1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LoopPredication pass tries to convert loop variant range checks to loop 11 // invariant by widening checks across loop iterations. For example, it will 12 // convert 13 // 14 // for (i = 0; i < n; i++) { 15 // guard(i < len); 16 // ... 17 // } 18 // 19 // to 20 // 21 // for (i = 0; i < n; i++) { 22 // guard(n - 1 < len); 23 // ... 24 // } 25 // 26 // After this transformation the condition of the guard is loop invariant, so 27 // loop-unswitch can later unswitch the loop by this condition which basically 28 // predicates the loop by the widened condition: 29 // 30 // if (n - 1 < len) 31 // for (i = 0; i < n; i++) { 32 // ... 33 // } 34 // else 35 // deoptimize 36 // 37 // It's tempting to rely on SCEV here, but it has proven to be problematic. 38 // Generally the facts SCEV provides about the increment step of add 39 // recurrences are true if the backedge of the loop is taken, which implicitly 40 // assumes that the guard doesn't fail. Using these facts to optimize the 41 // guard results in a circular logic where the guard is optimized under the 42 // assumption that it never fails. 43 // 44 // For example, in the loop below the induction variable will be marked as nuw 45 // basing on the guard. Basing on nuw the guard predicate will be considered 46 // monotonic. Given a monotonic condition it's tempting to replace the induction 47 // variable in the condition with its value on the last iteration. But this 48 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 49 // 50 // for (int i = b; i != e; i++) 51 // guard(i u< len) 52 // 53 // One of the ways to reason about this problem is to use an inductive proof 54 // approach. Given the loop: 55 // 56 // if (B(0)) { 57 // do { 58 // I = PHI(0, I.INC) 59 // I.INC = I + Step 60 // guard(G(I)); 61 // } while (B(I)); 62 // } 63 // 64 // where B(x) and G(x) are predicates that map integers to booleans, we want a 65 // loop invariant expression M such the following program has the same semantics 66 // as the above: 67 // 68 // if (B(0)) { 69 // do { 70 // I = PHI(0, I.INC) 71 // I.INC = I + Step 72 // guard(G(0) && M); 73 // } while (B(I)); 74 // } 75 // 76 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 77 // 78 // Informal proof that the transformation above is correct: 79 // 80 // By the definition of guards we can rewrite the guard condition to: 81 // G(I) && G(0) && M 82 // 83 // Let's prove that for each iteration of the loop: 84 // G(0) && M => G(I) 85 // And the condition above can be simplified to G(Start) && M. 86 // 87 // Induction base. 88 // G(0) && M => G(0) 89 // 90 // Induction step. Assuming G(0) && M => G(I) on the subsequent 91 // iteration: 92 // 93 // B(I) is true because it's the backedge condition. 94 // G(I) is true because the backedge is guarded by this condition. 95 // 96 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 97 // 98 // Note that we can use anything stronger than M, i.e. any condition which 99 // implies M. 100 // 101 // When S = 1 (i.e. forward iterating loop), the transformation is supported 102 // when: 103 // * The loop has a single latch with the condition of the form: 104 // B(X) = latchStart + X <pred> latchLimit, 105 // where <pred> is u<, u<=, s<, or s<=. 106 // * The guard condition is of the form 107 // G(X) = guardStart + X u< guardLimit 108 // 109 // For the ult latch comparison case M is: 110 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 111 // guardStart + X + 1 u< guardLimit 112 // 113 // The only way the antecedent can be true and the consequent can be false is 114 // if 115 // X == guardLimit - 1 - guardStart 116 // (and guardLimit is non-zero, but we won't use this latter fact). 117 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 118 // latchStart + guardLimit - 1 - guardStart u< latchLimit 119 // and its negation is 120 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 121 // 122 // In other words, if 123 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 124 // then: 125 // (the ranges below are written in ConstantRange notation, where [A, B) is the 126 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 127 // 128 // forall X . guardStart + X u< guardLimit && 129 // latchStart + X u< latchLimit => 130 // guardStart + X + 1 u< guardLimit 131 // == forall X . guardStart + X u< guardLimit && 132 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 133 // guardStart + X + 1 u< guardLimit 134 // == forall X . (guardStart + X) in [0, guardLimit) && 135 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 136 // (guardStart + X + 1) in [0, guardLimit) 137 // == forall X . X in [-guardStart, guardLimit - guardStart) && 138 // X in [-latchStart, guardLimit - 1 - guardStart) => 139 // X in [-guardStart - 1, guardLimit - guardStart - 1) 140 // == true 141 // 142 // So the widened condition is: 143 // guardStart u< guardLimit && 144 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 145 // Similarly for ule condition the widened condition is: 146 // guardStart u< guardLimit && 147 // latchStart + guardLimit - 1 - guardStart u> latchLimit 148 // For slt condition the widened condition is: 149 // guardStart u< guardLimit && 150 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 151 // For sle condition the widened condition is: 152 // guardStart u< guardLimit && 153 // latchStart + guardLimit - 1 - guardStart s> latchLimit 154 // 155 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 156 // when: 157 // * The loop has a single latch with the condition of the form: 158 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 159 // * The guard condition is of the form 160 // G(X) = X - 1 u< guardLimit 161 // 162 // For the ugt latch comparison case M is: 163 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 164 // 165 // The only way the antecedent can be true and the consequent can be false is if 166 // X == 1. 167 // If X == 1 then the second half of the antecedent is 168 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 169 // 170 // So the widened condition is: 171 // guardStart u< guardLimit && latchLimit u>= 1. 172 // Similarly for sgt condition the widened condition is: 173 // guardStart u< guardLimit && latchLimit s>= 1. 174 // For uge condition the widened condition is: 175 // guardStart u< guardLimit && latchLimit u> 1. 176 // For sge condition the widened condition is: 177 // guardStart u< guardLimit && latchLimit s> 1. 178 //===----------------------------------------------------------------------===// 179 180 #include "llvm/Transforms/Scalar/LoopPredication.h" 181 #include "llvm/Analysis/LoopInfo.h" 182 #include "llvm/Analysis/LoopPass.h" 183 #include "llvm/Analysis/ScalarEvolution.h" 184 #include "llvm/Analysis/ScalarEvolutionExpander.h" 185 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 186 #include "llvm/IR/Function.h" 187 #include "llvm/IR/GlobalValue.h" 188 #include "llvm/IR/IntrinsicInst.h" 189 #include "llvm/IR/Module.h" 190 #include "llvm/IR/PatternMatch.h" 191 #include "llvm/Pass.h" 192 #include "llvm/Support/Debug.h" 193 #include "llvm/Transforms/Scalar.h" 194 #include "llvm/Transforms/Utils/LoopUtils.h" 195 196 #define DEBUG_TYPE "loop-predication" 197 198 using namespace llvm; 199 200 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 201 cl::Hidden, cl::init(true)); 202 203 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 204 cl::Hidden, cl::init(true)); 205 namespace { 206 class LoopPredication { 207 /// Represents an induction variable check: 208 /// icmp Pred, <induction variable>, <loop invariant limit> 209 struct LoopICmp { 210 ICmpInst::Predicate Pred; 211 const SCEVAddRecExpr *IV; 212 const SCEV *Limit; 213 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 214 const SCEV *Limit) 215 : Pred(Pred), IV(IV), Limit(Limit) {} 216 LoopICmp() {} 217 void dump() { 218 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 219 << ", Limit = " << *Limit << "\n"; 220 } 221 }; 222 223 ScalarEvolution *SE; 224 225 Loop *L; 226 const DataLayout *DL; 227 BasicBlock *Preheader; 228 LoopICmp LatchCheck; 229 230 bool isSupportedStep(const SCEV* Step); 231 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) { 232 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0), 233 ICI->getOperand(1)); 234 } 235 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 236 Value *RHS); 237 238 Optional<LoopICmp> parseLoopLatchICmp(); 239 240 bool CanExpand(const SCEV* S); 241 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder, 242 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 243 Instruction *InsertAt); 244 245 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 246 IRBuilder<> &Builder); 247 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 248 LoopICmp RangeCheck, 249 SCEVExpander &Expander, 250 IRBuilder<> &Builder); 251 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 252 LoopICmp RangeCheck, 253 SCEVExpander &Expander, 254 IRBuilder<> &Builder); 255 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 256 257 // When the IV type is wider than the range operand type, we can still do loop 258 // predication, by generating SCEVs for the range and latch that are of the 259 // same type. We achieve this by generating a SCEV truncate expression for the 260 // latch IV. This is done iff truncation of the IV is a safe operation, 261 // without loss of information. 262 // Another way to achieve this is by generating a wider type SCEV for the 263 // range check operand, however, this needs a more involved check that 264 // operands do not overflow. This can lead to loss of information when the 265 // range operand is of the form: add i32 %offset, %iv. We need to prove that 266 // sext(x + y) is same as sext(x) + sext(y). 267 // This function returns true if we can safely represent the IV type in 268 // the RangeCheckType without loss of information. 269 bool isSafeToTruncateWideIVType(Type *RangeCheckType); 270 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do 271 // so. 272 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType); 273 274 public: 275 LoopPredication(ScalarEvolution *SE) : SE(SE){}; 276 bool runOnLoop(Loop *L); 277 }; 278 279 class LoopPredicationLegacyPass : public LoopPass { 280 public: 281 static char ID; 282 LoopPredicationLegacyPass() : LoopPass(ID) { 283 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 284 } 285 286 void getAnalysisUsage(AnalysisUsage &AU) const override { 287 getLoopAnalysisUsage(AU); 288 } 289 290 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 291 if (skipLoop(L)) 292 return false; 293 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 294 LoopPredication LP(SE); 295 return LP.runOnLoop(L); 296 } 297 }; 298 299 char LoopPredicationLegacyPass::ID = 0; 300 } // end namespace llvm 301 302 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 303 "Loop predication", false, false) 304 INITIALIZE_PASS_DEPENDENCY(LoopPass) 305 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 306 "Loop predication", false, false) 307 308 Pass *llvm::createLoopPredicationPass() { 309 return new LoopPredicationLegacyPass(); 310 } 311 312 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 313 LoopStandardAnalysisResults &AR, 314 LPMUpdater &U) { 315 LoopPredication LP(&AR.SE); 316 if (!LP.runOnLoop(&L)) 317 return PreservedAnalyses::all(); 318 319 return getLoopPassPreservedAnalyses(); 320 } 321 322 Optional<LoopPredication::LoopICmp> 323 LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS, 324 Value *RHS) { 325 const SCEV *LHSS = SE->getSCEV(LHS); 326 if (isa<SCEVCouldNotCompute>(LHSS)) 327 return None; 328 const SCEV *RHSS = SE->getSCEV(RHS); 329 if (isa<SCEVCouldNotCompute>(RHSS)) 330 return None; 331 332 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 333 if (SE->isLoopInvariant(LHSS, L)) { 334 std::swap(LHS, RHS); 335 std::swap(LHSS, RHSS); 336 Pred = ICmpInst::getSwappedPredicate(Pred); 337 } 338 339 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 340 if (!AR || AR->getLoop() != L) 341 return None; 342 343 return LoopICmp(Pred, AR, RHSS); 344 } 345 346 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 347 IRBuilder<> &Builder, 348 ICmpInst::Predicate Pred, const SCEV *LHS, 349 const SCEV *RHS, Instruction *InsertAt) { 350 // TODO: we can check isLoopEntryGuardedByCond before emitting the check 351 352 Type *Ty = LHS->getType(); 353 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 354 355 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 356 return Builder.getTrue(); 357 358 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt); 359 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt); 360 return Builder.CreateICmp(Pred, LHSV, RHSV); 361 } 362 363 Optional<LoopPredication::LoopICmp> 364 LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) { 365 366 auto *LatchType = LatchCheck.IV->getType(); 367 if (RangeCheckType == LatchType) 368 return LatchCheck; 369 // For now, bail out if latch type is narrower than range type. 370 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType)) 371 return None; 372 if (!isSafeToTruncateWideIVType(RangeCheckType)) 373 return None; 374 // We can now safely identify the truncated version of the IV and limit for 375 // RangeCheckType. 376 LoopICmp NewLatchCheck; 377 NewLatchCheck.Pred = LatchCheck.Pred; 378 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 379 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType)); 380 if (!NewLatchCheck.IV) 381 return None; 382 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType); 383 DEBUG(dbgs() << "IV of type: " << *LatchType 384 << "can be represented as range check type:" << *RangeCheckType 385 << "\n"); 386 DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 387 DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 388 return NewLatchCheck; 389 } 390 391 bool LoopPredication::isSupportedStep(const SCEV* Step) { 392 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 393 } 394 395 bool LoopPredication::CanExpand(const SCEV* S) { 396 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE); 397 } 398 399 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 400 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 401 SCEVExpander &Expander, IRBuilder<> &Builder) { 402 auto *Ty = RangeCheck.IV->getType(); 403 // Generate the widened condition for the forward loop: 404 // guardStart u< guardLimit && 405 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 406 // where <pred> depends on the latch condition predicate. See the file 407 // header comment for the reasoning. 408 // guardLimit - guardStart + latchStart - 1 409 const SCEV *GuardStart = RangeCheck.IV->getStart(); 410 const SCEV *GuardLimit = RangeCheck.Limit; 411 const SCEV *LatchStart = LatchCheck.IV->getStart(); 412 const SCEV *LatchLimit = LatchCheck.Limit; 413 414 // guardLimit - guardStart + latchStart - 1 415 const SCEV *RHS = 416 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 417 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 418 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 419 !CanExpand(LatchLimit) || !CanExpand(RHS)) { 420 DEBUG(dbgs() << "Can't expand limit check!\n"); 421 return None; 422 } 423 auto LimitCheckPred = 424 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 425 426 DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 427 DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 428 DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 429 430 Instruction *InsertAt = Preheader->getTerminator(); 431 auto *LimitCheck = 432 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt); 433 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred, 434 GuardStart, GuardLimit, InsertAt); 435 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 436 } 437 438 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 439 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck, 440 SCEVExpander &Expander, IRBuilder<> &Builder) { 441 auto *Ty = RangeCheck.IV->getType(); 442 const SCEV *GuardStart = RangeCheck.IV->getStart(); 443 const SCEV *GuardLimit = RangeCheck.Limit; 444 const SCEV *LatchLimit = LatchCheck.Limit; 445 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) || 446 !CanExpand(LatchLimit)) { 447 DEBUG(dbgs() << "Can't expand limit check!\n"); 448 return None; 449 } 450 // The decrement of the latch check IV should be the same as the 451 // rangeCheckIV. 452 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 453 if (RangeCheck.IV != PostDecLatchCheckIV) { 454 DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 455 << *PostDecLatchCheckIV 456 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 457 return None; 458 } 459 460 // Generate the widened condition for CountDownLoop: 461 // guardStart u< guardLimit && 462 // latchLimit <pred> 1. 463 // See the header comment for reasoning of the checks. 464 Instruction *InsertAt = Preheader->getTerminator(); 465 auto LimitCheckPred = 466 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 467 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT, 468 GuardStart, GuardLimit, InsertAt); 469 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, 470 SE->getOne(Ty), InsertAt); 471 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 472 } 473 474 /// If ICI can be widened to a loop invariant condition emits the loop 475 /// invariant condition in the loop preheader and return it, otherwise 476 /// returns None. 477 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 478 SCEVExpander &Expander, 479 IRBuilder<> &Builder) { 480 DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 481 DEBUG(ICI->dump()); 482 483 // parseLoopStructure guarantees that the latch condition is: 484 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 485 // We are looking for the range checks of the form: 486 // i u< guardLimit 487 auto RangeCheck = parseLoopICmp(ICI); 488 if (!RangeCheck) { 489 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 490 return None; 491 } 492 DEBUG(dbgs() << "Guard check:\n"); 493 DEBUG(RangeCheck->dump()); 494 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 495 DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred 496 << ")!\n"); 497 return None; 498 } 499 auto *RangeCheckIV = RangeCheck->IV; 500 if (!RangeCheckIV->isAffine()) { 501 DEBUG(dbgs() << "Range check IV is not affine!\n"); 502 return None; 503 } 504 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 505 // We cannot just compare with latch IV step because the latch and range IVs 506 // may have different types. 507 if (!isSupportedStep(Step)) { 508 DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 509 return None; 510 } 511 auto *Ty = RangeCheckIV->getType(); 512 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty); 513 if (!CurrLatchCheckOpt) { 514 DEBUG(dbgs() << "Failed to generate a loop latch check " 515 "corresponding to range type: " 516 << *Ty << "\n"); 517 return None; 518 } 519 520 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 521 // At this point, the range and latch step should have the same type, but need 522 // not have the same value (we support both 1 and -1 steps). 523 assert(Step->getType() == 524 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 525 "Range and latch steps should be of same type!"); 526 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 527 DEBUG(dbgs() << "Range and latch have different step values!\n"); 528 return None; 529 } 530 531 if (Step->isOne()) 532 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 533 Expander, Builder); 534 else { 535 assert(Step->isAllOnesValue() && "Step should be -1!"); 536 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 537 Expander, Builder); 538 } 539 } 540 541 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 542 SCEVExpander &Expander) { 543 DEBUG(dbgs() << "Processing guard:\n"); 544 DEBUG(Guard->dump()); 545 546 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator())); 547 548 // The guard condition is expected to be in form of: 549 // cond1 && cond2 && cond3 ... 550 // Iterate over subconditions looking for icmp conditions which can be 551 // widened across loop iterations. Widening these conditions remember the 552 // resulting list of subconditions in Checks vector. 553 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0)); 554 SmallPtrSet<Value *, 4> Visited; 555 556 SmallVector<Value *, 4> Checks; 557 558 unsigned NumWidened = 0; 559 do { 560 Value *Condition = Worklist.pop_back_val(); 561 if (!Visited.insert(Condition).second) 562 continue; 563 564 Value *LHS, *RHS; 565 using namespace llvm::PatternMatch; 566 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 567 Worklist.push_back(LHS); 568 Worklist.push_back(RHS); 569 continue; 570 } 571 572 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 573 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) { 574 Checks.push_back(NewRangeCheck.getValue()); 575 NumWidened++; 576 continue; 577 } 578 } 579 580 // Save the condition as is if we can't widen it 581 Checks.push_back(Condition); 582 } while (Worklist.size() != 0); 583 584 if (NumWidened == 0) 585 return false; 586 587 // Emit the new guard condition 588 Builder.SetInsertPoint(Guard); 589 Value *LastCheck = nullptr; 590 for (auto *Check : Checks) 591 if (!LastCheck) 592 LastCheck = Check; 593 else 594 LastCheck = Builder.CreateAnd(LastCheck, Check); 595 Guard->setOperand(0, LastCheck); 596 597 DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 598 return true; 599 } 600 601 Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() { 602 using namespace PatternMatch; 603 604 BasicBlock *LoopLatch = L->getLoopLatch(); 605 if (!LoopLatch) { 606 DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 607 return None; 608 } 609 610 ICmpInst::Predicate Pred; 611 Value *LHS, *RHS; 612 BasicBlock *TrueDest, *FalseDest; 613 614 if (!match(LoopLatch->getTerminator(), 615 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest, 616 FalseDest))) { 617 DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 618 return None; 619 } 620 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) && 621 "One of the latch's destinations must be the header"); 622 if (TrueDest != L->getHeader()) 623 Pred = ICmpInst::getInversePredicate(Pred); 624 625 auto Result = parseLoopICmp(Pred, LHS, RHS); 626 if (!Result) { 627 DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 628 return None; 629 } 630 631 // Check affine first, so if it's not we don't try to compute the step 632 // recurrence. 633 if (!Result->IV->isAffine()) { 634 DEBUG(dbgs() << "The induction variable is not affine!\n"); 635 return None; 636 } 637 638 auto *Step = Result->IV->getStepRecurrence(*SE); 639 if (!isSupportedStep(Step)) { 640 DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 641 return None; 642 } 643 644 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 645 if (Step->isOne()) { 646 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 647 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 648 } else { 649 assert(Step->isAllOnesValue() && "Step should be -1!"); 650 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 651 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 652 } 653 }; 654 655 if (IsUnsupportedPredicate(Step, Result->Pred)) { 656 DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 657 << ")!\n"); 658 return None; 659 } 660 return Result; 661 } 662 663 // Returns true if its safe to truncate the IV to RangeCheckType. 664 bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) { 665 if (!EnableIVTruncation) 666 return false; 667 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) > 668 DL->getTypeSizeInBits(RangeCheckType) && 669 "Expected latch check IV type to be larger than range check operand " 670 "type!"); 671 // The start and end values of the IV should be known. This is to guarantee 672 // that truncating the wide type will not lose information. 673 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 674 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 675 if (!Limit || !Start) 676 return false; 677 // This check makes sure that the IV does not change sign during loop 678 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 679 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 680 // IV wraps around, and the truncation of the IV would lose the range of 681 // iterations between 2^32 and 2^64. 682 bool Increasing; 683 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 684 return false; 685 // The active bits should be less than the bits in the RangeCheckType. This 686 // guarantees that truncating the latch check to RangeCheckType is a safe 687 // operation. 688 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType); 689 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 690 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 691 } 692 693 bool LoopPredication::runOnLoop(Loop *Loop) { 694 L = Loop; 695 696 DEBUG(dbgs() << "Analyzing "); 697 DEBUG(L->dump()); 698 699 Module *M = L->getHeader()->getModule(); 700 701 // There is nothing to do if the module doesn't use guards 702 auto *GuardDecl = 703 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 704 if (!GuardDecl || GuardDecl->use_empty()) 705 return false; 706 707 DL = &M->getDataLayout(); 708 709 Preheader = L->getLoopPreheader(); 710 if (!Preheader) 711 return false; 712 713 auto LatchCheckOpt = parseLoopLatchICmp(); 714 if (!LatchCheckOpt) 715 return false; 716 LatchCheck = *LatchCheckOpt; 717 718 DEBUG(dbgs() << "Latch check:\n"); 719 DEBUG(LatchCheck.dump()); 720 721 // Collect all the guards into a vector and process later, so as not 722 // to invalidate the instruction iterator. 723 SmallVector<IntrinsicInst *, 4> Guards; 724 for (const auto BB : L->blocks()) 725 for (auto &I : *BB) 726 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 727 if (II->getIntrinsicID() == Intrinsic::experimental_guard) 728 Guards.push_back(II); 729 730 if (Guards.empty()) 731 return false; 732 733 SCEVExpander Expander(*SE, *DL, "loop-predication"); 734 735 bool Changed = false; 736 for (auto *Guard : Guards) 737 Changed |= widenGuardConditions(Guard, Expander); 738 739 return Changed; 740 } 741