18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
38fb3d57eSArtur Pilipenko //                     The LLVM Compiler Infrastructure
48fb3d57eSArtur Pilipenko //
58fb3d57eSArtur Pilipenko // This file is distributed under the University of Illinois Open Source
68fb3d57eSArtur Pilipenko // License. See LICENSE.TXT for details.
78fb3d57eSArtur Pilipenko //
88fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
98fb3d57eSArtur Pilipenko //
108fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
118fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
128fb3d57eSArtur Pilipenko // convert
138fb3d57eSArtur Pilipenko //
148fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
158fb3d57eSArtur Pilipenko //     guard(i < len);
168fb3d57eSArtur Pilipenko //     ...
178fb3d57eSArtur Pilipenko //   }
188fb3d57eSArtur Pilipenko //
198fb3d57eSArtur Pilipenko // to
208fb3d57eSArtur Pilipenko //
218fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
228fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
238fb3d57eSArtur Pilipenko //     ...
248fb3d57eSArtur Pilipenko //   }
258fb3d57eSArtur Pilipenko //
268fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
278fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
288fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
298fb3d57eSArtur Pilipenko //
308fb3d57eSArtur Pilipenko //   if (n - 1 < len)
318fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
328fb3d57eSArtur Pilipenko //       ...
338fb3d57eSArtur Pilipenko //     }
348fb3d57eSArtur Pilipenko //   else
358fb3d57eSArtur Pilipenko //     deoptimize
368fb3d57eSArtur Pilipenko //
37889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
38889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
39889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
40889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
41889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
42889dc1e3SArtur Pilipenko // assumption that it never fails.
43889dc1e3SArtur Pilipenko //
44889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
45889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
46889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
47889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
48889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49889dc1e3SArtur Pilipenko //
50889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
51889dc1e3SArtur Pilipenko //     guard(i u< len)
52889dc1e3SArtur Pilipenko //
53889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
54889dc1e3SArtur Pilipenko // approach. Given the loop:
55889dc1e3SArtur Pilipenko //
56889dc1e3SArtur Pilipenko //   if (B(Start)) {
57889dc1e3SArtur Pilipenko //     do {
58889dc1e3SArtur Pilipenko //       I = PHI(Start, I.INC)
59889dc1e3SArtur Pilipenko //       I.INC = I + Step
60889dc1e3SArtur Pilipenko //       guard(G(I));
61889dc1e3SArtur Pilipenko //     } while (B(I.INC));
62889dc1e3SArtur Pilipenko //   }
63889dc1e3SArtur Pilipenko //
64889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
65889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
66889dc1e3SArtur Pilipenko // as the above:
67889dc1e3SArtur Pilipenko //
68889dc1e3SArtur Pilipenko //   if (B(Start)) {
69889dc1e3SArtur Pilipenko //     do {
70889dc1e3SArtur Pilipenko //       I = PHI(Start, I.INC)
71889dc1e3SArtur Pilipenko //       I.INC = I + Step
72889dc1e3SArtur Pilipenko //       guard(G(Start) && M);
73889dc1e3SArtur Pilipenko //     } while (B(I.INC));
74889dc1e3SArtur Pilipenko //   }
75889dc1e3SArtur Pilipenko //
76889dc1e3SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X + Step)) => G(X + Step)
77889dc1e3SArtur Pilipenko //
78889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
79889dc1e3SArtur Pilipenko //
80889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
81889dc1e3SArtur Pilipenko //     G(I) && G(Start) && M
82889dc1e3SArtur Pilipenko //
83889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
84889dc1e3SArtur Pilipenko //     G(Start) && M => G(I)
85889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
86889dc1e3SArtur Pilipenko //
87889dc1e3SArtur Pilipenko //   Induction base.
88889dc1e3SArtur Pilipenko //     G(Start) && M => G(Start)
89889dc1e3SArtur Pilipenko //
90889dc1e3SArtur Pilipenko //   Induction step. Assuming G(Start) && M => G(I) on the subsequent
91889dc1e3SArtur Pilipenko //   iteration:
92889dc1e3SArtur Pilipenko //
93889dc1e3SArtur Pilipenko //     B(I + Step) is true because it's the backedge condition.
94889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
95889dc1e3SArtur Pilipenko //
96889dc1e3SArtur Pilipenko //   So M = forall X . (G(X) && B(X + Step)) => G(X + Step) implies
97889dc1e3SArtur Pilipenko //   G(I + Step).
98889dc1e3SArtur Pilipenko //
99889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
100889dc1e3SArtur Pilipenko // implies M.
101889dc1e3SArtur Pilipenko //
102889dc1e3SArtur Pilipenko // For now the transformation is limited to the following case:
103b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
104b4527e1cSArtur Pilipenko //      ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
105889dc1e3SArtur Pilipenko //   * The step of the IV used in the latch condition is 1.
106889dc1e3SArtur Pilipenko //   * The IV of the latch condition is the same as the post increment IV of the
107889dc1e3SArtur Pilipenko //   guard condition.
108b4527e1cSArtur Pilipenko //   * The guard condition is
109b4527e1cSArtur Pilipenko //     i u< guardLimit.
110889dc1e3SArtur Pilipenko //
111b4527e1cSArtur Pilipenko // For the ult latch comparison case M is:
112889dc1e3SArtur Pilipenko //   forall X . X u< guardLimit && (X + 1) u< latchLimit =>
113889dc1e3SArtur Pilipenko //      (X + 1) u< guardLimit
114889dc1e3SArtur Pilipenko //
115889dc1e3SArtur Pilipenko // This is true if latchLimit u<= guardLimit since then
116889dc1e3SArtur Pilipenko //   (X + 1) u< latchLimit u<= guardLimit == (X + 1) u< guardLimit.
117889dc1e3SArtur Pilipenko //
118b4527e1cSArtur Pilipenko // So for ult condition the widened condition is:
119889dc1e3SArtur Pilipenko //   i.start u< guardLimit && latchLimit u<= guardLimit
120b4527e1cSArtur Pilipenko // Similarly for ule condition the widened condition is:
121b4527e1cSArtur Pilipenko //   i.start u< guardLimit && latchLimit u< guardLimit
122889dc1e3SArtur Pilipenko //
123889dc1e3SArtur Pilipenko // For the signed latch comparison case M is:
124889dc1e3SArtur Pilipenko //   forall X . X u< guardLimit && (X + 1) s< latchLimit =>
125889dc1e3SArtur Pilipenko //      (X + 1) u< guardLimit
126889dc1e3SArtur Pilipenko //
127889dc1e3SArtur Pilipenko // The only way the antecedent can be true and the consequent can be false is
128889dc1e3SArtur Pilipenko // if
129889dc1e3SArtur Pilipenko //   X == guardLimit - 1
130889dc1e3SArtur Pilipenko // (and guardLimit is non-zero, but we won't use this latter fact).
131889dc1e3SArtur Pilipenko // If X == guardLimit - 1 then the second half of the antecedent is
132889dc1e3SArtur Pilipenko //   guardLimit s< latchLimit
133889dc1e3SArtur Pilipenko // and its negation is
134889dc1e3SArtur Pilipenko //   latchLimit s<= guardLimit.
135889dc1e3SArtur Pilipenko //
136889dc1e3SArtur Pilipenko // In other words, if latchLimit s<= guardLimit then:
137889dc1e3SArtur Pilipenko // (the ranges below are written in ConstantRange notation, where [A, B) is the
138889dc1e3SArtur Pilipenko // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
139889dc1e3SArtur Pilipenko //
140889dc1e3SArtur Pilipenko //    forall X . X u< guardLimit && (X + 1) s< latchLimit =>  (X + 1) u< guardLimit
141889dc1e3SArtur Pilipenko // == forall X . X u< guardLimit && (X + 1) s< guardLimit =>  (X + 1) u< guardLimit
142889dc1e3SArtur Pilipenko // == forall X . X in [0, guardLimit) && (X + 1) in [INT_MIN, guardLimit) =>  (X + 1) in [0, guardLimit)
143889dc1e3SArtur Pilipenko // == forall X . X in [0, guardLimit) && X in [INT_MAX, guardLimit-1) =>  X in [-1, guardLimit-1)
144889dc1e3SArtur Pilipenko // == forall X . X in [0, guardLimit-1) => X in [-1, guardLimit-1)
145889dc1e3SArtur Pilipenko // == true
146889dc1e3SArtur Pilipenko //
147889dc1e3SArtur Pilipenko // So the widened condition is:
148889dc1e3SArtur Pilipenko //   i.start u< guardLimit && latchLimit s<= guardLimit
149b4527e1cSArtur Pilipenko // Similarly for sle condition the widened condition is:
150b4527e1cSArtur Pilipenko //   i.start u< guardLimit && latchLimit s< guardLimit
151889dc1e3SArtur Pilipenko //
1528fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1538fb3d57eSArtur Pilipenko 
1548fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
1558fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1568fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1578fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1588fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h"
1598fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1608fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1618fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1628fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1638fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1648fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
1656bda14b3SChandler Carruth #include "llvm/Pass.h"
1668fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1678fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
1688fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
1698fb3d57eSArtur Pilipenko 
1708fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
1718fb3d57eSArtur Pilipenko 
1728fb3d57eSArtur Pilipenko using namespace llvm;
1738fb3d57eSArtur Pilipenko 
1748fb3d57eSArtur Pilipenko namespace {
1758fb3d57eSArtur Pilipenko class LoopPredication {
176a6c27804SArtur Pilipenko   /// Represents an induction variable check:
177a6c27804SArtur Pilipenko   ///   icmp Pred, <induction variable>, <loop invariant limit>
178a6c27804SArtur Pilipenko   struct LoopICmp {
179a6c27804SArtur Pilipenko     ICmpInst::Predicate Pred;
180a6c27804SArtur Pilipenko     const SCEVAddRecExpr *IV;
181a6c27804SArtur Pilipenko     const SCEV *Limit;
182c488dfabSArtur Pilipenko     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
183c488dfabSArtur Pilipenko              const SCEV *Limit)
184a6c27804SArtur Pilipenko         : Pred(Pred), IV(IV), Limit(Limit) {}
185a6c27804SArtur Pilipenko     LoopICmp() {}
186a6c27804SArtur Pilipenko   };
187c488dfabSArtur Pilipenko 
188c488dfabSArtur Pilipenko   ScalarEvolution *SE;
189c488dfabSArtur Pilipenko 
190c488dfabSArtur Pilipenko   Loop *L;
191c488dfabSArtur Pilipenko   const DataLayout *DL;
192c488dfabSArtur Pilipenko   BasicBlock *Preheader;
193889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
194c488dfabSArtur Pilipenko 
195889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
196889dc1e3SArtur Pilipenko     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
197889dc1e3SArtur Pilipenko                          ICI->getOperand(1));
198889dc1e3SArtur Pilipenko   }
199889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
200889dc1e3SArtur Pilipenko                                    Value *RHS);
201889dc1e3SArtur Pilipenko 
202889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
203a6c27804SArtur Pilipenko 
2046780ba65SArtur Pilipenko   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
2056780ba65SArtur Pilipenko                      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
2066780ba65SArtur Pilipenko                      Instruction *InsertAt);
2076780ba65SArtur Pilipenko 
2088fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
2098fb3d57eSArtur Pilipenko                                         IRBuilder<> &Builder);
2108fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
2118fb3d57eSArtur Pilipenko 
2128fb3d57eSArtur Pilipenko public:
2138fb3d57eSArtur Pilipenko   LoopPredication(ScalarEvolution *SE) : SE(SE){};
2148fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
2158fb3d57eSArtur Pilipenko };
2168fb3d57eSArtur Pilipenko 
2178fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
2188fb3d57eSArtur Pilipenko public:
2198fb3d57eSArtur Pilipenko   static char ID;
2208fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
2218fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
2228fb3d57eSArtur Pilipenko   }
2238fb3d57eSArtur Pilipenko 
2248fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
2258fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
2268fb3d57eSArtur Pilipenko   }
2278fb3d57eSArtur Pilipenko 
2288fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2298fb3d57eSArtur Pilipenko     if (skipLoop(L))
2308fb3d57eSArtur Pilipenko       return false;
2318fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2328fb3d57eSArtur Pilipenko     LoopPredication LP(SE);
2338fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
2348fb3d57eSArtur Pilipenko   }
2358fb3d57eSArtur Pilipenko };
2368fb3d57eSArtur Pilipenko 
2378fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
2388fb3d57eSArtur Pilipenko } // end namespace llvm
2398fb3d57eSArtur Pilipenko 
2408fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
2418fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
2428fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
2438fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
2448fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
2458fb3d57eSArtur Pilipenko 
2468fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
2478fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
2488fb3d57eSArtur Pilipenko }
2498fb3d57eSArtur Pilipenko 
2508fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
2518fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
2528fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
2538fb3d57eSArtur Pilipenko   LoopPredication LP(&AR.SE);
2548fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
2558fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
2568fb3d57eSArtur Pilipenko 
2578fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
2588fb3d57eSArtur Pilipenko }
2598fb3d57eSArtur Pilipenko 
260a6c27804SArtur Pilipenko Optional<LoopPredication::LoopICmp>
261889dc1e3SArtur Pilipenko LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
262889dc1e3SArtur Pilipenko                                Value *RHS) {
263a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
264a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
265a6c27804SArtur Pilipenko     return None;
266a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
267a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
268a6c27804SArtur Pilipenko     return None;
269a6c27804SArtur Pilipenko 
270a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
271a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
272a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
273a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
274a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
275a6c27804SArtur Pilipenko   }
276a6c27804SArtur Pilipenko 
277a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
278a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
279a6c27804SArtur Pilipenko     return None;
280a6c27804SArtur Pilipenko 
281a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
282a6c27804SArtur Pilipenko }
283a6c27804SArtur Pilipenko 
2846780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
2856780ba65SArtur Pilipenko                                     IRBuilder<> &Builder,
2866780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
2876780ba65SArtur Pilipenko                                     const SCEV *RHS, Instruction *InsertAt) {
288889dc1e3SArtur Pilipenko   // TODO: we can check isLoopEntryGuardedByCond before emitting the check
289889dc1e3SArtur Pilipenko 
2906780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
2916780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
292*ead69ee4SArtur Pilipenko 
293*ead69ee4SArtur Pilipenko   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
294*ead69ee4SArtur Pilipenko     return Builder.getTrue();
295*ead69ee4SArtur Pilipenko 
2966780ba65SArtur Pilipenko   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
2976780ba65SArtur Pilipenko   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
2986780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
2996780ba65SArtur Pilipenko }
3006780ba65SArtur Pilipenko 
3018fb3d57eSArtur Pilipenko /// If ICI can be widened to a loop invariant condition emits the loop
3028fb3d57eSArtur Pilipenko /// invariant condition in the loop preheader and return it, otherwise
3038fb3d57eSArtur Pilipenko /// returns None.
3048fb3d57eSArtur Pilipenko Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
3058fb3d57eSArtur Pilipenko                                                        SCEVExpander &Expander,
3068fb3d57eSArtur Pilipenko                                                        IRBuilder<> &Builder) {
3078fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
3088fb3d57eSArtur Pilipenko   DEBUG(ICI->dump());
3098fb3d57eSArtur Pilipenko 
310889dc1e3SArtur Pilipenko   // parseLoopStructure guarantees that the latch condition is:
311b4527e1cSArtur Pilipenko   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
312889dc1e3SArtur Pilipenko   // We are looking for the range checks of the form:
313889dc1e3SArtur Pilipenko   //   i u< guardLimit
314a6c27804SArtur Pilipenko   auto RangeCheck = parseLoopICmp(ICI);
315edee2515SArtur Pilipenko   if (!RangeCheck) {
316edee2515SArtur Pilipenko     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
3178fb3d57eSArtur Pilipenko     return None;
318edee2515SArtur Pilipenko   }
319889dc1e3SArtur Pilipenko   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
320889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
321889dc1e3SArtur Pilipenko                  << ")!\n");
322889dc1e3SArtur Pilipenko     return None;
323889dc1e3SArtur Pilipenko   }
324889dc1e3SArtur Pilipenko   auto *RangeCheckIV = RangeCheck->IV;
325889dc1e3SArtur Pilipenko   auto *PostIncRangeCheckIV = RangeCheckIV->getPostIncExpr(*SE);
326889dc1e3SArtur Pilipenko   if (LatchCheck.IV != PostIncRangeCheckIV) {
327889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Post increment range check IV (" << *PostIncRangeCheckIV
328889dc1e3SArtur Pilipenko                  << ") is not the same as latch IV (" << *LatchCheck.IV
329889dc1e3SArtur Pilipenko                  << ")!\n");
330889dc1e3SArtur Pilipenko     return None;
331889dc1e3SArtur Pilipenko   }
332889dc1e3SArtur Pilipenko   assert(RangeCheckIV->getStepRecurrence(*SE)->isOne() && "must be one");
333889dc1e3SArtur Pilipenko   const SCEV *Start = RangeCheckIV->getStart();
3348fb3d57eSArtur Pilipenko 
335b4527e1cSArtur Pilipenko   // Generate the widened condition:
336b4527e1cSArtur Pilipenko   //   i.start u< guardLimit && latchLimit <pred> guardLimit
337b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
338b4527e1cSArtur Pilipenko   // header comment for the reasoning.
339b4527e1cSArtur Pilipenko   ICmpInst::Predicate LimitCheckPred;
340b4527e1cSArtur Pilipenko   switch (LatchCheck.Pred) {
341b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_ULT:
342b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_ULE;
343b4527e1cSArtur Pilipenko     break;
344b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_ULE:
345b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_ULT;
346b4527e1cSArtur Pilipenko     break;
347b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_SLT:
348b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_SLE;
349b4527e1cSArtur Pilipenko     break;
350b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_SLE:
351b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_SLT;
352b4527e1cSArtur Pilipenko     break;
353b4527e1cSArtur Pilipenko   default:
354b4527e1cSArtur Pilipenko     llvm_unreachable("Unsupported loop latch!");
355b4527e1cSArtur Pilipenko   }
356aab28666SArtur Pilipenko 
357aab28666SArtur Pilipenko   auto CanExpand = [this](const SCEV *S) {
358aab28666SArtur Pilipenko     return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
359aab28666SArtur Pilipenko   };
360889dc1e3SArtur Pilipenko   if (!CanExpand(Start) || !CanExpand(LatchCheck.Limit) ||
361889dc1e3SArtur Pilipenko       !CanExpand(RangeCheck->Limit))
3628fb3d57eSArtur Pilipenko     return None;
3638fb3d57eSArtur Pilipenko 
3640860bfc6SArtur Pilipenko   Instruction *InsertAt = Preheader->getTerminator();
365889dc1e3SArtur Pilipenko   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred,
366889dc1e3SArtur Pilipenko                                  LatchCheck.Limit, RangeCheck->Limit, InsertAt);
367*ead69ee4SArtur Pilipenko   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred,
368*ead69ee4SArtur Pilipenko                                           Start, RangeCheck->Limit, InsertAt);
369889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
3708fb3d57eSArtur Pilipenko }
3718fb3d57eSArtur Pilipenko 
3728fb3d57eSArtur Pilipenko bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
3738fb3d57eSArtur Pilipenko                                            SCEVExpander &Expander) {
3748fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Processing guard:\n");
3758fb3d57eSArtur Pilipenko   DEBUG(Guard->dump());
3768fb3d57eSArtur Pilipenko 
3778fb3d57eSArtur Pilipenko   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
3788fb3d57eSArtur Pilipenko 
3798fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
3808fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
3818fb3d57eSArtur Pilipenko   // Iterate over subconditions looking for for icmp conditions which can be
3828fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
3838fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
3848fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
3858fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
3868fb3d57eSArtur Pilipenko 
3878fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Checks;
3888fb3d57eSArtur Pilipenko 
3898fb3d57eSArtur Pilipenko   unsigned NumWidened = 0;
3908fb3d57eSArtur Pilipenko   do {
3918fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
3928fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
3938fb3d57eSArtur Pilipenko       continue;
3948fb3d57eSArtur Pilipenko 
3958fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
3968fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
3978fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
3988fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
3998fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
4008fb3d57eSArtur Pilipenko       continue;
4018fb3d57eSArtur Pilipenko     }
4028fb3d57eSArtur Pilipenko 
4038fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
4048fb3d57eSArtur Pilipenko       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
4058fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
4068fb3d57eSArtur Pilipenko         NumWidened++;
4078fb3d57eSArtur Pilipenko         continue;
4088fb3d57eSArtur Pilipenko       }
4098fb3d57eSArtur Pilipenko     }
4108fb3d57eSArtur Pilipenko 
4118fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
4128fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
4138fb3d57eSArtur Pilipenko   } while (Worklist.size() != 0);
4148fb3d57eSArtur Pilipenko 
4158fb3d57eSArtur Pilipenko   if (NumWidened == 0)
4168fb3d57eSArtur Pilipenko     return false;
4178fb3d57eSArtur Pilipenko 
4188fb3d57eSArtur Pilipenko   // Emit the new guard condition
4198fb3d57eSArtur Pilipenko   Builder.SetInsertPoint(Guard);
4208fb3d57eSArtur Pilipenko   Value *LastCheck = nullptr;
4218fb3d57eSArtur Pilipenko   for (auto *Check : Checks)
4228fb3d57eSArtur Pilipenko     if (!LastCheck)
4238fb3d57eSArtur Pilipenko       LastCheck = Check;
4248fb3d57eSArtur Pilipenko     else
4258fb3d57eSArtur Pilipenko       LastCheck = Builder.CreateAnd(LastCheck, Check);
4268fb3d57eSArtur Pilipenko   Guard->setOperand(0, LastCheck);
4278fb3d57eSArtur Pilipenko 
4288fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
4298fb3d57eSArtur Pilipenko   return true;
4308fb3d57eSArtur Pilipenko }
4318fb3d57eSArtur Pilipenko 
432889dc1e3SArtur Pilipenko Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
433889dc1e3SArtur Pilipenko   using namespace PatternMatch;
434889dc1e3SArtur Pilipenko 
435889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
436889dc1e3SArtur Pilipenko   if (!LoopLatch) {
437889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
438889dc1e3SArtur Pilipenko     return None;
439889dc1e3SArtur Pilipenko   }
440889dc1e3SArtur Pilipenko 
441889dc1e3SArtur Pilipenko   ICmpInst::Predicate Pred;
442889dc1e3SArtur Pilipenko   Value *LHS, *RHS;
443889dc1e3SArtur Pilipenko   BasicBlock *TrueDest, *FalseDest;
444889dc1e3SArtur Pilipenko 
445889dc1e3SArtur Pilipenko   if (!match(LoopLatch->getTerminator(),
446889dc1e3SArtur Pilipenko              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
447889dc1e3SArtur Pilipenko                   FalseDest))) {
448889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Failed to match the latch terminator!\n");
449889dc1e3SArtur Pilipenko     return None;
450889dc1e3SArtur Pilipenko   }
451889dc1e3SArtur Pilipenko   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
452889dc1e3SArtur Pilipenko          "One of the latch's destinations must be the header");
453889dc1e3SArtur Pilipenko   if (TrueDest != L->getHeader())
454889dc1e3SArtur Pilipenko     Pred = ICmpInst::getInversePredicate(Pred);
455889dc1e3SArtur Pilipenko 
456889dc1e3SArtur Pilipenko   auto Result = parseLoopICmp(Pred, LHS, RHS);
457889dc1e3SArtur Pilipenko   if (!Result) {
458889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
459889dc1e3SArtur Pilipenko     return None;
460889dc1e3SArtur Pilipenko   }
461889dc1e3SArtur Pilipenko 
462889dc1e3SArtur Pilipenko   if (Result->Pred != ICmpInst::ICMP_ULT &&
463b4527e1cSArtur Pilipenko       Result->Pred != ICmpInst::ICMP_SLT &&
464b4527e1cSArtur Pilipenko       Result->Pred != ICmpInst::ICMP_ULE &&
465b4527e1cSArtur Pilipenko       Result->Pred != ICmpInst::ICMP_SLE) {
466889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
467889dc1e3SArtur Pilipenko                  << ")!\n");
468889dc1e3SArtur Pilipenko     return None;
469889dc1e3SArtur Pilipenko   }
470889dc1e3SArtur Pilipenko 
471889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
472889dc1e3SArtur Pilipenko   // recurrence.
473889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
474889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "The induction variable is not affine!\n");
475889dc1e3SArtur Pilipenko     return None;
476889dc1e3SArtur Pilipenko   }
477889dc1e3SArtur Pilipenko 
478889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
479889dc1e3SArtur Pilipenko   if (!Step->isOne()) {
480889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
481889dc1e3SArtur Pilipenko     return None;
482889dc1e3SArtur Pilipenko   }
483889dc1e3SArtur Pilipenko 
484889dc1e3SArtur Pilipenko   return Result;
485889dc1e3SArtur Pilipenko }
486889dc1e3SArtur Pilipenko 
4878fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
4888fb3d57eSArtur Pilipenko   L = Loop;
4898fb3d57eSArtur Pilipenko 
4908fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Analyzing ");
4918fb3d57eSArtur Pilipenko   DEBUG(L->dump());
4928fb3d57eSArtur Pilipenko 
4938fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
4948fb3d57eSArtur Pilipenko 
4958fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
4968fb3d57eSArtur Pilipenko   auto *GuardDecl =
4978fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
4988fb3d57eSArtur Pilipenko   if (!GuardDecl || GuardDecl->use_empty())
4998fb3d57eSArtur Pilipenko     return false;
5008fb3d57eSArtur Pilipenko 
5018fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
5028fb3d57eSArtur Pilipenko 
5038fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
5048fb3d57eSArtur Pilipenko   if (!Preheader)
5058fb3d57eSArtur Pilipenko     return false;
5068fb3d57eSArtur Pilipenko 
507889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
508889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
509889dc1e3SArtur Pilipenko     return false;
510889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
511889dc1e3SArtur Pilipenko 
5128fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
5138fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
5148fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
5158fb3d57eSArtur Pilipenko   for (const auto BB : L->blocks())
5168fb3d57eSArtur Pilipenko     for (auto &I : *BB)
5178fb3d57eSArtur Pilipenko       if (auto *II = dyn_cast<IntrinsicInst>(&I))
5188fb3d57eSArtur Pilipenko         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
5198fb3d57eSArtur Pilipenko           Guards.push_back(II);
5208fb3d57eSArtur Pilipenko 
52146c4e0a4SArtur Pilipenko   if (Guards.empty())
52246c4e0a4SArtur Pilipenko     return false;
52346c4e0a4SArtur Pilipenko 
5248fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
5258fb3d57eSArtur Pilipenko 
5268fb3d57eSArtur Pilipenko   bool Changed = false;
5278fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
5288fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
5298fb3d57eSArtur Pilipenko 
5308fb3d57eSArtur Pilipenko   return Changed;
5318fb3d57eSArtur Pilipenko }
532