18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
68fb3d57eSArtur Pilipenko //
78fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
88fb3d57eSArtur Pilipenko //
98fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
108fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
118fb3d57eSArtur Pilipenko // convert
128fb3d57eSArtur Pilipenko //
138fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
148fb3d57eSArtur Pilipenko //     guard(i < len);
158fb3d57eSArtur Pilipenko //     ...
168fb3d57eSArtur Pilipenko //   }
178fb3d57eSArtur Pilipenko //
188fb3d57eSArtur Pilipenko // to
198fb3d57eSArtur Pilipenko //
208fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
218fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
228fb3d57eSArtur Pilipenko //     ...
238fb3d57eSArtur Pilipenko //   }
248fb3d57eSArtur Pilipenko //
258fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
268fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
278fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
288fb3d57eSArtur Pilipenko //
298fb3d57eSArtur Pilipenko //   if (n - 1 < len)
308fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
318fb3d57eSArtur Pilipenko //       ...
328fb3d57eSArtur Pilipenko //     }
338fb3d57eSArtur Pilipenko //   else
348fb3d57eSArtur Pilipenko //     deoptimize
358fb3d57eSArtur Pilipenko //
36889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
37889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
38889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
39889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
40889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
41889dc1e3SArtur Pilipenko // assumption that it never fails.
42889dc1e3SArtur Pilipenko //
43889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
44889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
45889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
46889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
47889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48889dc1e3SArtur Pilipenko //
49889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
50889dc1e3SArtur Pilipenko //     guard(i u< len)
51889dc1e3SArtur Pilipenko //
52889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
53889dc1e3SArtur Pilipenko // approach. Given the loop:
54889dc1e3SArtur Pilipenko //
558aadc643SArtur Pilipenko //   if (B(0)) {
56889dc1e3SArtur Pilipenko //     do {
578aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
58889dc1e3SArtur Pilipenko //       I.INC = I + Step
59889dc1e3SArtur Pilipenko //       guard(G(I));
608aadc643SArtur Pilipenko //     } while (B(I));
61889dc1e3SArtur Pilipenko //   }
62889dc1e3SArtur Pilipenko //
63889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
64889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
65889dc1e3SArtur Pilipenko // as the above:
66889dc1e3SArtur Pilipenko //
678aadc643SArtur Pilipenko //   if (B(0)) {
68889dc1e3SArtur Pilipenko //     do {
698aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
70889dc1e3SArtur Pilipenko //       I.INC = I + Step
718aadc643SArtur Pilipenko //       guard(G(0) && M);
728aadc643SArtur Pilipenko //     } while (B(I));
73889dc1e3SArtur Pilipenko //   }
74889dc1e3SArtur Pilipenko //
758aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76889dc1e3SArtur Pilipenko //
77889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
78889dc1e3SArtur Pilipenko //
79889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
808aadc643SArtur Pilipenko //     G(I) && G(0) && M
81889dc1e3SArtur Pilipenko //
82889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
838aadc643SArtur Pilipenko //     G(0) && M => G(I)
84889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
85889dc1e3SArtur Pilipenko //
86889dc1e3SArtur Pilipenko //   Induction base.
878aadc643SArtur Pilipenko //     G(0) && M => G(0)
88889dc1e3SArtur Pilipenko //
898aadc643SArtur Pilipenko //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90889dc1e3SArtur Pilipenko //   iteration:
91889dc1e3SArtur Pilipenko //
928aadc643SArtur Pilipenko //     B(I) is true because it's the backedge condition.
93889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
94889dc1e3SArtur Pilipenko //
958aadc643SArtur Pilipenko //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96889dc1e3SArtur Pilipenko //
97889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
98889dc1e3SArtur Pilipenko // implies M.
99889dc1e3SArtur Pilipenko //
1007b360434SAnna Thomas // When S = 1 (i.e. forward iterating loop), the transformation is supported
1017b360434SAnna Thomas // when:
102b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
1038aadc643SArtur Pilipenko //     B(X) = latchStart + X <pred> latchLimit,
1048aadc643SArtur Pilipenko //     where <pred> is u<, u<=, s<, or s<=.
1058aadc643SArtur Pilipenko //   * The guard condition is of the form
1068aadc643SArtur Pilipenko //     G(X) = guardStart + X u< guardLimit
107889dc1e3SArtur Pilipenko //
108b4527e1cSArtur Pilipenko //   For the ult latch comparison case M is:
1098aadc643SArtur Pilipenko //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
1108aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
111889dc1e3SArtur Pilipenko //
112889dc1e3SArtur Pilipenko //   The only way the antecedent can be true and the consequent can be false is
113889dc1e3SArtur Pilipenko //   if
1148aadc643SArtur Pilipenko //     X == guardLimit - 1 - guardStart
115889dc1e3SArtur Pilipenko //   (and guardLimit is non-zero, but we won't use this latter fact).
1168aadc643SArtur Pilipenko //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
1178aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118889dc1e3SArtur Pilipenko //   and its negation is
1198aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120889dc1e3SArtur Pilipenko //
1218aadc643SArtur Pilipenko //   In other words, if
1228aadc643SArtur Pilipenko //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
1238aadc643SArtur Pilipenko //   then:
124889dc1e3SArtur Pilipenko //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125889dc1e3SArtur Pilipenko //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126889dc1e3SArtur Pilipenko //
1278aadc643SArtur Pilipenko //      forall X . guardStart + X u< guardLimit &&
1288aadc643SArtur Pilipenko //                 latchStart + X u< latchLimit =>
1298aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1308aadc643SArtur Pilipenko //   == forall X . guardStart + X u< guardLimit &&
1318aadc643SArtur Pilipenko //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
1328aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1338aadc643SArtur Pilipenko //   == forall X . (guardStart + X) in [0, guardLimit) &&
1348aadc643SArtur Pilipenko //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
1358aadc643SArtur Pilipenko //        (guardStart + X + 1) in [0, guardLimit)
1368aadc643SArtur Pilipenko //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
1378aadc643SArtur Pilipenko //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
1388aadc643SArtur Pilipenko //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139889dc1e3SArtur Pilipenko //   == true
140889dc1e3SArtur Pilipenko //
141889dc1e3SArtur Pilipenko //   So the widened condition is:
1428aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1438aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
1448aadc643SArtur Pilipenko //   Similarly for ule condition the widened condition is:
1458aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1468aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u> latchLimit
1478aadc643SArtur Pilipenko //   For slt condition the widened condition is:
1488aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1498aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
1508aadc643SArtur Pilipenko //   For sle condition the widened condition is:
1518aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1528aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153889dc1e3SArtur Pilipenko //
1547b360434SAnna Thomas // When S = -1 (i.e. reverse iterating loop), the transformation is supported
1557b360434SAnna Thomas // when:
1567b360434SAnna Thomas //   * The loop has a single latch with the condition of the form:
157c8016e7aSSerguei Katkov //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
1587b360434SAnna Thomas //   * The guard condition is of the form
1597b360434SAnna Thomas //     G(X) = X - 1 u< guardLimit
1607b360434SAnna Thomas //
1617b360434SAnna Thomas //   For the ugt latch comparison case M is:
1627b360434SAnna Thomas //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
1637b360434SAnna Thomas //
1647b360434SAnna Thomas //   The only way the antecedent can be true and the consequent can be false is if
1657b360434SAnna Thomas //     X == 1.
1667b360434SAnna Thomas //   If X == 1 then the second half of the antecedent is
1677b360434SAnna Thomas //     1 u> latchLimit, and its negation is latchLimit u>= 1.
1687b360434SAnna Thomas //
1697b360434SAnna Thomas //   So the widened condition is:
1707b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit u>= 1.
1717b360434SAnna Thomas //   Similarly for sgt condition the widened condition is:
1727b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit s>= 1.
173c8016e7aSSerguei Katkov //   For uge condition the widened condition is:
174c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit u> 1.
175c8016e7aSSerguei Katkov //   For sge condition the widened condition is:
176c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit s> 1.
1778fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1788fb3d57eSArtur Pilipenko 
1798fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
180c297e84bSFedor Sergeev #include "llvm/ADT/Statistic.h"
1819b1176b0SAnna Thomas #include "llvm/Analysis/BranchProbabilityInfo.h"
18228298e96SMax Kazantsev #include "llvm/Analysis/GuardUtils.h"
1838fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1848fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1858fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1868fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h"
1878fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1888fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1898fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1908fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1918fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1928fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
1936bda14b3SChandler Carruth #include "llvm/Pass.h"
1948fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1958fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
196d109e2a7SPhilip Reames #include "llvm/Transforms/Utils/Local.h"
1978fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
1988fb3d57eSArtur Pilipenko 
1998fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
2008fb3d57eSArtur Pilipenko 
201c297e84bSFedor Sergeev STATISTIC(TotalConsidered, "Number of guards considered");
202c297e84bSFedor Sergeev STATISTIC(TotalWidened, "Number of checks widened");
203c297e84bSFedor Sergeev 
2048fb3d57eSArtur Pilipenko using namespace llvm;
2058fb3d57eSArtur Pilipenko 
2061d02b13eSAnna Thomas static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
2071d02b13eSAnna Thomas                                         cl::Hidden, cl::init(true));
2081d02b13eSAnna Thomas 
2097b360434SAnna Thomas static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
2107b360434SAnna Thomas                                         cl::Hidden, cl::init(true));
2119b1176b0SAnna Thomas 
2129b1176b0SAnna Thomas static cl::opt<bool>
2139b1176b0SAnna Thomas     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
2149b1176b0SAnna Thomas                             cl::Hidden, cl::init(false));
2159b1176b0SAnna Thomas 
2169b1176b0SAnna Thomas // This is the scale factor for the latch probability. We use this during
2179b1176b0SAnna Thomas // profitability analysis to find other exiting blocks that have a much higher
2189b1176b0SAnna Thomas // probability of exiting the loop instead of loop exiting via latch.
2199b1176b0SAnna Thomas // This value should be greater than 1 for a sane profitability check.
2209b1176b0SAnna Thomas static cl::opt<float> LatchExitProbabilityScale(
2219b1176b0SAnna Thomas     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
2229b1176b0SAnna Thomas     cl::desc("scale factor for the latch probability. Value should be greater "
2239b1176b0SAnna Thomas              "than 1. Lower values are ignored"));
2249b1176b0SAnna Thomas 
225feb475f4SMax Kazantsev static cl::opt<bool> PredicateWidenableBranchGuards(
226feb475f4SMax Kazantsev     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
227feb475f4SMax Kazantsev     cl::desc("Whether or not we should predicate guards "
228feb475f4SMax Kazantsev              "expressed as widenable branches to deoptimize blocks"),
229feb475f4SMax Kazantsev     cl::init(true));
230feb475f4SMax Kazantsev 
2318fb3d57eSArtur Pilipenko namespace {
2328fb3d57eSArtur Pilipenko class LoopPredication {
233a6c27804SArtur Pilipenko   /// Represents an induction variable check:
234a6c27804SArtur Pilipenko   ///   icmp Pred, <induction variable>, <loop invariant limit>
235a6c27804SArtur Pilipenko   struct LoopICmp {
236a6c27804SArtur Pilipenko     ICmpInst::Predicate Pred;
237a6c27804SArtur Pilipenko     const SCEVAddRecExpr *IV;
238a6c27804SArtur Pilipenko     const SCEV *Limit;
239c488dfabSArtur Pilipenko     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240c488dfabSArtur Pilipenko              const SCEV *Limit)
241a6c27804SArtur Pilipenko         : Pred(Pred), IV(IV), Limit(Limit) {}
242a6c27804SArtur Pilipenko     LoopICmp() {}
24368797214SAnna Thomas     void dump() {
24468797214SAnna Thomas       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
24568797214SAnna Thomas              << ", Limit = " << *Limit << "\n";
24668797214SAnna Thomas     }
247a6c27804SArtur Pilipenko   };
248c488dfabSArtur Pilipenko 
249c488dfabSArtur Pilipenko   ScalarEvolution *SE;
2509b1176b0SAnna Thomas   BranchProbabilityInfo *BPI;
251c488dfabSArtur Pilipenko 
252c488dfabSArtur Pilipenko   Loop *L;
253c488dfabSArtur Pilipenko   const DataLayout *DL;
254c488dfabSArtur Pilipenko   BasicBlock *Preheader;
255889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
256c488dfabSArtur Pilipenko 
25768797214SAnna Thomas   bool isSupportedStep(const SCEV* Step);
258889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
259889dc1e3SArtur Pilipenko     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
260889dc1e3SArtur Pilipenko                          ICI->getOperand(1));
261889dc1e3SArtur Pilipenko   }
262889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
263889dc1e3SArtur Pilipenko                                    Value *RHS);
264889dc1e3SArtur Pilipenko 
265889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
266a6c27804SArtur Pilipenko 
267*fbe64a2cSPhilip Reames   /// Return an insertion point suitable for inserting a safe to speculate
268*fbe64a2cSPhilip Reames   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
269*fbe64a2cSPhilip Reames   /// trivial result would be the at the User itself, but we try to return a
270*fbe64a2cSPhilip Reames   /// loop invariant location if possible.
271*fbe64a2cSPhilip Reames   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
272*fbe64a2cSPhilip Reames 
27368797214SAnna Thomas   bool CanExpand(const SCEV* S);
2746780ba65SArtur Pilipenko   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
2753d4e1082SPhilip Reames                      ICmpInst::Predicate Pred, const SCEV *LHS,
2763d4e1082SPhilip Reames                      const SCEV *RHS);
2776780ba65SArtur Pilipenko 
2788fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
2798fb3d57eSArtur Pilipenko                                         IRBuilder<> &Builder);
28068797214SAnna Thomas   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
28168797214SAnna Thomas                                                         LoopICmp RangeCheck,
28268797214SAnna Thomas                                                         SCEVExpander &Expander,
28368797214SAnna Thomas                                                         IRBuilder<> &Builder);
2847b360434SAnna Thomas   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
2857b360434SAnna Thomas                                                         LoopICmp RangeCheck,
2867b360434SAnna Thomas                                                         SCEVExpander &Expander,
2877b360434SAnna Thomas                                                         IRBuilder<> &Builder);
288ca450878SMax Kazantsev   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
289ca450878SMax Kazantsev                          SCEVExpander &Expander, IRBuilder<> &Builder);
2908fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
291feb475f4SMax Kazantsev   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
2929b1176b0SAnna Thomas   // If the loop always exits through another block in the loop, we should not
2939b1176b0SAnna Thomas   // predicate based on the latch check. For example, the latch check can be a
2949b1176b0SAnna Thomas   // very coarse grained check and there can be more fine grained exit checks
2959b1176b0SAnna Thomas   // within the loop. We identify such unprofitable loops through BPI.
2969b1176b0SAnna Thomas   bool isLoopProfitableToPredicate();
2979b1176b0SAnna Thomas 
2981d02b13eSAnna Thomas   // When the IV type is wider than the range operand type, we can still do loop
2991d02b13eSAnna Thomas   // predication, by generating SCEVs for the range and latch that are of the
3001d02b13eSAnna Thomas   // same type. We achieve this by generating a SCEV truncate expression for the
3011d02b13eSAnna Thomas   // latch IV. This is done iff truncation of the IV is a safe operation,
3021d02b13eSAnna Thomas   // without loss of information.
3031d02b13eSAnna Thomas   // Another way to achieve this is by generating a wider type SCEV for the
3041d02b13eSAnna Thomas   // range check operand, however, this needs a more involved check that
3051d02b13eSAnna Thomas   // operands do not overflow. This can lead to loss of information when the
3061d02b13eSAnna Thomas   // range operand is of the form: add i32 %offset, %iv. We need to prove that
3071d02b13eSAnna Thomas   // sext(x + y) is same as sext(x) + sext(y).
3081d02b13eSAnna Thomas   // This function returns true if we can safely represent the IV type in
3091d02b13eSAnna Thomas   // the RangeCheckType without loss of information.
3101d02b13eSAnna Thomas   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
3111d02b13eSAnna Thomas   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
3121d02b13eSAnna Thomas   // so.
3131d02b13eSAnna Thomas   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
314ebc9031bSSerguei Katkov 
3158fb3d57eSArtur Pilipenko public:
3169b1176b0SAnna Thomas   LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
3179b1176b0SAnna Thomas       : SE(SE), BPI(BPI){};
3188fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
3198fb3d57eSArtur Pilipenko };
3208fb3d57eSArtur Pilipenko 
3218fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
3228fb3d57eSArtur Pilipenko public:
3238fb3d57eSArtur Pilipenko   static char ID;
3248fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
3258fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
3268fb3d57eSArtur Pilipenko   }
3278fb3d57eSArtur Pilipenko 
3288fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
3299b1176b0SAnna Thomas     AU.addRequired<BranchProbabilityInfoWrapperPass>();
3308fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
3318fb3d57eSArtur Pilipenko   }
3328fb3d57eSArtur Pilipenko 
3338fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
3348fb3d57eSArtur Pilipenko     if (skipLoop(L))
3358fb3d57eSArtur Pilipenko       return false;
3368fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3379b1176b0SAnna Thomas     BranchProbabilityInfo &BPI =
3389b1176b0SAnna Thomas         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3399b1176b0SAnna Thomas     LoopPredication LP(SE, &BPI);
3408fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
3418fb3d57eSArtur Pilipenko   }
3428fb3d57eSArtur Pilipenko };
3438fb3d57eSArtur Pilipenko 
3448fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
3458fb3d57eSArtur Pilipenko } // end namespace llvm
3468fb3d57eSArtur Pilipenko 
3478fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
3488fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
3499b1176b0SAnna Thomas INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
3508fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
3518fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
3528fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
3538fb3d57eSArtur Pilipenko 
3548fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
3558fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
3568fb3d57eSArtur Pilipenko }
3578fb3d57eSArtur Pilipenko 
3588fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
3598fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
3608fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
3619b1176b0SAnna Thomas   const auto &FAM =
3629b1176b0SAnna Thomas       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
3639b1176b0SAnna Thomas   Function *F = L.getHeader()->getParent();
3649b1176b0SAnna Thomas   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
3659b1176b0SAnna Thomas   LoopPredication LP(&AR.SE, BPI);
3668fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
3678fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
3688fb3d57eSArtur Pilipenko 
3698fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
3708fb3d57eSArtur Pilipenko }
3718fb3d57eSArtur Pilipenko 
372a6c27804SArtur Pilipenko Optional<LoopPredication::LoopICmp>
373889dc1e3SArtur Pilipenko LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
374889dc1e3SArtur Pilipenko                                Value *RHS) {
375a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
376a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
377a6c27804SArtur Pilipenko     return None;
378a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
379a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
380a6c27804SArtur Pilipenko     return None;
381a6c27804SArtur Pilipenko 
382a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
383a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
384a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
385a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
386a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
387a6c27804SArtur Pilipenko   }
388a6c27804SArtur Pilipenko 
389a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
390a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
391a6c27804SArtur Pilipenko     return None;
392a6c27804SArtur Pilipenko 
393a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
394a6c27804SArtur Pilipenko }
395a6c27804SArtur Pilipenko 
3966780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
3976780ba65SArtur Pilipenko                                     IRBuilder<> &Builder,
3986780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
3993d4e1082SPhilip Reames                                     const SCEV *RHS) {
4006780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
4016780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
402ead69ee4SArtur Pilipenko 
403ead69ee4SArtur Pilipenko   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
404ead69ee4SArtur Pilipenko     return Builder.getTrue();
40505e3e554SPhilip Reames   if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
40605e3e554SPhilip Reames                                    LHS, RHS))
40705e3e554SPhilip Reames     return Builder.getFalse();
408ead69ee4SArtur Pilipenko 
4093d4e1082SPhilip Reames   Instruction *InsertAt = &*Builder.GetInsertPoint();
4106780ba65SArtur Pilipenko   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
4116780ba65SArtur Pilipenko   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
4126780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
4136780ba65SArtur Pilipenko }
4146780ba65SArtur Pilipenko 
4151d02b13eSAnna Thomas Optional<LoopPredication::LoopICmp>
4161d02b13eSAnna Thomas LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
4171d02b13eSAnna Thomas 
4181d02b13eSAnna Thomas   auto *LatchType = LatchCheck.IV->getType();
4191d02b13eSAnna Thomas   if (RangeCheckType == LatchType)
4201d02b13eSAnna Thomas     return LatchCheck;
4211d02b13eSAnna Thomas   // For now, bail out if latch type is narrower than range type.
4221d02b13eSAnna Thomas   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
4231d02b13eSAnna Thomas     return None;
4241d02b13eSAnna Thomas   if (!isSafeToTruncateWideIVType(RangeCheckType))
4251d02b13eSAnna Thomas     return None;
4261d02b13eSAnna Thomas   // We can now safely identify the truncated version of the IV and limit for
4271d02b13eSAnna Thomas   // RangeCheckType.
4281d02b13eSAnna Thomas   LoopICmp NewLatchCheck;
4291d02b13eSAnna Thomas   NewLatchCheck.Pred = LatchCheck.Pred;
4301d02b13eSAnna Thomas   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
4311d02b13eSAnna Thomas       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
4321d02b13eSAnna Thomas   if (!NewLatchCheck.IV)
4331d02b13eSAnna Thomas     return None;
4341d02b13eSAnna Thomas   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
435d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
436d34e60caSNicola Zaghen                     << "can be represented as range check type:"
437d34e60caSNicola Zaghen                     << *RangeCheckType << "\n");
438d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
439d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
4401d02b13eSAnna Thomas   return NewLatchCheck;
4411d02b13eSAnna Thomas }
4421d02b13eSAnna Thomas 
44368797214SAnna Thomas bool LoopPredication::isSupportedStep(const SCEV* Step) {
4447b360434SAnna Thomas   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
4451d02b13eSAnna Thomas }
4468fb3d57eSArtur Pilipenko 
447*fbe64a2cSPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use,
448*fbe64a2cSPhilip Reames                                            ArrayRef<Value*> Ops) {
449*fbe64a2cSPhilip Reames   for (Value *Op : Ops)
450*fbe64a2cSPhilip Reames     if (!L->isLoopInvariant(Op))
451*fbe64a2cSPhilip Reames       return Use;
452*fbe64a2cSPhilip Reames   return Preheader->getTerminator();
453*fbe64a2cSPhilip Reames }
454*fbe64a2cSPhilip Reames 
45568797214SAnna Thomas bool LoopPredication::CanExpand(const SCEV* S) {
45668797214SAnna Thomas   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
45768797214SAnna Thomas }
45868797214SAnna Thomas 
45968797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
46068797214SAnna Thomas     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
46168797214SAnna Thomas     SCEVExpander &Expander, IRBuilder<> &Builder) {
46268797214SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
46368797214SAnna Thomas   // Generate the widened condition for the forward loop:
4648aadc643SArtur Pilipenko   //   guardStart u< guardLimit &&
4658aadc643SArtur Pilipenko   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
466b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
467b4527e1cSArtur Pilipenko   // header comment for the reasoning.
46868797214SAnna Thomas   // guardLimit - guardStart + latchStart - 1
46968797214SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
47068797214SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
47168797214SAnna Thomas   const SCEV *LatchStart = LatchCheck.IV->getStart();
47268797214SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
4738aadc643SArtur Pilipenko 
4748aadc643SArtur Pilipenko   // guardLimit - guardStart + latchStart - 1
4758aadc643SArtur Pilipenko   const SCEV *RHS =
4768aadc643SArtur Pilipenko       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
4778aadc643SArtur Pilipenko                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
47868797214SAnna Thomas   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
47968797214SAnna Thomas       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
480d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
48168797214SAnna Thomas     return None;
48268797214SAnna Thomas   }
4833cb4c34aSSerguei Katkov   auto LimitCheckPred =
4843cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
485aab28666SArtur Pilipenko 
486d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
487d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
488d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
4898aadc643SArtur Pilipenko 
4908aadc643SArtur Pilipenko   auto *LimitCheck =
4913d4e1082SPhilip Reames       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS);
49268797214SAnna Thomas   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
4933d4e1082SPhilip Reames                                           GuardStart, GuardLimit);
494889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
4958fb3d57eSArtur Pilipenko }
4967b360434SAnna Thomas 
4977b360434SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
4987b360434SAnna Thomas     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
4997b360434SAnna Thomas     SCEVExpander &Expander, IRBuilder<> &Builder) {
5007b360434SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
5017b360434SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
5027b360434SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
5037b360434SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
5047b360434SAnna Thomas   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
5057b360434SAnna Thomas       !CanExpand(LatchLimit)) {
506d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
5077b360434SAnna Thomas     return None;
5087b360434SAnna Thomas   }
5097b360434SAnna Thomas   // The decrement of the latch check IV should be the same as the
5107b360434SAnna Thomas   // rangeCheckIV.
5117b360434SAnna Thomas   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
5127b360434SAnna Thomas   if (RangeCheck.IV != PostDecLatchCheckIV) {
513d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
5147b360434SAnna Thomas                       << *PostDecLatchCheckIV
5157b360434SAnna Thomas                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
5167b360434SAnna Thomas     return None;
5177b360434SAnna Thomas   }
5187b360434SAnna Thomas 
5197b360434SAnna Thomas   // Generate the widened condition for CountDownLoop:
5207b360434SAnna Thomas   // guardStart u< guardLimit &&
5217b360434SAnna Thomas   // latchLimit <pred> 1.
5227b360434SAnna Thomas   // See the header comment for reasoning of the checks.
5233cb4c34aSSerguei Katkov   auto LimitCheckPred =
5243cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
5257b360434SAnna Thomas   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
5263d4e1082SPhilip Reames                                           GuardStart, GuardLimit);
5277b360434SAnna Thomas   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
5283d4e1082SPhilip Reames                                  SE->getOne(Ty));
5297b360434SAnna Thomas   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
5307b360434SAnna Thomas }
5317b360434SAnna Thomas 
53268797214SAnna Thomas /// If ICI can be widened to a loop invariant condition emits the loop
53368797214SAnna Thomas /// invariant condition in the loop preheader and return it, otherwise
53468797214SAnna Thomas /// returns None.
53568797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
53668797214SAnna Thomas                                                        SCEVExpander &Expander,
53768797214SAnna Thomas                                                        IRBuilder<> &Builder) {
538d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
539d34e60caSNicola Zaghen   LLVM_DEBUG(ICI->dump());
54068797214SAnna Thomas 
54168797214SAnna Thomas   // parseLoopStructure guarantees that the latch condition is:
54268797214SAnna Thomas   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
54368797214SAnna Thomas   // We are looking for the range checks of the form:
54468797214SAnna Thomas   //   i u< guardLimit
54568797214SAnna Thomas   auto RangeCheck = parseLoopICmp(ICI);
54668797214SAnna Thomas   if (!RangeCheck) {
547d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
54868797214SAnna Thomas     return None;
54968797214SAnna Thomas   }
550d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Guard check:\n");
551d34e60caSNicola Zaghen   LLVM_DEBUG(RangeCheck->dump());
55268797214SAnna Thomas   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
553d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
554d34e60caSNicola Zaghen                       << RangeCheck->Pred << ")!\n");
55568797214SAnna Thomas     return None;
55668797214SAnna Thomas   }
55768797214SAnna Thomas   auto *RangeCheckIV = RangeCheck->IV;
55868797214SAnna Thomas   if (!RangeCheckIV->isAffine()) {
559d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
56068797214SAnna Thomas     return None;
56168797214SAnna Thomas   }
56268797214SAnna Thomas   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
56368797214SAnna Thomas   // We cannot just compare with latch IV step because the latch and range IVs
56468797214SAnna Thomas   // may have different types.
56568797214SAnna Thomas   if (!isSupportedStep(Step)) {
566d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
56768797214SAnna Thomas     return None;
56868797214SAnna Thomas   }
56968797214SAnna Thomas   auto *Ty = RangeCheckIV->getType();
57068797214SAnna Thomas   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
57168797214SAnna Thomas   if (!CurrLatchCheckOpt) {
572d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
57368797214SAnna Thomas                          "corresponding to range type: "
57468797214SAnna Thomas                       << *Ty << "\n");
57568797214SAnna Thomas     return None;
57668797214SAnna Thomas   }
57768797214SAnna Thomas 
57868797214SAnna Thomas   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
5797b360434SAnna Thomas   // At this point, the range and latch step should have the same type, but need
5807b360434SAnna Thomas   // not have the same value (we support both 1 and -1 steps).
5817b360434SAnna Thomas   assert(Step->getType() ==
5827b360434SAnna Thomas              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
5837b360434SAnna Thomas          "Range and latch steps should be of same type!");
5847b360434SAnna Thomas   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
585d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
5867b360434SAnna Thomas     return None;
5877b360434SAnna Thomas   }
58868797214SAnna Thomas 
5897b360434SAnna Thomas   if (Step->isOne())
59068797214SAnna Thomas     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
59168797214SAnna Thomas                                                Expander, Builder);
5927b360434SAnna Thomas   else {
5937b360434SAnna Thomas     assert(Step->isAllOnesValue() && "Step should be -1!");
5947b360434SAnna Thomas     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
5957b360434SAnna Thomas                                                Expander, Builder);
5967b360434SAnna Thomas   }
59768797214SAnna Thomas }
5988fb3d57eSArtur Pilipenko 
599ca450878SMax Kazantsev unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
600ca450878SMax Kazantsev                                         Value *Condition,
601ca450878SMax Kazantsev                                         SCEVExpander &Expander,
602ca450878SMax Kazantsev                                         IRBuilder<> &Builder) {
603ca450878SMax Kazantsev   unsigned NumWidened = 0;
6048fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
6058fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
6060909ca13SHiroshi Inoue   // Iterate over subconditions looking for icmp conditions which can be
6078fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
6088fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
609ca450878SMax Kazantsev   SmallVector<Value *, 4> Worklist(1, Condition);
6108fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
611adb3ece2SPhilip Reames   Value *WideableCond = nullptr;
6128fb3d57eSArtur Pilipenko   do {
6138fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
6148fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
6158fb3d57eSArtur Pilipenko       continue;
6168fb3d57eSArtur Pilipenko 
6178fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
6188fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
6198fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
6208fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
6218fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
6228fb3d57eSArtur Pilipenko       continue;
6238fb3d57eSArtur Pilipenko     }
6248fb3d57eSArtur Pilipenko 
625adb3ece2SPhilip Reames     if (match(Condition,
626adb3ece2SPhilip Reames               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
627adb3ece2SPhilip Reames       // Pick any, we don't care which
628adb3ece2SPhilip Reames       WideableCond = Condition;
629adb3ece2SPhilip Reames       continue;
630adb3ece2SPhilip Reames     }
631adb3ece2SPhilip Reames 
6328fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
6333d4e1082SPhilip Reames       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
6343d4e1082SPhilip Reames                                                    Builder)) {
6358fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
6368fb3d57eSArtur Pilipenko         NumWidened++;
6378fb3d57eSArtur Pilipenko         continue;
6388fb3d57eSArtur Pilipenko       }
6398fb3d57eSArtur Pilipenko     }
6408fb3d57eSArtur Pilipenko 
6418fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
6428fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
643ca450878SMax Kazantsev   } while (!Worklist.empty());
644adb3ece2SPhilip Reames   // At the moment, our matching logic for wideable conditions implicitly
645adb3ece2SPhilip Reames   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
646adb3ece2SPhilip Reames   // Note that if there were multiple calls to wideable condition in the
647adb3ece2SPhilip Reames   // traversal, we only need to keep one, and which one is arbitrary.
648adb3ece2SPhilip Reames   if (WideableCond)
649adb3ece2SPhilip Reames     Checks.push_back(WideableCond);
650ca450878SMax Kazantsev   return NumWidened;
651ca450878SMax Kazantsev }
6528fb3d57eSArtur Pilipenko 
653ca450878SMax Kazantsev bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
654ca450878SMax Kazantsev                                            SCEVExpander &Expander) {
655ca450878SMax Kazantsev   LLVM_DEBUG(dbgs() << "Processing guard:\n");
656ca450878SMax Kazantsev   LLVM_DEBUG(Guard->dump());
657ca450878SMax Kazantsev 
658ca450878SMax Kazantsev   TotalConsidered++;
659ca450878SMax Kazantsev   SmallVector<Value *, 4> Checks;
660ca450878SMax Kazantsev   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
661ca450878SMax Kazantsev   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
662ca450878SMax Kazantsev                                       Builder);
6638fb3d57eSArtur Pilipenko   if (NumWidened == 0)
6648fb3d57eSArtur Pilipenko     return false;
6658fb3d57eSArtur Pilipenko 
666c297e84bSFedor Sergeev   TotalWidened += NumWidened;
667c297e84bSFedor Sergeev 
6688fb3d57eSArtur Pilipenko   // Emit the new guard condition
669*fbe64a2cSPhilip Reames   Builder.SetInsertPoint(findInsertPt(Guard, Checks));
6708fb3d57eSArtur Pilipenko   Value *LastCheck = nullptr;
6718fb3d57eSArtur Pilipenko   for (auto *Check : Checks)
6728fb3d57eSArtur Pilipenko     if (!LastCheck)
6738fb3d57eSArtur Pilipenko       LastCheck = Check;
6748fb3d57eSArtur Pilipenko     else
6758fb3d57eSArtur Pilipenko       LastCheck = Builder.CreateAnd(LastCheck, Check);
676d109e2a7SPhilip Reames   auto *OldCond = Guard->getOperand(0);
6778fb3d57eSArtur Pilipenko   Guard->setOperand(0, LastCheck);
678d109e2a7SPhilip Reames   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
6798fb3d57eSArtur Pilipenko 
680d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
6818fb3d57eSArtur Pilipenko   return true;
6828fb3d57eSArtur Pilipenko }
6838fb3d57eSArtur Pilipenko 
684feb475f4SMax Kazantsev bool LoopPredication::widenWidenableBranchGuardConditions(
685f608678fSPhilip Reames     BranchInst *BI, SCEVExpander &Expander) {
686f608678fSPhilip Reames   assert(isGuardAsWidenableBranch(BI) && "Must be!");
687feb475f4SMax Kazantsev   LLVM_DEBUG(dbgs() << "Processing guard:\n");
688f608678fSPhilip Reames   LLVM_DEBUG(BI->dump());
689feb475f4SMax Kazantsev 
690feb475f4SMax Kazantsev   TotalConsidered++;
691feb475f4SMax Kazantsev   SmallVector<Value *, 4> Checks;
692feb475f4SMax Kazantsev   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
693adb3ece2SPhilip Reames   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
694adb3ece2SPhilip Reames                                       Expander, Builder);
695feb475f4SMax Kazantsev   if (NumWidened == 0)
696feb475f4SMax Kazantsev     return false;
697feb475f4SMax Kazantsev 
698feb475f4SMax Kazantsev   TotalWidened += NumWidened;
699feb475f4SMax Kazantsev 
700feb475f4SMax Kazantsev   // Emit the new guard condition
701*fbe64a2cSPhilip Reames   Builder.SetInsertPoint(findInsertPt(BI, Checks));
702feb475f4SMax Kazantsev   Value *LastCheck = nullptr;
703feb475f4SMax Kazantsev   for (auto *Check : Checks)
704feb475f4SMax Kazantsev     if (!LastCheck)
705feb475f4SMax Kazantsev       LastCheck = Check;
706feb475f4SMax Kazantsev     else
707feb475f4SMax Kazantsev       LastCheck = Builder.CreateAnd(LastCheck, Check);
708adb3ece2SPhilip Reames   auto *OldCond = BI->getCondition();
709adb3ece2SPhilip Reames   BI->setCondition(LastCheck);
710f608678fSPhilip Reames   assert(isGuardAsWidenableBranch(BI) &&
711feb475f4SMax Kazantsev          "Stopped being a guard after transform?");
712d109e2a7SPhilip Reames   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
713feb475f4SMax Kazantsev 
714feb475f4SMax Kazantsev   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
715feb475f4SMax Kazantsev   return true;
716feb475f4SMax Kazantsev }
717feb475f4SMax Kazantsev 
718889dc1e3SArtur Pilipenko Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
719889dc1e3SArtur Pilipenko   using namespace PatternMatch;
720889dc1e3SArtur Pilipenko 
721889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
722889dc1e3SArtur Pilipenko   if (!LoopLatch) {
723d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
724889dc1e3SArtur Pilipenko     return None;
725889dc1e3SArtur Pilipenko   }
726889dc1e3SArtur Pilipenko 
727889dc1e3SArtur Pilipenko   ICmpInst::Predicate Pred;
728889dc1e3SArtur Pilipenko   Value *LHS, *RHS;
729889dc1e3SArtur Pilipenko   BasicBlock *TrueDest, *FalseDest;
730889dc1e3SArtur Pilipenko 
731889dc1e3SArtur Pilipenko   if (!match(LoopLatch->getTerminator(),
732889dc1e3SArtur Pilipenko              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
733889dc1e3SArtur Pilipenko                   FalseDest))) {
734d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
735889dc1e3SArtur Pilipenko     return None;
736889dc1e3SArtur Pilipenko   }
737889dc1e3SArtur Pilipenko   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
738889dc1e3SArtur Pilipenko          "One of the latch's destinations must be the header");
739889dc1e3SArtur Pilipenko   if (TrueDest != L->getHeader())
740889dc1e3SArtur Pilipenko     Pred = ICmpInst::getInversePredicate(Pred);
741889dc1e3SArtur Pilipenko 
742889dc1e3SArtur Pilipenko   auto Result = parseLoopICmp(Pred, LHS, RHS);
743889dc1e3SArtur Pilipenko   if (!Result) {
744d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
745889dc1e3SArtur Pilipenko     return None;
746889dc1e3SArtur Pilipenko   }
747889dc1e3SArtur Pilipenko 
748889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
749889dc1e3SArtur Pilipenko   // recurrence.
750889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
751d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
752889dc1e3SArtur Pilipenko     return None;
753889dc1e3SArtur Pilipenko   }
754889dc1e3SArtur Pilipenko 
755889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
75668797214SAnna Thomas   if (!isSupportedStep(Step)) {
757d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
758889dc1e3SArtur Pilipenko     return None;
759889dc1e3SArtur Pilipenko   }
760889dc1e3SArtur Pilipenko 
76168797214SAnna Thomas   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
7627b360434SAnna Thomas     if (Step->isOne()) {
76368797214SAnna Thomas       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
76468797214SAnna Thomas              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
7657b360434SAnna Thomas     } else {
7667b360434SAnna Thomas       assert(Step->isAllOnesValue() && "Step should be -1!");
767c8016e7aSSerguei Katkov       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
768c8016e7aSSerguei Katkov              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
7697b360434SAnna Thomas     }
77068797214SAnna Thomas   };
77168797214SAnna Thomas 
77268797214SAnna Thomas   if (IsUnsupportedPredicate(Step, Result->Pred)) {
773d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
77468797214SAnna Thomas                       << ")!\n");
77568797214SAnna Thomas     return None;
77668797214SAnna Thomas   }
777889dc1e3SArtur Pilipenko   return Result;
778889dc1e3SArtur Pilipenko }
779889dc1e3SArtur Pilipenko 
7801d02b13eSAnna Thomas // Returns true if its safe to truncate the IV to RangeCheckType.
7811d02b13eSAnna Thomas bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
7821d02b13eSAnna Thomas   if (!EnableIVTruncation)
7831d02b13eSAnna Thomas     return false;
7841d02b13eSAnna Thomas   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
7851d02b13eSAnna Thomas              DL->getTypeSizeInBits(RangeCheckType) &&
7861d02b13eSAnna Thomas          "Expected latch check IV type to be larger than range check operand "
7871d02b13eSAnna Thomas          "type!");
7881d02b13eSAnna Thomas   // The start and end values of the IV should be known. This is to guarantee
7891d02b13eSAnna Thomas   // that truncating the wide type will not lose information.
7901d02b13eSAnna Thomas   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
7911d02b13eSAnna Thomas   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
7921d02b13eSAnna Thomas   if (!Limit || !Start)
7931d02b13eSAnna Thomas     return false;
7941d02b13eSAnna Thomas   // This check makes sure that the IV does not change sign during loop
7951d02b13eSAnna Thomas   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
7961d02b13eSAnna Thomas   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
7971d02b13eSAnna Thomas   // IV wraps around, and the truncation of the IV would lose the range of
7981d02b13eSAnna Thomas   // iterations between 2^32 and 2^64.
7991d02b13eSAnna Thomas   bool Increasing;
8001d02b13eSAnna Thomas   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
8011d02b13eSAnna Thomas     return false;
8021d02b13eSAnna Thomas   // The active bits should be less than the bits in the RangeCheckType. This
8031d02b13eSAnna Thomas   // guarantees that truncating the latch check to RangeCheckType is a safe
8041d02b13eSAnna Thomas   // operation.
8051d02b13eSAnna Thomas   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
8061d02b13eSAnna Thomas   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
8071d02b13eSAnna Thomas          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
8081d02b13eSAnna Thomas }
8091d02b13eSAnna Thomas 
8109b1176b0SAnna Thomas bool LoopPredication::isLoopProfitableToPredicate() {
8119b1176b0SAnna Thomas   if (SkipProfitabilityChecks || !BPI)
8129b1176b0SAnna Thomas     return true;
8139b1176b0SAnna Thomas 
8149b1176b0SAnna Thomas   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
8159b1176b0SAnna Thomas   L->getExitEdges(ExitEdges);
8169b1176b0SAnna Thomas   // If there is only one exiting edge in the loop, it is always profitable to
8179b1176b0SAnna Thomas   // predicate the loop.
8189b1176b0SAnna Thomas   if (ExitEdges.size() == 1)
8199b1176b0SAnna Thomas     return true;
8209b1176b0SAnna Thomas 
8219b1176b0SAnna Thomas   // Calculate the exiting probabilities of all exiting edges from the loop,
8229b1176b0SAnna Thomas   // starting with the LatchExitProbability.
8239b1176b0SAnna Thomas   // Heuristic for profitability: If any of the exiting blocks' probability of
8249b1176b0SAnna Thomas   // exiting the loop is larger than exiting through the latch block, it's not
8259b1176b0SAnna Thomas   // profitable to predicate the loop.
8269b1176b0SAnna Thomas   auto *LatchBlock = L->getLoopLatch();
8279b1176b0SAnna Thomas   assert(LatchBlock && "Should have a single latch at this point!");
8289b1176b0SAnna Thomas   auto *LatchTerm = LatchBlock->getTerminator();
8299b1176b0SAnna Thomas   assert(LatchTerm->getNumSuccessors() == 2 &&
8309b1176b0SAnna Thomas          "expected to be an exiting block with 2 succs!");
8319b1176b0SAnna Thomas   unsigned LatchBrExitIdx =
8329b1176b0SAnna Thomas       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
8339b1176b0SAnna Thomas   BranchProbability LatchExitProbability =
8349b1176b0SAnna Thomas       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
8359b1176b0SAnna Thomas 
8369b1176b0SAnna Thomas   // Protect against degenerate inputs provided by the user. Providing a value
8379b1176b0SAnna Thomas   // less than one, can invert the definition of profitable loop predication.
8389b1176b0SAnna Thomas   float ScaleFactor = LatchExitProbabilityScale;
8399b1176b0SAnna Thomas   if (ScaleFactor < 1) {
840d34e60caSNicola Zaghen     LLVM_DEBUG(
8419b1176b0SAnna Thomas         dbgs()
8429b1176b0SAnna Thomas         << "Ignored user setting for loop-predication-latch-probability-scale: "
8439b1176b0SAnna Thomas         << LatchExitProbabilityScale << "\n");
844d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
8459b1176b0SAnna Thomas     ScaleFactor = 1.0;
8469b1176b0SAnna Thomas   }
8479b1176b0SAnna Thomas   const auto LatchProbabilityThreshold =
8489b1176b0SAnna Thomas       LatchExitProbability * ScaleFactor;
8499b1176b0SAnna Thomas 
8509b1176b0SAnna Thomas   for (const auto &ExitEdge : ExitEdges) {
8519b1176b0SAnna Thomas     BranchProbability ExitingBlockProbability =
8529b1176b0SAnna Thomas         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
8539b1176b0SAnna Thomas     // Some exiting edge has higher probability than the latch exiting edge.
8549b1176b0SAnna Thomas     // No longer profitable to predicate.
8559b1176b0SAnna Thomas     if (ExitingBlockProbability > LatchProbabilityThreshold)
8569b1176b0SAnna Thomas       return false;
8579b1176b0SAnna Thomas   }
8589b1176b0SAnna Thomas   // Using BPI, we have concluded that the most probable way to exit from the
8599b1176b0SAnna Thomas   // loop is through the latch (or there's no profile information and all
8609b1176b0SAnna Thomas   // exits are equally likely).
8619b1176b0SAnna Thomas   return true;
8629b1176b0SAnna Thomas }
8639b1176b0SAnna Thomas 
8648fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
8658fb3d57eSArtur Pilipenko   L = Loop;
8668fb3d57eSArtur Pilipenko 
867d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ");
868d34e60caSNicola Zaghen   LLVM_DEBUG(L->dump());
8698fb3d57eSArtur Pilipenko 
8708fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
8718fb3d57eSArtur Pilipenko 
8728fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
8738fb3d57eSArtur Pilipenko   auto *GuardDecl =
8748fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
875feb475f4SMax Kazantsev   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
876feb475f4SMax Kazantsev   auto *WCDecl = M->getFunction(
877feb475f4SMax Kazantsev       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
878feb475f4SMax Kazantsev   bool HasWidenableConditions =
879feb475f4SMax Kazantsev       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
880feb475f4SMax Kazantsev   if (!HasIntrinsicGuards && !HasWidenableConditions)
8818fb3d57eSArtur Pilipenko     return false;
8828fb3d57eSArtur Pilipenko 
8838fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
8848fb3d57eSArtur Pilipenko 
8858fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
8868fb3d57eSArtur Pilipenko   if (!Preheader)
8878fb3d57eSArtur Pilipenko     return false;
8888fb3d57eSArtur Pilipenko 
889889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
890889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
891889dc1e3SArtur Pilipenko     return false;
892889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
893889dc1e3SArtur Pilipenko 
894d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Latch check:\n");
895d34e60caSNicola Zaghen   LLVM_DEBUG(LatchCheck.dump());
89668797214SAnna Thomas 
8979b1176b0SAnna Thomas   if (!isLoopProfitableToPredicate()) {
898d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
8999b1176b0SAnna Thomas     return false;
9009b1176b0SAnna Thomas   }
9018fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
9028fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
9038fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
904feb475f4SMax Kazantsev   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
905feb475f4SMax Kazantsev   for (const auto BB : L->blocks()) {
9068fb3d57eSArtur Pilipenko     for (auto &I : *BB)
90728298e96SMax Kazantsev       if (isGuard(&I))
90828298e96SMax Kazantsev         Guards.push_back(cast<IntrinsicInst>(&I));
909feb475f4SMax Kazantsev     if (PredicateWidenableBranchGuards &&
910feb475f4SMax Kazantsev         isGuardAsWidenableBranch(BB->getTerminator()))
911feb475f4SMax Kazantsev       GuardsAsWidenableBranches.push_back(
912feb475f4SMax Kazantsev           cast<BranchInst>(BB->getTerminator()));
913feb475f4SMax Kazantsev   }
9148fb3d57eSArtur Pilipenko 
915feb475f4SMax Kazantsev   if (Guards.empty() && GuardsAsWidenableBranches.empty())
91646c4e0a4SArtur Pilipenko     return false;
91746c4e0a4SArtur Pilipenko 
9188fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
9198fb3d57eSArtur Pilipenko 
9208fb3d57eSArtur Pilipenko   bool Changed = false;
9218fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
9228fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
923feb475f4SMax Kazantsev   for (auto *Guard : GuardsAsWidenableBranches)
924feb475f4SMax Kazantsev     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
9258fb3d57eSArtur Pilipenko 
9268fb3d57eSArtur Pilipenko   return Changed;
9278fb3d57eSArtur Pilipenko }
928