 48 static cl::opt<unsigned> 49 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 50 cl::Hidden, 51 cl::desc("The maximum number of failures to tolerate" 52 " during fuzzy matching. (default: 400)")); 53 54 // This loop re-rolling transformation aims to transform loops like this: 55 // 56 // int foo(int a); 57 // void bar(int *x) { 58 // for (int i = 0; i < 500; i += 3) { 59 // foo(i); 60 // foo(i+1); 61 // foo(i+2); 62 // } 63 // } 64 // 65 // into a loop like this: 66 // 67 // void bar(int *x) { 68 // for (int i = 0; i < 500; ++i) 69 // foo(i); 70 // } 71 // 72 // It does this by looking for loops that, besides the latch code, are composed 73 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 74 // to the induction variable, and where each DAG is isomorphic to the DAG 75 // rooted at the induction variable (excepting the sub-DAGs which root the 76 // other induction-variable increments). In other words, we're looking for loop 77 // bodies of the form: 78 // 79 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 80 // f(%iv) 81 // %iv.1 = add %iv, 1 <-- a root increment 82 // f(%iv.1) 83 // %iv.2 = add %iv, 2 <-- a root increment 84 // f(%iv.2) 85 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 86 // f(%iv.scale_m_1) 87 // ... 88 // %iv.next = add %iv, scale 89 // %cmp = icmp(%iv, ...) 90 // br %cmp, header, exit 91 // 92 // where each f(i) is a set of instructions that, collectively, are a function 93 // only of i (and other loop-invariant values). 94 // 95 // As a special case, we can also reroll loops like this: 96 // 97 // int foo(int); 98 // void bar(int *x) { 99 // for (int i = 0; i < 500; ++i) { 100 // x[3*i] = foo(0); 101 // x[3*i+1] = foo(0); 102 // x[3*i+2] = foo(0); 103 // } 104 // } 105 // 106 // into this: 107 // 108 // void bar(int *x) { 109 // for (int i = 0; i < 1500; ++i) 110 // x[i] = foo(0); 111 // } 112 // 113 // in which case, we're looking for inputs like this: 114 // 115 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 116 // %scaled.iv = mul %iv, scale 117 // f(%scaled.iv) 118 // %scaled.iv.1 = add %scaled.iv, 1 119 // f(%scaled.iv.1) 120 // %scaled.iv.2 = add %scaled.iv, 2 121 // f(%scaled.iv.2) 122 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 123 // f(%scaled.iv.scale_m_1) 124 // ... 125 // %iv.next = add %iv, 1 126 // %cmp = icmp(%iv, ...) 127 // br %cmp, header, exit 128 129 namespace { 130 enum IterationLimits { 131 /// The maximum number of iterations that we'll try and reroll. 132 IL_MaxRerollIterations = 32, 133 /// The bitvector index used by loop induction variables and other 134 /// instructions that belong to all iterations. 135 IL_All, 136 IL_End 137 }; 138 139 class LoopReroll : public LoopPass { 140 public: 141 static char ID; // Pass ID, replacement for typeid 142 LoopReroll() : LoopPass(ID) { 143 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<TargetLibraryInfoWrapperPass>(); 150 getLoopAnalysisUsage(AU); 151 } 152 153 protected: 154 AliasAnalysis *AA; 155 LoopInfo *LI; 156 ScalarEvolution *SE; 157 TargetLibraryInfo *TLI; 158 DominatorTree *DT; 159 bool PreserveLCSSA; 160 161 typedef SmallVector<Instruction *, 16> SmallInstructionVector; 162 typedef SmallSet<Instruction *, 16> SmallInstructionSet; 163 164 // Map between induction variable and its increment 165 DenseMap<Instruction *, int64_t> IVToIncMap; 166 // For loop with multiple induction variable, remember the one used only to 167 // control the loop. 168 Instruction *LoopControlIV; 169 170 // A chain of isomorphic instructions, identified by a single-use PHI 171 // representing a reduction. Only the last value may be used outside the 172 // loop. 173 struct SimpleLoopReduction { 174 SimpleLoopReduction(Instruction *P, Loop *L) 175 : Valid(false), Instructions(1, P) { 176 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 177 add(L); 178 } 179 180 bool valid() const { 181 return Valid; 182 } 183 184 Instruction *getPHI() const { 185 assert(Valid && "Using invalid reduction"); 186 return Instructions.front(); 187 } 188 189 Instruction *getReducedValue() const { 190 assert(Valid && "Using invalid reduction"); 191 return Instructions.back(); 192 } 193 194 Instruction *get(size_t i) const { 195 assert(Valid && "Using invalid reduction"); 196 return Instructions[i+1]; 197 } 198 199 Instruction *operator [] (size_t i) const { return get(i); } 200 201 // The size, ignoring the initial PHI. 202 size_t size() const { 203 assert(Valid && "Using invalid reduction"); 204 return Instructions.size()-1; 205 } 206 207 typedef SmallInstructionVector::iterator iterator; 208 typedef SmallInstructionVector::const_iterator const_iterator; 209 210 iterator begin() { 211 assert(Valid && "Using invalid reduction"); 212 return std::next(Instructions.begin()); 213 } 214 215 const_iterator begin() const { 216 assert(Valid && "Using invalid reduction"); 217 return std::next(Instructions.begin()); 218 } 219 220 iterator end() { return Instructions.end(); } 221 const_iterator end() const { return Instructions.end(); } 222 223 protected: 224 bool Valid; 225 SmallInstructionVector Instructions; 226 227 void add(Loop *L); 228 }; 229 230 // The set of all reductions, and state tracking of possible reductions 231 // during loop instruction processing. 232 struct ReductionTracker { 233 typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector; 234 235 // Add a new possible reduction. 236 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 237 238 // Setup to track possible reductions corresponding to the provided 239 // rerolling scale. Only reductions with a number of non-PHI instructions 240 // that is divisible by the scale are considered. Three instructions sets 241 // are filled in: 242 // - A set of all possible instructions in eligible reductions. 243 // - A set of all PHIs in eligible reductions 244 // - A set of all reduced values (last instructions) in eligible 245 // reductions. 246 void restrictToScale(uint64_t Scale, 247 SmallInstructionSet &PossibleRedSet, 248 SmallInstructionSet &PossibleRedPHISet, 249 SmallInstructionSet &PossibleRedLastSet) { 250 PossibleRedIdx.clear(); 251 PossibleRedIter.clear(); 252 Reds.clear(); 253 254 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 255 if (PossibleReds[i].size() % Scale == 0) { 256 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 257 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 258 259 PossibleRedSet.insert(PossibleReds[i].getPHI()); 260 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 261 for (Instruction *J : PossibleReds[i]) { 262 PossibleRedSet.insert(J); 263 PossibleRedIdx[J] = i; 264 } 265 } 266 } 267 268 // The functions below are used while processing the loop instructions. 269 270 // Are the two instructions both from reductions, and furthermore, from 271 // the same reduction? 272 bool isPairInSame(Instruction *J1, Instruction *J2) { 273 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 274 if (J1I != PossibleRedIdx.end()) { 275 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 276 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 277 return true; 278 } 279 280 return false; 281 } 282 283 // The two provided instructions, the first from the base iteration, and 284 // the second from iteration i, form a matched pair. If these are part of 285 // a reduction, record that fact. 286 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 287 if (PossibleRedIdx.count(J1)) { 288 assert(PossibleRedIdx.count(J2) && 289 "Recording reduction vs. non-reduction instruction?"); 290 291 PossibleRedIter[J1] = 0; 292 PossibleRedIter[J2] = i; 293 294 int Idx = PossibleRedIdx[J1]; 295 assert(Idx == PossibleRedIdx[J2] && 296 "Recording pair from different reductions?"); 297 Reds.insert(Idx); 298 } 299 } 300 301 // The functions below can be called after we've finished processing all 302 // instructions in the loop, and we know which reductions were selected. 303 304 bool validateSelected(); 305 void replaceSelected(); 306 307 protected: 308 // The vector of all possible reductions (for any scale). 309 SmallReductionVector PossibleReds; 310 311 DenseMap<Instruction *, int> PossibleRedIdx; 312 DenseMap<Instruction *, int> PossibleRedIter; 313 DenseSet<int> Reds; 314 }; 315 316 // A DAGRootSet models an induction variable being used in a rerollable 317 // loop. For example, 318 // 319 // x[i*3+0] = y1 320 // x[i*3+1] = y2 321 // x[i*3+2] = y3 322 // 323 // Base instruction -> i*3 324 // +---+----+ 325 // / | \ 326 // ST[y1] +1 +2 <-- Roots 327 // | | 328 // ST[y2] ST[y3] 329 // 330 // There may be multiple DAGRoots, for example: 331 // 332 // x[i*2+0] = ... (1) 333 // x[i*2+1] = ... (1) 334 // x[i*2+4] = ... (2) 335 // x[i*2+5] = ... (2) 336 // x[(i+1234)*2+5678] = ... (3) 337 // x[(i+1234)*2+5679] = ... (3) 338 // 339 // The loop will be rerolled by adding a new loop induction variable, 340 // one for the Base instruction in each DAGRootSet. 341 // 342 struct DAGRootSet { 343 Instruction *BaseInst; 344 SmallInstructionVector Roots; 345 // The instructions between IV and BaseInst (but not including BaseInst). 346 SmallInstructionSet SubsumedInsts; 347 }; 348 349 // The set of all DAG roots, and state tracking of all roots 350 // for a particular induction variable. 351 struct DAGRootTracker { 352 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 353 ScalarEvolution *SE, AliasAnalysis *AA, 354 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 355 bool PreserveLCSSA, 356 DenseMap<Instruction *, int64_t> &IncrMap, 357 Instruction *LoopCtrlIV) 358 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 359 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 360 LoopControlIV(LoopCtrlIV) {} 361 362 /// Stage 1: Find all the DAG roots for the induction variable. 363 bool findRoots(); 364 /// Stage 2: Validate if the found roots are valid. 365 bool validate(ReductionTracker &Reductions); 366 /// Stage 3: Assuming validate() returned true, perform the 367 /// replacement. 368 /// @param IterCount The maximum iteration count of L. 369 void replace(const SCEV *IterCount); 370 371 protected: 372 typedef MapVector<Instruction*, BitVector> UsesTy; 373 374 void findRootsRecursive(Instruction *IVU, 375 SmallInstructionSet SubsumedInsts); 376 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 377 bool collectPossibleRoots(Instruction *Base, 378 std::map<int64_t,Instruction*> &Roots); 379 bool validateRootSet(DAGRootSet &DRS); 380 381 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 382 void collectInLoopUserSet(const SmallInstructionVector &Roots, 383 const SmallInstructionSet &Exclude, 384 const SmallInstructionSet &Final, 385 DenseSet<Instruction *> &Users); 386 void collectInLoopUserSet(Instruction *Root, 387 const SmallInstructionSet &Exclude, 388 const SmallInstructionSet &Final, 389 DenseSet<Instruction *> &Users); 390 391 UsesTy::iterator nextInstr(int Val, UsesTy &In, 392 const SmallInstructionSet &Exclude, 393 UsesTy::iterator *StartI=nullptr); 394 bool isBaseInst(Instruction *I); 395 bool isRootInst(Instruction *I); 396 bool instrDependsOn(Instruction *I, 397 UsesTy::iterator Start, 398 UsesTy::iterator End); 399 void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount); 400 void updateNonLoopCtrlIncr(); 401 402 LoopReroll *Parent; 403 404 // Members of Parent, replicated here for brevity. 405 Loop *L; 406 ScalarEvolution *SE; 407 AliasAnalysis *AA; 408 TargetLibraryInfo *TLI; 409 DominatorTree *DT; 410 LoopInfo *LI; 411 bool PreserveLCSSA; 412 413 // The loop induction variable. 414 Instruction *IV; 415 // Loop step amount. 416 int64_t Inc; 417 // Loop reroll count; if Inc == 1, this records the scaling applied 418 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 419 // If Inc is not 1, Scale = Inc. 420 uint64_t Scale; 421 // The roots themselves. 422 SmallVector<DAGRootSet,16> RootSets; 423 // All increment instructions for IV. 424 SmallInstructionVector LoopIncs; 425 // Map of all instructions in the loop (in order) to the iterations 426 // they are used in (or specially, IL_All for instructions 427 // used in the loop increment mechanism). 428 UsesTy Uses; 429 // Map between induction variable and its increment 430 DenseMap<Instruction *, int64_t> &IVToIncMap; 431 Instruction *LoopControlIV; 432 }; 433 434 // Check if it is a compare-like instruction whose user is a branch 435 bool isCompareUsedByBranch(Instruction *I) { 436 auto *TI = I->getParent()->getTerminator(); 437 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 438 return false; 439 return I->hasOneUse() && TI->getOperand(0) == I; 440 }; 441 442 bool isLoopControlIV(Loop *L, Instruction *IV); 443 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 444 void collectPossibleReductions(Loop *L, 445 ReductionTracker &Reductions); 446 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, 447 ReductionTracker &Reductions); 448 }; 449 } 450 451 char LoopReroll::ID = 0; 452 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 453 INITIALIZE_PASS_DEPENDENCY(LoopPass) 454 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 455 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 456 457 Pass *llvm::createLoopRerollPass() { 458 return new LoopReroll; 459 } 460 461 // Returns true if the provided instruction is used outside the given loop. 462 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 463 // non-loop blocks to be outside the loop. 464 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 465 for (User *U : I->users()) { 466 if (!L->contains(cast<Instruction>(U))) 467 return true; 468 } 469 return false; 470 } 471 472 static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE, 473 const SCEV *SCEVExpr, 474 Instruction &IV) { 475 const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr); 476 477 // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)), 478 // Return c1. 479 if (!MulSCEV && IV.getType()->isPointerTy()) 480 if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) { 481 const PointerType *PTy = cast<PointerType>(IV.getType()); 482 Type *ElTy = PTy->getElementType(); 483 const SCEV *SizeOfExpr = 484 SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy); 485 if (IncSCEV->getValue()->getValue().isNegative()) { 486 const SCEV *NewSCEV = 487 SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr); 488 return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV)); 489 } else { 490 return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr)); 491 } 492 } 493 494 if (!MulSCEV) 495 return nullptr; 496 497 // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant, 498 // Return c. 499 const SCEVConstant *CIncSCEV = nullptr; 500 for (const SCEV *Operand : MulSCEV->operands()) { 501 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) { 502 CIncSCEV = Constant; 503 } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) { 504 Type *AllocTy; 505 if (!Unknown->isSizeOf(AllocTy)) 506 break; 507 } else { 508 return nullptr; 509 } 510 } 511 return CIncSCEV; 512 } 513 514 // Check if an IV is only used to control the loop. There are two cases: 515 // 1. It only has one use which is loop increment, and the increment is only 516 // used by comparison and the PHI (could has sext with nsw in between), and the 517 // comparison is only used by branch. 518 // 2. It is used by loop increment and the comparison, the loop increment is 519 // only used by the PHI, and the comparison is used only by the branch. 520 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 521 unsigned IVUses = IV->getNumUses(); 522 if (IVUses != 2 && IVUses != 1) 523 return false; 524 525 for (auto *User : IV->users()) { 526 int32_t IncOrCmpUses = User->getNumUses(); 527 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 528 529 // User can only have one or two uses. 530 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 531 return false; 532 533 // Case 1 534 if (IVUses == 1) { 535 // The only user must be the loop increment. 536 // The loop increment must have two uses. 537 if (IsCompInst || IncOrCmpUses != 2) 538 return false; 539 } 540 541 // Case 2 542 if (IVUses == 2 && IncOrCmpUses != 1) 543 return false; 544 545 // The users of the IV must be a binary operation or a comparison 546 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 547 if (BO->getOpcode() == Instruction::Add) { 548 // Loop Increment 549 // User of Loop Increment should be either PHI or CMP 550 for (auto *UU : User->users()) { 551 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 552 if (PN != IV) 553 return false; 554 } 555 // Must be a CMP or an ext (of a value with nsw) then CMP 556 else { 557 Instruction *UUser = dyn_cast<Instruction>(UU); 558 // Skip SExt if we are extending an nsw value 559 // TODO: Allow ZExt too 560 if (BO->hasNoSignedWrap() && UUser && UUser->getNumUses() == 1 && 561 isa<SExtInst>(UUser)) 562 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 563 if (!isCompareUsedByBranch(UUser)) 564 return false; 565 } 566 } 567 } else 568 return false; 569 // Compare : can only have one use, and must be branch 570 } else if (!IsCompInst) 571 return false; 572 } 573 return true; 574 } 575 576 // Collect the list of loop induction variables with respect to which it might 577 // be possible to reroll the loop. 578 void LoopReroll::collectPossibleIVs(Loop *L, 579 SmallInstructionVector &PossibleIVs) { 580 BasicBlock *Header = L->getHeader(); 581 for (BasicBlock::iterator I = Header->begin(), 582 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 583 if (!isa<PHINode>(I)) 584 continue; 585 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 586 continue; 587 588 if (const SCEVAddRecExpr *PHISCEV = 589 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 590 if (PHISCEV->getLoop() != L) 591 continue; 592 if (!PHISCEV->isAffine()) 593 continue; 594 const SCEVConstant *IncSCEV = nullptr; 595 if (I->getType()->isPointerTy()) 596 IncSCEV = 597 getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I); 598 else 599 IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 600 if (IncSCEV) { 601 const APInt &AInt = IncSCEV->getValue()->getValue().abs(); 602 if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc)) 603 continue; 604 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 605 DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 606 << "\n"); 607 608 if (isLoopControlIV(L, &*I)) { 609 assert(!LoopControlIV && "Found two loop control only IV"); 610 LoopControlIV = &(*I); 611 DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = " 612 << *PHISCEV << "\n"); 613 } else 614 PossibleIVs.push_back(&*I); 615 } 616 } 617 } 618 } 619 620 // Add the remainder of the reduction-variable chain to the instruction vector 621 // (the initial PHINode has already been added). If successful, the object is 622 // marked as valid. 623 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 624 assert(!Valid && "Cannot add to an already-valid chain"); 625 626 // The reduction variable must be a chain of single-use instructions 627 // (including the PHI), except for the last value (which is used by the PHI 628 // and also outside the loop). 629 Instruction *C = Instructions.front(); 630 if (C->user_empty()) 631 return; 632 633 do { 634 C = cast<Instruction>(*C->user_begin()); 635 if (C->hasOneUse()) { 636 if (!C->isBinaryOp()) 637 return; 638 639 if (!(isa<PHINode>(Instructions.back()) || 640 C->isSameOperationAs(Instructions.back()))) 641 return; 642 643 Instructions.push_back(C); 644 } 645 } while (C->hasOneUse()); 646 647 if (Instructions.size() < 2 || 648 !C->isSameOperationAs(Instructions.back()) || 649 C->use_empty()) 650 return; 651 652 // C is now the (potential) last instruction in the reduction chain. 653 for (User *U : C->users()) { 654 // The only in-loop user can be the initial PHI. 655 if (L->contains(cast<Instruction>(U))) 656 if (cast<Instruction>(U) != Instructions.front()) 657 return; 658 } 659 660 Instructions.push_back(C); 661 Valid = true; 662 } 663 664 // Collect the vector of possible reduction variables. 665 void LoopReroll::collectPossibleReductions(Loop *L, 666 ReductionTracker &Reductions) { 667 BasicBlock *Header = L->getHeader(); 668 for (BasicBlock::iterator I = Header->begin(), 669 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 670 if (!isa<PHINode>(I)) 671 continue; 672 if (!I->getType()->isSingleValueType()) 673 continue; 674 675 SimpleLoopReduction SLR(&*I, L); 676 if (!SLR.valid()) 677 continue; 678 679 DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " << 680 SLR.size() << " chained instructions)\n"); 681 Reductions.addSLR(SLR); 682 } 683 } 684 685 // Collect the set of all users of the provided root instruction. This set of 686 // users contains not only the direct users of the root instruction, but also 687 // all users of those users, and so on. There are two exceptions: 688 // 689 // 1. Instructions in the set of excluded instructions are never added to the 690 // use set (even if they are users). This is used, for example, to exclude 691 // including root increments in the use set of the primary IV. 692 // 693 // 2. Instructions in the set of final instructions are added to the use set 694 // if they are users, but their users are not added. This is used, for 695 // example, to prevent a reduction update from forcing all later reduction 696 // updates into the use set. 697 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 698 Instruction *Root, const SmallInstructionSet &Exclude, 699 const SmallInstructionSet &Final, 700 DenseSet<Instruction *> &Users) { 701 SmallInstructionVector Queue(1, Root); 702 while (!Queue.empty()) { 703 Instruction *I = Queue.pop_back_val(); 704 if (!Users.insert(I).second) 705 continue; 706 707 if (!Final.count(I)) 708 for (Use &U : I->uses()) { 709 Instruction *User = cast<Instruction>(U.getUser()); 710 if (PHINode *PN = dyn_cast<PHINode>(User)) { 711 // Ignore "wrap-around" uses to PHIs of this loop's header. 712 if (PN->getIncomingBlock(U) == L->getHeader()) 713 continue; 714 } 715 716 if (L->contains(User) && !Exclude.count(User)) { 717 Queue.push_back(User); 718 } 719 } 720 721 // We also want to collect single-user "feeder" values. 722 for (User::op_iterator OI = I->op_begin(), 723 OIE = I->op_end(); OI != OIE; ++OI) { 724 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 725 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 726 !Final.count(Op)) 727 Queue.push_back(Op); 728 } 729 } 730 } 731 732 // Collect all of the users of all of the provided root instructions (combined 733 // into a single set). 734 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 735 const SmallInstructionVector &Roots, 736 const SmallInstructionSet &Exclude, 737 const SmallInstructionSet &Final, 738 DenseSet<Instruction *> &Users) { 739 for (Instruction *Root : Roots) 740 collectInLoopUserSet(Root, Exclude, Final, Users); 741 } 742 743 static bool isUnorderedLoadStore(Instruction *I) { 744 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 745 return LI->isUnordered(); 746 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 747 return SI->isUnordered(); 748 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 749 return !MI->isVolatile(); 750 return false; 751 } 752 753 /// Return true if IVU is a "simple" arithmetic operation. 754 /// This is used for narrowing the search space for DAGRoots; only arithmetic 755 /// and GEPs can be part of a DAGRoot. 756 static bool isSimpleArithmeticOp(User *IVU) { 757 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 758 switch (I->getOpcode()) { 759 default: return false; 760 case Instruction::Add: 761 case Instruction::Sub: 762 case Instruction::Mul: 763 case Instruction::Shl: 764 case Instruction::AShr: 765 case Instruction::LShr: 766 case Instruction::GetElementPtr: 767 case Instruction::Trunc: 768 case Instruction::ZExt: 769 case Instruction::SExt: 770 return true; 771 } 772 } 773 return false; 774 } 775 776 static bool isLoopIncrement(User *U, Instruction *IV) { 777 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 778 779 if ((BO && BO->getOpcode() != Instruction::Add) || 780 (!BO && !isa<GetElementPtrInst>(U))) 781 return false; 782 783 for (auto *UU : U->users()) { 784 PHINode *PN = dyn_cast<PHINode>(UU); 785 if (PN && PN == IV) 786 return true; 787 } 788 return false; 789 } 790 791 bool LoopReroll::DAGRootTracker:: 792 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 793 SmallInstructionVector BaseUsers; 794 795 for (auto *I : Base->users()) { 796 ConstantInt *CI = nullptr; 797 798 if (isLoopIncrement(I, IV)) { 799 LoopIncs.push_back(cast<Instruction>(I)); 800 continue; 801 } 802 803 // The root nodes must be either GEPs, ORs or ADDs. 804 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 805 if (BO->getOpcode() == Instruction::Add || 806 BO->getOpcode() == Instruction::Or) 807 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 808 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 809 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 810 CI = dyn_cast<ConstantInt>(LastOperand); 811 } 812 813 if (!CI) { 814 if (Instruction *II = dyn_cast<Instruction>(I)) { 815 BaseUsers.push_back(II); 816 continue; 817 } else { 818 DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n"); 819 return false; 820 } 821 } 822 823 int64_t V = std::abs(CI->getValue().getSExtValue()); 824 if (Roots.find(V) != Roots.end()) 825 // No duplicates, please. 826 return false; 827 828 Roots[V] = cast<Instruction>(I); 829 } 830 831 // Make sure we have at least two roots. 832 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) 833 return false; 834 835 // If we found non-loop-inc, non-root users of Base, assume they are 836 // for the zeroth root index. This is because "add %a, 0" gets optimized 837 // away. 838 if (BaseUsers.size()) { 839 if (Roots.find(0) != Roots.end()) { 840 DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 841 return false; 842 } 843 Roots[0] = Base; 844 } 845 846 // Calculate the number of users of the base, or lowest indexed, iteration. 847 unsigned NumBaseUses = BaseUsers.size(); 848 if (NumBaseUses == 0) 849 NumBaseUses = Roots.begin()->second->getNumUses(); 850 851 // Check that every node has the same number of users. 852 for (auto &KV : Roots) { 853 if (KV.first == 0) 854 continue; 855 if (KV.second->getNumUses() != NumBaseUses) { 856 DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 857 << "#Base=" << NumBaseUses << ", #Root=" << 858 KV.second->getNumUses() << "\n"); 859 return false; 860 } 861 } 862 863 return true; 864 } 865 866 void LoopReroll::DAGRootTracker:: 867 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 868 // Does the user look like it could be part of a root set? 869 // All its users must be simple arithmetic ops. 870 if (I->getNumUses() > IL_MaxRerollIterations) 871 return; 872 873 if (I != IV && findRootsBase(I, SubsumedInsts)) 874 return; 875 876 SubsumedInsts.insert(I); 877 878 for (User *V : I->users()) { 879 Instruction *I = cast<Instruction>(V); 880 if (is_contained(LoopIncs, I)) 881 continue; 882 883 if (!isSimpleArithmeticOp(I)) 884 continue; 885 886 // The recursive call makes a copy of SubsumedInsts. 887 findRootsRecursive(I, SubsumedInsts); 888 } 889 } 890 891 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { 892 if (DRS.Roots.empty()) 893 return false; 894 895 // Consider a DAGRootSet with N-1 roots (so N different values including 896 // BaseInst). 897 // Define d = Roots[0] - BaseInst, which should be the same as 898 // Roots[I] - Roots[I-1] for all I in [1..N). 899 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 900 // loop iteration J. 901 // 902 // Now, For the loop iterations to be consecutive: 903 // D = d * N 904 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 905 if (!ADR) 906 return false; 907 unsigned N = DRS.Roots.size() + 1; 908 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); 909 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 910 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) 911 return false; 912 913 return true; 914 } 915 916 bool LoopReroll::DAGRootTracker:: 917 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 918 // The base of a RootSet must be an AddRec, so it can be erased. 919 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); 920 if (!IVU_ADR || IVU_ADR->getLoop() != L) 921 return false; 922 923 std::map<int64_t, Instruction*> V; 924 if (!collectPossibleRoots(IVU, V)) 925 return false; 926 927 // If we didn't get a root for index zero, then IVU must be 928 // subsumed. 929 if (V.find(0) == V.end()) 930 SubsumedInsts.insert(IVU); 931 932 // Partition the vector into monotonically increasing indexes. 933 DAGRootSet DRS; 934 DRS.BaseInst = nullptr; 935 936 SmallVector<DAGRootSet, 16> PotentialRootSets; 937 938 for (auto &KV : V) { 939 if (!DRS.BaseInst) { 940 DRS.BaseInst = KV.second; 941 DRS.SubsumedInsts = SubsumedInsts; 942 } else if (DRS.Roots.empty()) { 943 DRS.Roots.push_back(KV.second); 944 } else if (V.find(KV.first - 1) != V.end()) { 945 DRS.Roots.push_back(KV.second); 946 } else { 947 // Linear sequence terminated. 948 if (!validateRootSet(DRS)) 949 return false; 950 951 // Construct a new DAGRootSet with the next sequence. 952 PotentialRootSets.push_back(DRS); 953 DRS.BaseInst = KV.second; 954 DRS.Roots.clear(); 955 } 956 } 957 958 if (!validateRootSet(DRS)) 959 return false; 960 961 PotentialRootSets.push_back(DRS); 962 963 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); 964 965 return true; 966 } 967 968 bool LoopReroll::DAGRootTracker::findRoots() { 969 Inc = IVToIncMap[IV]; 970 971 assert(RootSets.empty() && "Unclean state!"); 972 if (std::abs(Inc) == 1) { 973 for (auto *IVU : IV->users()) { 974 if (isLoopIncrement(IVU, IV)) 975 LoopIncs.push_back(cast<Instruction>(IVU)); 976 } 977 findRootsRecursive(IV, SmallInstructionSet()); 978 LoopIncs.push_back(IV); 979 } else { 980 if (!findRootsBase(IV, SmallInstructionSet())) 981 return false; 982 } 983 984 // Ensure all sets have the same size. 985 if (RootSets.empty()) { 986 DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 987 return false; 988 } 989 for (auto &V : RootSets) { 990 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 991 DEBUG(dbgs() 992 << "LRR: Aborting because not all root sets have the same size\n"); 993 return false; 994 } 995 } 996 997 Scale = RootSets[0].Roots.size() + 1; 998 999 if (Scale > IL_MaxRerollIterations) { 1000 DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 1001 << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations 1002 << "\n"); 1003 return false; 1004 } 1005 1006 DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n"); 1007 1008 return true; 1009 } 1010 1011 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1012 // Populate the MapVector with all instructions in the block, in order first, 1013 // so we can iterate over the contents later in perfect order. 1014 for (auto &I : *L->getHeader()) { 1015 Uses[&I].resize(IL_End); 1016 } 1017 1018 SmallInstructionSet Exclude; 1019 for (auto &DRS : RootSets) { 1020 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1021 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1022 Exclude.insert(DRS.BaseInst); 1023 } 1024 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1025 1026 for (auto &DRS : RootSets) { 1027 DenseSet<Instruction*> VBase; 1028 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1029 for (auto *I : VBase) { 1030 Uses[I].set(0); 1031 } 1032 1033 unsigned Idx = 1; 1034 for (auto *Root : DRS.Roots) { 1035 DenseSet<Instruction*> V; 1036 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1037 1038 // While we're here, check the use sets are the same size. 1039 if (V.size() != VBase.size()) { 1040 DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1041 return false; 1042 } 1043 1044 for (auto *I : V) { 1045 Uses[I].set(Idx); 1046 } 1047 ++Idx; 1048 } 1049 1050 // Make sure our subsumed instructions are remembered too. 1051 for (auto *I : DRS.SubsumedInsts) { 1052 Uses[I].set(IL_All); 1053 } 1054 } 1055 1056 // Make sure the loop increments are also accounted for. 1057 1058 Exclude.clear(); 1059 for (auto &DRS : RootSets) { 1060 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1061 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1062 Exclude.insert(DRS.BaseInst); 1063 } 1064 1065 DenseSet<Instruction*> V; 1066 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1067 for (auto *I : V) { 1068 Uses[I].set(IL_All); 1069 } 1070 1071 return true; 1072 1073 } 1074 1075 /// Get the next instruction in "In" that is a member of set Val. 1076 /// Start searching from StartI, and do not return anything in Exclude. 1077 /// If StartI is not given, start from In.begin(). 1078 LoopReroll::DAGRootTracker::UsesTy::iterator 1079 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1080 const SmallInstructionSet &Exclude, 1081 UsesTy::iterator *StartI) { 1082 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1083 while (I != In.end() && (I->second.test(Val) == 0 || 1084 Exclude.count(I->first) != 0)) 1085 ++I; 1086 return I; 1087 } 1088 1089 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1090 for (auto &DRS : RootSets) { 1091 if (DRS.BaseInst == I) 1092 return true; 1093 } 1094 return false; 1095 } 1096 1097 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1098 for (auto &DRS : RootSets) { 1099 if (is_contained(DRS.Roots, I)) 1100 return true; 1101 } 1102 return false; 1103 } 1104 1105 /// Return true if instruction I depends on any instruction between 1106 /// Start and End. 1107 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1108 UsesTy::iterator Start, 1109 UsesTy::iterator End) { 1110 for (auto *U : I->users()) { 1111 for (auto It = Start; It != End; ++It) 1112 if (U == It->first) 1113 return true; 1114 } 1115 return false; 1116 } 1117 1118 static bool isIgnorableInst(const Instruction *I) { 1119 if (isa<DbgInfoIntrinsic>(I)) 1120 return true; 1121 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1122 if (!II) 1123 return false; 1124 switch (II->getIntrinsicID()) { 1125 default: 1126 return false; 1127 case llvm::Intrinsic::annotation: 1128 case Intrinsic::ptr_annotation: 1129 case Intrinsic::var_annotation: 1130 // TODO: the following intrinsics may also be whitelisted: 1131 // lifetime_start, lifetime_end, invariant_start, invariant_end 1132 return true; 1133 } 1134 return false; 1135 } 1136 1137 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1138 // We now need to check for equivalence of the use graph of each root with 1139 // that of the primary induction variable (excluding the roots). Our goal 1140 // here is not to solve the full graph isomorphism problem, but rather to 1141 // catch common cases without a lot of work. As a result, we will assume 1142 // that the relative order of the instructions in each unrolled iteration 1143 // is the same (although we will not make an assumption about how the 1144 // different iterations are intermixed). Note that while the order must be 1145 // the same, the instructions may not be in the same basic block. 1146 1147 // An array of just the possible reductions for this scale factor. When we 1148 // collect the set of all users of some root instructions, these reduction 1149 // instructions are treated as 'final' (their uses are not considered). 1150 // This is important because we don't want the root use set to search down 1151 // the reduction chain. 1152 SmallInstructionSet PossibleRedSet; 1153 SmallInstructionSet PossibleRedLastSet; 1154 SmallInstructionSet PossibleRedPHISet; 1155 Reductions.restrictToScale(Scale, PossibleRedSet, 1156 PossibleRedPHISet, PossibleRedLastSet); 1157 1158 // Populate "Uses" with where each instruction is used. 1159 if (!collectUsedInstructions(PossibleRedSet)) 1160 return false; 1161 1162 // Make sure we mark the reduction PHIs as used in all iterations. 1163 for (auto *I : PossibleRedPHISet) { 1164 Uses[I].set(IL_All); 1165 } 1166 1167 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1168 // comment above LoopReroll::isLoopControlIV for more information. 1169 BasicBlock *Header = L->getHeader(); 1170 if (LoopControlIV && LoopControlIV != IV) { 1171 for (auto *U : LoopControlIV->users()) { 1172 Instruction *IVUser = dyn_cast<Instruction>(U); 1173 // IVUser could be loop increment or compare 1174 Uses[IVUser].set(IL_All); 1175 for (auto *UU : IVUser->users()) { 1176 Instruction *UUser = dyn_cast<Instruction>(UU); 1177 // UUser could be compare, PHI or branch 1178 Uses[UUser].set(IL_All); 1179 // Skip SExt 1180 if (isa<SExtInst>(UUser)) { 1181 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1182 Uses[UUser].set(IL_All); 1183 } 1184 // Is UUser a compare instruction? 1185 if (UU->hasOneUse()) { 1186 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1187 if (BI == cast<BranchInst>(Header->getTerminator())) 1188 Uses[BI].set(IL_All); 1189 } 1190 } 1191 } 1192 } 1193 1194 // Make sure all instructions in the loop are in one and only one 1195 // set. 1196 for (auto &KV : Uses) { 1197 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1198 DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1199 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1200 return false; 1201 } 1202 } 1203 1204 DEBUG( 1205 for (auto &KV : Uses) { 1206 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1207 } 1208 ); 1209 1210 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1211 // In addition to regular aliasing information, we need to look for 1212 // instructions from later (future) iterations that have side effects 1213 // preventing us from reordering them past other instructions with side 1214 // effects. 1215 bool FutureSideEffects = false; 1216 AliasSetTracker AST(*AA); 1217 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1218 DenseMap<Value *, Value *> BaseMap; 1219 1220 // Compare iteration Iter to the base. 1221 SmallInstructionSet Visited; 1222 auto BaseIt = nextInstr(0, Uses, Visited); 1223 auto RootIt = nextInstr(Iter, Uses, Visited); 1224 auto LastRootIt = Uses.begin(); 1225 1226 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1227 Instruction *BaseInst = BaseIt->first; 1228 Instruction *RootInst = RootIt->first; 1229 1230 // Skip over the IV or root instructions; only match their users. 1231 bool Continue = false; 1232 if (isBaseInst(BaseInst)) { 1233 Visited.insert(BaseInst); 1234 BaseIt = nextInstr(0, Uses, Visited); 1235 Continue = true; 1236 } 1237 if (isRootInst(RootInst)) { 1238 LastRootIt = RootIt; 1239 Visited.insert(RootInst); 1240 RootIt = nextInstr(Iter, Uses, Visited); 1241 Continue = true; 1242 } 1243 if (Continue) continue; 1244 1245 if (!BaseInst->isSameOperationAs(RootInst)) { 1246 // Last chance saloon. We don't try and solve the full isomorphism 1247 // problem, but try and at least catch the case where two instructions 1248 // *of different types* are round the wrong way. We won't be able to 1249 // efficiently tell, given two ADD instructions, which way around we 1250 // should match them, but given an ADD and a SUB, we can at least infer 1251 // which one is which. 1252 // 1253 // This should allow us to deal with a greater subset of the isomorphism 1254 // problem. It does however change a linear algorithm into a quadratic 1255 // one, so limit the number of probes we do. 1256 auto TryIt = RootIt; 1257 unsigned N = NumToleratedFailedMatches; 1258 while (TryIt != Uses.end() && 1259 !BaseInst->isSameOperationAs(TryIt->first) && 1260 N--) { 1261 ++TryIt; 1262 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1263 } 1264 1265 if (TryIt == Uses.end() || TryIt == RootIt || 1266 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1267 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1268 " vs. " << *RootInst << "\n"); 1269 return false; 1270 } 1271 1272 RootIt = TryIt; 1273 RootInst = TryIt->first; 1274 } 1275 1276 // All instructions between the last root and this root 1277 // may belong to some other iteration. If they belong to a 1278 // future iteration, then they're dangerous to alias with. 1279 // 1280 // Note that because we allow a limited amount of flexibility in the order 1281 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1282 // case we've already checked this set of instructions so we shouldn't 1283 // do anything. 1284 for (; LastRootIt < RootIt; ++LastRootIt) { 1285 Instruction *I = LastRootIt->first; 1286 if (LastRootIt->second.find_first() < (int)Iter) 1287 continue; 1288 if (I->mayWriteToMemory()) 1289 AST.add(I); 1290 // Note: This is specifically guarded by a check on isa<PHINode>, 1291 // which while a valid (somewhat arbitrary) micro-optimization, is 1292 // needed because otherwise isSafeToSpeculativelyExecute returns 1293 // false on PHI nodes. 1294 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && 1295 !isSafeToSpeculativelyExecute(I)) 1296 // Intervening instructions cause side effects. 1297 FutureSideEffects = true; 1298 } 1299 1300 // Make sure that this instruction, which is in the use set of this 1301 // root instruction, does not also belong to the base set or the set of 1302 // some other root instruction. 1303 if (RootIt->second.count() > 1) { 1304 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1305 " vs. " << *RootInst << " (prev. case overlap)\n"); 1306 return false; 1307 } 1308 1309 // Make sure that we don't alias with any instruction in the alias set 1310 // tracker. If we do, then we depend on a future iteration, and we 1311 // can't reroll. 1312 if (RootInst->mayReadFromMemory()) 1313 for (auto &K : AST) { 1314 if (K.aliasesUnknownInst(RootInst, *AA)) { 1315 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1316 " vs. " << *RootInst << " (depends on future store)\n"); 1317 return false; 1318 } 1319 } 1320 1321 // If we've past an instruction from a future iteration that may have 1322 // side effects, and this instruction might also, then we can't reorder 1323 // them, and this matching fails. As an exception, we allow the alias 1324 // set tracker to handle regular (unordered) load/store dependencies. 1325 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && 1326 !isSafeToSpeculativelyExecute(BaseInst)) || 1327 (!isUnorderedLoadStore(RootInst) && 1328 !isSafeToSpeculativelyExecute(RootInst)))) { 1329 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1330 " vs. " << *RootInst << 1331 " (side effects prevent reordering)\n"); 1332 return false; 1333 } 1334 1335 // For instructions that are part of a reduction, if the operation is 1336 // associative, then don't bother matching the operands (because we 1337 // already know that the instructions are isomorphic, and the order 1338 // within the iteration does not matter). For non-associative reductions, 1339 // we do need to match the operands, because we need to reject 1340 // out-of-order instructions within an iteration! 1341 // For example (assume floating-point addition), we need to reject this: 1342 // x += a[i]; x += b[i]; 1343 // x += a[i+1]; x += b[i+1]; 1344 // x += b[i+2]; x += a[i+2]; 1345 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1346 1347 if (!(InReduction && BaseInst->isAssociative())) { 1348 bool Swapped = false, SomeOpMatched = false; 1349 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1350 Value *Op2 = RootInst->getOperand(j); 1351 1352 // If this is part of a reduction (and the operation is not 1353 // associatve), then we match all operands, but not those that are 1354 // part of the reduction. 1355 if (InReduction) 1356 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1357 if (Reductions.isPairInSame(RootInst, Op2I)) 1358 continue; 1359 1360 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1361 if (BMI != BaseMap.end()) { 1362 Op2 = BMI->second; 1363 } else { 1364 for (auto &DRS : RootSets) { 1365 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1366 Op2 = DRS.BaseInst; 1367 break; 1368 } 1369 } 1370 } 1371 1372 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1373 // If we've not already decided to swap the matched operands, and 1374 // we've not already matched our first operand (note that we could 1375 // have skipped matching the first operand because it is part of a 1376 // reduction above), and the instruction is commutative, then try 1377 // the swapped match. 1378 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1379 BaseInst->getOperand(!j) == Op2) { 1380 Swapped = true; 1381 } else { 1382 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1383 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1384 return false; 1385 } 1386 } 1387 1388 SomeOpMatched = true; 1389 } 1390 } 1391 1392 if ((!PossibleRedLastSet.count(BaseInst) && 1393 hasUsesOutsideLoop(BaseInst, L)) || 1394 (!PossibleRedLastSet.count(RootInst) && 1395 hasUsesOutsideLoop(RootInst, L))) { 1396 DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst << 1397 " vs. " << *RootInst << " (uses outside loop)\n"); 1398 return false; 1399 } 1400 1401 Reductions.recordPair(BaseInst, RootInst, Iter); 1402 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1403 1404 LastRootIt = RootIt; 1405 Visited.insert(BaseInst); 1406 Visited.insert(RootInst); 1407 BaseIt = nextInstr(0, Uses, Visited); 1408 RootIt = nextInstr(Iter, Uses, Visited); 1409 } 1410 assert (BaseIt == Uses.end() && RootIt == Uses.end() && 1411 "Mismatched set sizes!"); 1412 } 1413 1414 DEBUG(dbgs() << "LRR: Matched all iteration increments for " << 1415 *IV << "\n"); 1416 1417 return true; 1418 } 1419 1420 void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) { 1421 BasicBlock *Header = L->getHeader(); 1422 // Remove instructions associated with non-base iterations. 1423 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); 1424 J != JE;) { 1425 unsigned I = Uses[&*J].find_first(); 1426 if (I > 0 && I < IL_All) { 1427 DEBUG(dbgs() << "LRR: removing: " << *J << "\n"); 1428 J++->eraseFromParent(); 1429 continue; 1430 } 1431 1432 ++J; 1433 } 1434 1435 bool HasTwoIVs = LoopControlIV && LoopControlIV != IV; 1436 1437 if (HasTwoIVs) { 1438 updateNonLoopCtrlIncr(); 1439 replaceIV(LoopControlIV, LoopControlIV, IterCount); 1440 } else 1441 // We need to create a new induction variable for each different BaseInst. 1442 for (auto &DRS : RootSets) 1443 // Insert the new induction variable. 1444 replaceIV(DRS.BaseInst, IV, IterCount); 1445 1446 SimplifyInstructionsInBlock(Header, TLI); 1447 DeleteDeadPHIs(Header, TLI); 1448 } 1449 1450 // For non-loop-control IVs, we only need to update the last increment 1451 // with right amount, then we are done. 1452 void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() { 1453 const SCEV *NewInc = nullptr; 1454 for (auto *LoopInc : LoopIncs) { 1455 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc); 1456 const SCEVConstant *COp = nullptr; 1457 if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) { 1458 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1459 } else { 1460 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0))); 1461 if (!COp) 1462 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1463 } 1464 1465 assert(COp && "Didn't find constant operand of LoopInc!\n"); 1466 1467 const APInt &AInt = COp->getValue()->getValue(); 1468 const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale); 1469 if (AInt.isNegative()) { 1470 NewInc = SE->getNegativeSCEV(COp); 1471 NewInc = SE->getUDivExpr(NewInc, ScaleSCEV); 1472 NewInc = SE->getNegativeSCEV(NewInc); 1473 } else 1474 NewInc = SE->getUDivExpr(COp, ScaleSCEV); 1475 1476 LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue()); 1477 } 1478 } 1479 1480 void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst, 1481 Instruction *InstIV, 1482 const SCEV *IterCount) { 1483 BasicBlock *Header = L->getHeader(); 1484 int64_t Inc = IVToIncMap[InstIV]; 1485 bool NeedNewIV = InstIV == LoopControlIV; 1486 bool Negative = !NeedNewIV && Inc < 0; 1487 1488 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst)); 1489 const SCEV *Start = RealIVSCEV->getStart(); 1490 1491 if (NeedNewIV) 1492 Start = SE->getConstant(Start->getType(), 0); 1493 1494 const SCEV *SizeOfExpr = nullptr; 1495 const SCEV *IncrExpr = 1496 SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1); 1497 if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) { 1498 Type *ElTy = PTy->getElementType(); 1499 SizeOfExpr = 1500 SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy); 1501 IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr); 1502 } 1503 const SCEV *NewIVSCEV = 1504 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1505 1506 { // Limit the lifetime of SCEVExpander. 1507 const DataLayout &DL = Header->getModule()->getDataLayout(); 1508 SCEVExpander Expander(*SE, DL, "reroll"); 1509 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), 1510 Header->getFirstNonPHIOrDbg()); 1511 1512 for (auto &KV : Uses) 1513 if (KV.second.find_first() == 0) 1514 KV.first->replaceUsesOfWith(Inst, NewIV); 1515 1516 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { 1517 // FIXME: Why do we need this check? 1518 if (Uses[BI].find_first() == IL_All) { 1519 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); 1520 1521 if (NeedNewIV) 1522 ICSCEV = SE->getMulExpr(IterCount, 1523 SE->getConstant(IterCount->getType(), Scale)); 1524 1525 // Iteration count SCEV minus or plus 1 1526 const SCEV *MinusPlus1SCEV = 1527 SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1); 1528 if (Inst->getType()->isPointerTy()) { 1529 assert(SizeOfExpr && "SizeOfExpr is not initialized"); 1530 MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr); 1531 } 1532 1533 const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV); 1534 // Iteration count minus 1 1535 Instruction *InsertPtr = nullptr; 1536 if (isa<SCEVConstant>(ICMinusPlus1SCEV)) { 1537 InsertPtr = BI; 1538 } else { 1539 BasicBlock *Preheader = L->getLoopPreheader(); 1540 if (!Preheader) 1541 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 1542 InsertPtr = Preheader->getTerminator(); 1543 } 1544 1545 if (!isa<PointerType>(NewIV->getType()) && NeedNewIV && 1546 (SE->getTypeSizeInBits(NewIV->getType()) < 1547 SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) { 1548 IRBuilder<> Builder(BI); 1549 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 1550 NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType()); 1551 } 1552 Value *ICMinusPlus1 = Expander.expandCodeFor( 1553 ICMinusPlus1SCEV, NewIV->getType(), InsertPtr); 1554 1555 Value *Cond = 1556 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond"); 1557 BI->setCondition(Cond); 1558 1559 if (BI->getSuccessor(1) != Header) 1560 BI->swapSuccessors(); 1561 } 1562 } 1563 } 1564 } 1565 1566 // Validate the selected reductions. All iterations must have an isomorphic 1567 // part of the reduction chain and, for non-associative reductions, the chain 1568 // entries must appear in order. 1569 bool LoopReroll::ReductionTracker::validateSelected() { 1570 // For a non-associative reduction, the chain entries must appear in order. 1571 for (int i : Reds) { 1572 int PrevIter = 0, BaseCount = 0, Count = 0; 1573 for (Instruction *J : PossibleReds[i]) { 1574 // Note that all instructions in the chain must have been found because 1575 // all instructions in the function must have been assigned to some 1576 // iteration. 1577 int Iter = PossibleRedIter[J]; 1578 if (Iter != PrevIter && Iter != PrevIter + 1 && 1579 !PossibleReds[i].getReducedValue()->isAssociative()) { 1580 DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " << 1581 J << "\n"); 1582 return false; 1583 } 1584 1585 if (Iter != PrevIter) { 1586 if (Count != BaseCount) { 1587 DEBUG(dbgs() << "LRR: Iteration " << PrevIter << 1588 " reduction use count " << Count << 1589 " is not equal to the base use count " << 1590 BaseCount << "\n"); 1591 return false; 1592 } 1593 1594 Count = 0; 1595 } 1596 1597 ++Count; 1598 if (Iter == 0) 1599 ++BaseCount; 1600 1601 PrevIter = Iter; 1602 } 1603 } 1604 1605 return true; 1606 } 1607 1608 // For all selected reductions, remove all parts except those in the first 1609 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1610 // of the first-iteration reduced value (in other words, reroll the selected 1611 // reductions). 1612 void LoopReroll::ReductionTracker::replaceSelected() { 1613 // Fixup reductions to refer to the last instruction associated with the 1614 // first iteration (not the last). 1615 for (int i : Reds) { 1616 int j = 0; 1617 for (int e = PossibleReds[i].size(); j != e; ++j) 1618 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1619 --j; 1620 break; 1621 } 1622 1623 // Replace users with the new end-of-chain value. 1624 SmallInstructionVector Users; 1625 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1626 Users.push_back(cast<Instruction>(U)); 1627 } 1628 1629 for (Instruction *User : Users) 1630 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1631 PossibleReds[i][j]); 1632 } 1633 } 1634 1635 // Reroll the provided loop with respect to the provided induction variable. 1636 // Generally, we're looking for a loop like this: 1637 // 1638 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1639 // f(%iv) 1640 // %iv.1 = add %iv, 1 <-- a root increment 1641 // f(%iv.1) 1642 // %iv.2 = add %iv, 2 <-- a root increment 1643 // f(%iv.2) 1644 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1645 // f(%iv.scale_m_1) 1646 // ... 1647 // %iv.next = add %iv, scale 1648 // %cmp = icmp(%iv, ...) 1649 // br %cmp, header, exit 1650 // 1651 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1652 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1653 // be intermixed with eachother. The restriction imposed by this algorithm is 1654 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1655 // etc. be the same. 1656 // 1657 // First, we collect the use set of %iv, excluding the other increment roots. 1658 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1659 // times, having collected the use set of f(%iv.(i+1)), during which we: 1660 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1661 // the next unmatched instruction in f(%iv.(i+1)). 1662 // - Ensure that both matched instructions don't have any external users 1663 // (with the exception of last-in-chain reduction instructions). 1664 // - Track the (aliasing) write set, and other side effects, of all 1665 // instructions that belong to future iterations that come before the matched 1666 // instructions. If the matched instructions read from that write set, then 1667 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1668 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1669 // if any of these future instructions had side effects (could not be 1670 // speculatively executed), and so do the matched instructions, when we 1671 // cannot reorder those side-effect-producing instructions, and rerolling 1672 // fails. 1673 // 1674 // Finally, we make sure that all loop instructions are either loop increment 1675 // roots, belong to simple latch code, parts of validated reductions, part of 1676 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1677 // have been validated), then we reroll the loop. 1678 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1679 const SCEV *IterCount, 1680 ReductionTracker &Reductions) { 1681 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1682 IVToIncMap, LoopControlIV); 1683 1684 if (!DAGRoots.findRoots()) 1685 return false; 1686 DEBUG(dbgs() << "LRR: Found all root induction increments for: " << 1687 *IV << "\n"); 1688 1689 if (!DAGRoots.validate(Reductions)) 1690 return false; 1691 if (!Reductions.validateSelected()) 1692 return false; 1693 // At this point, we've validated the rerolling, and we're committed to 1694 // making changes! 1695 1696 Reductions.replaceSelected(); 1697 DAGRoots.replace(IterCount); 1698 1699 ++NumRerolledLoops; 1700 return true; 1701 } 1702 1703 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1704 if (skipLoop(L)) 1705 return false; 1706 1707 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1708 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1709 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1710 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1711 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1712 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1713 1714 BasicBlock *Header = L->getHeader(); 1715 DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << 1716 "] Loop %" << Header->getName() << " (" << 1717 L->getNumBlocks() << " block(s))\n"); 1718 1719 // For now, we'll handle only single BB loops. 1720 if (L->getNumBlocks() > 1) 1721 return false; 1722 1723 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1724 return false; 1725 1726 const SCEV *LIBETC = SE->getBackedgeTakenCount(L); 1727 const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType())); 1728 DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1729 DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); 1730 1731 // First, we need to find the induction variable with respect to which we can 1732 // reroll (there may be several possible options). 1733 SmallInstructionVector PossibleIVs; 1734 IVToIncMap.clear(); 1735 LoopControlIV = nullptr; 1736 collectPossibleIVs(L, PossibleIVs); 1737 1738 if (PossibleIVs.empty()) { 1739 DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1740 return false; 1741 } 1742 1743 ReductionTracker Reductions; 1744 collectPossibleReductions(L, Reductions); 1745 bool Changed = false; 1746 1747 // For each possible IV, collect the associated possible set of 'root' nodes 1748 // (i+1, i+2, etc.). 1749 for (Instruction *PossibleIV : PossibleIVs) 1750 if (reroll(PossibleIV, L, Header, IterCount, Reductions)) { 1751 Changed = true; 1752 break; 1753 } 1754 DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1755 1756 // Trip count of L has changed so SE must be re-evaluated. 1757 if (Changed) 1758 SE->forgetLoop(L); 1759 1760 return Changed; 1761 } 1762