18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
68fb3d57eSArtur Pilipenko //
78fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
88fb3d57eSArtur Pilipenko //
98fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
108fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
118fb3d57eSArtur Pilipenko // convert
128fb3d57eSArtur Pilipenko //
138fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
148fb3d57eSArtur Pilipenko //     guard(i < len);
158fb3d57eSArtur Pilipenko //     ...
168fb3d57eSArtur Pilipenko //   }
178fb3d57eSArtur Pilipenko //
188fb3d57eSArtur Pilipenko // to
198fb3d57eSArtur Pilipenko //
208fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
218fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
228fb3d57eSArtur Pilipenko //     ...
238fb3d57eSArtur Pilipenko //   }
248fb3d57eSArtur Pilipenko //
258fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
268fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
278fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
288fb3d57eSArtur Pilipenko //
298fb3d57eSArtur Pilipenko //   if (n - 1 < len)
308fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
318fb3d57eSArtur Pilipenko //       ...
328fb3d57eSArtur Pilipenko //     }
338fb3d57eSArtur Pilipenko //   else
348fb3d57eSArtur Pilipenko //     deoptimize
358fb3d57eSArtur Pilipenko //
36889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
37889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
38889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
39889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
40889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
41889dc1e3SArtur Pilipenko // assumption that it never fails.
42889dc1e3SArtur Pilipenko //
43889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
44889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
45889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
46889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
47889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48889dc1e3SArtur Pilipenko //
49889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
50889dc1e3SArtur Pilipenko //     guard(i u< len)
51889dc1e3SArtur Pilipenko //
52889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
53889dc1e3SArtur Pilipenko // approach. Given the loop:
54889dc1e3SArtur Pilipenko //
558aadc643SArtur Pilipenko //   if (B(0)) {
56889dc1e3SArtur Pilipenko //     do {
578aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
58889dc1e3SArtur Pilipenko //       I.INC = I + Step
59889dc1e3SArtur Pilipenko //       guard(G(I));
608aadc643SArtur Pilipenko //     } while (B(I));
61889dc1e3SArtur Pilipenko //   }
62889dc1e3SArtur Pilipenko //
63889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
64889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
65889dc1e3SArtur Pilipenko // as the above:
66889dc1e3SArtur Pilipenko //
678aadc643SArtur Pilipenko //   if (B(0)) {
68889dc1e3SArtur Pilipenko //     do {
698aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
70889dc1e3SArtur Pilipenko //       I.INC = I + Step
718aadc643SArtur Pilipenko //       guard(G(0) && M);
728aadc643SArtur Pilipenko //     } while (B(I));
73889dc1e3SArtur Pilipenko //   }
74889dc1e3SArtur Pilipenko //
758aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76889dc1e3SArtur Pilipenko //
77889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
78889dc1e3SArtur Pilipenko //
79889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
808aadc643SArtur Pilipenko //     G(I) && G(0) && M
81889dc1e3SArtur Pilipenko //
82889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
838aadc643SArtur Pilipenko //     G(0) && M => G(I)
84889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
85889dc1e3SArtur Pilipenko //
86889dc1e3SArtur Pilipenko //   Induction base.
878aadc643SArtur Pilipenko //     G(0) && M => G(0)
88889dc1e3SArtur Pilipenko //
898aadc643SArtur Pilipenko //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90889dc1e3SArtur Pilipenko //   iteration:
91889dc1e3SArtur Pilipenko //
928aadc643SArtur Pilipenko //     B(I) is true because it's the backedge condition.
93889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
94889dc1e3SArtur Pilipenko //
958aadc643SArtur Pilipenko //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96889dc1e3SArtur Pilipenko //
97889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
98889dc1e3SArtur Pilipenko // implies M.
99889dc1e3SArtur Pilipenko //
1007b360434SAnna Thomas // When S = 1 (i.e. forward iterating loop), the transformation is supported
1017b360434SAnna Thomas // when:
102b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
1038aadc643SArtur Pilipenko //     B(X) = latchStart + X <pred> latchLimit,
1048aadc643SArtur Pilipenko //     where <pred> is u<, u<=, s<, or s<=.
1058aadc643SArtur Pilipenko //   * The guard condition is of the form
1068aadc643SArtur Pilipenko //     G(X) = guardStart + X u< guardLimit
107889dc1e3SArtur Pilipenko //
108b4527e1cSArtur Pilipenko //   For the ult latch comparison case M is:
1098aadc643SArtur Pilipenko //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
1108aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
111889dc1e3SArtur Pilipenko //
112889dc1e3SArtur Pilipenko //   The only way the antecedent can be true and the consequent can be false is
113889dc1e3SArtur Pilipenko //   if
1148aadc643SArtur Pilipenko //     X == guardLimit - 1 - guardStart
115889dc1e3SArtur Pilipenko //   (and guardLimit is non-zero, but we won't use this latter fact).
1168aadc643SArtur Pilipenko //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
1178aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118889dc1e3SArtur Pilipenko //   and its negation is
1198aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120889dc1e3SArtur Pilipenko //
1218aadc643SArtur Pilipenko //   In other words, if
1228aadc643SArtur Pilipenko //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
1238aadc643SArtur Pilipenko //   then:
124889dc1e3SArtur Pilipenko //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125889dc1e3SArtur Pilipenko //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126889dc1e3SArtur Pilipenko //
1278aadc643SArtur Pilipenko //      forall X . guardStart + X u< guardLimit &&
1288aadc643SArtur Pilipenko //                 latchStart + X u< latchLimit =>
1298aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1308aadc643SArtur Pilipenko //   == forall X . guardStart + X u< guardLimit &&
1318aadc643SArtur Pilipenko //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
1328aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1338aadc643SArtur Pilipenko //   == forall X . (guardStart + X) in [0, guardLimit) &&
1348aadc643SArtur Pilipenko //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
1358aadc643SArtur Pilipenko //        (guardStart + X + 1) in [0, guardLimit)
1368aadc643SArtur Pilipenko //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
1378aadc643SArtur Pilipenko //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
1388aadc643SArtur Pilipenko //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139889dc1e3SArtur Pilipenko //   == true
140889dc1e3SArtur Pilipenko //
141889dc1e3SArtur Pilipenko //   So the widened condition is:
1428aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1438aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
1448aadc643SArtur Pilipenko //   Similarly for ule condition the widened condition is:
1458aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1468aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u> latchLimit
1478aadc643SArtur Pilipenko //   For slt condition the widened condition is:
1488aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1498aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
1508aadc643SArtur Pilipenko //   For sle condition the widened condition is:
1518aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1528aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153889dc1e3SArtur Pilipenko //
1547b360434SAnna Thomas // When S = -1 (i.e. reverse iterating loop), the transformation is supported
1557b360434SAnna Thomas // when:
1567b360434SAnna Thomas //   * The loop has a single latch with the condition of the form:
157c8016e7aSSerguei Katkov //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
1587b360434SAnna Thomas //   * The guard condition is of the form
1597b360434SAnna Thomas //     G(X) = X - 1 u< guardLimit
1607b360434SAnna Thomas //
1617b360434SAnna Thomas //   For the ugt latch comparison case M is:
1627b360434SAnna Thomas //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
1637b360434SAnna Thomas //
1647b360434SAnna Thomas //   The only way the antecedent can be true and the consequent can be false is if
1657b360434SAnna Thomas //     X == 1.
1667b360434SAnna Thomas //   If X == 1 then the second half of the antecedent is
1677b360434SAnna Thomas //     1 u> latchLimit, and its negation is latchLimit u>= 1.
1687b360434SAnna Thomas //
1697b360434SAnna Thomas //   So the widened condition is:
1707b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit u>= 1.
1717b360434SAnna Thomas //   Similarly for sgt condition the widened condition is:
1727b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit s>= 1.
173c8016e7aSSerguei Katkov //   For uge condition the widened condition is:
174c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit u> 1.
175c8016e7aSSerguei Katkov //   For sge condition the widened condition is:
176c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit s> 1.
1778fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1788fb3d57eSArtur Pilipenko 
1798fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
180c297e84bSFedor Sergeev #include "llvm/ADT/Statistic.h"
18192a7177eSPhilip Reames #include "llvm/Analysis/AliasAnalysis.h"
1829b1176b0SAnna Thomas #include "llvm/Analysis/BranchProbabilityInfo.h"
18328298e96SMax Kazantsev #include "llvm/Analysis/GuardUtils.h"
1848fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1858fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1868fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1878fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1888fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1898fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1908fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1918fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1928fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
19305da2fe5SReid Kleckner #include "llvm/InitializePasses.h"
1946bda14b3SChandler Carruth #include "llvm/Pass.h"
1954c1a1d3cSReid Kleckner #include "llvm/Support/CommandLine.h"
1968fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1978fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
19870c68a6bSPhilip Reames #include "llvm/Transforms/Utils/GuardUtils.h"
199d109e2a7SPhilip Reames #include "llvm/Transforms/Utils/Local.h"
2008fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
201*bcbd26bfSFlorian Hahn #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
2028fb3d57eSArtur Pilipenko 
2038fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
2048fb3d57eSArtur Pilipenko 
205c297e84bSFedor Sergeev STATISTIC(TotalConsidered, "Number of guards considered");
206c297e84bSFedor Sergeev STATISTIC(TotalWidened, "Number of checks widened");
207c297e84bSFedor Sergeev 
2088fb3d57eSArtur Pilipenko using namespace llvm;
2098fb3d57eSArtur Pilipenko 
2101d02b13eSAnna Thomas static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
2111d02b13eSAnna Thomas                                         cl::Hidden, cl::init(true));
2121d02b13eSAnna Thomas 
2137b360434SAnna Thomas static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
2147b360434SAnna Thomas                                         cl::Hidden, cl::init(true));
2159b1176b0SAnna Thomas 
2169b1176b0SAnna Thomas static cl::opt<bool>
2179b1176b0SAnna Thomas     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
2189b1176b0SAnna Thomas                             cl::Hidden, cl::init(false));
2199b1176b0SAnna Thomas 
2209b1176b0SAnna Thomas // This is the scale factor for the latch probability. We use this during
2219b1176b0SAnna Thomas // profitability analysis to find other exiting blocks that have a much higher
2229b1176b0SAnna Thomas // probability of exiting the loop instead of loop exiting via latch.
2239b1176b0SAnna Thomas // This value should be greater than 1 for a sane profitability check.
2249b1176b0SAnna Thomas static cl::opt<float> LatchExitProbabilityScale(
2259b1176b0SAnna Thomas     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
2269b1176b0SAnna Thomas     cl::desc("scale factor for the latch probability. Value should be greater "
2279b1176b0SAnna Thomas              "than 1. Lower values are ignored"));
2289b1176b0SAnna Thomas 
229feb475f4SMax Kazantsev static cl::opt<bool> PredicateWidenableBranchGuards(
230feb475f4SMax Kazantsev     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
231feb475f4SMax Kazantsev     cl::desc("Whether or not we should predicate guards "
232feb475f4SMax Kazantsev              "expressed as widenable branches to deoptimize blocks"),
233feb475f4SMax Kazantsev     cl::init(true));
234feb475f4SMax Kazantsev 
2358fb3d57eSArtur Pilipenko namespace {
236a6c27804SArtur Pilipenko /// Represents an induction variable check:
237a6c27804SArtur Pilipenko ///   icmp Pred, <induction variable>, <loop invariant limit>
238a6c27804SArtur Pilipenko struct LoopICmp {
239a6c27804SArtur Pilipenko   ICmpInst::Predicate Pred;
240a6c27804SArtur Pilipenko   const SCEVAddRecExpr *IV;
241a6c27804SArtur Pilipenko   const SCEV *Limit;
242c488dfabSArtur Pilipenko   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
243c488dfabSArtur Pilipenko            const SCEV *Limit)
244a6c27804SArtur Pilipenko     : Pred(Pred), IV(IV), Limit(Limit) {}
245a6c27804SArtur Pilipenko   LoopICmp() {}
24668797214SAnna Thomas   void dump() {
24768797214SAnna Thomas     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
24868797214SAnna Thomas            << ", Limit = " << *Limit << "\n";
24968797214SAnna Thomas   }
250a6c27804SArtur Pilipenko };
251c488dfabSArtur Pilipenko 
252099eca83SPhilip Reames class LoopPredication {
25392a7177eSPhilip Reames   AliasAnalysis *AA;
254ad5a84c8SPhilip Reames   DominatorTree *DT;
255c488dfabSArtur Pilipenko   ScalarEvolution *SE;
256ad5a84c8SPhilip Reames   LoopInfo *LI;
2579b1176b0SAnna Thomas   BranchProbabilityInfo *BPI;
258c488dfabSArtur Pilipenko 
259c488dfabSArtur Pilipenko   Loop *L;
260c488dfabSArtur Pilipenko   const DataLayout *DL;
261c488dfabSArtur Pilipenko   BasicBlock *Preheader;
262889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
263c488dfabSArtur Pilipenko 
26468797214SAnna Thomas   bool isSupportedStep(const SCEV* Step);
26519afdf74SPhilip Reames   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
266889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
267a6c27804SArtur Pilipenko 
268fbe64a2cSPhilip Reames   /// Return an insertion point suitable for inserting a safe to speculate
269fbe64a2cSPhilip Reames   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
270fbe64a2cSPhilip Reames   /// trivial result would be the at the User itself, but we try to return a
271fbe64a2cSPhilip Reames   /// loop invariant location if possible.
272fbe64a2cSPhilip Reames   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
273e46d77d1SPhilip Reames   /// Same as above, *except* that this uses the SCEV definition of invariant
274e46d77d1SPhilip Reames   /// which is that an expression *can be made* invariant via SCEVExpander.
275e46d77d1SPhilip Reames   /// Thus, this version is only suitable for finding an insert point to be be
276e46d77d1SPhilip Reames   /// passed to SCEVExpander!
277e46d77d1SPhilip Reames   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
278fbe64a2cSPhilip Reames 
27992a7177eSPhilip Reames   /// Return true if the value is known to produce a single fixed value across
28092a7177eSPhilip Reames   /// all iterations on which it executes.  Note that this does not imply
28192a7177eSPhilip Reames   /// speculation safety.  That must be established seperately.
28292a7177eSPhilip Reames   bool isLoopInvariantValue(const SCEV* S);
28392a7177eSPhilip Reames 
284e46d77d1SPhilip Reames   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
2853d4e1082SPhilip Reames                      ICmpInst::Predicate Pred, const SCEV *LHS,
2863d4e1082SPhilip Reames                      const SCEV *RHS);
2876780ba65SArtur Pilipenko 
2888fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
289e46d77d1SPhilip Reames                                         Instruction *Guard);
29068797214SAnna Thomas   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
29168797214SAnna Thomas                                                         LoopICmp RangeCheck,
29268797214SAnna Thomas                                                         SCEVExpander &Expander,
293e46d77d1SPhilip Reames                                                         Instruction *Guard);
2947b360434SAnna Thomas   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
2957b360434SAnna Thomas                                                         LoopICmp RangeCheck,
2967b360434SAnna Thomas                                                         SCEVExpander &Expander,
297e46d77d1SPhilip Reames                                                         Instruction *Guard);
298ca450878SMax Kazantsev   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
299e46d77d1SPhilip Reames                          SCEVExpander &Expander, Instruction *Guard);
3008fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
301feb475f4SMax Kazantsev   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
3029b1176b0SAnna Thomas   // If the loop always exits through another block in the loop, we should not
3039b1176b0SAnna Thomas   // predicate based on the latch check. For example, the latch check can be a
3049b1176b0SAnna Thomas   // very coarse grained check and there can be more fine grained exit checks
3059b1176b0SAnna Thomas   // within the loop. We identify such unprofitable loops through BPI.
3069b1176b0SAnna Thomas   bool isLoopProfitableToPredicate();
3079b1176b0SAnna Thomas 
308ad5a84c8SPhilip Reames   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
309ad5a84c8SPhilip Reames 
3108fb3d57eSArtur Pilipenko public:
311ad5a84c8SPhilip Reames   LoopPredication(AliasAnalysis *AA, DominatorTree *DT,
312ad5a84c8SPhilip Reames                   ScalarEvolution *SE, LoopInfo *LI,
31392a7177eSPhilip Reames                   BranchProbabilityInfo *BPI)
314ad5a84c8SPhilip Reames     : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {};
3158fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
3168fb3d57eSArtur Pilipenko };
3178fb3d57eSArtur Pilipenko 
3188fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
3198fb3d57eSArtur Pilipenko public:
3208fb3d57eSArtur Pilipenko   static char ID;
3218fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
3228fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
3238fb3d57eSArtur Pilipenko   }
3248fb3d57eSArtur Pilipenko 
3258fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
3269b1176b0SAnna Thomas     AU.addRequired<BranchProbabilityInfoWrapperPass>();
3278fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
3288fb3d57eSArtur Pilipenko   }
3298fb3d57eSArtur Pilipenko 
3308fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
3318fb3d57eSArtur Pilipenko     if (skipLoop(L))
3328fb3d57eSArtur Pilipenko       return false;
3338fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
334ad5a84c8SPhilip Reames     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
335ad5a84c8SPhilip Reames     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3369b1176b0SAnna Thomas     BranchProbabilityInfo &BPI =
3379b1176b0SAnna Thomas         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
33892a7177eSPhilip Reames     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339ad5a84c8SPhilip Reames     LoopPredication LP(AA, DT, SE, LI, &BPI);
3408fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
3418fb3d57eSArtur Pilipenko   }
3428fb3d57eSArtur Pilipenko };
3438fb3d57eSArtur Pilipenko 
3448fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
3451c03cc5aSAlina Sbirlea } // end namespace
3468fb3d57eSArtur Pilipenko 
3478fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
3488fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
3499b1176b0SAnna Thomas INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
3508fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
3518fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
3528fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
3538fb3d57eSArtur Pilipenko 
3548fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
3558fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
3568fb3d57eSArtur Pilipenko }
3578fb3d57eSArtur Pilipenko 
3588fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
3598fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
3608fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
3619b1176b0SAnna Thomas   Function *F = L.getHeader()->getParent();
3624f33a689SAlina Sbirlea   // For the new PM, we also can't use BranchProbabilityInfo as an analysis
3634f33a689SAlina Sbirlea   // pass. Function analyses need to be preserved across loop transformations
3644f33a689SAlina Sbirlea   // but BPI is not preserved, hence a newly built one is needed.
3653e68a667SEvgeniy Brevnov   BranchProbabilityInfo BPI(*F, AR.LI, &AR.TLI);
3664f33a689SAlina Sbirlea   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, &BPI);
3678fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
3688fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
3698fb3d57eSArtur Pilipenko 
3708fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
3718fb3d57eSArtur Pilipenko }
3728fb3d57eSArtur Pilipenko 
373099eca83SPhilip Reames Optional<LoopICmp>
37419afdf74SPhilip Reames LoopPredication::parseLoopICmp(ICmpInst *ICI) {
37519afdf74SPhilip Reames   auto Pred = ICI->getPredicate();
37619afdf74SPhilip Reames   auto *LHS = ICI->getOperand(0);
37719afdf74SPhilip Reames   auto *RHS = ICI->getOperand(1);
37819afdf74SPhilip Reames 
379a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
380a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
381a6c27804SArtur Pilipenko     return None;
382a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
383a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
384a6c27804SArtur Pilipenko     return None;
385a6c27804SArtur Pilipenko 
386a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
387a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
388a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
389a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
390a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
391a6c27804SArtur Pilipenko   }
392a6c27804SArtur Pilipenko 
393a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
394a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
395a6c27804SArtur Pilipenko     return None;
396a6c27804SArtur Pilipenko 
397a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
398a6c27804SArtur Pilipenko }
399a6c27804SArtur Pilipenko 
4006780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
401e46d77d1SPhilip Reames                                     Instruction *Guard,
4026780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
4033d4e1082SPhilip Reames                                     const SCEV *RHS) {
4046780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
4056780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
406ead69ee4SArtur Pilipenko 
407e46d77d1SPhilip Reames   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
408e46d77d1SPhilip Reames     IRBuilder<> Builder(Guard);
409ead69ee4SArtur Pilipenko     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
410ead69ee4SArtur Pilipenko       return Builder.getTrue();
41105e3e554SPhilip Reames     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
41205e3e554SPhilip Reames                                      LHS, RHS))
41305e3e554SPhilip Reames       return Builder.getFalse();
414e46d77d1SPhilip Reames   }
415ead69ee4SArtur Pilipenko 
416e46d77d1SPhilip Reames   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
417e46d77d1SPhilip Reames   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
418e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
4196780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
4206780ba65SArtur Pilipenko }
4216780ba65SArtur Pilipenko 
4220912b06fSPhilip Reames 
4230912b06fSPhilip Reames // Returns true if its safe to truncate the IV to RangeCheckType.
4240912b06fSPhilip Reames // When the IV type is wider than the range operand type, we can still do loop
4250912b06fSPhilip Reames // predication, by generating SCEVs for the range and latch that are of the
4260912b06fSPhilip Reames // same type. We achieve this by generating a SCEV truncate expression for the
4270912b06fSPhilip Reames // latch IV. This is done iff truncation of the IV is a safe operation,
4280912b06fSPhilip Reames // without loss of information.
4290912b06fSPhilip Reames // Another way to achieve this is by generating a wider type SCEV for the
4300912b06fSPhilip Reames // range check operand, however, this needs a more involved check that
4310912b06fSPhilip Reames // operands do not overflow. This can lead to loss of information when the
4320912b06fSPhilip Reames // range operand is of the form: add i32 %offset, %iv. We need to prove that
4330912b06fSPhilip Reames // sext(x + y) is same as sext(x) + sext(y).
4340912b06fSPhilip Reames // This function returns true if we can safely represent the IV type in
4350912b06fSPhilip Reames // the RangeCheckType without loss of information.
4369ed16737SPhilip Reames static bool isSafeToTruncateWideIVType(const DataLayout &DL,
4379ed16737SPhilip Reames                                        ScalarEvolution &SE,
4380912b06fSPhilip Reames                                        const LoopICmp LatchCheck,
4390912b06fSPhilip Reames                                        Type *RangeCheckType) {
4400912b06fSPhilip Reames   if (!EnableIVTruncation)
4410912b06fSPhilip Reames     return false;
4420912b06fSPhilip Reames   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
4430912b06fSPhilip Reames              DL.getTypeSizeInBits(RangeCheckType) &&
4440912b06fSPhilip Reames          "Expected latch check IV type to be larger than range check operand "
4450912b06fSPhilip Reames          "type!");
4460912b06fSPhilip Reames   // The start and end values of the IV should be known. This is to guarantee
4470912b06fSPhilip Reames   // that truncating the wide type will not lose information.
4480912b06fSPhilip Reames   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
4490912b06fSPhilip Reames   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
4500912b06fSPhilip Reames   if (!Limit || !Start)
4510912b06fSPhilip Reames     return false;
4520912b06fSPhilip Reames   // This check makes sure that the IV does not change sign during loop
4530912b06fSPhilip Reames   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
4540912b06fSPhilip Reames   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
4550912b06fSPhilip Reames   // IV wraps around, and the truncation of the IV would lose the range of
4560912b06fSPhilip Reames   // iterations between 2^32 and 2^64.
4570912b06fSPhilip Reames   bool Increasing;
4580912b06fSPhilip Reames   if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
4590912b06fSPhilip Reames     return false;
4600912b06fSPhilip Reames   // The active bits should be less than the bits in the RangeCheckType. This
4610912b06fSPhilip Reames   // guarantees that truncating the latch check to RangeCheckType is a safe
4620912b06fSPhilip Reames   // operation.
4630912b06fSPhilip Reames   auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
4640912b06fSPhilip Reames   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
4650912b06fSPhilip Reames          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
4660912b06fSPhilip Reames }
4670912b06fSPhilip Reames 
4680912b06fSPhilip Reames 
4699ed16737SPhilip Reames // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
4709ed16737SPhilip Reames // the requested type if safe to do so.  May involve the use of a new IV.
4719ed16737SPhilip Reames static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
4729ed16737SPhilip Reames                                                  ScalarEvolution &SE,
4739ed16737SPhilip Reames                                                  const LoopICmp LatchCheck,
4749ed16737SPhilip Reames                                                  Type *RangeCheckType) {
4751d02b13eSAnna Thomas 
4761d02b13eSAnna Thomas   auto *LatchType = LatchCheck.IV->getType();
4771d02b13eSAnna Thomas   if (RangeCheckType == LatchType)
4781d02b13eSAnna Thomas     return LatchCheck;
4791d02b13eSAnna Thomas   // For now, bail out if latch type is narrower than range type.
4809ed16737SPhilip Reames   if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
4811d02b13eSAnna Thomas     return None;
4829ed16737SPhilip Reames   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
4831d02b13eSAnna Thomas     return None;
4841d02b13eSAnna Thomas   // We can now safely identify the truncated version of the IV and limit for
4851d02b13eSAnna Thomas   // RangeCheckType.
4861d02b13eSAnna Thomas   LoopICmp NewLatchCheck;
4871d02b13eSAnna Thomas   NewLatchCheck.Pred = LatchCheck.Pred;
4881d02b13eSAnna Thomas   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
4899ed16737SPhilip Reames       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
4901d02b13eSAnna Thomas   if (!NewLatchCheck.IV)
4911d02b13eSAnna Thomas     return None;
4929ed16737SPhilip Reames   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
493d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
494d34e60caSNicola Zaghen                     << "can be represented as range check type:"
495d34e60caSNicola Zaghen                     << *RangeCheckType << "\n");
496d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
497d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
4981d02b13eSAnna Thomas   return NewLatchCheck;
4991d02b13eSAnna Thomas }
5001d02b13eSAnna Thomas 
50168797214SAnna Thomas bool LoopPredication::isSupportedStep(const SCEV* Step) {
5027b360434SAnna Thomas   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
5031d02b13eSAnna Thomas }
5048fb3d57eSArtur Pilipenko 
505fbe64a2cSPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use,
506fbe64a2cSPhilip Reames                                            ArrayRef<Value*> Ops) {
507fbe64a2cSPhilip Reames   for (Value *Op : Ops)
508fbe64a2cSPhilip Reames     if (!L->isLoopInvariant(Op))
509fbe64a2cSPhilip Reames       return Use;
510fbe64a2cSPhilip Reames   return Preheader->getTerminator();
511fbe64a2cSPhilip Reames }
512fbe64a2cSPhilip Reames 
513e46d77d1SPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use,
514e46d77d1SPhilip Reames                                            ArrayRef<const SCEV*> Ops) {
51592a7177eSPhilip Reames   // Subtlety: SCEV considers things to be invariant if the value produced is
51692a7177eSPhilip Reames   // the same across iterations.  This is not the same as being able to
51792a7177eSPhilip Reames   // evaluate outside the loop, which is what we actually need here.
518e46d77d1SPhilip Reames   for (const SCEV *Op : Ops)
51992a7177eSPhilip Reames     if (!SE->isLoopInvariant(Op, L) ||
52092a7177eSPhilip Reames         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
521e46d77d1SPhilip Reames       return Use;
522e46d77d1SPhilip Reames   return Preheader->getTerminator();
523e46d77d1SPhilip Reames }
524e46d77d1SPhilip Reames 
52592a7177eSPhilip Reames bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
52692a7177eSPhilip Reames   // Handling expressions which produce invariant results, but *haven't* yet
52792a7177eSPhilip Reames   // been removed from the loop serves two important purposes.
52892a7177eSPhilip Reames   // 1) Most importantly, it resolves a pass ordering cycle which would
52992a7177eSPhilip Reames   // otherwise need us to iteration licm, loop-predication, and either
53092a7177eSPhilip Reames   // loop-unswitch or loop-peeling to make progress on examples with lots of
53192a7177eSPhilip Reames   // predicable range checks in a row.  (Since, in the general case,  we can't
53292a7177eSPhilip Reames   // hoist the length checks until the dominating checks have been discharged
53392a7177eSPhilip Reames   // as we can't prove doing so is safe.)
53492a7177eSPhilip Reames   // 2) As a nice side effect, this exposes the value of peeling or unswitching
53592a7177eSPhilip Reames   // much more obviously in the IR.  Otherwise, the cost modeling for other
53692a7177eSPhilip Reames   // transforms would end up needing to duplicate all of this logic to model a
53792a7177eSPhilip Reames   // check which becomes predictable based on a modeled peel or unswitch.
53892a7177eSPhilip Reames   //
53992a7177eSPhilip Reames   // The cost of doing so in the worst case is an extra fill from the stack  in
54092a7177eSPhilip Reames   // the loop to materialize the loop invariant test value instead of checking
54192a7177eSPhilip Reames   // against the original IV which is presumable in a register inside the loop.
54292a7177eSPhilip Reames   // Such cases are presumably rare, and hint at missing oppurtunities for
54392a7177eSPhilip Reames   // other passes.
544e46d77d1SPhilip Reames 
54592a7177eSPhilip Reames   if (SE->isLoopInvariant(S, L))
54692a7177eSPhilip Reames     // Note: This the SCEV variant, so the original Value* may be within the
54792a7177eSPhilip Reames     // loop even though SCEV has proven it is loop invariant.
54892a7177eSPhilip Reames     return true;
54992a7177eSPhilip Reames 
55092a7177eSPhilip Reames   // Handle a particular important case which SCEV doesn't yet know about which
55192a7177eSPhilip Reames   // shows up in range checks on arrays with immutable lengths.
55292a7177eSPhilip Reames   // TODO: This should be sunk inside SCEV.
55392a7177eSPhilip Reames   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
55492a7177eSPhilip Reames     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
555adf288c5SPhilip Reames       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
55692a7177eSPhilip Reames         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
55727820f99SPhilip Reames             LI->hasMetadata(LLVMContext::MD_invariant_load))
55892a7177eSPhilip Reames           return true;
55992a7177eSPhilip Reames   return false;
56068797214SAnna Thomas }
56168797214SAnna Thomas 
56268797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
563099eca83SPhilip Reames     LoopICmp LatchCheck, LoopICmp RangeCheck,
564e46d77d1SPhilip Reames     SCEVExpander &Expander, Instruction *Guard) {
56568797214SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
56668797214SAnna Thomas   // Generate the widened condition for the forward loop:
5678aadc643SArtur Pilipenko   //   guardStart u< guardLimit &&
5688aadc643SArtur Pilipenko   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
569b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
570b4527e1cSArtur Pilipenko   // header comment for the reasoning.
57168797214SAnna Thomas   // guardLimit - guardStart + latchStart - 1
57268797214SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
57368797214SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
57468797214SAnna Thomas   const SCEV *LatchStart = LatchCheck.IV->getStart();
57568797214SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
57692a7177eSPhilip Reames   // Subtlety: We need all the values to be *invariant* across all iterations,
57792a7177eSPhilip Reames   // but we only need to check expansion safety for those which *aren't*
57892a7177eSPhilip Reames   // already guaranteed to dominate the guard.
57992a7177eSPhilip Reames   if (!isLoopInvariantValue(GuardStart) ||
58092a7177eSPhilip Reames       !isLoopInvariantValue(GuardLimit) ||
58192a7177eSPhilip Reames       !isLoopInvariantValue(LatchStart) ||
58292a7177eSPhilip Reames       !isLoopInvariantValue(LatchLimit)) {
58392a7177eSPhilip Reames     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
58492a7177eSPhilip Reames     return None;
58592a7177eSPhilip Reames   }
58692a7177eSPhilip Reames   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
58792a7177eSPhilip Reames       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
58892a7177eSPhilip Reames     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
58992a7177eSPhilip Reames     return None;
59092a7177eSPhilip Reames   }
5918aadc643SArtur Pilipenko 
5928aadc643SArtur Pilipenko   // guardLimit - guardStart + latchStart - 1
5938aadc643SArtur Pilipenko   const SCEV *RHS =
5948aadc643SArtur Pilipenko       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
5958aadc643SArtur Pilipenko                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
5963cb4c34aSSerguei Katkov   auto LimitCheckPred =
5973cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
598aab28666SArtur Pilipenko 
599d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
600d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
601d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
6028aadc643SArtur Pilipenko 
6038aadc643SArtur Pilipenko   auto *LimitCheck =
604e46d77d1SPhilip Reames       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
605e46d77d1SPhilip Reames   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
6063d4e1082SPhilip Reames                                           GuardStart, GuardLimit);
607e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
608889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
6098fb3d57eSArtur Pilipenko }
6107b360434SAnna Thomas 
6117b360434SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
612099eca83SPhilip Reames     LoopICmp LatchCheck, LoopICmp RangeCheck,
613e46d77d1SPhilip Reames     SCEVExpander &Expander, Instruction *Guard) {
6147b360434SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
6157b360434SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
6167b360434SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
61792a7177eSPhilip Reames   const SCEV *LatchStart = LatchCheck.IV->getStart();
6187b360434SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
61992a7177eSPhilip Reames   // Subtlety: We need all the values to be *invariant* across all iterations,
62092a7177eSPhilip Reames   // but we only need to check expansion safety for those which *aren't*
62192a7177eSPhilip Reames   // already guaranteed to dominate the guard.
62292a7177eSPhilip Reames   if (!isLoopInvariantValue(GuardStart) ||
62392a7177eSPhilip Reames       !isLoopInvariantValue(GuardLimit) ||
62492a7177eSPhilip Reames       !isLoopInvariantValue(LatchStart) ||
62592a7177eSPhilip Reames       !isLoopInvariantValue(LatchLimit)) {
62692a7177eSPhilip Reames     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
62792a7177eSPhilip Reames     return None;
62892a7177eSPhilip Reames   }
62992a7177eSPhilip Reames   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
63092a7177eSPhilip Reames       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
631d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
6327b360434SAnna Thomas     return None;
6337b360434SAnna Thomas   }
6347b360434SAnna Thomas   // The decrement of the latch check IV should be the same as the
6357b360434SAnna Thomas   // rangeCheckIV.
6367b360434SAnna Thomas   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
6377b360434SAnna Thomas   if (RangeCheck.IV != PostDecLatchCheckIV) {
638d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
6397b360434SAnna Thomas                       << *PostDecLatchCheckIV
6407b360434SAnna Thomas                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
6417b360434SAnna Thomas     return None;
6427b360434SAnna Thomas   }
6437b360434SAnna Thomas 
6447b360434SAnna Thomas   // Generate the widened condition for CountDownLoop:
6457b360434SAnna Thomas   // guardStart u< guardLimit &&
6467b360434SAnna Thomas   // latchLimit <pred> 1.
6477b360434SAnna Thomas   // See the header comment for reasoning of the checks.
6483cb4c34aSSerguei Katkov   auto LimitCheckPred =
6493cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
650e46d77d1SPhilip Reames   auto *FirstIterationCheck = expandCheck(Expander, Guard,
651e46d77d1SPhilip Reames                                           ICmpInst::ICMP_ULT,
6523d4e1082SPhilip Reames                                           GuardStart, GuardLimit);
653e46d77d1SPhilip Reames   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
6543d4e1082SPhilip Reames                                  SE->getOne(Ty));
655e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
6567b360434SAnna Thomas   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
6577b360434SAnna Thomas }
6587b360434SAnna Thomas 
659099eca83SPhilip Reames static void normalizePredicate(ScalarEvolution *SE, Loop *L,
660099eca83SPhilip Reames                                LoopICmp& RC) {
6610e344e9dSPhilip Reames   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
6620e344e9dSPhilip Reames   // ULT/UGE form for ease of handling by our caller.
6630e344e9dSPhilip Reames   if (ICmpInst::isEquality(RC.Pred) &&
664099eca83SPhilip Reames       RC.IV->getStepRecurrence(*SE)->isOne() &&
665099eca83SPhilip Reames       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
6660e344e9dSPhilip Reames     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
6670e344e9dSPhilip Reames       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
668099eca83SPhilip Reames }
669099eca83SPhilip Reames 
670099eca83SPhilip Reames 
67168797214SAnna Thomas /// If ICI can be widened to a loop invariant condition emits the loop
67268797214SAnna Thomas /// invariant condition in the loop preheader and return it, otherwise
67368797214SAnna Thomas /// returns None.
67468797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
67568797214SAnna Thomas                                                        SCEVExpander &Expander,
676e46d77d1SPhilip Reames                                                        Instruction *Guard) {
677d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
678d34e60caSNicola Zaghen   LLVM_DEBUG(ICI->dump());
67968797214SAnna Thomas 
68068797214SAnna Thomas   // parseLoopStructure guarantees that the latch condition is:
68168797214SAnna Thomas   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
68268797214SAnna Thomas   // We are looking for the range checks of the form:
68368797214SAnna Thomas   //   i u< guardLimit
68468797214SAnna Thomas   auto RangeCheck = parseLoopICmp(ICI);
68568797214SAnna Thomas   if (!RangeCheck) {
686d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
68768797214SAnna Thomas     return None;
68868797214SAnna Thomas   }
689d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Guard check:\n");
690d34e60caSNicola Zaghen   LLVM_DEBUG(RangeCheck->dump());
69168797214SAnna Thomas   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
692d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
693d34e60caSNicola Zaghen                       << RangeCheck->Pred << ")!\n");
69468797214SAnna Thomas     return None;
69568797214SAnna Thomas   }
69668797214SAnna Thomas   auto *RangeCheckIV = RangeCheck->IV;
69768797214SAnna Thomas   if (!RangeCheckIV->isAffine()) {
698d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
69968797214SAnna Thomas     return None;
70068797214SAnna Thomas   }
70168797214SAnna Thomas   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
70268797214SAnna Thomas   // We cannot just compare with latch IV step because the latch and range IVs
70368797214SAnna Thomas   // may have different types.
70468797214SAnna Thomas   if (!isSupportedStep(Step)) {
705d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
70668797214SAnna Thomas     return None;
70768797214SAnna Thomas   }
70868797214SAnna Thomas   auto *Ty = RangeCheckIV->getType();
7099ed16737SPhilip Reames   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
71068797214SAnna Thomas   if (!CurrLatchCheckOpt) {
711d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
71268797214SAnna Thomas                          "corresponding to range type: "
71368797214SAnna Thomas                       << *Ty << "\n");
71468797214SAnna Thomas     return None;
71568797214SAnna Thomas   }
71668797214SAnna Thomas 
71768797214SAnna Thomas   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
7187b360434SAnna Thomas   // At this point, the range and latch step should have the same type, but need
7197b360434SAnna Thomas   // not have the same value (we support both 1 and -1 steps).
7207b360434SAnna Thomas   assert(Step->getType() ==
7217b360434SAnna Thomas              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
7227b360434SAnna Thomas          "Range and latch steps should be of same type!");
7237b360434SAnna Thomas   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
724d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
7257b360434SAnna Thomas     return None;
7267b360434SAnna Thomas   }
72768797214SAnna Thomas 
7287b360434SAnna Thomas   if (Step->isOne())
72968797214SAnna Thomas     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
730e46d77d1SPhilip Reames                                                Expander, Guard);
7317b360434SAnna Thomas   else {
7327b360434SAnna Thomas     assert(Step->isAllOnesValue() && "Step should be -1!");
7337b360434SAnna Thomas     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
734e46d77d1SPhilip Reames                                                Expander, Guard);
7357b360434SAnna Thomas   }
73668797214SAnna Thomas }
7378fb3d57eSArtur Pilipenko 
738ca450878SMax Kazantsev unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
739ca450878SMax Kazantsev                                         Value *Condition,
740ca450878SMax Kazantsev                                         SCEVExpander &Expander,
741e46d77d1SPhilip Reames                                         Instruction *Guard) {
742ca450878SMax Kazantsev   unsigned NumWidened = 0;
7438fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
7448fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
7450909ca13SHiroshi Inoue   // Iterate over subconditions looking for icmp conditions which can be
7468fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
7478fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
748ca450878SMax Kazantsev   SmallVector<Value *, 4> Worklist(1, Condition);
7498fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
750adb3ece2SPhilip Reames   Value *WideableCond = nullptr;
7518fb3d57eSArtur Pilipenko   do {
7528fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
7538fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
7548fb3d57eSArtur Pilipenko       continue;
7558fb3d57eSArtur Pilipenko 
7568fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
7578fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
7588fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
7598fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
7608fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
7618fb3d57eSArtur Pilipenko       continue;
7628fb3d57eSArtur Pilipenko     }
7638fb3d57eSArtur Pilipenko 
764adb3ece2SPhilip Reames     if (match(Condition,
765adb3ece2SPhilip Reames               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
766adb3ece2SPhilip Reames       // Pick any, we don't care which
767adb3ece2SPhilip Reames       WideableCond = Condition;
768adb3ece2SPhilip Reames       continue;
769adb3ece2SPhilip Reames     }
770adb3ece2SPhilip Reames 
7718fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
7723d4e1082SPhilip Reames       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
773e46d77d1SPhilip Reames                                                    Guard)) {
7748fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
7758fb3d57eSArtur Pilipenko         NumWidened++;
7768fb3d57eSArtur Pilipenko         continue;
7778fb3d57eSArtur Pilipenko       }
7788fb3d57eSArtur Pilipenko     }
7798fb3d57eSArtur Pilipenko 
7808fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
7818fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
782ca450878SMax Kazantsev   } while (!Worklist.empty());
783adb3ece2SPhilip Reames   // At the moment, our matching logic for wideable conditions implicitly
784adb3ece2SPhilip Reames   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
785adb3ece2SPhilip Reames   // Note that if there were multiple calls to wideable condition in the
786adb3ece2SPhilip Reames   // traversal, we only need to keep one, and which one is arbitrary.
787adb3ece2SPhilip Reames   if (WideableCond)
788adb3ece2SPhilip Reames     Checks.push_back(WideableCond);
789ca450878SMax Kazantsev   return NumWidened;
790ca450878SMax Kazantsev }
7918fb3d57eSArtur Pilipenko 
792ca450878SMax Kazantsev bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
793ca450878SMax Kazantsev                                            SCEVExpander &Expander) {
794ca450878SMax Kazantsev   LLVM_DEBUG(dbgs() << "Processing guard:\n");
795ca450878SMax Kazantsev   LLVM_DEBUG(Guard->dump());
796ca450878SMax Kazantsev 
797ca450878SMax Kazantsev   TotalConsidered++;
798ca450878SMax Kazantsev   SmallVector<Value *, 4> Checks;
799ca450878SMax Kazantsev   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
800e46d77d1SPhilip Reames                                       Guard);
8018fb3d57eSArtur Pilipenko   if (NumWidened == 0)
8028fb3d57eSArtur Pilipenko     return false;
8038fb3d57eSArtur Pilipenko 
804c297e84bSFedor Sergeev   TotalWidened += NumWidened;
805c297e84bSFedor Sergeev 
8068fb3d57eSArtur Pilipenko   // Emit the new guard condition
807e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, Checks));
8089e62c864SPhilip Reames   Value *AllChecks = Builder.CreateAnd(Checks);
809d109e2a7SPhilip Reames   auto *OldCond = Guard->getOperand(0);
8109e62c864SPhilip Reames   Guard->setOperand(0, AllChecks);
811d109e2a7SPhilip Reames   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
8128fb3d57eSArtur Pilipenko 
813d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
8148fb3d57eSArtur Pilipenko   return true;
8158fb3d57eSArtur Pilipenko }
8168fb3d57eSArtur Pilipenko 
817feb475f4SMax Kazantsev bool LoopPredication::widenWidenableBranchGuardConditions(
818f608678fSPhilip Reames     BranchInst *BI, SCEVExpander &Expander) {
819f608678fSPhilip Reames   assert(isGuardAsWidenableBranch(BI) && "Must be!");
820feb475f4SMax Kazantsev   LLVM_DEBUG(dbgs() << "Processing guard:\n");
821f608678fSPhilip Reames   LLVM_DEBUG(BI->dump());
822feb475f4SMax Kazantsev 
823feb475f4SMax Kazantsev   TotalConsidered++;
824feb475f4SMax Kazantsev   SmallVector<Value *, 4> Checks;
825adb3ece2SPhilip Reames   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
826e46d77d1SPhilip Reames                                       Expander, BI);
827feb475f4SMax Kazantsev   if (NumWidened == 0)
828feb475f4SMax Kazantsev     return false;
829feb475f4SMax Kazantsev 
830feb475f4SMax Kazantsev   TotalWidened += NumWidened;
831feb475f4SMax Kazantsev 
832feb475f4SMax Kazantsev   // Emit the new guard condition
833e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(BI, Checks));
8349e62c864SPhilip Reames   Value *AllChecks = Builder.CreateAnd(Checks);
835adb3ece2SPhilip Reames   auto *OldCond = BI->getCondition();
8369e62c864SPhilip Reames   BI->setCondition(AllChecks);
837686f449eSPhilip Reames   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
838f608678fSPhilip Reames   assert(isGuardAsWidenableBranch(BI) &&
839feb475f4SMax Kazantsev          "Stopped being a guard after transform?");
840feb475f4SMax Kazantsev 
841feb475f4SMax Kazantsev   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
842feb475f4SMax Kazantsev   return true;
843feb475f4SMax Kazantsev }
844feb475f4SMax Kazantsev 
845099eca83SPhilip Reames Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
846889dc1e3SArtur Pilipenko   using namespace PatternMatch;
847889dc1e3SArtur Pilipenko 
848889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
849889dc1e3SArtur Pilipenko   if (!LoopLatch) {
850d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
851889dc1e3SArtur Pilipenko     return None;
852889dc1e3SArtur Pilipenko   }
853889dc1e3SArtur Pilipenko 
85419afdf74SPhilip Reames   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
855101915cfSPhilip Reames   if (!BI || !BI->isConditional()) {
856d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
857889dc1e3SArtur Pilipenko     return None;
858889dc1e3SArtur Pilipenko   }
85919afdf74SPhilip Reames   BasicBlock *TrueDest = BI->getSuccessor(0);
8604e875464SRichard Trieu   assert(
8614e875464SRichard Trieu       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
862889dc1e3SArtur Pilipenko       "One of the latch's destinations must be the header");
863889dc1e3SArtur Pilipenko 
86419afdf74SPhilip Reames   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
865101915cfSPhilip Reames   if (!ICI) {
86619afdf74SPhilip Reames     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
86719afdf74SPhilip Reames     return None;
86819afdf74SPhilip Reames   }
86919afdf74SPhilip Reames   auto Result = parseLoopICmp(ICI);
870889dc1e3SArtur Pilipenko   if (!Result) {
871d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
872889dc1e3SArtur Pilipenko     return None;
873889dc1e3SArtur Pilipenko   }
874889dc1e3SArtur Pilipenko 
87519afdf74SPhilip Reames   if (TrueDest != L->getHeader())
87619afdf74SPhilip Reames     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
87719afdf74SPhilip Reames 
878889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
879889dc1e3SArtur Pilipenko   // recurrence.
880889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
881d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
882889dc1e3SArtur Pilipenko     return None;
883889dc1e3SArtur Pilipenko   }
884889dc1e3SArtur Pilipenko 
885889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
88668797214SAnna Thomas   if (!isSupportedStep(Step)) {
887d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
888889dc1e3SArtur Pilipenko     return None;
889889dc1e3SArtur Pilipenko   }
890889dc1e3SArtur Pilipenko 
89168797214SAnna Thomas   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
8927b360434SAnna Thomas     if (Step->isOne()) {
89368797214SAnna Thomas       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
89468797214SAnna Thomas              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
8957b360434SAnna Thomas     } else {
8967b360434SAnna Thomas       assert(Step->isAllOnesValue() && "Step should be -1!");
897c8016e7aSSerguei Katkov       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
898c8016e7aSSerguei Katkov              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
8997b360434SAnna Thomas     }
90068797214SAnna Thomas   };
90168797214SAnna Thomas 
902099eca83SPhilip Reames   normalizePredicate(SE, L, *Result);
90368797214SAnna Thomas   if (IsUnsupportedPredicate(Step, Result->Pred)) {
904d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
90568797214SAnna Thomas                       << ")!\n");
90668797214SAnna Thomas     return None;
90768797214SAnna Thomas   }
90819afdf74SPhilip Reames 
909889dc1e3SArtur Pilipenko   return Result;
910889dc1e3SArtur Pilipenko }
911889dc1e3SArtur Pilipenko 
9121d02b13eSAnna Thomas 
9139b1176b0SAnna Thomas bool LoopPredication::isLoopProfitableToPredicate() {
9149b1176b0SAnna Thomas   if (SkipProfitabilityChecks || !BPI)
9159b1176b0SAnna Thomas     return true;
9169b1176b0SAnna Thomas 
917c6caddb7SSerguei Katkov   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
9189b1176b0SAnna Thomas   L->getExitEdges(ExitEdges);
9199b1176b0SAnna Thomas   // If there is only one exiting edge in the loop, it is always profitable to
9209b1176b0SAnna Thomas   // predicate the loop.
9219b1176b0SAnna Thomas   if (ExitEdges.size() == 1)
9229b1176b0SAnna Thomas     return true;
9239b1176b0SAnna Thomas 
9249b1176b0SAnna Thomas   // Calculate the exiting probabilities of all exiting edges from the loop,
9259b1176b0SAnna Thomas   // starting with the LatchExitProbability.
9269b1176b0SAnna Thomas   // Heuristic for profitability: If any of the exiting blocks' probability of
9279b1176b0SAnna Thomas   // exiting the loop is larger than exiting through the latch block, it's not
9289b1176b0SAnna Thomas   // profitable to predicate the loop.
9299b1176b0SAnna Thomas   auto *LatchBlock = L->getLoopLatch();
9309b1176b0SAnna Thomas   assert(LatchBlock && "Should have a single latch at this point!");
9319b1176b0SAnna Thomas   auto *LatchTerm = LatchBlock->getTerminator();
9329b1176b0SAnna Thomas   assert(LatchTerm->getNumSuccessors() == 2 &&
9339b1176b0SAnna Thomas          "expected to be an exiting block with 2 succs!");
9349b1176b0SAnna Thomas   unsigned LatchBrExitIdx =
9359b1176b0SAnna Thomas       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
9369b1176b0SAnna Thomas   BranchProbability LatchExitProbability =
9379b1176b0SAnna Thomas       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
9389b1176b0SAnna Thomas 
9399b1176b0SAnna Thomas   // Protect against degenerate inputs provided by the user. Providing a value
9409b1176b0SAnna Thomas   // less than one, can invert the definition of profitable loop predication.
9419b1176b0SAnna Thomas   float ScaleFactor = LatchExitProbabilityScale;
9429b1176b0SAnna Thomas   if (ScaleFactor < 1) {
943d34e60caSNicola Zaghen     LLVM_DEBUG(
9449b1176b0SAnna Thomas         dbgs()
9459b1176b0SAnna Thomas         << "Ignored user setting for loop-predication-latch-probability-scale: "
9469b1176b0SAnna Thomas         << LatchExitProbabilityScale << "\n");
947d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
9489b1176b0SAnna Thomas     ScaleFactor = 1.0;
9499b1176b0SAnna Thomas   }
9509b1176b0SAnna Thomas   const auto LatchProbabilityThreshold =
9519b1176b0SAnna Thomas       LatchExitProbability * ScaleFactor;
9529b1176b0SAnna Thomas 
9539b1176b0SAnna Thomas   for (const auto &ExitEdge : ExitEdges) {
9549b1176b0SAnna Thomas     BranchProbability ExitingBlockProbability =
9559b1176b0SAnna Thomas         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
9569b1176b0SAnna Thomas     // Some exiting edge has higher probability than the latch exiting edge.
9579b1176b0SAnna Thomas     // No longer profitable to predicate.
9589b1176b0SAnna Thomas     if (ExitingBlockProbability > LatchProbabilityThreshold)
9599b1176b0SAnna Thomas       return false;
9609b1176b0SAnna Thomas   }
9619b1176b0SAnna Thomas   // Using BPI, we have concluded that the most probable way to exit from the
9629b1176b0SAnna Thomas   // loop is through the latch (or there's no profile information and all
9639b1176b0SAnna Thomas   // exits are equally likely).
9649b1176b0SAnna Thomas   return true;
9659b1176b0SAnna Thomas }
9669b1176b0SAnna Thomas 
967ad5a84c8SPhilip Reames /// If we can (cheaply) find a widenable branch which controls entry into the
968ad5a84c8SPhilip Reames /// loop, return it.
969ad5a84c8SPhilip Reames static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
970ad5a84c8SPhilip Reames   // Walk back through any unconditional executed blocks and see if we can find
971ad5a84c8SPhilip Reames   // a widenable condition which seems to control execution of this loop.  Note
972ad5a84c8SPhilip Reames   // that we predict that maythrow calls are likely untaken and thus that it's
973ad5a84c8SPhilip Reames   // profitable to widen a branch before a maythrow call with a condition
974ad5a84c8SPhilip Reames   // afterwards even though that may cause the slow path to run in a case where
975ad5a84c8SPhilip Reames   // it wouldn't have otherwise.
976ad5a84c8SPhilip Reames   BasicBlock *BB = L->getLoopPreheader();
977ad5a84c8SPhilip Reames   if (!BB)
978ad5a84c8SPhilip Reames     return nullptr;
979ad5a84c8SPhilip Reames   do {
980ad5a84c8SPhilip Reames     if (BasicBlock *Pred = BB->getSinglePredecessor())
981ad5a84c8SPhilip Reames       if (BB == Pred->getSingleSuccessor()) {
982ad5a84c8SPhilip Reames         BB = Pred;
983ad5a84c8SPhilip Reames         continue;
984ad5a84c8SPhilip Reames       }
985ad5a84c8SPhilip Reames     break;
986ad5a84c8SPhilip Reames   } while (true);
987ad5a84c8SPhilip Reames 
988ad5a84c8SPhilip Reames   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
989ad5a84c8SPhilip Reames     auto *Term = Pred->getTerminator();
990ad5a84c8SPhilip Reames 
991ad5a84c8SPhilip Reames     Value *Cond, *WC;
992ad5a84c8SPhilip Reames     BasicBlock *IfTrueBB, *IfFalseBB;
993ad5a84c8SPhilip Reames     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
994ad5a84c8SPhilip Reames         IfTrueBB == BB)
995ad5a84c8SPhilip Reames       return cast<BranchInst>(Term);
996ad5a84c8SPhilip Reames   }
997ad5a84c8SPhilip Reames   return nullptr;
998ad5a84c8SPhilip Reames }
999ad5a84c8SPhilip Reames 
1000ad5a84c8SPhilip Reames /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1001ad5a84c8SPhilip Reames /// on the actual exit count.  If there are not at least two analyzeable exits,
1002ad5a84c8SPhilip Reames /// returns SCEVCouldNotCompute.
1003ad5a84c8SPhilip Reames static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1004ad5a84c8SPhilip Reames                                                        DominatorTree &DT,
1005ad5a84c8SPhilip Reames                                                        Loop *L) {
1006ad5a84c8SPhilip Reames   SmallVector<BasicBlock *, 16> ExitingBlocks;
1007ad5a84c8SPhilip Reames   L->getExitingBlocks(ExitingBlocks);
1008ad5a84c8SPhilip Reames 
1009ad5a84c8SPhilip Reames   SmallVector<const SCEV *, 4> ExitCounts;
1010ad5a84c8SPhilip Reames   for (BasicBlock *ExitingBB : ExitingBlocks) {
1011ad5a84c8SPhilip Reames     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1012ad5a84c8SPhilip Reames     if (isa<SCEVCouldNotCompute>(ExitCount))
1013ad5a84c8SPhilip Reames       continue;
1014ad5a84c8SPhilip Reames     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1015ad5a84c8SPhilip Reames            "We should only have known counts for exiting blocks that "
1016ad5a84c8SPhilip Reames            "dominate latch!");
1017ad5a84c8SPhilip Reames     ExitCounts.push_back(ExitCount);
1018ad5a84c8SPhilip Reames   }
1019ad5a84c8SPhilip Reames   if (ExitCounts.size() < 2)
1020ad5a84c8SPhilip Reames     return SE.getCouldNotCompute();
1021ad5a84c8SPhilip Reames   return SE.getUMinFromMismatchedTypes(ExitCounts);
1022ad5a84c8SPhilip Reames }
1023ad5a84c8SPhilip Reames 
1024ad5a84c8SPhilip Reames /// This implements an analogous, but entirely distinct transform from the main
1025ad5a84c8SPhilip Reames /// loop predication transform.  This one is phrased in terms of using a
1026ad5a84c8SPhilip Reames /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1027ad5a84c8SPhilip Reames /// following loop.  This is close in spirit to the IndVarSimplify transform
1028ad5a84c8SPhilip Reames /// of the same name, but is materially different widening loosens legality
1029ad5a84c8SPhilip Reames /// sharply.
1030ad5a84c8SPhilip Reames bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1031ad5a84c8SPhilip Reames   // The transformation performed here aims to widen a widenable condition
1032ad5a84c8SPhilip Reames   // above the loop such that all analyzeable exit leading to deopt are dead.
1033ad5a84c8SPhilip Reames   // It assumes that the latch is the dominant exit for profitability and that
1034ad5a84c8SPhilip Reames   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1035ad5a84c8SPhilip Reames   // semantics of widenable expressions for legality. (i.e. being able to fall
1036ad5a84c8SPhilip Reames   // down the widenable path spuriously allows us to ignore exit order,
1037ad5a84c8SPhilip Reames   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1038ad5a84c8SPhilip Reames   // which restrict the applicability of the non-WC based version of this
1039ad5a84c8SPhilip Reames   // transform in IndVarSimplify.)
1040ad5a84c8SPhilip Reames   //
1041ad5a84c8SPhilip Reames   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1042ad5a84c8SPhilip Reames   // imply flags on the expression being hoisted and inserting new uses (flags
1043ad5a84c8SPhilip Reames   // are only correct for current uses).  The result is that we may be
1044ad5a84c8SPhilip Reames   // inserting a branch on the value which can be either poison or undef.  In
1045ad5a84c8SPhilip Reames   // this case, the branch can legally go either way; we just need to avoid
1046ad5a84c8SPhilip Reames   // introducing UB.  This is achieved through the use of the freeze
1047ad5a84c8SPhilip Reames   // instruction.
1048ad5a84c8SPhilip Reames 
1049ad5a84c8SPhilip Reames   SmallVector<BasicBlock *, 16> ExitingBlocks;
1050ad5a84c8SPhilip Reames   L->getExitingBlocks(ExitingBlocks);
1051ad5a84c8SPhilip Reames 
1052ad5a84c8SPhilip Reames   if (ExitingBlocks.empty())
1053ad5a84c8SPhilip Reames     return false; // Nothing to do.
1054ad5a84c8SPhilip Reames 
1055ad5a84c8SPhilip Reames   auto *Latch = L->getLoopLatch();
1056ad5a84c8SPhilip Reames   if (!Latch)
1057ad5a84c8SPhilip Reames     return false;
1058ad5a84c8SPhilip Reames 
1059ad5a84c8SPhilip Reames   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1060ad5a84c8SPhilip Reames   if (!WidenableBR)
1061ad5a84c8SPhilip Reames     return false;
1062ad5a84c8SPhilip Reames 
1063ad5a84c8SPhilip Reames   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1064ad5a84c8SPhilip Reames   if (isa<SCEVCouldNotCompute>(LatchEC))
1065ad5a84c8SPhilip Reames     return false; // profitability - want hot exit in analyzeable set
1066ad5a84c8SPhilip Reames 
1067dfb7a909SPhilip Reames   // At this point, we have found an analyzeable latch, and a widenable
1068dfb7a909SPhilip Reames   // condition above the loop.  If we have a widenable exit within the loop
1069dfb7a909SPhilip Reames   // (for which we can't compute exit counts), drop the ability to further
1070dfb7a909SPhilip Reames   // widen so that we gain ability to analyze it's exit count and perform this
1071dfb7a909SPhilip Reames   // transform.  TODO: It'd be nice to know for sure the exit became
1072dfb7a909SPhilip Reames   // analyzeable after dropping widenability.
1073dfb7a909SPhilip Reames   {
1074dfb7a909SPhilip Reames     bool Invalidate = false;
1075dfb7a909SPhilip Reames 
1076dfb7a909SPhilip Reames     for (auto *ExitingBB : ExitingBlocks) {
1077dfb7a909SPhilip Reames       if (LI->getLoopFor(ExitingBB) != L)
1078dfb7a909SPhilip Reames         continue;
1079dfb7a909SPhilip Reames 
1080dfb7a909SPhilip Reames       auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1081dfb7a909SPhilip Reames       if (!BI)
1082dfb7a909SPhilip Reames         continue;
1083dfb7a909SPhilip Reames 
1084dfb7a909SPhilip Reames       Use *Cond, *WC;
1085dfb7a909SPhilip Reames       BasicBlock *IfTrueBB, *IfFalseBB;
1086dfb7a909SPhilip Reames       if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1087dfb7a909SPhilip Reames           L->contains(IfTrueBB)) {
1088dfb7a909SPhilip Reames         WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1089dfb7a909SPhilip Reames         Invalidate = true;
1090dfb7a909SPhilip Reames       }
1091dfb7a909SPhilip Reames     }
1092dfb7a909SPhilip Reames     if (Invalidate)
1093dfb7a909SPhilip Reames       SE->forgetLoop(L);
1094dfb7a909SPhilip Reames   }
1095dfb7a909SPhilip Reames 
1096ad5a84c8SPhilip Reames   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1097ad5a84c8SPhilip Reames   // important for profitability.  We may have a loop which hasn't been fully
1098ad5a84c8SPhilip Reames   // canonicalized just yet.  If the exit we chose to widen is provably never
1099ad5a84c8SPhilip Reames   // taken, we want the widened form to *also* be provably never taken.  We
1100ad5a84c8SPhilip Reames   // can't guarantee this as a current unanalyzeable exit may later become
1101ad5a84c8SPhilip Reames   // analyzeable, but we can at least avoid the obvious cases.
1102ad5a84c8SPhilip Reames   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1103ad5a84c8SPhilip Reames   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1104ad5a84c8SPhilip Reames       !SE->isLoopInvariant(MinEC, L) ||
1105ad5a84c8SPhilip Reames       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1106ad5a84c8SPhilip Reames     return false;
1107ad5a84c8SPhilip Reames 
1108ad5a84c8SPhilip Reames   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1109ad5a84c8SPhilip Reames   // that it can only have one transitive use at the moment, and thus moving
1110ad5a84c8SPhilip Reames   // that use to just before the branch and inserting code before it and then
1111ad5a84c8SPhilip Reames   // modifying the operand is legal.
1112ad5a84c8SPhilip Reames   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1113ad5a84c8SPhilip Reames   IP->moveBefore(WidenableBR);
1114ad5a84c8SPhilip Reames   Rewriter.setInsertPoint(IP);
1115ad5a84c8SPhilip Reames   IRBuilder<> B(IP);
1116ad5a84c8SPhilip Reames 
1117ad5a84c8SPhilip Reames   bool Changed = false;
1118ad5a84c8SPhilip Reames   Value *MinECV = nullptr; // lazily generated if needed
1119ad5a84c8SPhilip Reames   for (BasicBlock *ExitingBB : ExitingBlocks) {
1120ad5a84c8SPhilip Reames     // If our exiting block exits multiple loops, we can only rewrite the
1121ad5a84c8SPhilip Reames     // innermost one.  Otherwise, we're changing how many times the innermost
1122ad5a84c8SPhilip Reames     // loop runs before it exits.
1123ad5a84c8SPhilip Reames     if (LI->getLoopFor(ExitingBB) != L)
1124ad5a84c8SPhilip Reames       continue;
1125ad5a84c8SPhilip Reames 
1126ad5a84c8SPhilip Reames     // Can't rewrite non-branch yet.
1127ad5a84c8SPhilip Reames     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1128ad5a84c8SPhilip Reames     if (!BI)
1129ad5a84c8SPhilip Reames       continue;
1130ad5a84c8SPhilip Reames 
1131ad5a84c8SPhilip Reames     // If already constant, nothing to do.
1132ad5a84c8SPhilip Reames     if (isa<Constant>(BI->getCondition()))
1133ad5a84c8SPhilip Reames       continue;
1134ad5a84c8SPhilip Reames 
1135ad5a84c8SPhilip Reames     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1136ad5a84c8SPhilip Reames     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1137ad5a84c8SPhilip Reames         ExitCount->getType()->isPointerTy() ||
1138ad5a84c8SPhilip Reames         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1139ad5a84c8SPhilip Reames       continue;
1140ad5a84c8SPhilip Reames 
1141ad5a84c8SPhilip Reames     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1142ad5a84c8SPhilip Reames     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
11438a4d12aeSFedor Sergeev     if (!ExitBB->getPostdominatingDeoptimizeCall())
1144ad5a84c8SPhilip Reames       continue;
1145ad5a84c8SPhilip Reames 
11468a4d12aeSFedor Sergeev     /// Here we can be fairly sure that executing this exit will most likely
11478a4d12aeSFedor Sergeev     /// lead to executing llvm.experimental.deoptimize.
11488a4d12aeSFedor Sergeev     /// This is a profitability heuristic, not a legality constraint.
11498a4d12aeSFedor Sergeev 
1150ad5a84c8SPhilip Reames     // If we found a widenable exit condition, do two things:
1151ad5a84c8SPhilip Reames     // 1) fold the widened exit test into the widenable condition
1152ad5a84c8SPhilip Reames     // 2) fold the branch to untaken - avoids infinite looping
1153ad5a84c8SPhilip Reames 
1154ad5a84c8SPhilip Reames     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1155ad5a84c8SPhilip Reames     if (!MinECV)
1156ad5a84c8SPhilip Reames       MinECV = Rewriter.expandCodeFor(MinEC);
1157ad5a84c8SPhilip Reames     Value *RHS = MinECV;
1158ad5a84c8SPhilip Reames     if (ECV->getType() != RHS->getType()) {
1159ad5a84c8SPhilip Reames       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1160ad5a84c8SPhilip Reames       ECV = B.CreateZExt(ECV, WiderTy);
1161ad5a84c8SPhilip Reames       RHS = B.CreateZExt(RHS, WiderTy);
1162ad5a84c8SPhilip Reames     }
1163ad5a84c8SPhilip Reames     assert(!Latch || DT->dominates(ExitingBB, Latch));
1164ad5a84c8SPhilip Reames     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1165ad5a84c8SPhilip Reames     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1166ad5a84c8SPhilip Reames     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1167ad5a84c8SPhilip Reames     // context.
1168ad5a84c8SPhilip Reames     NewCond = B.CreateFreeze(NewCond);
1169ad5a84c8SPhilip Reames 
117070c68a6bSPhilip Reames     widenWidenableBranch(WidenableBR, NewCond);
1171ad5a84c8SPhilip Reames 
1172ad5a84c8SPhilip Reames     Value *OldCond = BI->getCondition();
1173ad5a84c8SPhilip Reames     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1174ad5a84c8SPhilip Reames     Changed = true;
1175ad5a84c8SPhilip Reames   }
1176ad5a84c8SPhilip Reames 
1177ad5a84c8SPhilip Reames   if (Changed)
1178ad5a84c8SPhilip Reames     // We just mutated a bunch of loop exits changing there exit counts
1179ad5a84c8SPhilip Reames     // widely.  We need to force recomputation of the exit counts given these
1180ad5a84c8SPhilip Reames     // changes.  Note that all of the inserted exits are never taken, and
1181ad5a84c8SPhilip Reames     // should be removed next time the CFG is modified.
1182ad5a84c8SPhilip Reames     SE->forgetLoop(L);
1183ad5a84c8SPhilip Reames   return Changed;
1184ad5a84c8SPhilip Reames }
1185ad5a84c8SPhilip Reames 
11868fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
11878fb3d57eSArtur Pilipenko   L = Loop;
11888fb3d57eSArtur Pilipenko 
1189d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ");
1190d34e60caSNicola Zaghen   LLVM_DEBUG(L->dump());
11918fb3d57eSArtur Pilipenko 
11928fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
11938fb3d57eSArtur Pilipenko 
11948fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
11958fb3d57eSArtur Pilipenko   auto *GuardDecl =
11968fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1197feb475f4SMax Kazantsev   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1198feb475f4SMax Kazantsev   auto *WCDecl = M->getFunction(
1199feb475f4SMax Kazantsev       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1200feb475f4SMax Kazantsev   bool HasWidenableConditions =
1201feb475f4SMax Kazantsev       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1202feb475f4SMax Kazantsev   if (!HasIntrinsicGuards && !HasWidenableConditions)
12038fb3d57eSArtur Pilipenko     return false;
12048fb3d57eSArtur Pilipenko 
12058fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
12068fb3d57eSArtur Pilipenko 
12078fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
12088fb3d57eSArtur Pilipenko   if (!Preheader)
12098fb3d57eSArtur Pilipenko     return false;
12108fb3d57eSArtur Pilipenko 
1211889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
1212889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
1213889dc1e3SArtur Pilipenko     return false;
1214889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
1215889dc1e3SArtur Pilipenko 
1216d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Latch check:\n");
1217d34e60caSNicola Zaghen   LLVM_DEBUG(LatchCheck.dump());
121868797214SAnna Thomas 
12199b1176b0SAnna Thomas   if (!isLoopProfitableToPredicate()) {
1220d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
12219b1176b0SAnna Thomas     return false;
12229b1176b0SAnna Thomas   }
12238fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
12248fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
12258fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
1226feb475f4SMax Kazantsev   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1227feb475f4SMax Kazantsev   for (const auto BB : L->blocks()) {
12288fb3d57eSArtur Pilipenko     for (auto &I : *BB)
122928298e96SMax Kazantsev       if (isGuard(&I))
123028298e96SMax Kazantsev         Guards.push_back(cast<IntrinsicInst>(&I));
1231feb475f4SMax Kazantsev     if (PredicateWidenableBranchGuards &&
1232feb475f4SMax Kazantsev         isGuardAsWidenableBranch(BB->getTerminator()))
1233feb475f4SMax Kazantsev       GuardsAsWidenableBranches.push_back(
1234feb475f4SMax Kazantsev           cast<BranchInst>(BB->getTerminator()));
1235feb475f4SMax Kazantsev   }
12368fb3d57eSArtur Pilipenko 
12378fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
12388fb3d57eSArtur Pilipenko   bool Changed = false;
12398fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
12408fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
1241feb475f4SMax Kazantsev   for (auto *Guard : GuardsAsWidenableBranches)
1242feb475f4SMax Kazantsev     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1243ad5a84c8SPhilip Reames   Changed |= predicateLoopExits(L, Expander);
12448fb3d57eSArtur Pilipenko   return Changed;
12458fb3d57eSArtur Pilipenko }
1246