18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
38fb3d57eSArtur Pilipenko //                     The LLVM Compiler Infrastructure
48fb3d57eSArtur Pilipenko //
58fb3d57eSArtur Pilipenko // This file is distributed under the University of Illinois Open Source
68fb3d57eSArtur Pilipenko // License. See LICENSE.TXT for details.
78fb3d57eSArtur Pilipenko //
88fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
98fb3d57eSArtur Pilipenko //
108fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
118fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
128fb3d57eSArtur Pilipenko // convert
138fb3d57eSArtur Pilipenko //
148fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
158fb3d57eSArtur Pilipenko //     guard(i < len);
168fb3d57eSArtur Pilipenko //     ...
178fb3d57eSArtur Pilipenko //   }
188fb3d57eSArtur Pilipenko //
198fb3d57eSArtur Pilipenko // to
208fb3d57eSArtur Pilipenko //
218fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
228fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
238fb3d57eSArtur Pilipenko //     ...
248fb3d57eSArtur Pilipenko //   }
258fb3d57eSArtur Pilipenko //
268fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
278fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
288fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
298fb3d57eSArtur Pilipenko //
308fb3d57eSArtur Pilipenko //   if (n - 1 < len)
318fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
328fb3d57eSArtur Pilipenko //       ...
338fb3d57eSArtur Pilipenko //     }
348fb3d57eSArtur Pilipenko //   else
358fb3d57eSArtur Pilipenko //     deoptimize
368fb3d57eSArtur Pilipenko //
37889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
38889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
39889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
40889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
41889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
42889dc1e3SArtur Pilipenko // assumption that it never fails.
43889dc1e3SArtur Pilipenko //
44889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
45889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
46889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
47889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
48889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49889dc1e3SArtur Pilipenko //
50889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
51889dc1e3SArtur Pilipenko //     guard(i u< len)
52889dc1e3SArtur Pilipenko //
53889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
54889dc1e3SArtur Pilipenko // approach. Given the loop:
55889dc1e3SArtur Pilipenko //
568aadc643SArtur Pilipenko //   if (B(0)) {
57889dc1e3SArtur Pilipenko //     do {
588aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
59889dc1e3SArtur Pilipenko //       I.INC = I + Step
60889dc1e3SArtur Pilipenko //       guard(G(I));
618aadc643SArtur Pilipenko //     } while (B(I));
62889dc1e3SArtur Pilipenko //   }
63889dc1e3SArtur Pilipenko //
64889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
65889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
66889dc1e3SArtur Pilipenko // as the above:
67889dc1e3SArtur Pilipenko //
688aadc643SArtur Pilipenko //   if (B(0)) {
69889dc1e3SArtur Pilipenko //     do {
708aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
71889dc1e3SArtur Pilipenko //       I.INC = I + Step
728aadc643SArtur Pilipenko //       guard(G(0) && M);
738aadc643SArtur Pilipenko //     } while (B(I));
74889dc1e3SArtur Pilipenko //   }
75889dc1e3SArtur Pilipenko //
768aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77889dc1e3SArtur Pilipenko //
78889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
79889dc1e3SArtur Pilipenko //
80889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
818aadc643SArtur Pilipenko //     G(I) && G(0) && M
82889dc1e3SArtur Pilipenko //
83889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
848aadc643SArtur Pilipenko //     G(0) && M => G(I)
85889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
86889dc1e3SArtur Pilipenko //
87889dc1e3SArtur Pilipenko //   Induction base.
888aadc643SArtur Pilipenko //     G(0) && M => G(0)
89889dc1e3SArtur Pilipenko //
908aadc643SArtur Pilipenko //   Induction step. Assuming G(0) && M => G(I) on the subsequent
91889dc1e3SArtur Pilipenko //   iteration:
92889dc1e3SArtur Pilipenko //
938aadc643SArtur Pilipenko //     B(I) is true because it's the backedge condition.
94889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
95889dc1e3SArtur Pilipenko //
968aadc643SArtur Pilipenko //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97889dc1e3SArtur Pilipenko //
98889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
99889dc1e3SArtur Pilipenko // implies M.
100889dc1e3SArtur Pilipenko //
1017b360434SAnna Thomas // When S = 1 (i.e. forward iterating loop), the transformation is supported
1027b360434SAnna Thomas // when:
103b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
1048aadc643SArtur Pilipenko //     B(X) = latchStart + X <pred> latchLimit,
1058aadc643SArtur Pilipenko //     where <pred> is u<, u<=, s<, or s<=.
1068aadc643SArtur Pilipenko //   * The guard condition is of the form
1078aadc643SArtur Pilipenko //     G(X) = guardStart + X u< guardLimit
108889dc1e3SArtur Pilipenko //
109b4527e1cSArtur Pilipenko //   For the ult latch comparison case M is:
1108aadc643SArtur Pilipenko //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
1118aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
112889dc1e3SArtur Pilipenko //
113889dc1e3SArtur Pilipenko //   The only way the antecedent can be true and the consequent can be false is
114889dc1e3SArtur Pilipenko //   if
1158aadc643SArtur Pilipenko //     X == guardLimit - 1 - guardStart
116889dc1e3SArtur Pilipenko //   (and guardLimit is non-zero, but we won't use this latter fact).
1178aadc643SArtur Pilipenko //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
1188aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u< latchLimit
119889dc1e3SArtur Pilipenko //   and its negation is
1208aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
121889dc1e3SArtur Pilipenko //
1228aadc643SArtur Pilipenko //   In other words, if
1238aadc643SArtur Pilipenko //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
1248aadc643SArtur Pilipenko //   then:
125889dc1e3SArtur Pilipenko //   (the ranges below are written in ConstantRange notation, where [A, B) is the
126889dc1e3SArtur Pilipenko //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127889dc1e3SArtur Pilipenko //
1288aadc643SArtur Pilipenko //      forall X . guardStart + X u< guardLimit &&
1298aadc643SArtur Pilipenko //                 latchStart + X u< latchLimit =>
1308aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1318aadc643SArtur Pilipenko //   == forall X . guardStart + X u< guardLimit &&
1328aadc643SArtur Pilipenko //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
1338aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1348aadc643SArtur Pilipenko //   == forall X . (guardStart + X) in [0, guardLimit) &&
1358aadc643SArtur Pilipenko //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
1368aadc643SArtur Pilipenko //        (guardStart + X + 1) in [0, guardLimit)
1378aadc643SArtur Pilipenko //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
1388aadc643SArtur Pilipenko //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
1398aadc643SArtur Pilipenko //         X in [-guardStart - 1, guardLimit - guardStart - 1)
140889dc1e3SArtur Pilipenko //   == true
141889dc1e3SArtur Pilipenko //
142889dc1e3SArtur Pilipenko //   So the widened condition is:
1438aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1448aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
1458aadc643SArtur Pilipenko //   Similarly for ule condition the widened condition is:
1468aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1478aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u> latchLimit
1488aadc643SArtur Pilipenko //   For slt condition the widened condition is:
1498aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1508aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
1518aadc643SArtur Pilipenko //   For sle condition the widened condition is:
1528aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1538aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s> latchLimit
154889dc1e3SArtur Pilipenko //
1557b360434SAnna Thomas // When S = -1 (i.e. reverse iterating loop), the transformation is supported
1567b360434SAnna Thomas // when:
1577b360434SAnna Thomas //   * The loop has a single latch with the condition of the form:
1587b360434SAnna Thomas //     B(X) = X <pred> latchLimit, where <pred> is u> or s>.
1597b360434SAnna Thomas //   * The guard condition is of the form
1607b360434SAnna Thomas //     G(X) = X - 1 u< guardLimit
1617b360434SAnna Thomas //
1627b360434SAnna Thomas //   For the ugt latch comparison case M is:
1637b360434SAnna Thomas //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
1647b360434SAnna Thomas //
1657b360434SAnna Thomas //   The only way the antecedent can be true and the consequent can be false is if
1667b360434SAnna Thomas //     X == 1.
1677b360434SAnna Thomas //   If X == 1 then the second half of the antecedent is
1687b360434SAnna Thomas //     1 u> latchLimit, and its negation is latchLimit u>= 1.
1697b360434SAnna Thomas //
1707b360434SAnna Thomas //   So the widened condition is:
1717b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit u>= 1.
1727b360434SAnna Thomas //   Similarly for sgt condition the widened condition is:
1737b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit s>= 1.
1748fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1758fb3d57eSArtur Pilipenko 
1768fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
1778fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1788fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1798fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1808fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h"
1818fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1828fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1838fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1848fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1858fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1868fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
1876bda14b3SChandler Carruth #include "llvm/Pass.h"
1888fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1898fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
1908fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
1918fb3d57eSArtur Pilipenko 
1928fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
1938fb3d57eSArtur Pilipenko 
1948fb3d57eSArtur Pilipenko using namespace llvm;
1958fb3d57eSArtur Pilipenko 
1961d02b13eSAnna Thomas static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
1971d02b13eSAnna Thomas                                         cl::Hidden, cl::init(true));
1981d02b13eSAnna Thomas 
1997b360434SAnna Thomas static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
2007b360434SAnna Thomas                                         cl::Hidden, cl::init(true));
2018fb3d57eSArtur Pilipenko namespace {
2028fb3d57eSArtur Pilipenko class LoopPredication {
203a6c27804SArtur Pilipenko   /// Represents an induction variable check:
204a6c27804SArtur Pilipenko   ///   icmp Pred, <induction variable>, <loop invariant limit>
205a6c27804SArtur Pilipenko   struct LoopICmp {
206a6c27804SArtur Pilipenko     ICmpInst::Predicate Pred;
207a6c27804SArtur Pilipenko     const SCEVAddRecExpr *IV;
208a6c27804SArtur Pilipenko     const SCEV *Limit;
209c488dfabSArtur Pilipenko     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
210c488dfabSArtur Pilipenko              const SCEV *Limit)
211a6c27804SArtur Pilipenko         : Pred(Pred), IV(IV), Limit(Limit) {}
212a6c27804SArtur Pilipenko     LoopICmp() {}
21368797214SAnna Thomas     void dump() {
21468797214SAnna Thomas       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
21568797214SAnna Thomas              << ", Limit = " << *Limit << "\n";
21668797214SAnna Thomas     }
217a6c27804SArtur Pilipenko   };
218c488dfabSArtur Pilipenko 
219c488dfabSArtur Pilipenko   ScalarEvolution *SE;
220c488dfabSArtur Pilipenko 
221c488dfabSArtur Pilipenko   Loop *L;
222c488dfabSArtur Pilipenko   const DataLayout *DL;
223c488dfabSArtur Pilipenko   BasicBlock *Preheader;
224889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
225c488dfabSArtur Pilipenko 
22668797214SAnna Thomas   bool isSupportedStep(const SCEV* Step);
227889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
228889dc1e3SArtur Pilipenko     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
229889dc1e3SArtur Pilipenko                          ICI->getOperand(1));
230889dc1e3SArtur Pilipenko   }
231889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
232889dc1e3SArtur Pilipenko                                    Value *RHS);
233889dc1e3SArtur Pilipenko 
234889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
235a6c27804SArtur Pilipenko 
23668797214SAnna Thomas   bool CanExpand(const SCEV* S);
2376780ba65SArtur Pilipenko   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
2386780ba65SArtur Pilipenko                      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
2396780ba65SArtur Pilipenko                      Instruction *InsertAt);
2406780ba65SArtur Pilipenko 
2418fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
2428fb3d57eSArtur Pilipenko                                         IRBuilder<> &Builder);
24368797214SAnna Thomas   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
24468797214SAnna Thomas                                                         LoopICmp RangeCheck,
24568797214SAnna Thomas                                                         SCEVExpander &Expander,
24668797214SAnna Thomas                                                         IRBuilder<> &Builder);
2477b360434SAnna Thomas   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
2487b360434SAnna Thomas                                                         LoopICmp RangeCheck,
2497b360434SAnna Thomas                                                         SCEVExpander &Expander,
2507b360434SAnna Thomas                                                         IRBuilder<> &Builder);
2518fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
2528fb3d57eSArtur Pilipenko 
2531d02b13eSAnna Thomas   // When the IV type is wider than the range operand type, we can still do loop
2541d02b13eSAnna Thomas   // predication, by generating SCEVs for the range and latch that are of the
2551d02b13eSAnna Thomas   // same type. We achieve this by generating a SCEV truncate expression for the
2561d02b13eSAnna Thomas   // latch IV. This is done iff truncation of the IV is a safe operation,
2571d02b13eSAnna Thomas   // without loss of information.
2581d02b13eSAnna Thomas   // Another way to achieve this is by generating a wider type SCEV for the
2591d02b13eSAnna Thomas   // range check operand, however, this needs a more involved check that
2601d02b13eSAnna Thomas   // operands do not overflow. This can lead to loss of information when the
2611d02b13eSAnna Thomas   // range operand is of the form: add i32 %offset, %iv. We need to prove that
2621d02b13eSAnna Thomas   // sext(x + y) is same as sext(x) + sext(y).
2631d02b13eSAnna Thomas   // This function returns true if we can safely represent the IV type in
2641d02b13eSAnna Thomas   // the RangeCheckType without loss of information.
2651d02b13eSAnna Thomas   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
2661d02b13eSAnna Thomas   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
2671d02b13eSAnna Thomas   // so.
2681d02b13eSAnna Thomas   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
269*ebc9031bSSerguei Katkov 
270*ebc9031bSSerguei Katkov   // Returns the latch predicate for guard. SGT -> SGE, UGT -> UGE, SGE -> SGT,
271*ebc9031bSSerguei Katkov   // UGE -> UGT, etc.
272*ebc9031bSSerguei Katkov   ICmpInst::Predicate getLatchPredicateForGuard(ICmpInst::Predicate Pred);
273*ebc9031bSSerguei Katkov 
2748fb3d57eSArtur Pilipenko public:
2758fb3d57eSArtur Pilipenko   LoopPredication(ScalarEvolution *SE) : SE(SE){};
2768fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
2778fb3d57eSArtur Pilipenko };
2788fb3d57eSArtur Pilipenko 
2798fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
2808fb3d57eSArtur Pilipenko public:
2818fb3d57eSArtur Pilipenko   static char ID;
2828fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
2838fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
2848fb3d57eSArtur Pilipenko   }
2858fb3d57eSArtur Pilipenko 
2868fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
2878fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
2888fb3d57eSArtur Pilipenko   }
2898fb3d57eSArtur Pilipenko 
2908fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2918fb3d57eSArtur Pilipenko     if (skipLoop(L))
2928fb3d57eSArtur Pilipenko       return false;
2938fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2948fb3d57eSArtur Pilipenko     LoopPredication LP(SE);
2958fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
2968fb3d57eSArtur Pilipenko   }
2978fb3d57eSArtur Pilipenko };
2988fb3d57eSArtur Pilipenko 
2998fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
3008fb3d57eSArtur Pilipenko } // end namespace llvm
3018fb3d57eSArtur Pilipenko 
3028fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
3038fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
3048fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
3058fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
3068fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
3078fb3d57eSArtur Pilipenko 
3088fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
3098fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
3108fb3d57eSArtur Pilipenko }
3118fb3d57eSArtur Pilipenko 
3128fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
3138fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
3148fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
3158fb3d57eSArtur Pilipenko   LoopPredication LP(&AR.SE);
3168fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
3178fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
3188fb3d57eSArtur Pilipenko 
3198fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
3208fb3d57eSArtur Pilipenko }
3218fb3d57eSArtur Pilipenko 
322a6c27804SArtur Pilipenko Optional<LoopPredication::LoopICmp>
323889dc1e3SArtur Pilipenko LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
324889dc1e3SArtur Pilipenko                                Value *RHS) {
325a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
326a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
327a6c27804SArtur Pilipenko     return None;
328a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
329a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
330a6c27804SArtur Pilipenko     return None;
331a6c27804SArtur Pilipenko 
332a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
333a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
334a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
335a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
336a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
337a6c27804SArtur Pilipenko   }
338a6c27804SArtur Pilipenko 
339a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
340a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
341a6c27804SArtur Pilipenko     return None;
342a6c27804SArtur Pilipenko 
343a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
344a6c27804SArtur Pilipenko }
345a6c27804SArtur Pilipenko 
3466780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
3476780ba65SArtur Pilipenko                                     IRBuilder<> &Builder,
3486780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
3496780ba65SArtur Pilipenko                                     const SCEV *RHS, Instruction *InsertAt) {
350889dc1e3SArtur Pilipenko   // TODO: we can check isLoopEntryGuardedByCond before emitting the check
351889dc1e3SArtur Pilipenko 
3526780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
3536780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
354ead69ee4SArtur Pilipenko 
355ead69ee4SArtur Pilipenko   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
356ead69ee4SArtur Pilipenko     return Builder.getTrue();
357ead69ee4SArtur Pilipenko 
3586780ba65SArtur Pilipenko   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
3596780ba65SArtur Pilipenko   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
3606780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
3616780ba65SArtur Pilipenko }
3626780ba65SArtur Pilipenko 
3631d02b13eSAnna Thomas Optional<LoopPredication::LoopICmp>
3641d02b13eSAnna Thomas LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
3651d02b13eSAnna Thomas 
3661d02b13eSAnna Thomas   auto *LatchType = LatchCheck.IV->getType();
3671d02b13eSAnna Thomas   if (RangeCheckType == LatchType)
3681d02b13eSAnna Thomas     return LatchCheck;
3691d02b13eSAnna Thomas   // For now, bail out if latch type is narrower than range type.
3701d02b13eSAnna Thomas   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
3711d02b13eSAnna Thomas     return None;
3721d02b13eSAnna Thomas   if (!isSafeToTruncateWideIVType(RangeCheckType))
3731d02b13eSAnna Thomas     return None;
3741d02b13eSAnna Thomas   // We can now safely identify the truncated version of the IV and limit for
3751d02b13eSAnna Thomas   // RangeCheckType.
3761d02b13eSAnna Thomas   LoopICmp NewLatchCheck;
3771d02b13eSAnna Thomas   NewLatchCheck.Pred = LatchCheck.Pred;
3781d02b13eSAnna Thomas   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
3791d02b13eSAnna Thomas       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
3801d02b13eSAnna Thomas   if (!NewLatchCheck.IV)
3811d02b13eSAnna Thomas     return None;
3821d02b13eSAnna Thomas   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
3831d02b13eSAnna Thomas   DEBUG(dbgs() << "IV of type: " << *LatchType
3841d02b13eSAnna Thomas                << "can be represented as range check type:" << *RangeCheckType
3851d02b13eSAnna Thomas                << "\n");
3861d02b13eSAnna Thomas   DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
3871d02b13eSAnna Thomas   DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
3881d02b13eSAnna Thomas   return NewLatchCheck;
3891d02b13eSAnna Thomas }
3901d02b13eSAnna Thomas 
39168797214SAnna Thomas bool LoopPredication::isSupportedStep(const SCEV* Step) {
3927b360434SAnna Thomas   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
3931d02b13eSAnna Thomas }
3948fb3d57eSArtur Pilipenko 
39568797214SAnna Thomas bool LoopPredication::CanExpand(const SCEV* S) {
39668797214SAnna Thomas   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
39768797214SAnna Thomas }
39868797214SAnna Thomas 
399*ebc9031bSSerguei Katkov ICmpInst::Predicate
400*ebc9031bSSerguei Katkov LoopPredication::getLatchPredicateForGuard(ICmpInst::Predicate Pred) {
401*ebc9031bSSerguei Katkov   switch (LatchCheck.Pred) {
402*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_ULT:
403*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_ULE;
404*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_ULE:
405*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_ULT;
406*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_SLT:
407*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_SLE;
408*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_SLE:
409*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_SLT;
410*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_UGT:
411*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_UGE;
412*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_UGE:
413*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_UGT;
414*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_SGT:
415*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_SGE;
416*ebc9031bSSerguei Katkov   case ICmpInst::ICMP_SGE:
417*ebc9031bSSerguei Katkov     return ICmpInst::ICMP_SGT;
418*ebc9031bSSerguei Katkov   default:
419*ebc9031bSSerguei Katkov     llvm_unreachable("Unsupported loop latch!");
420*ebc9031bSSerguei Katkov   }
421*ebc9031bSSerguei Katkov }
422*ebc9031bSSerguei Katkov 
42368797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
42468797214SAnna Thomas     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
42568797214SAnna Thomas     SCEVExpander &Expander, IRBuilder<> &Builder) {
42668797214SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
42768797214SAnna Thomas   // Generate the widened condition for the forward loop:
4288aadc643SArtur Pilipenko   //   guardStart u< guardLimit &&
4298aadc643SArtur Pilipenko   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
430b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
431b4527e1cSArtur Pilipenko   // header comment for the reasoning.
43268797214SAnna Thomas   // guardLimit - guardStart + latchStart - 1
43368797214SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
43468797214SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
43568797214SAnna Thomas   const SCEV *LatchStart = LatchCheck.IV->getStart();
43668797214SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
4378aadc643SArtur Pilipenko 
4388aadc643SArtur Pilipenko   // guardLimit - guardStart + latchStart - 1
4398aadc643SArtur Pilipenko   const SCEV *RHS =
4408aadc643SArtur Pilipenko       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
4418aadc643SArtur Pilipenko                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
44268797214SAnna Thomas   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
44368797214SAnna Thomas       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
44468797214SAnna Thomas     DEBUG(dbgs() << "Can't expand limit check!\n");
44568797214SAnna Thomas     return None;
44668797214SAnna Thomas   }
447*ebc9031bSSerguei Katkov   auto LimitCheckPred = getLatchPredicateForGuard(LatchCheck.Pred);
448aab28666SArtur Pilipenko 
4498aadc643SArtur Pilipenko   DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
4508aadc643SArtur Pilipenko   DEBUG(dbgs() << "RHS: " << *RHS << "\n");
4518aadc643SArtur Pilipenko   DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
4528aadc643SArtur Pilipenko 
4530860bfc6SArtur Pilipenko   Instruction *InsertAt = Preheader->getTerminator();
4548aadc643SArtur Pilipenko   auto *LimitCheck =
4558aadc643SArtur Pilipenko       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
45668797214SAnna Thomas   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
4578aadc643SArtur Pilipenko                                           GuardStart, GuardLimit, InsertAt);
458889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
4598fb3d57eSArtur Pilipenko }
4607b360434SAnna Thomas 
4617b360434SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
4627b360434SAnna Thomas     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
4637b360434SAnna Thomas     SCEVExpander &Expander, IRBuilder<> &Builder) {
4647b360434SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
4657b360434SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
4667b360434SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
4677b360434SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
4687b360434SAnna Thomas   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
4697b360434SAnna Thomas       !CanExpand(LatchLimit)) {
4707b360434SAnna Thomas     DEBUG(dbgs() << "Can't expand limit check!\n");
4717b360434SAnna Thomas     return None;
4727b360434SAnna Thomas   }
4737b360434SAnna Thomas   // The decrement of the latch check IV should be the same as the
4747b360434SAnna Thomas   // rangeCheckIV.
4757b360434SAnna Thomas   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
4767b360434SAnna Thomas   if (RangeCheck.IV != PostDecLatchCheckIV) {
4777b360434SAnna Thomas     DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
4787b360434SAnna Thomas                  << *PostDecLatchCheckIV
4797b360434SAnna Thomas                  << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
4807b360434SAnna Thomas     return None;
4817b360434SAnna Thomas   }
4827b360434SAnna Thomas 
4837b360434SAnna Thomas   // Generate the widened condition for CountDownLoop:
4847b360434SAnna Thomas   // guardStart u< guardLimit &&
4857b360434SAnna Thomas   // latchLimit <pred> 1.
4867b360434SAnna Thomas   // See the header comment for reasoning of the checks.
4877b360434SAnna Thomas   Instruction *InsertAt = Preheader->getTerminator();
4887b360434SAnna Thomas   auto LimitCheckPred = ICmpInst::isSigned(LatchCheck.Pred)
4897b360434SAnna Thomas                             ? ICmpInst::ICMP_SGE
4907b360434SAnna Thomas                             : ICmpInst::ICMP_UGE;
4917b360434SAnna Thomas   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
4927b360434SAnna Thomas                                           GuardStart, GuardLimit, InsertAt);
4937b360434SAnna Thomas   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
4947b360434SAnna Thomas                                  SE->getOne(Ty), InsertAt);
4957b360434SAnna Thomas   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
4967b360434SAnna Thomas }
4977b360434SAnna Thomas 
49868797214SAnna Thomas /// If ICI can be widened to a loop invariant condition emits the loop
49968797214SAnna Thomas /// invariant condition in the loop preheader and return it, otherwise
50068797214SAnna Thomas /// returns None.
50168797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
50268797214SAnna Thomas                                                        SCEVExpander &Expander,
50368797214SAnna Thomas                                                        IRBuilder<> &Builder) {
50468797214SAnna Thomas   DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
50568797214SAnna Thomas   DEBUG(ICI->dump());
50668797214SAnna Thomas 
50768797214SAnna Thomas   // parseLoopStructure guarantees that the latch condition is:
50868797214SAnna Thomas   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
50968797214SAnna Thomas   // We are looking for the range checks of the form:
51068797214SAnna Thomas   //   i u< guardLimit
51168797214SAnna Thomas   auto RangeCheck = parseLoopICmp(ICI);
51268797214SAnna Thomas   if (!RangeCheck) {
51368797214SAnna Thomas     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
51468797214SAnna Thomas     return None;
51568797214SAnna Thomas   }
51668797214SAnna Thomas   DEBUG(dbgs() << "Guard check:\n");
51768797214SAnna Thomas   DEBUG(RangeCheck->dump());
51868797214SAnna Thomas   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
51968797214SAnna Thomas     DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
52068797214SAnna Thomas                  << ")!\n");
52168797214SAnna Thomas     return None;
52268797214SAnna Thomas   }
52368797214SAnna Thomas   auto *RangeCheckIV = RangeCheck->IV;
52468797214SAnna Thomas   if (!RangeCheckIV->isAffine()) {
52568797214SAnna Thomas     DEBUG(dbgs() << "Range check IV is not affine!\n");
52668797214SAnna Thomas     return None;
52768797214SAnna Thomas   }
52868797214SAnna Thomas   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
52968797214SAnna Thomas   // We cannot just compare with latch IV step because the latch and range IVs
53068797214SAnna Thomas   // may have different types.
53168797214SAnna Thomas   if (!isSupportedStep(Step)) {
53268797214SAnna Thomas     DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
53368797214SAnna Thomas     return None;
53468797214SAnna Thomas   }
53568797214SAnna Thomas   auto *Ty = RangeCheckIV->getType();
53668797214SAnna Thomas   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
53768797214SAnna Thomas   if (!CurrLatchCheckOpt) {
53868797214SAnna Thomas     DEBUG(dbgs() << "Failed to generate a loop latch check "
53968797214SAnna Thomas                     "corresponding to range type: "
54068797214SAnna Thomas                  << *Ty << "\n");
54168797214SAnna Thomas     return None;
54268797214SAnna Thomas   }
54368797214SAnna Thomas 
54468797214SAnna Thomas   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
5457b360434SAnna Thomas   // At this point, the range and latch step should have the same type, but need
5467b360434SAnna Thomas   // not have the same value (we support both 1 and -1 steps).
5477b360434SAnna Thomas   assert(Step->getType() ==
5487b360434SAnna Thomas              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
5497b360434SAnna Thomas          "Range and latch steps should be of same type!");
5507b360434SAnna Thomas   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
5517b360434SAnna Thomas     DEBUG(dbgs() << "Range and latch have different step values!\n");
5527b360434SAnna Thomas     return None;
5537b360434SAnna Thomas   }
55468797214SAnna Thomas 
5557b360434SAnna Thomas   if (Step->isOne())
55668797214SAnna Thomas     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
55768797214SAnna Thomas                                                Expander, Builder);
5587b360434SAnna Thomas   else {
5597b360434SAnna Thomas     assert(Step->isAllOnesValue() && "Step should be -1!");
5607b360434SAnna Thomas     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
5617b360434SAnna Thomas                                                Expander, Builder);
5627b360434SAnna Thomas   }
56368797214SAnna Thomas }
5648fb3d57eSArtur Pilipenko 
5658fb3d57eSArtur Pilipenko bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
5668fb3d57eSArtur Pilipenko                                            SCEVExpander &Expander) {
5678fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Processing guard:\n");
5688fb3d57eSArtur Pilipenko   DEBUG(Guard->dump());
5698fb3d57eSArtur Pilipenko 
5708fb3d57eSArtur Pilipenko   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
5718fb3d57eSArtur Pilipenko 
5728fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
5738fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
5740909ca13SHiroshi Inoue   // Iterate over subconditions looking for icmp conditions which can be
5758fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
5768fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
5778fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
5788fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
5798fb3d57eSArtur Pilipenko 
5808fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Checks;
5818fb3d57eSArtur Pilipenko 
5828fb3d57eSArtur Pilipenko   unsigned NumWidened = 0;
5838fb3d57eSArtur Pilipenko   do {
5848fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
5858fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
5868fb3d57eSArtur Pilipenko       continue;
5878fb3d57eSArtur Pilipenko 
5888fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
5898fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
5908fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
5918fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
5928fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
5938fb3d57eSArtur Pilipenko       continue;
5948fb3d57eSArtur Pilipenko     }
5958fb3d57eSArtur Pilipenko 
5968fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
5978fb3d57eSArtur Pilipenko       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
5988fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
5998fb3d57eSArtur Pilipenko         NumWidened++;
6008fb3d57eSArtur Pilipenko         continue;
6018fb3d57eSArtur Pilipenko       }
6028fb3d57eSArtur Pilipenko     }
6038fb3d57eSArtur Pilipenko 
6048fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
6058fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
6068fb3d57eSArtur Pilipenko   } while (Worklist.size() != 0);
6078fb3d57eSArtur Pilipenko 
6088fb3d57eSArtur Pilipenko   if (NumWidened == 0)
6098fb3d57eSArtur Pilipenko     return false;
6108fb3d57eSArtur Pilipenko 
6118fb3d57eSArtur Pilipenko   // Emit the new guard condition
6128fb3d57eSArtur Pilipenko   Builder.SetInsertPoint(Guard);
6138fb3d57eSArtur Pilipenko   Value *LastCheck = nullptr;
6148fb3d57eSArtur Pilipenko   for (auto *Check : Checks)
6158fb3d57eSArtur Pilipenko     if (!LastCheck)
6168fb3d57eSArtur Pilipenko       LastCheck = Check;
6178fb3d57eSArtur Pilipenko     else
6188fb3d57eSArtur Pilipenko       LastCheck = Builder.CreateAnd(LastCheck, Check);
6198fb3d57eSArtur Pilipenko   Guard->setOperand(0, LastCheck);
6208fb3d57eSArtur Pilipenko 
6218fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
6228fb3d57eSArtur Pilipenko   return true;
6238fb3d57eSArtur Pilipenko }
6248fb3d57eSArtur Pilipenko 
625889dc1e3SArtur Pilipenko Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
626889dc1e3SArtur Pilipenko   using namespace PatternMatch;
627889dc1e3SArtur Pilipenko 
628889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
629889dc1e3SArtur Pilipenko   if (!LoopLatch) {
630889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
631889dc1e3SArtur Pilipenko     return None;
632889dc1e3SArtur Pilipenko   }
633889dc1e3SArtur Pilipenko 
634889dc1e3SArtur Pilipenko   ICmpInst::Predicate Pred;
635889dc1e3SArtur Pilipenko   Value *LHS, *RHS;
636889dc1e3SArtur Pilipenko   BasicBlock *TrueDest, *FalseDest;
637889dc1e3SArtur Pilipenko 
638889dc1e3SArtur Pilipenko   if (!match(LoopLatch->getTerminator(),
639889dc1e3SArtur Pilipenko              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
640889dc1e3SArtur Pilipenko                   FalseDest))) {
641889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Failed to match the latch terminator!\n");
642889dc1e3SArtur Pilipenko     return None;
643889dc1e3SArtur Pilipenko   }
644889dc1e3SArtur Pilipenko   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
645889dc1e3SArtur Pilipenko          "One of the latch's destinations must be the header");
646889dc1e3SArtur Pilipenko   if (TrueDest != L->getHeader())
647889dc1e3SArtur Pilipenko     Pred = ICmpInst::getInversePredicate(Pred);
648889dc1e3SArtur Pilipenko 
649889dc1e3SArtur Pilipenko   auto Result = parseLoopICmp(Pred, LHS, RHS);
650889dc1e3SArtur Pilipenko   if (!Result) {
651889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
652889dc1e3SArtur Pilipenko     return None;
653889dc1e3SArtur Pilipenko   }
654889dc1e3SArtur Pilipenko 
655889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
656889dc1e3SArtur Pilipenko   // recurrence.
657889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
658889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "The induction variable is not affine!\n");
659889dc1e3SArtur Pilipenko     return None;
660889dc1e3SArtur Pilipenko   }
661889dc1e3SArtur Pilipenko 
662889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
66368797214SAnna Thomas   if (!isSupportedStep(Step)) {
664889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
665889dc1e3SArtur Pilipenko     return None;
666889dc1e3SArtur Pilipenko   }
667889dc1e3SArtur Pilipenko 
66868797214SAnna Thomas   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
6697b360434SAnna Thomas     if (Step->isOne()) {
67068797214SAnna Thomas       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
67168797214SAnna Thomas              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
6727b360434SAnna Thomas     } else {
6737b360434SAnna Thomas       assert(Step->isAllOnesValue() && "Step should be -1!");
6747b360434SAnna Thomas       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT;
6757b360434SAnna Thomas     }
67668797214SAnna Thomas   };
67768797214SAnna Thomas 
67868797214SAnna Thomas   if (IsUnsupportedPredicate(Step, Result->Pred)) {
67968797214SAnna Thomas     DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
68068797214SAnna Thomas                  << ")!\n");
68168797214SAnna Thomas     return None;
68268797214SAnna Thomas   }
683889dc1e3SArtur Pilipenko   return Result;
684889dc1e3SArtur Pilipenko }
685889dc1e3SArtur Pilipenko 
6861d02b13eSAnna Thomas // Returns true if its safe to truncate the IV to RangeCheckType.
6871d02b13eSAnna Thomas bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
6881d02b13eSAnna Thomas   if (!EnableIVTruncation)
6891d02b13eSAnna Thomas     return false;
6901d02b13eSAnna Thomas   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
6911d02b13eSAnna Thomas              DL->getTypeSizeInBits(RangeCheckType) &&
6921d02b13eSAnna Thomas          "Expected latch check IV type to be larger than range check operand "
6931d02b13eSAnna Thomas          "type!");
6941d02b13eSAnna Thomas   // The start and end values of the IV should be known. This is to guarantee
6951d02b13eSAnna Thomas   // that truncating the wide type will not lose information.
6961d02b13eSAnna Thomas   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
6971d02b13eSAnna Thomas   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
6981d02b13eSAnna Thomas   if (!Limit || !Start)
6991d02b13eSAnna Thomas     return false;
7001d02b13eSAnna Thomas   // This check makes sure that the IV does not change sign during loop
7011d02b13eSAnna Thomas   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
7021d02b13eSAnna Thomas   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
7031d02b13eSAnna Thomas   // IV wraps around, and the truncation of the IV would lose the range of
7041d02b13eSAnna Thomas   // iterations between 2^32 and 2^64.
7051d02b13eSAnna Thomas   bool Increasing;
7061d02b13eSAnna Thomas   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
7071d02b13eSAnna Thomas     return false;
7081d02b13eSAnna Thomas   // The active bits should be less than the bits in the RangeCheckType. This
7091d02b13eSAnna Thomas   // guarantees that truncating the latch check to RangeCheckType is a safe
7101d02b13eSAnna Thomas   // operation.
7111d02b13eSAnna Thomas   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
7121d02b13eSAnna Thomas   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
7131d02b13eSAnna Thomas          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
7141d02b13eSAnna Thomas }
7151d02b13eSAnna Thomas 
7168fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
7178fb3d57eSArtur Pilipenko   L = Loop;
7188fb3d57eSArtur Pilipenko 
7198fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Analyzing ");
7208fb3d57eSArtur Pilipenko   DEBUG(L->dump());
7218fb3d57eSArtur Pilipenko 
7228fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
7238fb3d57eSArtur Pilipenko 
7248fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
7258fb3d57eSArtur Pilipenko   auto *GuardDecl =
7268fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
7278fb3d57eSArtur Pilipenko   if (!GuardDecl || GuardDecl->use_empty())
7288fb3d57eSArtur Pilipenko     return false;
7298fb3d57eSArtur Pilipenko 
7308fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
7318fb3d57eSArtur Pilipenko 
7328fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
7338fb3d57eSArtur Pilipenko   if (!Preheader)
7348fb3d57eSArtur Pilipenko     return false;
7358fb3d57eSArtur Pilipenko 
736889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
737889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
738889dc1e3SArtur Pilipenko     return false;
739889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
740889dc1e3SArtur Pilipenko 
74168797214SAnna Thomas   DEBUG(dbgs() << "Latch check:\n");
74268797214SAnna Thomas   DEBUG(LatchCheck.dump());
74368797214SAnna Thomas 
7448fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
7458fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
7468fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
7478fb3d57eSArtur Pilipenko   for (const auto BB : L->blocks())
7488fb3d57eSArtur Pilipenko     for (auto &I : *BB)
7498fb3d57eSArtur Pilipenko       if (auto *II = dyn_cast<IntrinsicInst>(&I))
7508fb3d57eSArtur Pilipenko         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
7518fb3d57eSArtur Pilipenko           Guards.push_back(II);
7528fb3d57eSArtur Pilipenko 
75346c4e0a4SArtur Pilipenko   if (Guards.empty())
75446c4e0a4SArtur Pilipenko     return false;
75546c4e0a4SArtur Pilipenko 
7568fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
7578fb3d57eSArtur Pilipenko 
7588fb3d57eSArtur Pilipenko   bool Changed = false;
7598fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
7608fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
7618fb3d57eSArtur Pilipenko 
7628fb3d57eSArtur Pilipenko   return Changed;
7638fb3d57eSArtur Pilipenko }
764