1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a simple loop reroller. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AliasSetTracker.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpander.h" 29 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils.h" 56 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 57 #include "llvm/Transforms/Utils/LoopUtils.h" 58 #include <cassert> 59 #include <cstddef> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <iterator> 63 #include <map> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "loop-reroll" 69 70 STATISTIC(NumRerolledLoops, "Number of rerolled loops"); 71 72 static cl::opt<unsigned> 73 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, 74 cl::desc("The maximum increment for loop rerolling")); 75 76 static cl::opt<unsigned> 77 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), 78 cl::Hidden, 79 cl::desc("The maximum number of failures to tolerate" 80 " during fuzzy matching. (default: 400)")); 81 82 // This loop re-rolling transformation aims to transform loops like this: 83 // 84 // int foo(int a); 85 // void bar(int *x) { 86 // for (int i = 0; i < 500; i += 3) { 87 // foo(i); 88 // foo(i+1); 89 // foo(i+2); 90 // } 91 // } 92 // 93 // into a loop like this: 94 // 95 // void bar(int *x) { 96 // for (int i = 0; i < 500; ++i) 97 // foo(i); 98 // } 99 // 100 // It does this by looking for loops that, besides the latch code, are composed 101 // of isomorphic DAGs of instructions, with each DAG rooted at some increment 102 // to the induction variable, and where each DAG is isomorphic to the DAG 103 // rooted at the induction variable (excepting the sub-DAGs which root the 104 // other induction-variable increments). In other words, we're looking for loop 105 // bodies of the form: 106 // 107 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 108 // f(%iv) 109 // %iv.1 = add %iv, 1 <-- a root increment 110 // f(%iv.1) 111 // %iv.2 = add %iv, 2 <-- a root increment 112 // f(%iv.2) 113 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 114 // f(%iv.scale_m_1) 115 // ... 116 // %iv.next = add %iv, scale 117 // %cmp = icmp(%iv, ...) 118 // br %cmp, header, exit 119 // 120 // where each f(i) is a set of instructions that, collectively, are a function 121 // only of i (and other loop-invariant values). 122 // 123 // As a special case, we can also reroll loops like this: 124 // 125 // int foo(int); 126 // void bar(int *x) { 127 // for (int i = 0; i < 500; ++i) { 128 // x[3*i] = foo(0); 129 // x[3*i+1] = foo(0); 130 // x[3*i+2] = foo(0); 131 // } 132 // } 133 // 134 // into this: 135 // 136 // void bar(int *x) { 137 // for (int i = 0; i < 1500; ++i) 138 // x[i] = foo(0); 139 // } 140 // 141 // in which case, we're looking for inputs like this: 142 // 143 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 144 // %scaled.iv = mul %iv, scale 145 // f(%scaled.iv) 146 // %scaled.iv.1 = add %scaled.iv, 1 147 // f(%scaled.iv.1) 148 // %scaled.iv.2 = add %scaled.iv, 2 149 // f(%scaled.iv.2) 150 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 151 // f(%scaled.iv.scale_m_1) 152 // ... 153 // %iv.next = add %iv, 1 154 // %cmp = icmp(%iv, ...) 155 // br %cmp, header, exit 156 157 namespace { 158 159 enum IterationLimits { 160 /// The maximum number of iterations that we'll try and reroll. 161 IL_MaxRerollIterations = 32, 162 /// The bitvector index used by loop induction variables and other 163 /// instructions that belong to all iterations. 164 IL_All, 165 IL_End 166 }; 167 168 class LoopReroll : public LoopPass { 169 public: 170 static char ID; // Pass ID, replacement for typeid 171 172 LoopReroll() : LoopPass(ID) { 173 initializeLoopRerollPass(*PassRegistry::getPassRegistry()); 174 } 175 176 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 177 178 void getAnalysisUsage(AnalysisUsage &AU) const override { 179 AU.addRequired<TargetLibraryInfoWrapperPass>(); 180 getLoopAnalysisUsage(AU); 181 } 182 183 protected: 184 AliasAnalysis *AA; 185 LoopInfo *LI; 186 ScalarEvolution *SE; 187 TargetLibraryInfo *TLI; 188 DominatorTree *DT; 189 bool PreserveLCSSA; 190 191 using SmallInstructionVector = SmallVector<Instruction *, 16>; 192 using SmallInstructionSet = SmallSet<Instruction *, 16>; 193 194 // Map between induction variable and its increment 195 DenseMap<Instruction *, int64_t> IVToIncMap; 196 197 // For loop with multiple induction variable, remember the one used only to 198 // control the loop. 199 Instruction *LoopControlIV; 200 201 // A chain of isomorphic instructions, identified by a single-use PHI 202 // representing a reduction. Only the last value may be used outside the 203 // loop. 204 struct SimpleLoopReduction { 205 SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) { 206 assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); 207 add(L); 208 } 209 210 bool valid() const { 211 return Valid; 212 } 213 214 Instruction *getPHI() const { 215 assert(Valid && "Using invalid reduction"); 216 return Instructions.front(); 217 } 218 219 Instruction *getReducedValue() const { 220 assert(Valid && "Using invalid reduction"); 221 return Instructions.back(); 222 } 223 224 Instruction *get(size_t i) const { 225 assert(Valid && "Using invalid reduction"); 226 return Instructions[i+1]; 227 } 228 229 Instruction *operator [] (size_t i) const { return get(i); } 230 231 // The size, ignoring the initial PHI. 232 size_t size() const { 233 assert(Valid && "Using invalid reduction"); 234 return Instructions.size()-1; 235 } 236 237 using iterator = SmallInstructionVector::iterator; 238 using const_iterator = SmallInstructionVector::const_iterator; 239 240 iterator begin() { 241 assert(Valid && "Using invalid reduction"); 242 return std::next(Instructions.begin()); 243 } 244 245 const_iterator begin() const { 246 assert(Valid && "Using invalid reduction"); 247 return std::next(Instructions.begin()); 248 } 249 250 iterator end() { return Instructions.end(); } 251 const_iterator end() const { return Instructions.end(); } 252 253 protected: 254 bool Valid = false; 255 SmallInstructionVector Instructions; 256 257 void add(Loop *L); 258 }; 259 260 // The set of all reductions, and state tracking of possible reductions 261 // during loop instruction processing. 262 struct ReductionTracker { 263 using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>; 264 265 // Add a new possible reduction. 266 void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } 267 268 // Setup to track possible reductions corresponding to the provided 269 // rerolling scale. Only reductions with a number of non-PHI instructions 270 // that is divisible by the scale are considered. Three instructions sets 271 // are filled in: 272 // - A set of all possible instructions in eligible reductions. 273 // - A set of all PHIs in eligible reductions 274 // - A set of all reduced values (last instructions) in eligible 275 // reductions. 276 void restrictToScale(uint64_t Scale, 277 SmallInstructionSet &PossibleRedSet, 278 SmallInstructionSet &PossibleRedPHISet, 279 SmallInstructionSet &PossibleRedLastSet) { 280 PossibleRedIdx.clear(); 281 PossibleRedIter.clear(); 282 Reds.clear(); 283 284 for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) 285 if (PossibleReds[i].size() % Scale == 0) { 286 PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); 287 PossibleRedPHISet.insert(PossibleReds[i].getPHI()); 288 289 PossibleRedSet.insert(PossibleReds[i].getPHI()); 290 PossibleRedIdx[PossibleReds[i].getPHI()] = i; 291 for (Instruction *J : PossibleReds[i]) { 292 PossibleRedSet.insert(J); 293 PossibleRedIdx[J] = i; 294 } 295 } 296 } 297 298 // The functions below are used while processing the loop instructions. 299 300 // Are the two instructions both from reductions, and furthermore, from 301 // the same reduction? 302 bool isPairInSame(Instruction *J1, Instruction *J2) { 303 DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); 304 if (J1I != PossibleRedIdx.end()) { 305 DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); 306 if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) 307 return true; 308 } 309 310 return false; 311 } 312 313 // The two provided instructions, the first from the base iteration, and 314 // the second from iteration i, form a matched pair. If these are part of 315 // a reduction, record that fact. 316 void recordPair(Instruction *J1, Instruction *J2, unsigned i) { 317 if (PossibleRedIdx.count(J1)) { 318 assert(PossibleRedIdx.count(J2) && 319 "Recording reduction vs. non-reduction instruction?"); 320 321 PossibleRedIter[J1] = 0; 322 PossibleRedIter[J2] = i; 323 324 int Idx = PossibleRedIdx[J1]; 325 assert(Idx == PossibleRedIdx[J2] && 326 "Recording pair from different reductions?"); 327 Reds.insert(Idx); 328 } 329 } 330 331 // The functions below can be called after we've finished processing all 332 // instructions in the loop, and we know which reductions were selected. 333 334 bool validateSelected(); 335 void replaceSelected(); 336 337 protected: 338 // The vector of all possible reductions (for any scale). 339 SmallReductionVector PossibleReds; 340 341 DenseMap<Instruction *, int> PossibleRedIdx; 342 DenseMap<Instruction *, int> PossibleRedIter; 343 DenseSet<int> Reds; 344 }; 345 346 // A DAGRootSet models an induction variable being used in a rerollable 347 // loop. For example, 348 // 349 // x[i*3+0] = y1 350 // x[i*3+1] = y2 351 // x[i*3+2] = y3 352 // 353 // Base instruction -> i*3 354 // +---+----+ 355 // / | \ 356 // ST[y1] +1 +2 <-- Roots 357 // | | 358 // ST[y2] ST[y3] 359 // 360 // There may be multiple DAGRoots, for example: 361 // 362 // x[i*2+0] = ... (1) 363 // x[i*2+1] = ... (1) 364 // x[i*2+4] = ... (2) 365 // x[i*2+5] = ... (2) 366 // x[(i+1234)*2+5678] = ... (3) 367 // x[(i+1234)*2+5679] = ... (3) 368 // 369 // The loop will be rerolled by adding a new loop induction variable, 370 // one for the Base instruction in each DAGRootSet. 371 // 372 struct DAGRootSet { 373 Instruction *BaseInst; 374 SmallInstructionVector Roots; 375 376 // The instructions between IV and BaseInst (but not including BaseInst). 377 SmallInstructionSet SubsumedInsts; 378 }; 379 380 // The set of all DAG roots, and state tracking of all roots 381 // for a particular induction variable. 382 struct DAGRootTracker { 383 DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, 384 ScalarEvolution *SE, AliasAnalysis *AA, 385 TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, 386 bool PreserveLCSSA, 387 DenseMap<Instruction *, int64_t> &IncrMap, 388 Instruction *LoopCtrlIV) 389 : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), 390 PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), 391 LoopControlIV(LoopCtrlIV) {} 392 393 /// Stage 1: Find all the DAG roots for the induction variable. 394 bool findRoots(); 395 396 /// Stage 2: Validate if the found roots are valid. 397 bool validate(ReductionTracker &Reductions); 398 399 /// Stage 3: Assuming validate() returned true, perform the 400 /// replacement. 401 /// @param IterCount The maximum iteration count of L. 402 void replace(const SCEV *IterCount); 403 404 protected: 405 using UsesTy = MapVector<Instruction *, BitVector>; 406 407 void findRootsRecursive(Instruction *IVU, 408 SmallInstructionSet SubsumedInsts); 409 bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); 410 bool collectPossibleRoots(Instruction *Base, 411 std::map<int64_t,Instruction*> &Roots); 412 bool validateRootSet(DAGRootSet &DRS); 413 414 bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); 415 void collectInLoopUserSet(const SmallInstructionVector &Roots, 416 const SmallInstructionSet &Exclude, 417 const SmallInstructionSet &Final, 418 DenseSet<Instruction *> &Users); 419 void collectInLoopUserSet(Instruction *Root, 420 const SmallInstructionSet &Exclude, 421 const SmallInstructionSet &Final, 422 DenseSet<Instruction *> &Users); 423 424 UsesTy::iterator nextInstr(int Val, UsesTy &In, 425 const SmallInstructionSet &Exclude, 426 UsesTy::iterator *StartI=nullptr); 427 bool isBaseInst(Instruction *I); 428 bool isRootInst(Instruction *I); 429 bool instrDependsOn(Instruction *I, 430 UsesTy::iterator Start, 431 UsesTy::iterator End); 432 void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount); 433 void updateNonLoopCtrlIncr(); 434 435 LoopReroll *Parent; 436 437 // Members of Parent, replicated here for brevity. 438 Loop *L; 439 ScalarEvolution *SE; 440 AliasAnalysis *AA; 441 TargetLibraryInfo *TLI; 442 DominatorTree *DT; 443 LoopInfo *LI; 444 bool PreserveLCSSA; 445 446 // The loop induction variable. 447 Instruction *IV; 448 449 // Loop step amount. 450 int64_t Inc; 451 452 // Loop reroll count; if Inc == 1, this records the scaling applied 453 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; 454 // If Inc is not 1, Scale = Inc. 455 uint64_t Scale; 456 457 // The roots themselves. 458 SmallVector<DAGRootSet,16> RootSets; 459 460 // All increment instructions for IV. 461 SmallInstructionVector LoopIncs; 462 463 // Map of all instructions in the loop (in order) to the iterations 464 // they are used in (or specially, IL_All for instructions 465 // used in the loop increment mechanism). 466 UsesTy Uses; 467 468 // Map between induction variable and its increment 469 DenseMap<Instruction *, int64_t> &IVToIncMap; 470 471 Instruction *LoopControlIV; 472 }; 473 474 // Check if it is a compare-like instruction whose user is a branch 475 bool isCompareUsedByBranch(Instruction *I) { 476 auto *TI = I->getParent()->getTerminator(); 477 if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) 478 return false; 479 return I->hasOneUse() && TI->getOperand(0) == I; 480 }; 481 482 bool isLoopControlIV(Loop *L, Instruction *IV); 483 void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); 484 void collectPossibleReductions(Loop *L, 485 ReductionTracker &Reductions); 486 bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, 487 ReductionTracker &Reductions); 488 }; 489 490 } // end anonymous namespace 491 492 char LoopReroll::ID = 0; 493 494 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) 495 INITIALIZE_PASS_DEPENDENCY(LoopPass) 496 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 497 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) 498 499 Pass *llvm::createLoopRerollPass() { 500 return new LoopReroll; 501 } 502 503 // Returns true if the provided instruction is used outside the given loop. 504 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in 505 // non-loop blocks to be outside the loop. 506 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { 507 for (User *U : I->users()) { 508 if (!L->contains(cast<Instruction>(U))) 509 return true; 510 } 511 return false; 512 } 513 514 static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE, 515 const SCEV *SCEVExpr, 516 Instruction &IV) { 517 const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr); 518 519 // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)), 520 // Return c1. 521 if (!MulSCEV && IV.getType()->isPointerTy()) 522 if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) { 523 const PointerType *PTy = cast<PointerType>(IV.getType()); 524 Type *ElTy = PTy->getElementType(); 525 const SCEV *SizeOfExpr = 526 SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy); 527 if (IncSCEV->getValue()->getValue().isNegative()) { 528 const SCEV *NewSCEV = 529 SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr); 530 return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV)); 531 } else { 532 return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr)); 533 } 534 } 535 536 if (!MulSCEV) 537 return nullptr; 538 539 // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant, 540 // Return c. 541 const SCEVConstant *CIncSCEV = nullptr; 542 for (const SCEV *Operand : MulSCEV->operands()) { 543 if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) { 544 CIncSCEV = Constant; 545 } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) { 546 Type *AllocTy; 547 if (!Unknown->isSizeOf(AllocTy)) 548 break; 549 } else { 550 return nullptr; 551 } 552 } 553 return CIncSCEV; 554 } 555 556 // Check if an IV is only used to control the loop. There are two cases: 557 // 1. It only has one use which is loop increment, and the increment is only 558 // used by comparison and the PHI (could has sext with nsw in between), and the 559 // comparison is only used by branch. 560 // 2. It is used by loop increment and the comparison, the loop increment is 561 // only used by the PHI, and the comparison is used only by the branch. 562 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { 563 unsigned IVUses = IV->getNumUses(); 564 if (IVUses != 2 && IVUses != 1) 565 return false; 566 567 for (auto *User : IV->users()) { 568 int32_t IncOrCmpUses = User->getNumUses(); 569 bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); 570 571 // User can only have one or two uses. 572 if (IncOrCmpUses != 2 && IncOrCmpUses != 1) 573 return false; 574 575 // Case 1 576 if (IVUses == 1) { 577 // The only user must be the loop increment. 578 // The loop increment must have two uses. 579 if (IsCompInst || IncOrCmpUses != 2) 580 return false; 581 } 582 583 // Case 2 584 if (IVUses == 2 && IncOrCmpUses != 1) 585 return false; 586 587 // The users of the IV must be a binary operation or a comparison 588 if (auto *BO = dyn_cast<BinaryOperator>(User)) { 589 if (BO->getOpcode() == Instruction::Add) { 590 // Loop Increment 591 // User of Loop Increment should be either PHI or CMP 592 for (auto *UU : User->users()) { 593 if (PHINode *PN = dyn_cast<PHINode>(UU)) { 594 if (PN != IV) 595 return false; 596 } 597 // Must be a CMP or an ext (of a value with nsw) then CMP 598 else { 599 Instruction *UUser = dyn_cast<Instruction>(UU); 600 // Skip SExt if we are extending an nsw value 601 // TODO: Allow ZExt too 602 if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() && 603 isa<SExtInst>(UUser)) 604 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 605 if (!isCompareUsedByBranch(UUser)) 606 return false; 607 } 608 } 609 } else 610 return false; 611 // Compare : can only have one use, and must be branch 612 } else if (!IsCompInst) 613 return false; 614 } 615 return true; 616 } 617 618 // Collect the list of loop induction variables with respect to which it might 619 // be possible to reroll the loop. 620 void LoopReroll::collectPossibleIVs(Loop *L, 621 SmallInstructionVector &PossibleIVs) { 622 BasicBlock *Header = L->getHeader(); 623 for (BasicBlock::iterator I = Header->begin(), 624 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 625 if (!isa<PHINode>(I)) 626 continue; 627 if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) 628 continue; 629 630 if (const SCEVAddRecExpr *PHISCEV = 631 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { 632 if (PHISCEV->getLoop() != L) 633 continue; 634 if (!PHISCEV->isAffine()) 635 continue; 636 const SCEVConstant *IncSCEV = nullptr; 637 if (I->getType()->isPointerTy()) 638 IncSCEV = 639 getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I); 640 else 641 IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); 642 if (IncSCEV) { 643 const APInt &AInt = IncSCEV->getValue()->getValue().abs(); 644 if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc)) 645 continue; 646 IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); 647 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV 648 << "\n"); 649 650 if (isLoopControlIV(L, &*I)) { 651 assert(!LoopControlIV && "Found two loop control only IV"); 652 LoopControlIV = &(*I); 653 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I 654 << " = " << *PHISCEV << "\n"); 655 } else 656 PossibleIVs.push_back(&*I); 657 } 658 } 659 } 660 } 661 662 // Add the remainder of the reduction-variable chain to the instruction vector 663 // (the initial PHINode has already been added). If successful, the object is 664 // marked as valid. 665 void LoopReroll::SimpleLoopReduction::add(Loop *L) { 666 assert(!Valid && "Cannot add to an already-valid chain"); 667 668 // The reduction variable must be a chain of single-use instructions 669 // (including the PHI), except for the last value (which is used by the PHI 670 // and also outside the loop). 671 Instruction *C = Instructions.front(); 672 if (C->user_empty()) 673 return; 674 675 do { 676 C = cast<Instruction>(*C->user_begin()); 677 if (C->hasOneUse()) { 678 if (!C->isBinaryOp()) 679 return; 680 681 if (!(isa<PHINode>(Instructions.back()) || 682 C->isSameOperationAs(Instructions.back()))) 683 return; 684 685 Instructions.push_back(C); 686 } 687 } while (C->hasOneUse()); 688 689 if (Instructions.size() < 2 || 690 !C->isSameOperationAs(Instructions.back()) || 691 C->use_empty()) 692 return; 693 694 // C is now the (potential) last instruction in the reduction chain. 695 for (User *U : C->users()) { 696 // The only in-loop user can be the initial PHI. 697 if (L->contains(cast<Instruction>(U))) 698 if (cast<Instruction>(U) != Instructions.front()) 699 return; 700 } 701 702 Instructions.push_back(C); 703 Valid = true; 704 } 705 706 // Collect the vector of possible reduction variables. 707 void LoopReroll::collectPossibleReductions(Loop *L, 708 ReductionTracker &Reductions) { 709 BasicBlock *Header = L->getHeader(); 710 for (BasicBlock::iterator I = Header->begin(), 711 IE = Header->getFirstInsertionPt(); I != IE; ++I) { 712 if (!isa<PHINode>(I)) 713 continue; 714 if (!I->getType()->isSingleValueType()) 715 continue; 716 717 SimpleLoopReduction SLR(&*I, L); 718 if (!SLR.valid()) 719 continue; 720 721 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " 722 << SLR.size() << " chained instructions)\n"); 723 Reductions.addSLR(SLR); 724 } 725 } 726 727 // Collect the set of all users of the provided root instruction. This set of 728 // users contains not only the direct users of the root instruction, but also 729 // all users of those users, and so on. There are two exceptions: 730 // 731 // 1. Instructions in the set of excluded instructions are never added to the 732 // use set (even if they are users). This is used, for example, to exclude 733 // including root increments in the use set of the primary IV. 734 // 735 // 2. Instructions in the set of final instructions are added to the use set 736 // if they are users, but their users are not added. This is used, for 737 // example, to prevent a reduction update from forcing all later reduction 738 // updates into the use set. 739 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 740 Instruction *Root, const SmallInstructionSet &Exclude, 741 const SmallInstructionSet &Final, 742 DenseSet<Instruction *> &Users) { 743 SmallInstructionVector Queue(1, Root); 744 while (!Queue.empty()) { 745 Instruction *I = Queue.pop_back_val(); 746 if (!Users.insert(I).second) 747 continue; 748 749 if (!Final.count(I)) 750 for (Use &U : I->uses()) { 751 Instruction *User = cast<Instruction>(U.getUser()); 752 if (PHINode *PN = dyn_cast<PHINode>(User)) { 753 // Ignore "wrap-around" uses to PHIs of this loop's header. 754 if (PN->getIncomingBlock(U) == L->getHeader()) 755 continue; 756 } 757 758 if (L->contains(User) && !Exclude.count(User)) { 759 Queue.push_back(User); 760 } 761 } 762 763 // We also want to collect single-user "feeder" values. 764 for (User::op_iterator OI = I->op_begin(), 765 OIE = I->op_end(); OI != OIE; ++OI) { 766 if (Instruction *Op = dyn_cast<Instruction>(*OI)) 767 if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && 768 !Final.count(Op)) 769 Queue.push_back(Op); 770 } 771 } 772 } 773 774 // Collect all of the users of all of the provided root instructions (combined 775 // into a single set). 776 void LoopReroll::DAGRootTracker::collectInLoopUserSet( 777 const SmallInstructionVector &Roots, 778 const SmallInstructionSet &Exclude, 779 const SmallInstructionSet &Final, 780 DenseSet<Instruction *> &Users) { 781 for (Instruction *Root : Roots) 782 collectInLoopUserSet(Root, Exclude, Final, Users); 783 } 784 785 static bool isUnorderedLoadStore(Instruction *I) { 786 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 787 return LI->isUnordered(); 788 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 789 return SI->isUnordered(); 790 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) 791 return !MI->isVolatile(); 792 return false; 793 } 794 795 /// Return true if IVU is a "simple" arithmetic operation. 796 /// This is used for narrowing the search space for DAGRoots; only arithmetic 797 /// and GEPs can be part of a DAGRoot. 798 static bool isSimpleArithmeticOp(User *IVU) { 799 if (Instruction *I = dyn_cast<Instruction>(IVU)) { 800 switch (I->getOpcode()) { 801 default: return false; 802 case Instruction::Add: 803 case Instruction::Sub: 804 case Instruction::Mul: 805 case Instruction::Shl: 806 case Instruction::AShr: 807 case Instruction::LShr: 808 case Instruction::GetElementPtr: 809 case Instruction::Trunc: 810 case Instruction::ZExt: 811 case Instruction::SExt: 812 return true; 813 } 814 } 815 return false; 816 } 817 818 static bool isLoopIncrement(User *U, Instruction *IV) { 819 BinaryOperator *BO = dyn_cast<BinaryOperator>(U); 820 821 if ((BO && BO->getOpcode() != Instruction::Add) || 822 (!BO && !isa<GetElementPtrInst>(U))) 823 return false; 824 825 for (auto *UU : U->users()) { 826 PHINode *PN = dyn_cast<PHINode>(UU); 827 if (PN && PN == IV) 828 return true; 829 } 830 return false; 831 } 832 833 bool LoopReroll::DAGRootTracker:: 834 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { 835 SmallInstructionVector BaseUsers; 836 837 for (auto *I : Base->users()) { 838 ConstantInt *CI = nullptr; 839 840 if (isLoopIncrement(I, IV)) { 841 LoopIncs.push_back(cast<Instruction>(I)); 842 continue; 843 } 844 845 // The root nodes must be either GEPs, ORs or ADDs. 846 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 847 if (BO->getOpcode() == Instruction::Add || 848 BO->getOpcode() == Instruction::Or) 849 CI = dyn_cast<ConstantInt>(BO->getOperand(1)); 850 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 851 Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); 852 CI = dyn_cast<ConstantInt>(LastOperand); 853 } 854 855 if (!CI) { 856 if (Instruction *II = dyn_cast<Instruction>(I)) { 857 BaseUsers.push_back(II); 858 continue; 859 } else { 860 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I 861 << "\n"); 862 return false; 863 } 864 } 865 866 int64_t V = std::abs(CI->getValue().getSExtValue()); 867 if (Roots.find(V) != Roots.end()) 868 // No duplicates, please. 869 return false; 870 871 Roots[V] = cast<Instruction>(I); 872 } 873 874 // Make sure we have at least two roots. 875 if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) 876 return false; 877 878 // If we found non-loop-inc, non-root users of Base, assume they are 879 // for the zeroth root index. This is because "add %a, 0" gets optimized 880 // away. 881 if (BaseUsers.size()) { 882 if (Roots.find(0) != Roots.end()) { 883 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); 884 return false; 885 } 886 Roots[0] = Base; 887 } 888 889 // Calculate the number of users of the base, or lowest indexed, iteration. 890 unsigned NumBaseUses = BaseUsers.size(); 891 if (NumBaseUses == 0) 892 NumBaseUses = Roots.begin()->second->getNumUses(); 893 894 // Check that every node has the same number of users. 895 for (auto &KV : Roots) { 896 if (KV.first == 0) 897 continue; 898 if (!KV.second->hasNUses(NumBaseUses)) { 899 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " 900 << "#Base=" << NumBaseUses 901 << ", #Root=" << KV.second->getNumUses() << "\n"); 902 return false; 903 } 904 } 905 906 return true; 907 } 908 909 void LoopReroll::DAGRootTracker:: 910 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { 911 // Does the user look like it could be part of a root set? 912 // All its users must be simple arithmetic ops. 913 if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1)) 914 return; 915 916 if (I != IV && findRootsBase(I, SubsumedInsts)) 917 return; 918 919 SubsumedInsts.insert(I); 920 921 for (User *V : I->users()) { 922 Instruction *I = cast<Instruction>(V); 923 if (is_contained(LoopIncs, I)) 924 continue; 925 926 if (!isSimpleArithmeticOp(I)) 927 continue; 928 929 // The recursive call makes a copy of SubsumedInsts. 930 findRootsRecursive(I, SubsumedInsts); 931 } 932 } 933 934 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { 935 if (DRS.Roots.empty()) 936 return false; 937 938 // Consider a DAGRootSet with N-1 roots (so N different values including 939 // BaseInst). 940 // Define d = Roots[0] - BaseInst, which should be the same as 941 // Roots[I] - Roots[I-1] for all I in [1..N). 942 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the 943 // loop iteration J. 944 // 945 // Now, For the loop iterations to be consecutive: 946 // D = d * N 947 const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); 948 if (!ADR) 949 return false; 950 unsigned N = DRS.Roots.size() + 1; 951 const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); 952 const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); 953 if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) 954 return false; 955 956 return true; 957 } 958 959 bool LoopReroll::DAGRootTracker:: 960 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { 961 // The base of a RootSet must be an AddRec, so it can be erased. 962 const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); 963 if (!IVU_ADR || IVU_ADR->getLoop() != L) 964 return false; 965 966 std::map<int64_t, Instruction*> V; 967 if (!collectPossibleRoots(IVU, V)) 968 return false; 969 970 // If we didn't get a root for index zero, then IVU must be 971 // subsumed. 972 if (V.find(0) == V.end()) 973 SubsumedInsts.insert(IVU); 974 975 // Partition the vector into monotonically increasing indexes. 976 DAGRootSet DRS; 977 DRS.BaseInst = nullptr; 978 979 SmallVector<DAGRootSet, 16> PotentialRootSets; 980 981 for (auto &KV : V) { 982 if (!DRS.BaseInst) { 983 DRS.BaseInst = KV.second; 984 DRS.SubsumedInsts = SubsumedInsts; 985 } else if (DRS.Roots.empty()) { 986 DRS.Roots.push_back(KV.second); 987 } else if (V.find(KV.first - 1) != V.end()) { 988 DRS.Roots.push_back(KV.second); 989 } else { 990 // Linear sequence terminated. 991 if (!validateRootSet(DRS)) 992 return false; 993 994 // Construct a new DAGRootSet with the next sequence. 995 PotentialRootSets.push_back(DRS); 996 DRS.BaseInst = KV.second; 997 DRS.Roots.clear(); 998 } 999 } 1000 1001 if (!validateRootSet(DRS)) 1002 return false; 1003 1004 PotentialRootSets.push_back(DRS); 1005 1006 RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); 1007 1008 return true; 1009 } 1010 1011 bool LoopReroll::DAGRootTracker::findRoots() { 1012 Inc = IVToIncMap[IV]; 1013 1014 assert(RootSets.empty() && "Unclean state!"); 1015 if (std::abs(Inc) == 1) { 1016 for (auto *IVU : IV->users()) { 1017 if (isLoopIncrement(IVU, IV)) 1018 LoopIncs.push_back(cast<Instruction>(IVU)); 1019 } 1020 findRootsRecursive(IV, SmallInstructionSet()); 1021 LoopIncs.push_back(IV); 1022 } else { 1023 if (!findRootsBase(IV, SmallInstructionSet())) 1024 return false; 1025 } 1026 1027 // Ensure all sets have the same size. 1028 if (RootSets.empty()) { 1029 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); 1030 return false; 1031 } 1032 for (auto &V : RootSets) { 1033 if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { 1034 LLVM_DEBUG( 1035 dbgs() 1036 << "LRR: Aborting because not all root sets have the same size\n"); 1037 return false; 1038 } 1039 } 1040 1041 Scale = RootSets[0].Roots.size() + 1; 1042 1043 if (Scale > IL_MaxRerollIterations) { 1044 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " 1045 << "#Found=" << Scale 1046 << ", #Max=" << IL_MaxRerollIterations << "\n"); 1047 return false; 1048 } 1049 1050 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale 1051 << "\n"); 1052 1053 return true; 1054 } 1055 1056 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { 1057 // Populate the MapVector with all instructions in the block, in order first, 1058 // so we can iterate over the contents later in perfect order. 1059 for (auto &I : *L->getHeader()) { 1060 Uses[&I].resize(IL_End); 1061 } 1062 1063 SmallInstructionSet Exclude; 1064 for (auto &DRS : RootSets) { 1065 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1066 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1067 Exclude.insert(DRS.BaseInst); 1068 } 1069 Exclude.insert(LoopIncs.begin(), LoopIncs.end()); 1070 1071 for (auto &DRS : RootSets) { 1072 DenseSet<Instruction*> VBase; 1073 collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); 1074 for (auto *I : VBase) { 1075 Uses[I].set(0); 1076 } 1077 1078 unsigned Idx = 1; 1079 for (auto *Root : DRS.Roots) { 1080 DenseSet<Instruction*> V; 1081 collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); 1082 1083 // While we're here, check the use sets are the same size. 1084 if (V.size() != VBase.size()) { 1085 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); 1086 return false; 1087 } 1088 1089 for (auto *I : V) { 1090 Uses[I].set(Idx); 1091 } 1092 ++Idx; 1093 } 1094 1095 // Make sure our subsumed instructions are remembered too. 1096 for (auto *I : DRS.SubsumedInsts) { 1097 Uses[I].set(IL_All); 1098 } 1099 } 1100 1101 // Make sure the loop increments are also accounted for. 1102 1103 Exclude.clear(); 1104 for (auto &DRS : RootSets) { 1105 Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); 1106 Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); 1107 Exclude.insert(DRS.BaseInst); 1108 } 1109 1110 DenseSet<Instruction*> V; 1111 collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); 1112 for (auto *I : V) { 1113 Uses[I].set(IL_All); 1114 } 1115 1116 return true; 1117 } 1118 1119 /// Get the next instruction in "In" that is a member of set Val. 1120 /// Start searching from StartI, and do not return anything in Exclude. 1121 /// If StartI is not given, start from In.begin(). 1122 LoopReroll::DAGRootTracker::UsesTy::iterator 1123 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, 1124 const SmallInstructionSet &Exclude, 1125 UsesTy::iterator *StartI) { 1126 UsesTy::iterator I = StartI ? *StartI : In.begin(); 1127 while (I != In.end() && (I->second.test(Val) == 0 || 1128 Exclude.count(I->first) != 0)) 1129 ++I; 1130 return I; 1131 } 1132 1133 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { 1134 for (auto &DRS : RootSets) { 1135 if (DRS.BaseInst == I) 1136 return true; 1137 } 1138 return false; 1139 } 1140 1141 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { 1142 for (auto &DRS : RootSets) { 1143 if (is_contained(DRS.Roots, I)) 1144 return true; 1145 } 1146 return false; 1147 } 1148 1149 /// Return true if instruction I depends on any instruction between 1150 /// Start and End. 1151 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, 1152 UsesTy::iterator Start, 1153 UsesTy::iterator End) { 1154 for (auto *U : I->users()) { 1155 for (auto It = Start; It != End; ++It) 1156 if (U == It->first) 1157 return true; 1158 } 1159 return false; 1160 } 1161 1162 static bool isIgnorableInst(const Instruction *I) { 1163 if (isa<DbgInfoIntrinsic>(I)) 1164 return true; 1165 const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); 1166 if (!II) 1167 return false; 1168 switch (II->getIntrinsicID()) { 1169 default: 1170 return false; 1171 case Intrinsic::annotation: 1172 case Intrinsic::ptr_annotation: 1173 case Intrinsic::var_annotation: 1174 // TODO: the following intrinsics may also be whitelisted: 1175 // lifetime_start, lifetime_end, invariant_start, invariant_end 1176 return true; 1177 } 1178 return false; 1179 } 1180 1181 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { 1182 // We now need to check for equivalence of the use graph of each root with 1183 // that of the primary induction variable (excluding the roots). Our goal 1184 // here is not to solve the full graph isomorphism problem, but rather to 1185 // catch common cases without a lot of work. As a result, we will assume 1186 // that the relative order of the instructions in each unrolled iteration 1187 // is the same (although we will not make an assumption about how the 1188 // different iterations are intermixed). Note that while the order must be 1189 // the same, the instructions may not be in the same basic block. 1190 1191 // An array of just the possible reductions for this scale factor. When we 1192 // collect the set of all users of some root instructions, these reduction 1193 // instructions are treated as 'final' (their uses are not considered). 1194 // This is important because we don't want the root use set to search down 1195 // the reduction chain. 1196 SmallInstructionSet PossibleRedSet; 1197 SmallInstructionSet PossibleRedLastSet; 1198 SmallInstructionSet PossibleRedPHISet; 1199 Reductions.restrictToScale(Scale, PossibleRedSet, 1200 PossibleRedPHISet, PossibleRedLastSet); 1201 1202 // Populate "Uses" with where each instruction is used. 1203 if (!collectUsedInstructions(PossibleRedSet)) 1204 return false; 1205 1206 // Make sure we mark the reduction PHIs as used in all iterations. 1207 for (auto *I : PossibleRedPHISet) { 1208 Uses[I].set(IL_All); 1209 } 1210 1211 // Make sure we mark loop-control-only PHIs as used in all iterations. See 1212 // comment above LoopReroll::isLoopControlIV for more information. 1213 BasicBlock *Header = L->getHeader(); 1214 if (LoopControlIV && LoopControlIV != IV) { 1215 for (auto *U : LoopControlIV->users()) { 1216 Instruction *IVUser = dyn_cast<Instruction>(U); 1217 // IVUser could be loop increment or compare 1218 Uses[IVUser].set(IL_All); 1219 for (auto *UU : IVUser->users()) { 1220 Instruction *UUser = dyn_cast<Instruction>(UU); 1221 // UUser could be compare, PHI or branch 1222 Uses[UUser].set(IL_All); 1223 // Skip SExt 1224 if (isa<SExtInst>(UUser)) { 1225 UUser = dyn_cast<Instruction>(*(UUser->user_begin())); 1226 Uses[UUser].set(IL_All); 1227 } 1228 // Is UUser a compare instruction? 1229 if (UU->hasOneUse()) { 1230 Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); 1231 if (BI == cast<BranchInst>(Header->getTerminator())) 1232 Uses[BI].set(IL_All); 1233 } 1234 } 1235 } 1236 } 1237 1238 // Make sure all instructions in the loop are in one and only one 1239 // set. 1240 for (auto &KV : Uses) { 1241 if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { 1242 LLVM_DEBUG( 1243 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " 1244 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); 1245 return false; 1246 } 1247 } 1248 1249 LLVM_DEBUG(for (auto &KV 1250 : Uses) { 1251 dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; 1252 }); 1253 1254 for (unsigned Iter = 1; Iter < Scale; ++Iter) { 1255 // In addition to regular aliasing information, we need to look for 1256 // instructions from later (future) iterations that have side effects 1257 // preventing us from reordering them past other instructions with side 1258 // effects. 1259 bool FutureSideEffects = false; 1260 AliasSetTracker AST(*AA); 1261 // The map between instructions in f(%iv.(i+1)) and f(%iv). 1262 DenseMap<Value *, Value *> BaseMap; 1263 1264 // Compare iteration Iter to the base. 1265 SmallInstructionSet Visited; 1266 auto BaseIt = nextInstr(0, Uses, Visited); 1267 auto RootIt = nextInstr(Iter, Uses, Visited); 1268 auto LastRootIt = Uses.begin(); 1269 1270 while (BaseIt != Uses.end() && RootIt != Uses.end()) { 1271 Instruction *BaseInst = BaseIt->first; 1272 Instruction *RootInst = RootIt->first; 1273 1274 // Skip over the IV or root instructions; only match their users. 1275 bool Continue = false; 1276 if (isBaseInst(BaseInst)) { 1277 Visited.insert(BaseInst); 1278 BaseIt = nextInstr(0, Uses, Visited); 1279 Continue = true; 1280 } 1281 if (isRootInst(RootInst)) { 1282 LastRootIt = RootIt; 1283 Visited.insert(RootInst); 1284 RootIt = nextInstr(Iter, Uses, Visited); 1285 Continue = true; 1286 } 1287 if (Continue) continue; 1288 1289 if (!BaseInst->isSameOperationAs(RootInst)) { 1290 // Last chance saloon. We don't try and solve the full isomorphism 1291 // problem, but try and at least catch the case where two instructions 1292 // *of different types* are round the wrong way. We won't be able to 1293 // efficiently tell, given two ADD instructions, which way around we 1294 // should match them, but given an ADD and a SUB, we can at least infer 1295 // which one is which. 1296 // 1297 // This should allow us to deal with a greater subset of the isomorphism 1298 // problem. It does however change a linear algorithm into a quadratic 1299 // one, so limit the number of probes we do. 1300 auto TryIt = RootIt; 1301 unsigned N = NumToleratedFailedMatches; 1302 while (TryIt != Uses.end() && 1303 !BaseInst->isSameOperationAs(TryIt->first) && 1304 N--) { 1305 ++TryIt; 1306 TryIt = nextInstr(Iter, Uses, Visited, &TryIt); 1307 } 1308 1309 if (TryIt == Uses.end() || TryIt == RootIt || 1310 instrDependsOn(TryIt->first, RootIt, TryIt)) { 1311 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1312 << *BaseInst << " vs. " << *RootInst << "\n"); 1313 return false; 1314 } 1315 1316 RootIt = TryIt; 1317 RootInst = TryIt->first; 1318 } 1319 1320 // All instructions between the last root and this root 1321 // may belong to some other iteration. If they belong to a 1322 // future iteration, then they're dangerous to alias with. 1323 // 1324 // Note that because we allow a limited amount of flexibility in the order 1325 // that we visit nodes, LastRootIt might be *before* RootIt, in which 1326 // case we've already checked this set of instructions so we shouldn't 1327 // do anything. 1328 for (; LastRootIt < RootIt; ++LastRootIt) { 1329 Instruction *I = LastRootIt->first; 1330 if (LastRootIt->second.find_first() < (int)Iter) 1331 continue; 1332 if (I->mayWriteToMemory()) 1333 AST.add(I); 1334 // Note: This is specifically guarded by a check on isa<PHINode>, 1335 // which while a valid (somewhat arbitrary) micro-optimization, is 1336 // needed because otherwise isSafeToSpeculativelyExecute returns 1337 // false on PHI nodes. 1338 if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && 1339 !isSafeToSpeculativelyExecute(I)) 1340 // Intervening instructions cause side effects. 1341 FutureSideEffects = true; 1342 } 1343 1344 // Make sure that this instruction, which is in the use set of this 1345 // root instruction, does not also belong to the base set or the set of 1346 // some other root instruction. 1347 if (RootIt->second.count() > 1) { 1348 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1349 << " vs. " << *RootInst << " (prev. case overlap)\n"); 1350 return false; 1351 } 1352 1353 // Make sure that we don't alias with any instruction in the alias set 1354 // tracker. If we do, then we depend on a future iteration, and we 1355 // can't reroll. 1356 if (RootInst->mayReadFromMemory()) 1357 for (auto &K : AST) { 1358 if (K.aliasesUnknownInst(RootInst, *AA)) { 1359 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " 1360 << *BaseInst << " vs. " << *RootInst 1361 << " (depends on future store)\n"); 1362 return false; 1363 } 1364 } 1365 1366 // If we've past an instruction from a future iteration that may have 1367 // side effects, and this instruction might also, then we can't reorder 1368 // them, and this matching fails. As an exception, we allow the alias 1369 // set tracker to handle regular (unordered) load/store dependencies. 1370 if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && 1371 !isSafeToSpeculativelyExecute(BaseInst)) || 1372 (!isUnorderedLoadStore(RootInst) && 1373 !isSafeToSpeculativelyExecute(RootInst)))) { 1374 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1375 << " vs. " << *RootInst 1376 << " (side effects prevent reordering)\n"); 1377 return false; 1378 } 1379 1380 // For instructions that are part of a reduction, if the operation is 1381 // associative, then don't bother matching the operands (because we 1382 // already know that the instructions are isomorphic, and the order 1383 // within the iteration does not matter). For non-associative reductions, 1384 // we do need to match the operands, because we need to reject 1385 // out-of-order instructions within an iteration! 1386 // For example (assume floating-point addition), we need to reject this: 1387 // x += a[i]; x += b[i]; 1388 // x += a[i+1]; x += b[i+1]; 1389 // x += b[i+2]; x += a[i+2]; 1390 bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); 1391 1392 if (!(InReduction && BaseInst->isAssociative())) { 1393 bool Swapped = false, SomeOpMatched = false; 1394 for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { 1395 Value *Op2 = RootInst->getOperand(j); 1396 1397 // If this is part of a reduction (and the operation is not 1398 // associatve), then we match all operands, but not those that are 1399 // part of the reduction. 1400 if (InReduction) 1401 if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) 1402 if (Reductions.isPairInSame(RootInst, Op2I)) 1403 continue; 1404 1405 DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); 1406 if (BMI != BaseMap.end()) { 1407 Op2 = BMI->second; 1408 } else { 1409 for (auto &DRS : RootSets) { 1410 if (DRS.Roots[Iter-1] == (Instruction*) Op2) { 1411 Op2 = DRS.BaseInst; 1412 break; 1413 } 1414 } 1415 } 1416 1417 if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { 1418 // If we've not already decided to swap the matched operands, and 1419 // we've not already matched our first operand (note that we could 1420 // have skipped matching the first operand because it is part of a 1421 // reduction above), and the instruction is commutative, then try 1422 // the swapped match. 1423 if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && 1424 BaseInst->getOperand(!j) == Op2) { 1425 Swapped = true; 1426 } else { 1427 LLVM_DEBUG(dbgs() 1428 << "LRR: iteration root match failed at " << *BaseInst 1429 << " vs. " << *RootInst << " (operand " << j << ")\n"); 1430 return false; 1431 } 1432 } 1433 1434 SomeOpMatched = true; 1435 } 1436 } 1437 1438 if ((!PossibleRedLastSet.count(BaseInst) && 1439 hasUsesOutsideLoop(BaseInst, L)) || 1440 (!PossibleRedLastSet.count(RootInst) && 1441 hasUsesOutsideLoop(RootInst, L))) { 1442 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst 1443 << " vs. " << *RootInst << " (uses outside loop)\n"); 1444 return false; 1445 } 1446 1447 Reductions.recordPair(BaseInst, RootInst, Iter); 1448 BaseMap.insert(std::make_pair(RootInst, BaseInst)); 1449 1450 LastRootIt = RootIt; 1451 Visited.insert(BaseInst); 1452 Visited.insert(RootInst); 1453 BaseIt = nextInstr(0, Uses, Visited); 1454 RootIt = nextInstr(Iter, Uses, Visited); 1455 } 1456 assert(BaseIt == Uses.end() && RootIt == Uses.end() && 1457 "Mismatched set sizes!"); 1458 } 1459 1460 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV 1461 << "\n"); 1462 1463 return true; 1464 } 1465 1466 void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) { 1467 BasicBlock *Header = L->getHeader(); 1468 // Remove instructions associated with non-base iterations. 1469 for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); 1470 J != JE;) { 1471 unsigned I = Uses[&*J].find_first(); 1472 if (I > 0 && I < IL_All) { 1473 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n"); 1474 J++->eraseFromParent(); 1475 continue; 1476 } 1477 1478 ++J; 1479 } 1480 1481 bool HasTwoIVs = LoopControlIV && LoopControlIV != IV; 1482 1483 if (HasTwoIVs) { 1484 updateNonLoopCtrlIncr(); 1485 replaceIV(LoopControlIV, LoopControlIV, IterCount); 1486 } else 1487 // We need to create a new induction variable for each different BaseInst. 1488 for (auto &DRS : RootSets) 1489 // Insert the new induction variable. 1490 replaceIV(DRS.BaseInst, IV, IterCount); 1491 1492 SimplifyInstructionsInBlock(Header, TLI); 1493 DeleteDeadPHIs(Header, TLI); 1494 } 1495 1496 // For non-loop-control IVs, we only need to update the last increment 1497 // with right amount, then we are done. 1498 void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() { 1499 const SCEV *NewInc = nullptr; 1500 for (auto *LoopInc : LoopIncs) { 1501 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc); 1502 const SCEVConstant *COp = nullptr; 1503 if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) { 1504 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1505 } else { 1506 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0))); 1507 if (!COp) 1508 COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1))); 1509 } 1510 1511 assert(COp && "Didn't find constant operand of LoopInc!\n"); 1512 1513 const APInt &AInt = COp->getValue()->getValue(); 1514 const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale); 1515 if (AInt.isNegative()) { 1516 NewInc = SE->getNegativeSCEV(COp); 1517 NewInc = SE->getUDivExpr(NewInc, ScaleSCEV); 1518 NewInc = SE->getNegativeSCEV(NewInc); 1519 } else 1520 NewInc = SE->getUDivExpr(COp, ScaleSCEV); 1521 1522 LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue()); 1523 } 1524 } 1525 1526 void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst, 1527 Instruction *InstIV, 1528 const SCEV *IterCount) { 1529 BasicBlock *Header = L->getHeader(); 1530 int64_t Inc = IVToIncMap[InstIV]; 1531 bool NeedNewIV = InstIV == LoopControlIV; 1532 bool Negative = !NeedNewIV && Inc < 0; 1533 1534 const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst)); 1535 const SCEV *Start = RealIVSCEV->getStart(); 1536 1537 if (NeedNewIV) 1538 Start = SE->getConstant(Start->getType(), 0); 1539 1540 const SCEV *SizeOfExpr = nullptr; 1541 const SCEV *IncrExpr = 1542 SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1); 1543 if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) { 1544 Type *ElTy = PTy->getElementType(); 1545 SizeOfExpr = 1546 SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy); 1547 IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr); 1548 } 1549 const SCEV *NewIVSCEV = 1550 SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); 1551 1552 { // Limit the lifetime of SCEVExpander. 1553 const DataLayout &DL = Header->getModule()->getDataLayout(); 1554 SCEVExpander Expander(*SE, DL, "reroll"); 1555 Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), 1556 Header->getFirstNonPHIOrDbg()); 1557 1558 for (auto &KV : Uses) 1559 if (KV.second.find_first() == 0) 1560 KV.first->replaceUsesOfWith(Inst, NewIV); 1561 1562 if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { 1563 // FIXME: Why do we need this check? 1564 if (Uses[BI].find_first() == IL_All) { 1565 const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); 1566 1567 if (NeedNewIV) 1568 ICSCEV = SE->getMulExpr(IterCount, 1569 SE->getConstant(IterCount->getType(), Scale)); 1570 1571 // Iteration count SCEV minus or plus 1 1572 const SCEV *MinusPlus1SCEV = 1573 SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1); 1574 if (Inst->getType()->isPointerTy()) { 1575 assert(SizeOfExpr && "SizeOfExpr is not initialized"); 1576 MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr); 1577 } 1578 1579 const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV); 1580 // Iteration count minus 1 1581 Instruction *InsertPtr = nullptr; 1582 if (isa<SCEVConstant>(ICMinusPlus1SCEV)) { 1583 InsertPtr = BI; 1584 } else { 1585 BasicBlock *Preheader = L->getLoopPreheader(); 1586 if (!Preheader) 1587 Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); 1588 InsertPtr = Preheader->getTerminator(); 1589 } 1590 1591 if (!isa<PointerType>(NewIV->getType()) && NeedNewIV && 1592 (SE->getTypeSizeInBits(NewIV->getType()) < 1593 SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) { 1594 IRBuilder<> Builder(BI); 1595 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 1596 NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType()); 1597 } 1598 Value *ICMinusPlus1 = Expander.expandCodeFor( 1599 ICMinusPlus1SCEV, NewIV->getType(), InsertPtr); 1600 1601 Value *Cond = 1602 new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond"); 1603 BI->setCondition(Cond); 1604 1605 if (BI->getSuccessor(1) != Header) 1606 BI->swapSuccessors(); 1607 } 1608 } 1609 } 1610 } 1611 1612 // Validate the selected reductions. All iterations must have an isomorphic 1613 // part of the reduction chain and, for non-associative reductions, the chain 1614 // entries must appear in order. 1615 bool LoopReroll::ReductionTracker::validateSelected() { 1616 // For a non-associative reduction, the chain entries must appear in order. 1617 for (int i : Reds) { 1618 int PrevIter = 0, BaseCount = 0, Count = 0; 1619 for (Instruction *J : PossibleReds[i]) { 1620 // Note that all instructions in the chain must have been found because 1621 // all instructions in the function must have been assigned to some 1622 // iteration. 1623 int Iter = PossibleRedIter[J]; 1624 if (Iter != PrevIter && Iter != PrevIter + 1 && 1625 !PossibleReds[i].getReducedValue()->isAssociative()) { 1626 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " 1627 << J << "\n"); 1628 return false; 1629 } 1630 1631 if (Iter != PrevIter) { 1632 if (Count != BaseCount) { 1633 LLVM_DEBUG(dbgs() 1634 << "LRR: Iteration " << PrevIter << " reduction use count " 1635 << Count << " is not equal to the base use count " 1636 << BaseCount << "\n"); 1637 return false; 1638 } 1639 1640 Count = 0; 1641 } 1642 1643 ++Count; 1644 if (Iter == 0) 1645 ++BaseCount; 1646 1647 PrevIter = Iter; 1648 } 1649 } 1650 1651 return true; 1652 } 1653 1654 // For all selected reductions, remove all parts except those in the first 1655 // iteration (and the PHI). Replace outside uses of the reduced value with uses 1656 // of the first-iteration reduced value (in other words, reroll the selected 1657 // reductions). 1658 void LoopReroll::ReductionTracker::replaceSelected() { 1659 // Fixup reductions to refer to the last instruction associated with the 1660 // first iteration (not the last). 1661 for (int i : Reds) { 1662 int j = 0; 1663 for (int e = PossibleReds[i].size(); j != e; ++j) 1664 if (PossibleRedIter[PossibleReds[i][j]] != 0) { 1665 --j; 1666 break; 1667 } 1668 1669 // Replace users with the new end-of-chain value. 1670 SmallInstructionVector Users; 1671 for (User *U : PossibleReds[i].getReducedValue()->users()) { 1672 Users.push_back(cast<Instruction>(U)); 1673 } 1674 1675 for (Instruction *User : Users) 1676 User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), 1677 PossibleReds[i][j]); 1678 } 1679 } 1680 1681 // Reroll the provided loop with respect to the provided induction variable. 1682 // Generally, we're looking for a loop like this: 1683 // 1684 // %iv = phi [ (preheader, ...), (body, %iv.next) ] 1685 // f(%iv) 1686 // %iv.1 = add %iv, 1 <-- a root increment 1687 // f(%iv.1) 1688 // %iv.2 = add %iv, 2 <-- a root increment 1689 // f(%iv.2) 1690 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment 1691 // f(%iv.scale_m_1) 1692 // ... 1693 // %iv.next = add %iv, scale 1694 // %cmp = icmp(%iv, ...) 1695 // br %cmp, header, exit 1696 // 1697 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of 1698 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can 1699 // be intermixed with eachother. The restriction imposed by this algorithm is 1700 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), 1701 // etc. be the same. 1702 // 1703 // First, we collect the use set of %iv, excluding the other increment roots. 1704 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) 1705 // times, having collected the use set of f(%iv.(i+1)), during which we: 1706 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to 1707 // the next unmatched instruction in f(%iv.(i+1)). 1708 // - Ensure that both matched instructions don't have any external users 1709 // (with the exception of last-in-chain reduction instructions). 1710 // - Track the (aliasing) write set, and other side effects, of all 1711 // instructions that belong to future iterations that come before the matched 1712 // instructions. If the matched instructions read from that write set, then 1713 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in 1714 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, 1715 // if any of these future instructions had side effects (could not be 1716 // speculatively executed), and so do the matched instructions, when we 1717 // cannot reorder those side-effect-producing instructions, and rerolling 1718 // fails. 1719 // 1720 // Finally, we make sure that all loop instructions are either loop increment 1721 // roots, belong to simple latch code, parts of validated reductions, part of 1722 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions 1723 // have been validated), then we reroll the loop. 1724 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, 1725 const SCEV *IterCount, 1726 ReductionTracker &Reductions) { 1727 DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, 1728 IVToIncMap, LoopControlIV); 1729 1730 if (!DAGRoots.findRoots()) 1731 return false; 1732 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV 1733 << "\n"); 1734 1735 if (!DAGRoots.validate(Reductions)) 1736 return false; 1737 if (!Reductions.validateSelected()) 1738 return false; 1739 // At this point, we've validated the rerolling, and we're committed to 1740 // making changes! 1741 1742 Reductions.replaceSelected(); 1743 DAGRoots.replace(IterCount); 1744 1745 ++NumRerolledLoops; 1746 return true; 1747 } 1748 1749 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { 1750 if (skipLoop(L)) 1751 return false; 1752 1753 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1754 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1755 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1756 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1757 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1758 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1759 1760 BasicBlock *Header = L->getHeader(); 1761 LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %" 1762 << Header->getName() << " (" << L->getNumBlocks() 1763 << " block(s))\n"); 1764 1765 // For now, we'll handle only single BB loops. 1766 if (L->getNumBlocks() > 1) 1767 return false; 1768 1769 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1770 return false; 1771 1772 const SCEV *LIBETC = SE->getBackedgeTakenCount(L); 1773 const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType())); 1774 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); 1775 LLVM_DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); 1776 1777 // First, we need to find the induction variable with respect to which we can 1778 // reroll (there may be several possible options). 1779 SmallInstructionVector PossibleIVs; 1780 IVToIncMap.clear(); 1781 LoopControlIV = nullptr; 1782 collectPossibleIVs(L, PossibleIVs); 1783 1784 if (PossibleIVs.empty()) { 1785 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n"); 1786 return false; 1787 } 1788 1789 ReductionTracker Reductions; 1790 collectPossibleReductions(L, Reductions); 1791 bool Changed = false; 1792 1793 // For each possible IV, collect the associated possible set of 'root' nodes 1794 // (i+1, i+2, etc.). 1795 for (Instruction *PossibleIV : PossibleIVs) 1796 if (reroll(PossibleIV, L, Header, IterCount, Reductions)) { 1797 Changed = true; 1798 break; 1799 } 1800 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); 1801 1802 // Trip count of L has changed so SE must be re-evaluated. 1803 if (Changed) 1804 SE->forgetLoop(L); 1805 1806 return Changed; 1807 } 1808