18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
38fb3d57eSArtur Pilipenko //                     The LLVM Compiler Infrastructure
48fb3d57eSArtur Pilipenko //
58fb3d57eSArtur Pilipenko // This file is distributed under the University of Illinois Open Source
68fb3d57eSArtur Pilipenko // License. See LICENSE.TXT for details.
78fb3d57eSArtur Pilipenko //
88fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
98fb3d57eSArtur Pilipenko //
108fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
118fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
128fb3d57eSArtur Pilipenko // convert
138fb3d57eSArtur Pilipenko //
148fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
158fb3d57eSArtur Pilipenko //     guard(i < len);
168fb3d57eSArtur Pilipenko //     ...
178fb3d57eSArtur Pilipenko //   }
188fb3d57eSArtur Pilipenko //
198fb3d57eSArtur Pilipenko // to
208fb3d57eSArtur Pilipenko //
218fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
228fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
238fb3d57eSArtur Pilipenko //     ...
248fb3d57eSArtur Pilipenko //   }
258fb3d57eSArtur Pilipenko //
268fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
278fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
288fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
298fb3d57eSArtur Pilipenko //
308fb3d57eSArtur Pilipenko //   if (n - 1 < len)
318fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
328fb3d57eSArtur Pilipenko //       ...
338fb3d57eSArtur Pilipenko //     }
348fb3d57eSArtur Pilipenko //   else
358fb3d57eSArtur Pilipenko //     deoptimize
368fb3d57eSArtur Pilipenko //
37889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
38889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
39889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
40889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
41889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
42889dc1e3SArtur Pilipenko // assumption that it never fails.
43889dc1e3SArtur Pilipenko //
44889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
45889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
46889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
47889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
48889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49889dc1e3SArtur Pilipenko //
50889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
51889dc1e3SArtur Pilipenko //     guard(i u< len)
52889dc1e3SArtur Pilipenko //
53889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
54889dc1e3SArtur Pilipenko // approach. Given the loop:
55889dc1e3SArtur Pilipenko //
568aadc643SArtur Pilipenko //   if (B(0)) {
57889dc1e3SArtur Pilipenko //     do {
588aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
59889dc1e3SArtur Pilipenko //       I.INC = I + Step
60889dc1e3SArtur Pilipenko //       guard(G(I));
618aadc643SArtur Pilipenko //     } while (B(I));
62889dc1e3SArtur Pilipenko //   }
63889dc1e3SArtur Pilipenko //
64889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
65889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
66889dc1e3SArtur Pilipenko // as the above:
67889dc1e3SArtur Pilipenko //
688aadc643SArtur Pilipenko //   if (B(0)) {
69889dc1e3SArtur Pilipenko //     do {
708aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
71889dc1e3SArtur Pilipenko //       I.INC = I + Step
728aadc643SArtur Pilipenko //       guard(G(0) && M);
738aadc643SArtur Pilipenko //     } while (B(I));
74889dc1e3SArtur Pilipenko //   }
75889dc1e3SArtur Pilipenko //
768aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77889dc1e3SArtur Pilipenko //
78889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
79889dc1e3SArtur Pilipenko //
80889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
818aadc643SArtur Pilipenko //     G(I) && G(0) && M
82889dc1e3SArtur Pilipenko //
83889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
848aadc643SArtur Pilipenko //     G(0) && M => G(I)
85889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
86889dc1e3SArtur Pilipenko //
87889dc1e3SArtur Pilipenko //   Induction base.
888aadc643SArtur Pilipenko //     G(0) && M => G(0)
89889dc1e3SArtur Pilipenko //
908aadc643SArtur Pilipenko //   Induction step. Assuming G(0) && M => G(I) on the subsequent
91889dc1e3SArtur Pilipenko //   iteration:
92889dc1e3SArtur Pilipenko //
938aadc643SArtur Pilipenko //     B(I) is true because it's the backedge condition.
94889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
95889dc1e3SArtur Pilipenko //
968aadc643SArtur Pilipenko //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97889dc1e3SArtur Pilipenko //
98889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
99889dc1e3SArtur Pilipenko // implies M.
100889dc1e3SArtur Pilipenko //
1017b360434SAnna Thomas // When S = 1 (i.e. forward iterating loop), the transformation is supported
1027b360434SAnna Thomas // when:
103b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
1048aadc643SArtur Pilipenko //     B(X) = latchStart + X <pred> latchLimit,
1058aadc643SArtur Pilipenko //     where <pred> is u<, u<=, s<, or s<=.
1068aadc643SArtur Pilipenko //   * The guard condition is of the form
1078aadc643SArtur Pilipenko //     G(X) = guardStart + X u< guardLimit
108889dc1e3SArtur Pilipenko //
109b4527e1cSArtur Pilipenko //   For the ult latch comparison case M is:
1108aadc643SArtur Pilipenko //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
1118aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
112889dc1e3SArtur Pilipenko //
113889dc1e3SArtur Pilipenko //   The only way the antecedent can be true and the consequent can be false is
114889dc1e3SArtur Pilipenko //   if
1158aadc643SArtur Pilipenko //     X == guardLimit - 1 - guardStart
116889dc1e3SArtur Pilipenko //   (and guardLimit is non-zero, but we won't use this latter fact).
1178aadc643SArtur Pilipenko //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
1188aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u< latchLimit
119889dc1e3SArtur Pilipenko //   and its negation is
1208aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
121889dc1e3SArtur Pilipenko //
1228aadc643SArtur Pilipenko //   In other words, if
1238aadc643SArtur Pilipenko //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
1248aadc643SArtur Pilipenko //   then:
125889dc1e3SArtur Pilipenko //   (the ranges below are written in ConstantRange notation, where [A, B) is the
126889dc1e3SArtur Pilipenko //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127889dc1e3SArtur Pilipenko //
1288aadc643SArtur Pilipenko //      forall X . guardStart + X u< guardLimit &&
1298aadc643SArtur Pilipenko //                 latchStart + X u< latchLimit =>
1308aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1318aadc643SArtur Pilipenko //   == forall X . guardStart + X u< guardLimit &&
1328aadc643SArtur Pilipenko //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
1338aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1348aadc643SArtur Pilipenko //   == forall X . (guardStart + X) in [0, guardLimit) &&
1358aadc643SArtur Pilipenko //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
1368aadc643SArtur Pilipenko //        (guardStart + X + 1) in [0, guardLimit)
1378aadc643SArtur Pilipenko //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
1388aadc643SArtur Pilipenko //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
1398aadc643SArtur Pilipenko //         X in [-guardStart - 1, guardLimit - guardStart - 1)
140889dc1e3SArtur Pilipenko //   == true
141889dc1e3SArtur Pilipenko //
142889dc1e3SArtur Pilipenko //   So the widened condition is:
1438aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1448aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
1458aadc643SArtur Pilipenko //   Similarly for ule condition the widened condition is:
1468aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1478aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u> latchLimit
1488aadc643SArtur Pilipenko //   For slt condition the widened condition is:
1498aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1508aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
1518aadc643SArtur Pilipenko //   For sle condition the widened condition is:
1528aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1538aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s> latchLimit
154889dc1e3SArtur Pilipenko //
1557b360434SAnna Thomas // When S = -1 (i.e. reverse iterating loop), the transformation is supported
1567b360434SAnna Thomas // when:
1577b360434SAnna Thomas //   * The loop has a single latch with the condition of the form:
158c8016e7aSSerguei Katkov //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
1597b360434SAnna Thomas //   * The guard condition is of the form
1607b360434SAnna Thomas //     G(X) = X - 1 u< guardLimit
1617b360434SAnna Thomas //
1627b360434SAnna Thomas //   For the ugt latch comparison case M is:
1637b360434SAnna Thomas //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
1647b360434SAnna Thomas //
1657b360434SAnna Thomas //   The only way the antecedent can be true and the consequent can be false is if
1667b360434SAnna Thomas //     X == 1.
1677b360434SAnna Thomas //   If X == 1 then the second half of the antecedent is
1687b360434SAnna Thomas //     1 u> latchLimit, and its negation is latchLimit u>= 1.
1697b360434SAnna Thomas //
1707b360434SAnna Thomas //   So the widened condition is:
1717b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit u>= 1.
1727b360434SAnna Thomas //   Similarly for sgt condition the widened condition is:
1737b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit s>= 1.
174c8016e7aSSerguei Katkov //   For uge condition the widened condition is:
175c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit u> 1.
176c8016e7aSSerguei Katkov //   For sge condition the widened condition is:
177c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit s> 1.
1788fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1798fb3d57eSArtur Pilipenko 
1808fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
1819b1176b0SAnna Thomas #include "llvm/Analysis/BranchProbabilityInfo.h"
1828fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1838fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1848fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1858fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h"
1868fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1878fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1888fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1898fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1908fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1918fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
1926bda14b3SChandler Carruth #include "llvm/Pass.h"
1938fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1948fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
1958fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
1968fb3d57eSArtur Pilipenko 
1978fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
1988fb3d57eSArtur Pilipenko 
1998fb3d57eSArtur Pilipenko using namespace llvm;
2008fb3d57eSArtur Pilipenko 
2011d02b13eSAnna Thomas static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
2021d02b13eSAnna Thomas                                         cl::Hidden, cl::init(true));
2031d02b13eSAnna Thomas 
2047b360434SAnna Thomas static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
2057b360434SAnna Thomas                                         cl::Hidden, cl::init(true));
2069b1176b0SAnna Thomas 
2079b1176b0SAnna Thomas static cl::opt<bool>
2089b1176b0SAnna Thomas     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
2099b1176b0SAnna Thomas                             cl::Hidden, cl::init(false));
2109b1176b0SAnna Thomas 
2119b1176b0SAnna Thomas // This is the scale factor for the latch probability. We use this during
2129b1176b0SAnna Thomas // profitability analysis to find other exiting blocks that have a much higher
2139b1176b0SAnna Thomas // probability of exiting the loop instead of loop exiting via latch.
2149b1176b0SAnna Thomas // This value should be greater than 1 for a sane profitability check.
2159b1176b0SAnna Thomas static cl::opt<float> LatchExitProbabilityScale(
2169b1176b0SAnna Thomas     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
2179b1176b0SAnna Thomas     cl::desc("scale factor for the latch probability. Value should be greater "
2189b1176b0SAnna Thomas              "than 1. Lower values are ignored"));
2199b1176b0SAnna Thomas 
2208fb3d57eSArtur Pilipenko namespace {
2218fb3d57eSArtur Pilipenko class LoopPredication {
222a6c27804SArtur Pilipenko   /// Represents an induction variable check:
223a6c27804SArtur Pilipenko   ///   icmp Pred, <induction variable>, <loop invariant limit>
224a6c27804SArtur Pilipenko   struct LoopICmp {
225a6c27804SArtur Pilipenko     ICmpInst::Predicate Pred;
226a6c27804SArtur Pilipenko     const SCEVAddRecExpr *IV;
227a6c27804SArtur Pilipenko     const SCEV *Limit;
228c488dfabSArtur Pilipenko     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
229c488dfabSArtur Pilipenko              const SCEV *Limit)
230a6c27804SArtur Pilipenko         : Pred(Pred), IV(IV), Limit(Limit) {}
231a6c27804SArtur Pilipenko     LoopICmp() {}
23268797214SAnna Thomas     void dump() {
23368797214SAnna Thomas       dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
23468797214SAnna Thomas              << ", Limit = " << *Limit << "\n";
23568797214SAnna Thomas     }
236a6c27804SArtur Pilipenko   };
237c488dfabSArtur Pilipenko 
238c488dfabSArtur Pilipenko   ScalarEvolution *SE;
2399b1176b0SAnna Thomas   BranchProbabilityInfo *BPI;
240c488dfabSArtur Pilipenko 
241c488dfabSArtur Pilipenko   Loop *L;
242c488dfabSArtur Pilipenko   const DataLayout *DL;
243c488dfabSArtur Pilipenko   BasicBlock *Preheader;
244889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
245c488dfabSArtur Pilipenko 
24668797214SAnna Thomas   bool isSupportedStep(const SCEV* Step);
247889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
248889dc1e3SArtur Pilipenko     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
249889dc1e3SArtur Pilipenko                          ICI->getOperand(1));
250889dc1e3SArtur Pilipenko   }
251889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
252889dc1e3SArtur Pilipenko                                    Value *RHS);
253889dc1e3SArtur Pilipenko 
254889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
255a6c27804SArtur Pilipenko 
25668797214SAnna Thomas   bool CanExpand(const SCEV* S);
2576780ba65SArtur Pilipenko   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
2586780ba65SArtur Pilipenko                      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
2596780ba65SArtur Pilipenko                      Instruction *InsertAt);
2606780ba65SArtur Pilipenko 
2618fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
2628fb3d57eSArtur Pilipenko                                         IRBuilder<> &Builder);
26368797214SAnna Thomas   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
26468797214SAnna Thomas                                                         LoopICmp RangeCheck,
26568797214SAnna Thomas                                                         SCEVExpander &Expander,
26668797214SAnna Thomas                                                         IRBuilder<> &Builder);
2677b360434SAnna Thomas   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
2687b360434SAnna Thomas                                                         LoopICmp RangeCheck,
2697b360434SAnna Thomas                                                         SCEVExpander &Expander,
2707b360434SAnna Thomas                                                         IRBuilder<> &Builder);
2718fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
2728fb3d57eSArtur Pilipenko 
2739b1176b0SAnna Thomas   // If the loop always exits through another block in the loop, we should not
2749b1176b0SAnna Thomas   // predicate based on the latch check. For example, the latch check can be a
2759b1176b0SAnna Thomas   // very coarse grained check and there can be more fine grained exit checks
2769b1176b0SAnna Thomas   // within the loop. We identify such unprofitable loops through BPI.
2779b1176b0SAnna Thomas   bool isLoopProfitableToPredicate();
2789b1176b0SAnna Thomas 
2791d02b13eSAnna Thomas   // When the IV type is wider than the range operand type, we can still do loop
2801d02b13eSAnna Thomas   // predication, by generating SCEVs for the range and latch that are of the
2811d02b13eSAnna Thomas   // same type. We achieve this by generating a SCEV truncate expression for the
2821d02b13eSAnna Thomas   // latch IV. This is done iff truncation of the IV is a safe operation,
2831d02b13eSAnna Thomas   // without loss of information.
2841d02b13eSAnna Thomas   // Another way to achieve this is by generating a wider type SCEV for the
2851d02b13eSAnna Thomas   // range check operand, however, this needs a more involved check that
2861d02b13eSAnna Thomas   // operands do not overflow. This can lead to loss of information when the
2871d02b13eSAnna Thomas   // range operand is of the form: add i32 %offset, %iv. We need to prove that
2881d02b13eSAnna Thomas   // sext(x + y) is same as sext(x) + sext(y).
2891d02b13eSAnna Thomas   // This function returns true if we can safely represent the IV type in
2901d02b13eSAnna Thomas   // the RangeCheckType without loss of information.
2911d02b13eSAnna Thomas   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
2921d02b13eSAnna Thomas   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
2931d02b13eSAnna Thomas   // so.
2941d02b13eSAnna Thomas   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
295ebc9031bSSerguei Katkov 
2968fb3d57eSArtur Pilipenko public:
2979b1176b0SAnna Thomas   LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
2989b1176b0SAnna Thomas       : SE(SE), BPI(BPI){};
2998fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
3008fb3d57eSArtur Pilipenko };
3018fb3d57eSArtur Pilipenko 
3028fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
3038fb3d57eSArtur Pilipenko public:
3048fb3d57eSArtur Pilipenko   static char ID;
3058fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
3068fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
3078fb3d57eSArtur Pilipenko   }
3088fb3d57eSArtur Pilipenko 
3098fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
3109b1176b0SAnna Thomas     AU.addRequired<BranchProbabilityInfoWrapperPass>();
3118fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
3128fb3d57eSArtur Pilipenko   }
3138fb3d57eSArtur Pilipenko 
3148fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
3158fb3d57eSArtur Pilipenko     if (skipLoop(L))
3168fb3d57eSArtur Pilipenko       return false;
3178fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3189b1176b0SAnna Thomas     BranchProbabilityInfo &BPI =
3199b1176b0SAnna Thomas         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3209b1176b0SAnna Thomas     LoopPredication LP(SE, &BPI);
3218fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
3228fb3d57eSArtur Pilipenko   }
3238fb3d57eSArtur Pilipenko };
3248fb3d57eSArtur Pilipenko 
3258fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
3268fb3d57eSArtur Pilipenko } // end namespace llvm
3278fb3d57eSArtur Pilipenko 
3288fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
3298fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
3309b1176b0SAnna Thomas INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
3318fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
3328fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
3338fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
3348fb3d57eSArtur Pilipenko 
3358fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
3368fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
3378fb3d57eSArtur Pilipenko }
3388fb3d57eSArtur Pilipenko 
3398fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
3408fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
3418fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
3429b1176b0SAnna Thomas   const auto &FAM =
3439b1176b0SAnna Thomas       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
3449b1176b0SAnna Thomas   Function *F = L.getHeader()->getParent();
3459b1176b0SAnna Thomas   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
3469b1176b0SAnna Thomas   LoopPredication LP(&AR.SE, BPI);
3478fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
3488fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
3498fb3d57eSArtur Pilipenko 
3508fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
3518fb3d57eSArtur Pilipenko }
3528fb3d57eSArtur Pilipenko 
353a6c27804SArtur Pilipenko Optional<LoopPredication::LoopICmp>
354889dc1e3SArtur Pilipenko LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
355889dc1e3SArtur Pilipenko                                Value *RHS) {
356a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
357a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
358a6c27804SArtur Pilipenko     return None;
359a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
360a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
361a6c27804SArtur Pilipenko     return None;
362a6c27804SArtur Pilipenko 
363a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
364a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
365a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
366a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
367a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
368a6c27804SArtur Pilipenko   }
369a6c27804SArtur Pilipenko 
370a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
371a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
372a6c27804SArtur Pilipenko     return None;
373a6c27804SArtur Pilipenko 
374a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
375a6c27804SArtur Pilipenko }
376a6c27804SArtur Pilipenko 
3776780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
3786780ba65SArtur Pilipenko                                     IRBuilder<> &Builder,
3796780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
3806780ba65SArtur Pilipenko                                     const SCEV *RHS, Instruction *InsertAt) {
381889dc1e3SArtur Pilipenko   // TODO: we can check isLoopEntryGuardedByCond before emitting the check
382889dc1e3SArtur Pilipenko 
3836780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
3846780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
385ead69ee4SArtur Pilipenko 
386ead69ee4SArtur Pilipenko   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
387ead69ee4SArtur Pilipenko     return Builder.getTrue();
388ead69ee4SArtur Pilipenko 
3896780ba65SArtur Pilipenko   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
3906780ba65SArtur Pilipenko   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
3916780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
3926780ba65SArtur Pilipenko }
3936780ba65SArtur Pilipenko 
3941d02b13eSAnna Thomas Optional<LoopPredication::LoopICmp>
3951d02b13eSAnna Thomas LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
3961d02b13eSAnna Thomas 
3971d02b13eSAnna Thomas   auto *LatchType = LatchCheck.IV->getType();
3981d02b13eSAnna Thomas   if (RangeCheckType == LatchType)
3991d02b13eSAnna Thomas     return LatchCheck;
4001d02b13eSAnna Thomas   // For now, bail out if latch type is narrower than range type.
4011d02b13eSAnna Thomas   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
4021d02b13eSAnna Thomas     return None;
4031d02b13eSAnna Thomas   if (!isSafeToTruncateWideIVType(RangeCheckType))
4041d02b13eSAnna Thomas     return None;
4051d02b13eSAnna Thomas   // We can now safely identify the truncated version of the IV and limit for
4061d02b13eSAnna Thomas   // RangeCheckType.
4071d02b13eSAnna Thomas   LoopICmp NewLatchCheck;
4081d02b13eSAnna Thomas   NewLatchCheck.Pred = LatchCheck.Pred;
4091d02b13eSAnna Thomas   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
4101d02b13eSAnna Thomas       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
4111d02b13eSAnna Thomas   if (!NewLatchCheck.IV)
4121d02b13eSAnna Thomas     return None;
4131d02b13eSAnna Thomas   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
414*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
415*d34e60caSNicola Zaghen                     << "can be represented as range check type:"
416*d34e60caSNicola Zaghen                     << *RangeCheckType << "\n");
417*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
418*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
4191d02b13eSAnna Thomas   return NewLatchCheck;
4201d02b13eSAnna Thomas }
4211d02b13eSAnna Thomas 
42268797214SAnna Thomas bool LoopPredication::isSupportedStep(const SCEV* Step) {
4237b360434SAnna Thomas   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
4241d02b13eSAnna Thomas }
4258fb3d57eSArtur Pilipenko 
42668797214SAnna Thomas bool LoopPredication::CanExpand(const SCEV* S) {
42768797214SAnna Thomas   return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
42868797214SAnna Thomas }
42968797214SAnna Thomas 
43068797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
43168797214SAnna Thomas     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
43268797214SAnna Thomas     SCEVExpander &Expander, IRBuilder<> &Builder) {
43368797214SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
43468797214SAnna Thomas   // Generate the widened condition for the forward loop:
4358aadc643SArtur Pilipenko   //   guardStart u< guardLimit &&
4368aadc643SArtur Pilipenko   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
437b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
438b4527e1cSArtur Pilipenko   // header comment for the reasoning.
43968797214SAnna Thomas   // guardLimit - guardStart + latchStart - 1
44068797214SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
44168797214SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
44268797214SAnna Thomas   const SCEV *LatchStart = LatchCheck.IV->getStart();
44368797214SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
4448aadc643SArtur Pilipenko 
4458aadc643SArtur Pilipenko   // guardLimit - guardStart + latchStart - 1
4468aadc643SArtur Pilipenko   const SCEV *RHS =
4478aadc643SArtur Pilipenko       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
4488aadc643SArtur Pilipenko                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
44968797214SAnna Thomas   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
45068797214SAnna Thomas       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
451*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
45268797214SAnna Thomas     return None;
45368797214SAnna Thomas   }
4543cb4c34aSSerguei Katkov   auto LimitCheckPred =
4553cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
456aab28666SArtur Pilipenko 
457*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
458*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
459*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
4608aadc643SArtur Pilipenko 
4610860bfc6SArtur Pilipenko   Instruction *InsertAt = Preheader->getTerminator();
4628aadc643SArtur Pilipenko   auto *LimitCheck =
4638aadc643SArtur Pilipenko       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
46468797214SAnna Thomas   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
4658aadc643SArtur Pilipenko                                           GuardStart, GuardLimit, InsertAt);
466889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
4678fb3d57eSArtur Pilipenko }
4687b360434SAnna Thomas 
4697b360434SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
4707b360434SAnna Thomas     LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
4717b360434SAnna Thomas     SCEVExpander &Expander, IRBuilder<> &Builder) {
4727b360434SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
4737b360434SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
4747b360434SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
4757b360434SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
4767b360434SAnna Thomas   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
4777b360434SAnna Thomas       !CanExpand(LatchLimit)) {
478*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
4797b360434SAnna Thomas     return None;
4807b360434SAnna Thomas   }
4817b360434SAnna Thomas   // The decrement of the latch check IV should be the same as the
4827b360434SAnna Thomas   // rangeCheckIV.
4837b360434SAnna Thomas   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
4847b360434SAnna Thomas   if (RangeCheck.IV != PostDecLatchCheckIV) {
485*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
4867b360434SAnna Thomas                       << *PostDecLatchCheckIV
4877b360434SAnna Thomas                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
4887b360434SAnna Thomas     return None;
4897b360434SAnna Thomas   }
4907b360434SAnna Thomas 
4917b360434SAnna Thomas   // Generate the widened condition for CountDownLoop:
4927b360434SAnna Thomas   // guardStart u< guardLimit &&
4937b360434SAnna Thomas   // latchLimit <pred> 1.
4947b360434SAnna Thomas   // See the header comment for reasoning of the checks.
4957b360434SAnna Thomas   Instruction *InsertAt = Preheader->getTerminator();
4963cb4c34aSSerguei Katkov   auto LimitCheckPred =
4973cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
4987b360434SAnna Thomas   auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
4997b360434SAnna Thomas                                           GuardStart, GuardLimit, InsertAt);
5007b360434SAnna Thomas   auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
5017b360434SAnna Thomas                                  SE->getOne(Ty), InsertAt);
5027b360434SAnna Thomas   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
5037b360434SAnna Thomas }
5047b360434SAnna Thomas 
50568797214SAnna Thomas /// If ICI can be widened to a loop invariant condition emits the loop
50668797214SAnna Thomas /// invariant condition in the loop preheader and return it, otherwise
50768797214SAnna Thomas /// returns None.
50868797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
50968797214SAnna Thomas                                                        SCEVExpander &Expander,
51068797214SAnna Thomas                                                        IRBuilder<> &Builder) {
511*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
512*d34e60caSNicola Zaghen   LLVM_DEBUG(ICI->dump());
51368797214SAnna Thomas 
51468797214SAnna Thomas   // parseLoopStructure guarantees that the latch condition is:
51568797214SAnna Thomas   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
51668797214SAnna Thomas   // We are looking for the range checks of the form:
51768797214SAnna Thomas   //   i u< guardLimit
51868797214SAnna Thomas   auto RangeCheck = parseLoopICmp(ICI);
51968797214SAnna Thomas   if (!RangeCheck) {
520*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
52168797214SAnna Thomas     return None;
52268797214SAnna Thomas   }
523*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Guard check:\n");
524*d34e60caSNicola Zaghen   LLVM_DEBUG(RangeCheck->dump());
52568797214SAnna Thomas   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
526*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
527*d34e60caSNicola Zaghen                       << RangeCheck->Pred << ")!\n");
52868797214SAnna Thomas     return None;
52968797214SAnna Thomas   }
53068797214SAnna Thomas   auto *RangeCheckIV = RangeCheck->IV;
53168797214SAnna Thomas   if (!RangeCheckIV->isAffine()) {
532*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
53368797214SAnna Thomas     return None;
53468797214SAnna Thomas   }
53568797214SAnna Thomas   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
53668797214SAnna Thomas   // We cannot just compare with latch IV step because the latch and range IVs
53768797214SAnna Thomas   // may have different types.
53868797214SAnna Thomas   if (!isSupportedStep(Step)) {
539*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
54068797214SAnna Thomas     return None;
54168797214SAnna Thomas   }
54268797214SAnna Thomas   auto *Ty = RangeCheckIV->getType();
54368797214SAnna Thomas   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
54468797214SAnna Thomas   if (!CurrLatchCheckOpt) {
545*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
54668797214SAnna Thomas                          "corresponding to range type: "
54768797214SAnna Thomas                       << *Ty << "\n");
54868797214SAnna Thomas     return None;
54968797214SAnna Thomas   }
55068797214SAnna Thomas 
55168797214SAnna Thomas   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
5527b360434SAnna Thomas   // At this point, the range and latch step should have the same type, but need
5537b360434SAnna Thomas   // not have the same value (we support both 1 and -1 steps).
5547b360434SAnna Thomas   assert(Step->getType() ==
5557b360434SAnna Thomas              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
5567b360434SAnna Thomas          "Range and latch steps should be of same type!");
5577b360434SAnna Thomas   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
558*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
5597b360434SAnna Thomas     return None;
5607b360434SAnna Thomas   }
56168797214SAnna Thomas 
5627b360434SAnna Thomas   if (Step->isOne())
56368797214SAnna Thomas     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
56468797214SAnna Thomas                                                Expander, Builder);
5657b360434SAnna Thomas   else {
5667b360434SAnna Thomas     assert(Step->isAllOnesValue() && "Step should be -1!");
5677b360434SAnna Thomas     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
5687b360434SAnna Thomas                                                Expander, Builder);
5697b360434SAnna Thomas   }
57068797214SAnna Thomas }
5718fb3d57eSArtur Pilipenko 
5728fb3d57eSArtur Pilipenko bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
5738fb3d57eSArtur Pilipenko                                            SCEVExpander &Expander) {
574*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Processing guard:\n");
575*d34e60caSNicola Zaghen   LLVM_DEBUG(Guard->dump());
5768fb3d57eSArtur Pilipenko 
5778fb3d57eSArtur Pilipenko   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
5788fb3d57eSArtur Pilipenko 
5798fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
5808fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
5810909ca13SHiroshi Inoue   // Iterate over subconditions looking for icmp conditions which can be
5828fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
5838fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
5848fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
5858fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
5868fb3d57eSArtur Pilipenko 
5878fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Checks;
5888fb3d57eSArtur Pilipenko 
5898fb3d57eSArtur Pilipenko   unsigned NumWidened = 0;
5908fb3d57eSArtur Pilipenko   do {
5918fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
5928fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
5938fb3d57eSArtur Pilipenko       continue;
5948fb3d57eSArtur Pilipenko 
5958fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
5968fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
5978fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
5988fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
5998fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
6008fb3d57eSArtur Pilipenko       continue;
6018fb3d57eSArtur Pilipenko     }
6028fb3d57eSArtur Pilipenko 
6038fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
6048fb3d57eSArtur Pilipenko       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
6058fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
6068fb3d57eSArtur Pilipenko         NumWidened++;
6078fb3d57eSArtur Pilipenko         continue;
6088fb3d57eSArtur Pilipenko       }
6098fb3d57eSArtur Pilipenko     }
6108fb3d57eSArtur Pilipenko 
6118fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
6128fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
6138fb3d57eSArtur Pilipenko   } while (Worklist.size() != 0);
6148fb3d57eSArtur Pilipenko 
6158fb3d57eSArtur Pilipenko   if (NumWidened == 0)
6168fb3d57eSArtur Pilipenko     return false;
6178fb3d57eSArtur Pilipenko 
6188fb3d57eSArtur Pilipenko   // Emit the new guard condition
6198fb3d57eSArtur Pilipenko   Builder.SetInsertPoint(Guard);
6208fb3d57eSArtur Pilipenko   Value *LastCheck = nullptr;
6218fb3d57eSArtur Pilipenko   for (auto *Check : Checks)
6228fb3d57eSArtur Pilipenko     if (!LastCheck)
6238fb3d57eSArtur Pilipenko       LastCheck = Check;
6248fb3d57eSArtur Pilipenko     else
6258fb3d57eSArtur Pilipenko       LastCheck = Builder.CreateAnd(LastCheck, Check);
6268fb3d57eSArtur Pilipenko   Guard->setOperand(0, LastCheck);
6278fb3d57eSArtur Pilipenko 
628*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
6298fb3d57eSArtur Pilipenko   return true;
6308fb3d57eSArtur Pilipenko }
6318fb3d57eSArtur Pilipenko 
632889dc1e3SArtur Pilipenko Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
633889dc1e3SArtur Pilipenko   using namespace PatternMatch;
634889dc1e3SArtur Pilipenko 
635889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
636889dc1e3SArtur Pilipenko   if (!LoopLatch) {
637*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
638889dc1e3SArtur Pilipenko     return None;
639889dc1e3SArtur Pilipenko   }
640889dc1e3SArtur Pilipenko 
641889dc1e3SArtur Pilipenko   ICmpInst::Predicate Pred;
642889dc1e3SArtur Pilipenko   Value *LHS, *RHS;
643889dc1e3SArtur Pilipenko   BasicBlock *TrueDest, *FalseDest;
644889dc1e3SArtur Pilipenko 
645889dc1e3SArtur Pilipenko   if (!match(LoopLatch->getTerminator(),
646889dc1e3SArtur Pilipenko              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
647889dc1e3SArtur Pilipenko                   FalseDest))) {
648*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
649889dc1e3SArtur Pilipenko     return None;
650889dc1e3SArtur Pilipenko   }
651889dc1e3SArtur Pilipenko   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
652889dc1e3SArtur Pilipenko          "One of the latch's destinations must be the header");
653889dc1e3SArtur Pilipenko   if (TrueDest != L->getHeader())
654889dc1e3SArtur Pilipenko     Pred = ICmpInst::getInversePredicate(Pred);
655889dc1e3SArtur Pilipenko 
656889dc1e3SArtur Pilipenko   auto Result = parseLoopICmp(Pred, LHS, RHS);
657889dc1e3SArtur Pilipenko   if (!Result) {
658*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
659889dc1e3SArtur Pilipenko     return None;
660889dc1e3SArtur Pilipenko   }
661889dc1e3SArtur Pilipenko 
662889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
663889dc1e3SArtur Pilipenko   // recurrence.
664889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
665*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
666889dc1e3SArtur Pilipenko     return None;
667889dc1e3SArtur Pilipenko   }
668889dc1e3SArtur Pilipenko 
669889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
67068797214SAnna Thomas   if (!isSupportedStep(Step)) {
671*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
672889dc1e3SArtur Pilipenko     return None;
673889dc1e3SArtur Pilipenko   }
674889dc1e3SArtur Pilipenko 
67568797214SAnna Thomas   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
6767b360434SAnna Thomas     if (Step->isOne()) {
67768797214SAnna Thomas       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
67868797214SAnna Thomas              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
6797b360434SAnna Thomas     } else {
6807b360434SAnna Thomas       assert(Step->isAllOnesValue() && "Step should be -1!");
681c8016e7aSSerguei Katkov       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
682c8016e7aSSerguei Katkov              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
6837b360434SAnna Thomas     }
68468797214SAnna Thomas   };
68568797214SAnna Thomas 
68668797214SAnna Thomas   if (IsUnsupportedPredicate(Step, Result->Pred)) {
687*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
68868797214SAnna Thomas                       << ")!\n");
68968797214SAnna Thomas     return None;
69068797214SAnna Thomas   }
691889dc1e3SArtur Pilipenko   return Result;
692889dc1e3SArtur Pilipenko }
693889dc1e3SArtur Pilipenko 
6941d02b13eSAnna Thomas // Returns true if its safe to truncate the IV to RangeCheckType.
6951d02b13eSAnna Thomas bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
6961d02b13eSAnna Thomas   if (!EnableIVTruncation)
6971d02b13eSAnna Thomas     return false;
6981d02b13eSAnna Thomas   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
6991d02b13eSAnna Thomas              DL->getTypeSizeInBits(RangeCheckType) &&
7001d02b13eSAnna Thomas          "Expected latch check IV type to be larger than range check operand "
7011d02b13eSAnna Thomas          "type!");
7021d02b13eSAnna Thomas   // The start and end values of the IV should be known. This is to guarantee
7031d02b13eSAnna Thomas   // that truncating the wide type will not lose information.
7041d02b13eSAnna Thomas   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
7051d02b13eSAnna Thomas   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
7061d02b13eSAnna Thomas   if (!Limit || !Start)
7071d02b13eSAnna Thomas     return false;
7081d02b13eSAnna Thomas   // This check makes sure that the IV does not change sign during loop
7091d02b13eSAnna Thomas   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
7101d02b13eSAnna Thomas   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
7111d02b13eSAnna Thomas   // IV wraps around, and the truncation of the IV would lose the range of
7121d02b13eSAnna Thomas   // iterations between 2^32 and 2^64.
7131d02b13eSAnna Thomas   bool Increasing;
7141d02b13eSAnna Thomas   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
7151d02b13eSAnna Thomas     return false;
7161d02b13eSAnna Thomas   // The active bits should be less than the bits in the RangeCheckType. This
7171d02b13eSAnna Thomas   // guarantees that truncating the latch check to RangeCheckType is a safe
7181d02b13eSAnna Thomas   // operation.
7191d02b13eSAnna Thomas   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
7201d02b13eSAnna Thomas   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
7211d02b13eSAnna Thomas          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
7221d02b13eSAnna Thomas }
7231d02b13eSAnna Thomas 
7249b1176b0SAnna Thomas bool LoopPredication::isLoopProfitableToPredicate() {
7259b1176b0SAnna Thomas   if (SkipProfitabilityChecks || !BPI)
7269b1176b0SAnna Thomas     return true;
7279b1176b0SAnna Thomas 
7289b1176b0SAnna Thomas   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
7299b1176b0SAnna Thomas   L->getExitEdges(ExitEdges);
7309b1176b0SAnna Thomas   // If there is only one exiting edge in the loop, it is always profitable to
7319b1176b0SAnna Thomas   // predicate the loop.
7329b1176b0SAnna Thomas   if (ExitEdges.size() == 1)
7339b1176b0SAnna Thomas     return true;
7349b1176b0SAnna Thomas 
7359b1176b0SAnna Thomas   // Calculate the exiting probabilities of all exiting edges from the loop,
7369b1176b0SAnna Thomas   // starting with the LatchExitProbability.
7379b1176b0SAnna Thomas   // Heuristic for profitability: If any of the exiting blocks' probability of
7389b1176b0SAnna Thomas   // exiting the loop is larger than exiting through the latch block, it's not
7399b1176b0SAnna Thomas   // profitable to predicate the loop.
7409b1176b0SAnna Thomas   auto *LatchBlock = L->getLoopLatch();
7419b1176b0SAnna Thomas   assert(LatchBlock && "Should have a single latch at this point!");
7429b1176b0SAnna Thomas   auto *LatchTerm = LatchBlock->getTerminator();
7439b1176b0SAnna Thomas   assert(LatchTerm->getNumSuccessors() == 2 &&
7449b1176b0SAnna Thomas          "expected to be an exiting block with 2 succs!");
7459b1176b0SAnna Thomas   unsigned LatchBrExitIdx =
7469b1176b0SAnna Thomas       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
7479b1176b0SAnna Thomas   BranchProbability LatchExitProbability =
7489b1176b0SAnna Thomas       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
7499b1176b0SAnna Thomas 
7509b1176b0SAnna Thomas   // Protect against degenerate inputs provided by the user. Providing a value
7519b1176b0SAnna Thomas   // less than one, can invert the definition of profitable loop predication.
7529b1176b0SAnna Thomas   float ScaleFactor = LatchExitProbabilityScale;
7539b1176b0SAnna Thomas   if (ScaleFactor < 1) {
754*d34e60caSNicola Zaghen     LLVM_DEBUG(
7559b1176b0SAnna Thomas         dbgs()
7569b1176b0SAnna Thomas         << "Ignored user setting for loop-predication-latch-probability-scale: "
7579b1176b0SAnna Thomas         << LatchExitProbabilityScale << "\n");
758*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
7599b1176b0SAnna Thomas     ScaleFactor = 1.0;
7609b1176b0SAnna Thomas   }
7619b1176b0SAnna Thomas   const auto LatchProbabilityThreshold =
7629b1176b0SAnna Thomas       LatchExitProbability * ScaleFactor;
7639b1176b0SAnna Thomas 
7649b1176b0SAnna Thomas   for (const auto &ExitEdge : ExitEdges) {
7659b1176b0SAnna Thomas     BranchProbability ExitingBlockProbability =
7669b1176b0SAnna Thomas         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
7679b1176b0SAnna Thomas     // Some exiting edge has higher probability than the latch exiting edge.
7689b1176b0SAnna Thomas     // No longer profitable to predicate.
7699b1176b0SAnna Thomas     if (ExitingBlockProbability > LatchProbabilityThreshold)
7709b1176b0SAnna Thomas       return false;
7719b1176b0SAnna Thomas   }
7729b1176b0SAnna Thomas   // Using BPI, we have concluded that the most probable way to exit from the
7739b1176b0SAnna Thomas   // loop is through the latch (or there's no profile information and all
7749b1176b0SAnna Thomas   // exits are equally likely).
7759b1176b0SAnna Thomas   return true;
7769b1176b0SAnna Thomas }
7779b1176b0SAnna Thomas 
7788fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
7798fb3d57eSArtur Pilipenko   L = Loop;
7808fb3d57eSArtur Pilipenko 
781*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ");
782*d34e60caSNicola Zaghen   LLVM_DEBUG(L->dump());
7838fb3d57eSArtur Pilipenko 
7848fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
7858fb3d57eSArtur Pilipenko 
7868fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
7878fb3d57eSArtur Pilipenko   auto *GuardDecl =
7888fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
7898fb3d57eSArtur Pilipenko   if (!GuardDecl || GuardDecl->use_empty())
7908fb3d57eSArtur Pilipenko     return false;
7918fb3d57eSArtur Pilipenko 
7928fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
7938fb3d57eSArtur Pilipenko 
7948fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
7958fb3d57eSArtur Pilipenko   if (!Preheader)
7968fb3d57eSArtur Pilipenko     return false;
7978fb3d57eSArtur Pilipenko 
798889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
799889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
800889dc1e3SArtur Pilipenko     return false;
801889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
802889dc1e3SArtur Pilipenko 
803*d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Latch check:\n");
804*d34e60caSNicola Zaghen   LLVM_DEBUG(LatchCheck.dump());
80568797214SAnna Thomas 
8069b1176b0SAnna Thomas   if (!isLoopProfitableToPredicate()) {
807*d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
8089b1176b0SAnna Thomas     return false;
8099b1176b0SAnna Thomas   }
8108fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
8118fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
8128fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
8138fb3d57eSArtur Pilipenko   for (const auto BB : L->blocks())
8148fb3d57eSArtur Pilipenko     for (auto &I : *BB)
8158fb3d57eSArtur Pilipenko       if (auto *II = dyn_cast<IntrinsicInst>(&I))
8168fb3d57eSArtur Pilipenko         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
8178fb3d57eSArtur Pilipenko           Guards.push_back(II);
8188fb3d57eSArtur Pilipenko 
81946c4e0a4SArtur Pilipenko   if (Guards.empty())
82046c4e0a4SArtur Pilipenko     return false;
82146c4e0a4SArtur Pilipenko 
8228fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
8238fb3d57eSArtur Pilipenko 
8248fb3d57eSArtur Pilipenko   bool Changed = false;
8258fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
8268fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
8278fb3d57eSArtur Pilipenko 
8288fb3d57eSArtur Pilipenko   return Changed;
8298fb3d57eSArtur Pilipenko }
830