18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
38fb3d57eSArtur Pilipenko //                     The LLVM Compiler Infrastructure
48fb3d57eSArtur Pilipenko //
58fb3d57eSArtur Pilipenko // This file is distributed under the University of Illinois Open Source
68fb3d57eSArtur Pilipenko // License. See LICENSE.TXT for details.
78fb3d57eSArtur Pilipenko //
88fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
98fb3d57eSArtur Pilipenko //
108fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
118fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
128fb3d57eSArtur Pilipenko // convert
138fb3d57eSArtur Pilipenko //
148fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
158fb3d57eSArtur Pilipenko //     guard(i < len);
168fb3d57eSArtur Pilipenko //     ...
178fb3d57eSArtur Pilipenko //   }
188fb3d57eSArtur Pilipenko //
198fb3d57eSArtur Pilipenko // to
208fb3d57eSArtur Pilipenko //
218fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
228fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
238fb3d57eSArtur Pilipenko //     ...
248fb3d57eSArtur Pilipenko //   }
258fb3d57eSArtur Pilipenko //
268fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
278fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
288fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
298fb3d57eSArtur Pilipenko //
308fb3d57eSArtur Pilipenko //   if (n - 1 < len)
318fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
328fb3d57eSArtur Pilipenko //       ...
338fb3d57eSArtur Pilipenko //     }
348fb3d57eSArtur Pilipenko //   else
358fb3d57eSArtur Pilipenko //     deoptimize
368fb3d57eSArtur Pilipenko //
37889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
38889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
39889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
40889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
41889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
42889dc1e3SArtur Pilipenko // assumption that it never fails.
43889dc1e3SArtur Pilipenko //
44889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
45889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
46889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
47889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
48889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49889dc1e3SArtur Pilipenko //
50889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
51889dc1e3SArtur Pilipenko //     guard(i u< len)
52889dc1e3SArtur Pilipenko //
53889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
54889dc1e3SArtur Pilipenko // approach. Given the loop:
55889dc1e3SArtur Pilipenko //
56*8aadc643SArtur Pilipenko //   if (B(0)) {
57889dc1e3SArtur Pilipenko //     do {
58*8aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
59889dc1e3SArtur Pilipenko //       I.INC = I + Step
60889dc1e3SArtur Pilipenko //       guard(G(I));
61*8aadc643SArtur Pilipenko //     } while (B(I));
62889dc1e3SArtur Pilipenko //   }
63889dc1e3SArtur Pilipenko //
64889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
65889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
66889dc1e3SArtur Pilipenko // as the above:
67889dc1e3SArtur Pilipenko //
68*8aadc643SArtur Pilipenko //   if (B(0)) {
69889dc1e3SArtur Pilipenko //     do {
70*8aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
71889dc1e3SArtur Pilipenko //       I.INC = I + Step
72*8aadc643SArtur Pilipenko //       guard(G(0) && M);
73*8aadc643SArtur Pilipenko //     } while (B(I));
74889dc1e3SArtur Pilipenko //   }
75889dc1e3SArtur Pilipenko //
76*8aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
77889dc1e3SArtur Pilipenko //
78889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
79889dc1e3SArtur Pilipenko //
80889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
81*8aadc643SArtur Pilipenko //     G(I) && G(0) && M
82889dc1e3SArtur Pilipenko //
83889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
84*8aadc643SArtur Pilipenko //     G(0) && M => G(I)
85889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
86889dc1e3SArtur Pilipenko //
87889dc1e3SArtur Pilipenko //   Induction base.
88*8aadc643SArtur Pilipenko //     G(0) && M => G(0)
89889dc1e3SArtur Pilipenko //
90*8aadc643SArtur Pilipenko //   Induction step. Assuming G(0) && M => G(I) on the subsequent
91889dc1e3SArtur Pilipenko //   iteration:
92889dc1e3SArtur Pilipenko //
93*8aadc643SArtur Pilipenko //     B(I) is true because it's the backedge condition.
94889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
95889dc1e3SArtur Pilipenko //
96*8aadc643SArtur Pilipenko //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
97889dc1e3SArtur Pilipenko //
98889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
99889dc1e3SArtur Pilipenko // implies M.
100889dc1e3SArtur Pilipenko //
101889dc1e3SArtur Pilipenko // For now the transformation is limited to the following case:
102b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
103*8aadc643SArtur Pilipenko //     B(X) = latchStart + X <pred> latchLimit,
104*8aadc643SArtur Pilipenko //     where <pred> is u<, u<=, s<, or s<=.
105889dc1e3SArtur Pilipenko //   * The step of the IV used in the latch condition is 1.
106*8aadc643SArtur Pilipenko //   * The guard condition is of the form
107*8aadc643SArtur Pilipenko //     G(X) = guardStart + X u< guardLimit
108889dc1e3SArtur Pilipenko //
109b4527e1cSArtur Pilipenko // For the ult latch comparison case M is:
110*8aadc643SArtur Pilipenko //   forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111*8aadc643SArtur Pilipenko //      guardStart + X + 1 u< guardLimit
112889dc1e3SArtur Pilipenko //
113889dc1e3SArtur Pilipenko // The only way the antecedent can be true and the consequent can be false is
114889dc1e3SArtur Pilipenko // if
115*8aadc643SArtur Pilipenko //   X == guardLimit - 1 - guardStart
116889dc1e3SArtur Pilipenko // (and guardLimit is non-zero, but we won't use this latter fact).
117*8aadc643SArtur Pilipenko // If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118*8aadc643SArtur Pilipenko //   latchStart + guardLimit - 1 - guardStart u< latchLimit
119889dc1e3SArtur Pilipenko // and its negation is
120*8aadc643SArtur Pilipenko //   latchStart + guardLimit - 1 - guardStart u>= latchLimit
121889dc1e3SArtur Pilipenko //
122*8aadc643SArtur Pilipenko // In other words, if
123*8aadc643SArtur Pilipenko //   latchLimit u<= latchStart + guardLimit - 1 - guardStart
124*8aadc643SArtur Pilipenko // then:
125889dc1e3SArtur Pilipenko // (the ranges below are written in ConstantRange notation, where [A, B) is the
126889dc1e3SArtur Pilipenko // set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
127889dc1e3SArtur Pilipenko //
128*8aadc643SArtur Pilipenko //    forall X . guardStart + X u< guardLimit &&
129*8aadc643SArtur Pilipenko //               latchStart + X u< latchLimit =>
130*8aadc643SArtur Pilipenko //      guardStart + X + 1 u< guardLimit
131*8aadc643SArtur Pilipenko // == forall X . guardStart + X u< guardLimit &&
132*8aadc643SArtur Pilipenko //               latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133*8aadc643SArtur Pilipenko //      guardStart + X + 1 u< guardLimit
134*8aadc643SArtur Pilipenko // == forall X . (guardStart + X) in [0, guardLimit) &&
135*8aadc643SArtur Pilipenko //               (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136*8aadc643SArtur Pilipenko //      (guardStart + X + 1) in [0, guardLimit)
137*8aadc643SArtur Pilipenko // == forall X . X in [-guardStart, guardLimit - guardStart) &&
138*8aadc643SArtur Pilipenko //               X in [-latchStart, guardLimit - 1 - guardStart) =>
139*8aadc643SArtur Pilipenko //       X in [-guardStart - 1, guardLimit - guardStart - 1)
140889dc1e3SArtur Pilipenko // == true
141889dc1e3SArtur Pilipenko //
142889dc1e3SArtur Pilipenko // So the widened condition is:
143*8aadc643SArtur Pilipenko //   guardStart u< guardLimit &&
144*8aadc643SArtur Pilipenko //   latchStart + guardLimit - 1 - guardStart u>= latchLimit
145*8aadc643SArtur Pilipenko // Similarly for ule condition the widened condition is:
146*8aadc643SArtur Pilipenko //   guardStart u< guardLimit &&
147*8aadc643SArtur Pilipenko //   latchStart + guardLimit - 1 - guardStart u> latchLimit
148*8aadc643SArtur Pilipenko // For slt condition the widened condition is:
149*8aadc643SArtur Pilipenko //   guardStart u< guardLimit &&
150*8aadc643SArtur Pilipenko //   latchStart + guardLimit - 1 - guardStart s>= latchLimit
151*8aadc643SArtur Pilipenko // For sle condition the widened condition is:
152*8aadc643SArtur Pilipenko //   guardStart u< guardLimit &&
153*8aadc643SArtur Pilipenko //   latchStart + guardLimit - 1 - guardStart s> latchLimit
154889dc1e3SArtur Pilipenko //
1558fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1568fb3d57eSArtur Pilipenko 
1578fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
1588fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1598fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1608fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1618fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h"
1628fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1638fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1648fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1658fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1668fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1678fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
1686bda14b3SChandler Carruth #include "llvm/Pass.h"
1698fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1708fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
1718fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
1728fb3d57eSArtur Pilipenko 
1738fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
1748fb3d57eSArtur Pilipenko 
1758fb3d57eSArtur Pilipenko using namespace llvm;
1768fb3d57eSArtur Pilipenko 
1778fb3d57eSArtur Pilipenko namespace {
1788fb3d57eSArtur Pilipenko class LoopPredication {
179a6c27804SArtur Pilipenko   /// Represents an induction variable check:
180a6c27804SArtur Pilipenko   ///   icmp Pred, <induction variable>, <loop invariant limit>
181a6c27804SArtur Pilipenko   struct LoopICmp {
182a6c27804SArtur Pilipenko     ICmpInst::Predicate Pred;
183a6c27804SArtur Pilipenko     const SCEVAddRecExpr *IV;
184a6c27804SArtur Pilipenko     const SCEV *Limit;
185c488dfabSArtur Pilipenko     LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
186c488dfabSArtur Pilipenko              const SCEV *Limit)
187a6c27804SArtur Pilipenko         : Pred(Pred), IV(IV), Limit(Limit) {}
188a6c27804SArtur Pilipenko     LoopICmp() {}
189a6c27804SArtur Pilipenko   };
190c488dfabSArtur Pilipenko 
191c488dfabSArtur Pilipenko   ScalarEvolution *SE;
192c488dfabSArtur Pilipenko 
193c488dfabSArtur Pilipenko   Loop *L;
194c488dfabSArtur Pilipenko   const DataLayout *DL;
195c488dfabSArtur Pilipenko   BasicBlock *Preheader;
196889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
197c488dfabSArtur Pilipenko 
198889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
199889dc1e3SArtur Pilipenko     return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
200889dc1e3SArtur Pilipenko                          ICI->getOperand(1));
201889dc1e3SArtur Pilipenko   }
202889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
203889dc1e3SArtur Pilipenko                                    Value *RHS);
204889dc1e3SArtur Pilipenko 
205889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
206a6c27804SArtur Pilipenko 
2076780ba65SArtur Pilipenko   Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
2086780ba65SArtur Pilipenko                      ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
2096780ba65SArtur Pilipenko                      Instruction *InsertAt);
2106780ba65SArtur Pilipenko 
2118fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
2128fb3d57eSArtur Pilipenko                                         IRBuilder<> &Builder);
2138fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
2148fb3d57eSArtur Pilipenko 
2158fb3d57eSArtur Pilipenko public:
2168fb3d57eSArtur Pilipenko   LoopPredication(ScalarEvolution *SE) : SE(SE){};
2178fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
2188fb3d57eSArtur Pilipenko };
2198fb3d57eSArtur Pilipenko 
2208fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
2218fb3d57eSArtur Pilipenko public:
2228fb3d57eSArtur Pilipenko   static char ID;
2238fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
2248fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
2258fb3d57eSArtur Pilipenko   }
2268fb3d57eSArtur Pilipenko 
2278fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
2288fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
2298fb3d57eSArtur Pilipenko   }
2308fb3d57eSArtur Pilipenko 
2318fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2328fb3d57eSArtur Pilipenko     if (skipLoop(L))
2338fb3d57eSArtur Pilipenko       return false;
2348fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2358fb3d57eSArtur Pilipenko     LoopPredication LP(SE);
2368fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
2378fb3d57eSArtur Pilipenko   }
2388fb3d57eSArtur Pilipenko };
2398fb3d57eSArtur Pilipenko 
2408fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
2418fb3d57eSArtur Pilipenko } // end namespace llvm
2428fb3d57eSArtur Pilipenko 
2438fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
2448fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
2458fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
2468fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
2478fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
2488fb3d57eSArtur Pilipenko 
2498fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
2508fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
2518fb3d57eSArtur Pilipenko }
2528fb3d57eSArtur Pilipenko 
2538fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
2548fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
2558fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
2568fb3d57eSArtur Pilipenko   LoopPredication LP(&AR.SE);
2578fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
2588fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
2598fb3d57eSArtur Pilipenko 
2608fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
2618fb3d57eSArtur Pilipenko }
2628fb3d57eSArtur Pilipenko 
263a6c27804SArtur Pilipenko Optional<LoopPredication::LoopICmp>
264889dc1e3SArtur Pilipenko LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
265889dc1e3SArtur Pilipenko                                Value *RHS) {
266a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
267a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
268a6c27804SArtur Pilipenko     return None;
269a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
270a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
271a6c27804SArtur Pilipenko     return None;
272a6c27804SArtur Pilipenko 
273a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
274a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
275a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
276a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
277a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
278a6c27804SArtur Pilipenko   }
279a6c27804SArtur Pilipenko 
280a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
281a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
282a6c27804SArtur Pilipenko     return None;
283a6c27804SArtur Pilipenko 
284a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
285a6c27804SArtur Pilipenko }
286a6c27804SArtur Pilipenko 
2876780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
2886780ba65SArtur Pilipenko                                     IRBuilder<> &Builder,
2896780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
2906780ba65SArtur Pilipenko                                     const SCEV *RHS, Instruction *InsertAt) {
291889dc1e3SArtur Pilipenko   // TODO: we can check isLoopEntryGuardedByCond before emitting the check
292889dc1e3SArtur Pilipenko 
2936780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
2946780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
295ead69ee4SArtur Pilipenko 
296ead69ee4SArtur Pilipenko   if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
297ead69ee4SArtur Pilipenko     return Builder.getTrue();
298ead69ee4SArtur Pilipenko 
2996780ba65SArtur Pilipenko   Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
3006780ba65SArtur Pilipenko   Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
3016780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
3026780ba65SArtur Pilipenko }
3036780ba65SArtur Pilipenko 
3048fb3d57eSArtur Pilipenko /// If ICI can be widened to a loop invariant condition emits the loop
3058fb3d57eSArtur Pilipenko /// invariant condition in the loop preheader and return it, otherwise
3068fb3d57eSArtur Pilipenko /// returns None.
3078fb3d57eSArtur Pilipenko Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
3088fb3d57eSArtur Pilipenko                                                        SCEVExpander &Expander,
3098fb3d57eSArtur Pilipenko                                                        IRBuilder<> &Builder) {
3108fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
3118fb3d57eSArtur Pilipenko   DEBUG(ICI->dump());
3128fb3d57eSArtur Pilipenko 
313889dc1e3SArtur Pilipenko   // parseLoopStructure guarantees that the latch condition is:
314b4527e1cSArtur Pilipenko   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
315889dc1e3SArtur Pilipenko   // We are looking for the range checks of the form:
316889dc1e3SArtur Pilipenko   //   i u< guardLimit
317a6c27804SArtur Pilipenko   auto RangeCheck = parseLoopICmp(ICI);
318edee2515SArtur Pilipenko   if (!RangeCheck) {
319edee2515SArtur Pilipenko     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
3208fb3d57eSArtur Pilipenko     return None;
321edee2515SArtur Pilipenko   }
322889dc1e3SArtur Pilipenko   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
323889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
324889dc1e3SArtur Pilipenko                  << ")!\n");
325889dc1e3SArtur Pilipenko     return None;
326889dc1e3SArtur Pilipenko   }
327889dc1e3SArtur Pilipenko   auto *RangeCheckIV = RangeCheck->IV;
328*8aadc643SArtur Pilipenko   auto *Ty = RangeCheckIV->getType();
329*8aadc643SArtur Pilipenko   if (Ty != LatchCheck.IV->getType()) {
330*8aadc643SArtur Pilipenko     DEBUG(dbgs() << "Type mismatch between range check and latch IVs!\n");
331889dc1e3SArtur Pilipenko     return None;
332889dc1e3SArtur Pilipenko   }
333*8aadc643SArtur Pilipenko   if (!RangeCheckIV->isAffine()) {
334*8aadc643SArtur Pilipenko     DEBUG(dbgs() << "Range check IV is not affine!\n");
335*8aadc643SArtur Pilipenko     return None;
336*8aadc643SArtur Pilipenko   }
337*8aadc643SArtur Pilipenko   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
338*8aadc643SArtur Pilipenko   if (Step != LatchCheck.IV->getStepRecurrence(*SE)) {
339*8aadc643SArtur Pilipenko     DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
340*8aadc643SArtur Pilipenko     return None;
341*8aadc643SArtur Pilipenko   }
342*8aadc643SArtur Pilipenko   assert(Step->isOne() && "must be one");
3438fb3d57eSArtur Pilipenko 
344b4527e1cSArtur Pilipenko   // Generate the widened condition:
345*8aadc643SArtur Pilipenko   //   guardStart u< guardLimit &&
346*8aadc643SArtur Pilipenko   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
347b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
348b4527e1cSArtur Pilipenko   // header comment for the reasoning.
349*8aadc643SArtur Pilipenko   const SCEV *GuardStart = RangeCheckIV->getStart();
350*8aadc643SArtur Pilipenko   const SCEV *GuardLimit = RangeCheck->Limit;
351*8aadc643SArtur Pilipenko   const SCEV *LatchStart = LatchCheck.IV->getStart();
352*8aadc643SArtur Pilipenko   const SCEV *LatchLimit = LatchCheck.Limit;
353*8aadc643SArtur Pilipenko 
354*8aadc643SArtur Pilipenko   // guardLimit - guardStart + latchStart - 1
355*8aadc643SArtur Pilipenko   const SCEV *RHS =
356*8aadc643SArtur Pilipenko       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
357*8aadc643SArtur Pilipenko                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
358*8aadc643SArtur Pilipenko 
359b4527e1cSArtur Pilipenko   ICmpInst::Predicate LimitCheckPred;
360b4527e1cSArtur Pilipenko   switch (LatchCheck.Pred) {
361b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_ULT:
362b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_ULE;
363b4527e1cSArtur Pilipenko     break;
364b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_ULE:
365b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_ULT;
366b4527e1cSArtur Pilipenko     break;
367b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_SLT:
368b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_SLE;
369b4527e1cSArtur Pilipenko     break;
370b4527e1cSArtur Pilipenko   case ICmpInst::ICMP_SLE:
371b4527e1cSArtur Pilipenko     LimitCheckPred = ICmpInst::ICMP_SLT;
372b4527e1cSArtur Pilipenko     break;
373b4527e1cSArtur Pilipenko   default:
374b4527e1cSArtur Pilipenko     llvm_unreachable("Unsupported loop latch!");
375b4527e1cSArtur Pilipenko   }
376aab28666SArtur Pilipenko 
377*8aadc643SArtur Pilipenko   DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
378*8aadc643SArtur Pilipenko   DEBUG(dbgs() << "RHS: " << *RHS << "\n");
379*8aadc643SArtur Pilipenko   DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
380*8aadc643SArtur Pilipenko 
381aab28666SArtur Pilipenko   auto CanExpand = [this](const SCEV *S) {
382aab28666SArtur Pilipenko     return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
383aab28666SArtur Pilipenko   };
384*8aadc643SArtur Pilipenko   if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
385*8aadc643SArtur Pilipenko       !CanExpand(LatchLimit) || !CanExpand(RHS)) {
386*8aadc643SArtur Pilipenko     DEBUG(dbgs() << "Can't expand limit check!\n");
3878fb3d57eSArtur Pilipenko     return None;
388*8aadc643SArtur Pilipenko   }
3898fb3d57eSArtur Pilipenko 
3900860bfc6SArtur Pilipenko   Instruction *InsertAt = Preheader->getTerminator();
391*8aadc643SArtur Pilipenko   auto *LimitCheck =
392*8aadc643SArtur Pilipenko       expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
393ead69ee4SArtur Pilipenko   auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck->Pred,
394*8aadc643SArtur Pilipenko                                           GuardStart, GuardLimit, InsertAt);
395889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
3968fb3d57eSArtur Pilipenko }
3978fb3d57eSArtur Pilipenko 
3988fb3d57eSArtur Pilipenko bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
3998fb3d57eSArtur Pilipenko                                            SCEVExpander &Expander) {
4008fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Processing guard:\n");
4018fb3d57eSArtur Pilipenko   DEBUG(Guard->dump());
4028fb3d57eSArtur Pilipenko 
4038fb3d57eSArtur Pilipenko   IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
4048fb3d57eSArtur Pilipenko 
4058fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
4068fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
4078fb3d57eSArtur Pilipenko   // Iterate over subconditions looking for for icmp conditions which can be
4088fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
4098fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
4108fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
4118fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
4128fb3d57eSArtur Pilipenko 
4138fb3d57eSArtur Pilipenko   SmallVector<Value *, 4> Checks;
4148fb3d57eSArtur Pilipenko 
4158fb3d57eSArtur Pilipenko   unsigned NumWidened = 0;
4168fb3d57eSArtur Pilipenko   do {
4178fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
4188fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
4198fb3d57eSArtur Pilipenko       continue;
4208fb3d57eSArtur Pilipenko 
4218fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
4228fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
4238fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
4248fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
4258fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
4268fb3d57eSArtur Pilipenko       continue;
4278fb3d57eSArtur Pilipenko     }
4288fb3d57eSArtur Pilipenko 
4298fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
4308fb3d57eSArtur Pilipenko       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
4318fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
4328fb3d57eSArtur Pilipenko         NumWidened++;
4338fb3d57eSArtur Pilipenko         continue;
4348fb3d57eSArtur Pilipenko       }
4358fb3d57eSArtur Pilipenko     }
4368fb3d57eSArtur Pilipenko 
4378fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
4388fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
4398fb3d57eSArtur Pilipenko   } while (Worklist.size() != 0);
4408fb3d57eSArtur Pilipenko 
4418fb3d57eSArtur Pilipenko   if (NumWidened == 0)
4428fb3d57eSArtur Pilipenko     return false;
4438fb3d57eSArtur Pilipenko 
4448fb3d57eSArtur Pilipenko   // Emit the new guard condition
4458fb3d57eSArtur Pilipenko   Builder.SetInsertPoint(Guard);
4468fb3d57eSArtur Pilipenko   Value *LastCheck = nullptr;
4478fb3d57eSArtur Pilipenko   for (auto *Check : Checks)
4488fb3d57eSArtur Pilipenko     if (!LastCheck)
4498fb3d57eSArtur Pilipenko       LastCheck = Check;
4508fb3d57eSArtur Pilipenko     else
4518fb3d57eSArtur Pilipenko       LastCheck = Builder.CreateAnd(LastCheck, Check);
4528fb3d57eSArtur Pilipenko   Guard->setOperand(0, LastCheck);
4538fb3d57eSArtur Pilipenko 
4548fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
4558fb3d57eSArtur Pilipenko   return true;
4568fb3d57eSArtur Pilipenko }
4578fb3d57eSArtur Pilipenko 
458889dc1e3SArtur Pilipenko Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
459889dc1e3SArtur Pilipenko   using namespace PatternMatch;
460889dc1e3SArtur Pilipenko 
461889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
462889dc1e3SArtur Pilipenko   if (!LoopLatch) {
463889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
464889dc1e3SArtur Pilipenko     return None;
465889dc1e3SArtur Pilipenko   }
466889dc1e3SArtur Pilipenko 
467889dc1e3SArtur Pilipenko   ICmpInst::Predicate Pred;
468889dc1e3SArtur Pilipenko   Value *LHS, *RHS;
469889dc1e3SArtur Pilipenko   BasicBlock *TrueDest, *FalseDest;
470889dc1e3SArtur Pilipenko 
471889dc1e3SArtur Pilipenko   if (!match(LoopLatch->getTerminator(),
472889dc1e3SArtur Pilipenko              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
473889dc1e3SArtur Pilipenko                   FalseDest))) {
474889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Failed to match the latch terminator!\n");
475889dc1e3SArtur Pilipenko     return None;
476889dc1e3SArtur Pilipenko   }
477889dc1e3SArtur Pilipenko   assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
478889dc1e3SArtur Pilipenko          "One of the latch's destinations must be the header");
479889dc1e3SArtur Pilipenko   if (TrueDest != L->getHeader())
480889dc1e3SArtur Pilipenko     Pred = ICmpInst::getInversePredicate(Pred);
481889dc1e3SArtur Pilipenko 
482889dc1e3SArtur Pilipenko   auto Result = parseLoopICmp(Pred, LHS, RHS);
483889dc1e3SArtur Pilipenko   if (!Result) {
484889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
485889dc1e3SArtur Pilipenko     return None;
486889dc1e3SArtur Pilipenko   }
487889dc1e3SArtur Pilipenko 
488889dc1e3SArtur Pilipenko   if (Result->Pred != ICmpInst::ICMP_ULT &&
489b4527e1cSArtur Pilipenko       Result->Pred != ICmpInst::ICMP_SLT &&
490b4527e1cSArtur Pilipenko       Result->Pred != ICmpInst::ICMP_ULE &&
491b4527e1cSArtur Pilipenko       Result->Pred != ICmpInst::ICMP_SLE) {
492889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
493889dc1e3SArtur Pilipenko                  << ")!\n");
494889dc1e3SArtur Pilipenko     return None;
495889dc1e3SArtur Pilipenko   }
496889dc1e3SArtur Pilipenko 
497889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
498889dc1e3SArtur Pilipenko   // recurrence.
499889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
500889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "The induction variable is not affine!\n");
501889dc1e3SArtur Pilipenko     return None;
502889dc1e3SArtur Pilipenko   }
503889dc1e3SArtur Pilipenko 
504889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
505889dc1e3SArtur Pilipenko   if (!Step->isOne()) {
506889dc1e3SArtur Pilipenko     DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
507889dc1e3SArtur Pilipenko     return None;
508889dc1e3SArtur Pilipenko   }
509889dc1e3SArtur Pilipenko 
510889dc1e3SArtur Pilipenko   return Result;
511889dc1e3SArtur Pilipenko }
512889dc1e3SArtur Pilipenko 
5138fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
5148fb3d57eSArtur Pilipenko   L = Loop;
5158fb3d57eSArtur Pilipenko 
5168fb3d57eSArtur Pilipenko   DEBUG(dbgs() << "Analyzing ");
5178fb3d57eSArtur Pilipenko   DEBUG(L->dump());
5188fb3d57eSArtur Pilipenko 
5198fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
5208fb3d57eSArtur Pilipenko 
5218fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
5228fb3d57eSArtur Pilipenko   auto *GuardDecl =
5238fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
5248fb3d57eSArtur Pilipenko   if (!GuardDecl || GuardDecl->use_empty())
5258fb3d57eSArtur Pilipenko     return false;
5268fb3d57eSArtur Pilipenko 
5278fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
5288fb3d57eSArtur Pilipenko 
5298fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
5308fb3d57eSArtur Pilipenko   if (!Preheader)
5318fb3d57eSArtur Pilipenko     return false;
5328fb3d57eSArtur Pilipenko 
533889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
534889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
535889dc1e3SArtur Pilipenko     return false;
536889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
537889dc1e3SArtur Pilipenko 
5388fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
5398fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
5408fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
5418fb3d57eSArtur Pilipenko   for (const auto BB : L->blocks())
5428fb3d57eSArtur Pilipenko     for (auto &I : *BB)
5438fb3d57eSArtur Pilipenko       if (auto *II = dyn_cast<IntrinsicInst>(&I))
5448fb3d57eSArtur Pilipenko         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
5458fb3d57eSArtur Pilipenko           Guards.push_back(II);
5468fb3d57eSArtur Pilipenko 
54746c4e0a4SArtur Pilipenko   if (Guards.empty())
54846c4e0a4SArtur Pilipenko     return false;
54946c4e0a4SArtur Pilipenko 
5508fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
5518fb3d57eSArtur Pilipenko 
5528fb3d57eSArtur Pilipenko   bool Changed = false;
5538fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
5548fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
5558fb3d57eSArtur Pilipenko 
5568fb3d57eSArtur Pilipenko   return Changed;
5578fb3d57eSArtur Pilipenko }
558