18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 28fb3d57eSArtur Pilipenko // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68fb3d57eSArtur Pilipenko // 78fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===// 88fb3d57eSArtur Pilipenko // 98fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop 108fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will 118fb3d57eSArtur Pilipenko // convert 128fb3d57eSArtur Pilipenko // 138fb3d57eSArtur Pilipenko // for (i = 0; i < n; i++) { 148fb3d57eSArtur Pilipenko // guard(i < len); 158fb3d57eSArtur Pilipenko // ... 168fb3d57eSArtur Pilipenko // } 178fb3d57eSArtur Pilipenko // 188fb3d57eSArtur Pilipenko // to 198fb3d57eSArtur Pilipenko // 208fb3d57eSArtur Pilipenko // for (i = 0; i < n; i++) { 218fb3d57eSArtur Pilipenko // guard(n - 1 < len); 228fb3d57eSArtur Pilipenko // ... 238fb3d57eSArtur Pilipenko // } 248fb3d57eSArtur Pilipenko // 258fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so 268fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically 278fb3d57eSArtur Pilipenko // predicates the loop by the widened condition: 288fb3d57eSArtur Pilipenko // 298fb3d57eSArtur Pilipenko // if (n - 1 < len) 308fb3d57eSArtur Pilipenko // for (i = 0; i < n; i++) { 318fb3d57eSArtur Pilipenko // ... 328fb3d57eSArtur Pilipenko // } 338fb3d57eSArtur Pilipenko // else 348fb3d57eSArtur Pilipenko // deoptimize 358fb3d57eSArtur Pilipenko // 36889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic. 37889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add 38889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly 39889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the 40889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the 41889dc1e3SArtur Pilipenko // assumption that it never fails. 42889dc1e3SArtur Pilipenko // 43889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw 44889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered 45889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction 46889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this 47889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48889dc1e3SArtur Pilipenko // 49889dc1e3SArtur Pilipenko // for (int i = b; i != e; i++) 50889dc1e3SArtur Pilipenko // guard(i u< len) 51889dc1e3SArtur Pilipenko // 52889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof 53889dc1e3SArtur Pilipenko // approach. Given the loop: 54889dc1e3SArtur Pilipenko // 558aadc643SArtur Pilipenko // if (B(0)) { 56889dc1e3SArtur Pilipenko // do { 578aadc643SArtur Pilipenko // I = PHI(0, I.INC) 58889dc1e3SArtur Pilipenko // I.INC = I + Step 59889dc1e3SArtur Pilipenko // guard(G(I)); 608aadc643SArtur Pilipenko // } while (B(I)); 61889dc1e3SArtur Pilipenko // } 62889dc1e3SArtur Pilipenko // 63889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a 64889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics 65889dc1e3SArtur Pilipenko // as the above: 66889dc1e3SArtur Pilipenko // 678aadc643SArtur Pilipenko // if (B(0)) { 68889dc1e3SArtur Pilipenko // do { 698aadc643SArtur Pilipenko // I = PHI(0, I.INC) 70889dc1e3SArtur Pilipenko // I.INC = I + Step 718aadc643SArtur Pilipenko // guard(G(0) && M); 728aadc643SArtur Pilipenko // } while (B(I)); 73889dc1e3SArtur Pilipenko // } 74889dc1e3SArtur Pilipenko // 758aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76889dc1e3SArtur Pilipenko // 77889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct: 78889dc1e3SArtur Pilipenko // 79889dc1e3SArtur Pilipenko // By the definition of guards we can rewrite the guard condition to: 808aadc643SArtur Pilipenko // G(I) && G(0) && M 81889dc1e3SArtur Pilipenko // 82889dc1e3SArtur Pilipenko // Let's prove that for each iteration of the loop: 838aadc643SArtur Pilipenko // G(0) && M => G(I) 84889dc1e3SArtur Pilipenko // And the condition above can be simplified to G(Start) && M. 85889dc1e3SArtur Pilipenko // 86889dc1e3SArtur Pilipenko // Induction base. 878aadc643SArtur Pilipenko // G(0) && M => G(0) 88889dc1e3SArtur Pilipenko // 898aadc643SArtur Pilipenko // Induction step. Assuming G(0) && M => G(I) on the subsequent 90889dc1e3SArtur Pilipenko // iteration: 91889dc1e3SArtur Pilipenko // 928aadc643SArtur Pilipenko // B(I) is true because it's the backedge condition. 93889dc1e3SArtur Pilipenko // G(I) is true because the backedge is guarded by this condition. 94889dc1e3SArtur Pilipenko // 958aadc643SArtur Pilipenko // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96889dc1e3SArtur Pilipenko // 97889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which 98889dc1e3SArtur Pilipenko // implies M. 99889dc1e3SArtur Pilipenko // 1007b360434SAnna Thomas // When S = 1 (i.e. forward iterating loop), the transformation is supported 1017b360434SAnna Thomas // when: 102b4527e1cSArtur Pilipenko // * The loop has a single latch with the condition of the form: 1038aadc643SArtur Pilipenko // B(X) = latchStart + X <pred> latchLimit, 1048aadc643SArtur Pilipenko // where <pred> is u<, u<=, s<, or s<=. 1058aadc643SArtur Pilipenko // * The guard condition is of the form 1068aadc643SArtur Pilipenko // G(X) = guardStart + X u< guardLimit 107889dc1e3SArtur Pilipenko // 108b4527e1cSArtur Pilipenko // For the ult latch comparison case M is: 1098aadc643SArtur Pilipenko // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 1108aadc643SArtur Pilipenko // guardStart + X + 1 u< guardLimit 111889dc1e3SArtur Pilipenko // 112889dc1e3SArtur Pilipenko // The only way the antecedent can be true and the consequent can be false is 113889dc1e3SArtur Pilipenko // if 1148aadc643SArtur Pilipenko // X == guardLimit - 1 - guardStart 115889dc1e3SArtur Pilipenko // (and guardLimit is non-zero, but we won't use this latter fact). 1168aadc643SArtur Pilipenko // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 1178aadc643SArtur Pilipenko // latchStart + guardLimit - 1 - guardStart u< latchLimit 118889dc1e3SArtur Pilipenko // and its negation is 1198aadc643SArtur Pilipenko // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120889dc1e3SArtur Pilipenko // 1218aadc643SArtur Pilipenko // In other words, if 1228aadc643SArtur Pilipenko // latchLimit u<= latchStart + guardLimit - 1 - guardStart 1238aadc643SArtur Pilipenko // then: 124889dc1e3SArtur Pilipenko // (the ranges below are written in ConstantRange notation, where [A, B) is the 125889dc1e3SArtur Pilipenko // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126889dc1e3SArtur Pilipenko // 1278aadc643SArtur Pilipenko // forall X . guardStart + X u< guardLimit && 1288aadc643SArtur Pilipenko // latchStart + X u< latchLimit => 1298aadc643SArtur Pilipenko // guardStart + X + 1 u< guardLimit 1308aadc643SArtur Pilipenko // == forall X . guardStart + X u< guardLimit && 1318aadc643SArtur Pilipenko // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 1328aadc643SArtur Pilipenko // guardStart + X + 1 u< guardLimit 1338aadc643SArtur Pilipenko // == forall X . (guardStart + X) in [0, guardLimit) && 1348aadc643SArtur Pilipenko // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 1358aadc643SArtur Pilipenko // (guardStart + X + 1) in [0, guardLimit) 1368aadc643SArtur Pilipenko // == forall X . X in [-guardStart, guardLimit - guardStart) && 1378aadc643SArtur Pilipenko // X in [-latchStart, guardLimit - 1 - guardStart) => 1388aadc643SArtur Pilipenko // X in [-guardStart - 1, guardLimit - guardStart - 1) 139889dc1e3SArtur Pilipenko // == true 140889dc1e3SArtur Pilipenko // 141889dc1e3SArtur Pilipenko // So the widened condition is: 1428aadc643SArtur Pilipenko // guardStart u< guardLimit && 1438aadc643SArtur Pilipenko // latchStart + guardLimit - 1 - guardStart u>= latchLimit 1448aadc643SArtur Pilipenko // Similarly for ule condition the widened condition is: 1458aadc643SArtur Pilipenko // guardStart u< guardLimit && 1468aadc643SArtur Pilipenko // latchStart + guardLimit - 1 - guardStart u> latchLimit 1478aadc643SArtur Pilipenko // For slt condition the widened condition is: 1488aadc643SArtur Pilipenko // guardStart u< guardLimit && 1498aadc643SArtur Pilipenko // latchStart + guardLimit - 1 - guardStart s>= latchLimit 1508aadc643SArtur Pilipenko // For sle condition the widened condition is: 1518aadc643SArtur Pilipenko // guardStart u< guardLimit && 1528aadc643SArtur Pilipenko // latchStart + guardLimit - 1 - guardStart s> latchLimit 153889dc1e3SArtur Pilipenko // 1547b360434SAnna Thomas // When S = -1 (i.e. reverse iterating loop), the transformation is supported 1557b360434SAnna Thomas // when: 1567b360434SAnna Thomas // * The loop has a single latch with the condition of the form: 157c8016e7aSSerguei Katkov // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 1587b360434SAnna Thomas // * The guard condition is of the form 1597b360434SAnna Thomas // G(X) = X - 1 u< guardLimit 1607b360434SAnna Thomas // 1617b360434SAnna Thomas // For the ugt latch comparison case M is: 1627b360434SAnna Thomas // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 1637b360434SAnna Thomas // 1647b360434SAnna Thomas // The only way the antecedent can be true and the consequent can be false is if 1657b360434SAnna Thomas // X == 1. 1667b360434SAnna Thomas // If X == 1 then the second half of the antecedent is 1677b360434SAnna Thomas // 1 u> latchLimit, and its negation is latchLimit u>= 1. 1687b360434SAnna Thomas // 1697b360434SAnna Thomas // So the widened condition is: 1707b360434SAnna Thomas // guardStart u< guardLimit && latchLimit u>= 1. 1717b360434SAnna Thomas // Similarly for sgt condition the widened condition is: 1727b360434SAnna Thomas // guardStart u< guardLimit && latchLimit s>= 1. 173c8016e7aSSerguei Katkov // For uge condition the widened condition is: 174c8016e7aSSerguei Katkov // guardStart u< guardLimit && latchLimit u> 1. 175c8016e7aSSerguei Katkov // For sge condition the widened condition is: 176c8016e7aSSerguei Katkov // guardStart u< guardLimit && latchLimit s> 1. 1778fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===// 1788fb3d57eSArtur Pilipenko 1798fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h" 180c297e84bSFedor Sergeev #include "llvm/ADT/Statistic.h" 18192a7177eSPhilip Reames #include "llvm/Analysis/AliasAnalysis.h" 1829b1176b0SAnna Thomas #include "llvm/Analysis/BranchProbabilityInfo.h" 18328298e96SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 1848fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h" 1858fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h" 1868fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h" 1878fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h" 1888fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h" 1898fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h" 1908fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h" 1918fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h" 1928fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h" 1938fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h" 1946bda14b3SChandler Carruth #include "llvm/Pass.h" 1958fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h" 1968fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h" 197d109e2a7SPhilip Reames #include "llvm/Transforms/Utils/Local.h" 1988fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h" 1998fb3d57eSArtur Pilipenko 2008fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication" 2018fb3d57eSArtur Pilipenko 202c297e84bSFedor Sergeev STATISTIC(TotalConsidered, "Number of guards considered"); 203c297e84bSFedor Sergeev STATISTIC(TotalWidened, "Number of checks widened"); 204c297e84bSFedor Sergeev 2058fb3d57eSArtur Pilipenko using namespace llvm; 2068fb3d57eSArtur Pilipenko 2071d02b13eSAnna Thomas static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 2081d02b13eSAnna Thomas cl::Hidden, cl::init(true)); 2091d02b13eSAnna Thomas 2107b360434SAnna Thomas static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 2117b360434SAnna Thomas cl::Hidden, cl::init(true)); 2129b1176b0SAnna Thomas 2139b1176b0SAnna Thomas static cl::opt<bool> 2149b1176b0SAnna Thomas SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 2159b1176b0SAnna Thomas cl::Hidden, cl::init(false)); 2169b1176b0SAnna Thomas 2179b1176b0SAnna Thomas // This is the scale factor for the latch probability. We use this during 2189b1176b0SAnna Thomas // profitability analysis to find other exiting blocks that have a much higher 2199b1176b0SAnna Thomas // probability of exiting the loop instead of loop exiting via latch. 2209b1176b0SAnna Thomas // This value should be greater than 1 for a sane profitability check. 2219b1176b0SAnna Thomas static cl::opt<float> LatchExitProbabilityScale( 2229b1176b0SAnna Thomas "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 2239b1176b0SAnna Thomas cl::desc("scale factor for the latch probability. Value should be greater " 2249b1176b0SAnna Thomas "than 1. Lower values are ignored")); 2259b1176b0SAnna Thomas 226feb475f4SMax Kazantsev static cl::opt<bool> PredicateWidenableBranchGuards( 227feb475f4SMax Kazantsev "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 228feb475f4SMax Kazantsev cl::desc("Whether or not we should predicate guards " 229feb475f4SMax Kazantsev "expressed as widenable branches to deoptimize blocks"), 230feb475f4SMax Kazantsev cl::init(true)); 231feb475f4SMax Kazantsev 2328fb3d57eSArtur Pilipenko namespace { 233a6c27804SArtur Pilipenko /// Represents an induction variable check: 234a6c27804SArtur Pilipenko /// icmp Pred, <induction variable>, <loop invariant limit> 235a6c27804SArtur Pilipenko struct LoopICmp { 236a6c27804SArtur Pilipenko ICmpInst::Predicate Pred; 237a6c27804SArtur Pilipenko const SCEVAddRecExpr *IV; 238a6c27804SArtur Pilipenko const SCEV *Limit; 239c488dfabSArtur Pilipenko LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 240c488dfabSArtur Pilipenko const SCEV *Limit) 241a6c27804SArtur Pilipenko : Pred(Pred), IV(IV), Limit(Limit) {} 242a6c27804SArtur Pilipenko LoopICmp() {} 24368797214SAnna Thomas void dump() { 24468797214SAnna Thomas dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 24568797214SAnna Thomas << ", Limit = " << *Limit << "\n"; 24668797214SAnna Thomas } 247a6c27804SArtur Pilipenko }; 248c488dfabSArtur Pilipenko 249099eca83SPhilip Reames class LoopPredication { 25092a7177eSPhilip Reames AliasAnalysis *AA; 251c488dfabSArtur Pilipenko ScalarEvolution *SE; 2529b1176b0SAnna Thomas BranchProbabilityInfo *BPI; 253c488dfabSArtur Pilipenko 254c488dfabSArtur Pilipenko Loop *L; 255c488dfabSArtur Pilipenko const DataLayout *DL; 256c488dfabSArtur Pilipenko BasicBlock *Preheader; 257889dc1e3SArtur Pilipenko LoopICmp LatchCheck; 258c488dfabSArtur Pilipenko 25968797214SAnna Thomas bool isSupportedStep(const SCEV* Step); 26019afdf74SPhilip Reames Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 261889dc1e3SArtur Pilipenko Optional<LoopICmp> parseLoopLatchICmp(); 262a6c27804SArtur Pilipenko 263fbe64a2cSPhilip Reames /// Return an insertion point suitable for inserting a safe to speculate 264fbe64a2cSPhilip Reames /// instruction whose only user will be 'User' which has operands 'Ops'. A 265fbe64a2cSPhilip Reames /// trivial result would be the at the User itself, but we try to return a 266fbe64a2cSPhilip Reames /// loop invariant location if possible. 267fbe64a2cSPhilip Reames Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 268e46d77d1SPhilip Reames /// Same as above, *except* that this uses the SCEV definition of invariant 269e46d77d1SPhilip Reames /// which is that an expression *can be made* invariant via SCEVExpander. 270e46d77d1SPhilip Reames /// Thus, this version is only suitable for finding an insert point to be be 271e46d77d1SPhilip Reames /// passed to SCEVExpander! 272e46d77d1SPhilip Reames Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops); 273fbe64a2cSPhilip Reames 27492a7177eSPhilip Reames /// Return true if the value is known to produce a single fixed value across 27592a7177eSPhilip Reames /// all iterations on which it executes. Note that this does not imply 27692a7177eSPhilip Reames /// speculation safety. That must be established seperately. 27792a7177eSPhilip Reames bool isLoopInvariantValue(const SCEV* S); 27892a7177eSPhilip Reames 279e46d77d1SPhilip Reames Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 2803d4e1082SPhilip Reames ICmpInst::Predicate Pred, const SCEV *LHS, 2813d4e1082SPhilip Reames const SCEV *RHS); 2826780ba65SArtur Pilipenko 2838fb3d57eSArtur Pilipenko Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 284e46d77d1SPhilip Reames Instruction *Guard); 28568797214SAnna Thomas Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 28668797214SAnna Thomas LoopICmp RangeCheck, 28768797214SAnna Thomas SCEVExpander &Expander, 288e46d77d1SPhilip Reames Instruction *Guard); 2897b360434SAnna Thomas Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 2907b360434SAnna Thomas LoopICmp RangeCheck, 2917b360434SAnna Thomas SCEVExpander &Expander, 292e46d77d1SPhilip Reames Instruction *Guard); 293ca450878SMax Kazantsev unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 294e46d77d1SPhilip Reames SCEVExpander &Expander, Instruction *Guard); 2958fb3d57eSArtur Pilipenko bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 296feb475f4SMax Kazantsev bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 2979b1176b0SAnna Thomas // If the loop always exits through another block in the loop, we should not 2989b1176b0SAnna Thomas // predicate based on the latch check. For example, the latch check can be a 2999b1176b0SAnna Thomas // very coarse grained check and there can be more fine grained exit checks 3009b1176b0SAnna Thomas // within the loop. We identify such unprofitable loops through BPI. 3019b1176b0SAnna Thomas bool isLoopProfitableToPredicate(); 3029b1176b0SAnna Thomas 3038fb3d57eSArtur Pilipenko public: 30492a7177eSPhilip Reames LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE, 30592a7177eSPhilip Reames BranchProbabilityInfo *BPI) 30692a7177eSPhilip Reames : AA(AA), SE(SE), BPI(BPI){}; 3078fb3d57eSArtur Pilipenko bool runOnLoop(Loop *L); 3088fb3d57eSArtur Pilipenko }; 3098fb3d57eSArtur Pilipenko 3108fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass { 3118fb3d57eSArtur Pilipenko public: 3128fb3d57eSArtur Pilipenko static char ID; 3138fb3d57eSArtur Pilipenko LoopPredicationLegacyPass() : LoopPass(ID) { 3148fb3d57eSArtur Pilipenko initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 3158fb3d57eSArtur Pilipenko } 3168fb3d57eSArtur Pilipenko 3178fb3d57eSArtur Pilipenko void getAnalysisUsage(AnalysisUsage &AU) const override { 3189b1176b0SAnna Thomas AU.addRequired<BranchProbabilityInfoWrapperPass>(); 3198fb3d57eSArtur Pilipenko getLoopAnalysisUsage(AU); 3208fb3d57eSArtur Pilipenko } 3218fb3d57eSArtur Pilipenko 3228fb3d57eSArtur Pilipenko bool runOnLoop(Loop *L, LPPassManager &LPM) override { 3238fb3d57eSArtur Pilipenko if (skipLoop(L)) 3248fb3d57eSArtur Pilipenko return false; 3258fb3d57eSArtur Pilipenko auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 3269b1176b0SAnna Thomas BranchProbabilityInfo &BPI = 3279b1176b0SAnna Thomas getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 32892a7177eSPhilip Reames auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 32992a7177eSPhilip Reames LoopPredication LP(AA, SE, &BPI); 3308fb3d57eSArtur Pilipenko return LP.runOnLoop(L); 3318fb3d57eSArtur Pilipenko } 3328fb3d57eSArtur Pilipenko }; 3338fb3d57eSArtur Pilipenko 3348fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0; 3358fb3d57eSArtur Pilipenko } // end namespace llvm 3368fb3d57eSArtur Pilipenko 3378fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 3388fb3d57eSArtur Pilipenko "Loop predication", false, false) 3399b1176b0SAnna Thomas INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 3408fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass) 3418fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 3428fb3d57eSArtur Pilipenko "Loop predication", false, false) 3438fb3d57eSArtur Pilipenko 3448fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() { 3458fb3d57eSArtur Pilipenko return new LoopPredicationLegacyPass(); 3468fb3d57eSArtur Pilipenko } 3478fb3d57eSArtur Pilipenko 3488fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 3498fb3d57eSArtur Pilipenko LoopStandardAnalysisResults &AR, 3508fb3d57eSArtur Pilipenko LPMUpdater &U) { 3519b1176b0SAnna Thomas const auto &FAM = 3529b1176b0SAnna Thomas AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 3539b1176b0SAnna Thomas Function *F = L.getHeader()->getParent(); 3549b1176b0SAnna Thomas auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F); 35592a7177eSPhilip Reames LoopPredication LP(&AR.AA, &AR.SE, BPI); 3568fb3d57eSArtur Pilipenko if (!LP.runOnLoop(&L)) 3578fb3d57eSArtur Pilipenko return PreservedAnalyses::all(); 3588fb3d57eSArtur Pilipenko 3598fb3d57eSArtur Pilipenko return getLoopPassPreservedAnalyses(); 3608fb3d57eSArtur Pilipenko } 3618fb3d57eSArtur Pilipenko 362099eca83SPhilip Reames Optional<LoopICmp> 36319afdf74SPhilip Reames LoopPredication::parseLoopICmp(ICmpInst *ICI) { 36419afdf74SPhilip Reames auto Pred = ICI->getPredicate(); 36519afdf74SPhilip Reames auto *LHS = ICI->getOperand(0); 36619afdf74SPhilip Reames auto *RHS = ICI->getOperand(1); 36719afdf74SPhilip Reames 368a6c27804SArtur Pilipenko const SCEV *LHSS = SE->getSCEV(LHS); 369a6c27804SArtur Pilipenko if (isa<SCEVCouldNotCompute>(LHSS)) 370a6c27804SArtur Pilipenko return None; 371a6c27804SArtur Pilipenko const SCEV *RHSS = SE->getSCEV(RHS); 372a6c27804SArtur Pilipenko if (isa<SCEVCouldNotCompute>(RHSS)) 373a6c27804SArtur Pilipenko return None; 374a6c27804SArtur Pilipenko 375a6c27804SArtur Pilipenko // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 376a6c27804SArtur Pilipenko if (SE->isLoopInvariant(LHSS, L)) { 377a6c27804SArtur Pilipenko std::swap(LHS, RHS); 378a6c27804SArtur Pilipenko std::swap(LHSS, RHSS); 379a6c27804SArtur Pilipenko Pred = ICmpInst::getSwappedPredicate(Pred); 380a6c27804SArtur Pilipenko } 381a6c27804SArtur Pilipenko 382a6c27804SArtur Pilipenko const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 383a6c27804SArtur Pilipenko if (!AR || AR->getLoop() != L) 384a6c27804SArtur Pilipenko return None; 385a6c27804SArtur Pilipenko 386a6c27804SArtur Pilipenko return LoopICmp(Pred, AR, RHSS); 387a6c27804SArtur Pilipenko } 388a6c27804SArtur Pilipenko 3896780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander, 390e46d77d1SPhilip Reames Instruction *Guard, 3916780ba65SArtur Pilipenko ICmpInst::Predicate Pred, const SCEV *LHS, 3923d4e1082SPhilip Reames const SCEV *RHS) { 3936780ba65SArtur Pilipenko Type *Ty = LHS->getType(); 3946780ba65SArtur Pilipenko assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 395ead69ee4SArtur Pilipenko 396e46d77d1SPhilip Reames if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 397e46d77d1SPhilip Reames IRBuilder<> Builder(Guard); 398ead69ee4SArtur Pilipenko if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 399ead69ee4SArtur Pilipenko return Builder.getTrue(); 40005e3e554SPhilip Reames if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 40105e3e554SPhilip Reames LHS, RHS)) 40205e3e554SPhilip Reames return Builder.getFalse(); 403e46d77d1SPhilip Reames } 404ead69ee4SArtur Pilipenko 405e46d77d1SPhilip Reames Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS})); 406e46d77d1SPhilip Reames Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS})); 407e46d77d1SPhilip Reames IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 4086780ba65SArtur Pilipenko return Builder.CreateICmp(Pred, LHSV, RHSV); 4096780ba65SArtur Pilipenko } 4106780ba65SArtur Pilipenko 4110912b06fSPhilip Reames 4120912b06fSPhilip Reames // Returns true if its safe to truncate the IV to RangeCheckType. 4130912b06fSPhilip Reames // When the IV type is wider than the range operand type, we can still do loop 4140912b06fSPhilip Reames // predication, by generating SCEVs for the range and latch that are of the 4150912b06fSPhilip Reames // same type. We achieve this by generating a SCEV truncate expression for the 4160912b06fSPhilip Reames // latch IV. This is done iff truncation of the IV is a safe operation, 4170912b06fSPhilip Reames // without loss of information. 4180912b06fSPhilip Reames // Another way to achieve this is by generating a wider type SCEV for the 4190912b06fSPhilip Reames // range check operand, however, this needs a more involved check that 4200912b06fSPhilip Reames // operands do not overflow. This can lead to loss of information when the 4210912b06fSPhilip Reames // range operand is of the form: add i32 %offset, %iv. We need to prove that 4220912b06fSPhilip Reames // sext(x + y) is same as sext(x) + sext(y). 4230912b06fSPhilip Reames // This function returns true if we can safely represent the IV type in 4240912b06fSPhilip Reames // the RangeCheckType without loss of information. 4259ed16737SPhilip Reames static bool isSafeToTruncateWideIVType(const DataLayout &DL, 4269ed16737SPhilip Reames ScalarEvolution &SE, 4270912b06fSPhilip Reames const LoopICmp LatchCheck, 4280912b06fSPhilip Reames Type *RangeCheckType) { 4290912b06fSPhilip Reames if (!EnableIVTruncation) 4300912b06fSPhilip Reames return false; 4310912b06fSPhilip Reames assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) > 4320912b06fSPhilip Reames DL.getTypeSizeInBits(RangeCheckType) && 4330912b06fSPhilip Reames "Expected latch check IV type to be larger than range check operand " 4340912b06fSPhilip Reames "type!"); 4350912b06fSPhilip Reames // The start and end values of the IV should be known. This is to guarantee 4360912b06fSPhilip Reames // that truncating the wide type will not lose information. 4370912b06fSPhilip Reames auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 4380912b06fSPhilip Reames auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 4390912b06fSPhilip Reames if (!Limit || !Start) 4400912b06fSPhilip Reames return false; 4410912b06fSPhilip Reames // This check makes sure that the IV does not change sign during loop 4420912b06fSPhilip Reames // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 4430912b06fSPhilip Reames // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 4440912b06fSPhilip Reames // IV wraps around, and the truncation of the IV would lose the range of 4450912b06fSPhilip Reames // iterations between 2^32 and 2^64. 4460912b06fSPhilip Reames bool Increasing; 4470912b06fSPhilip Reames if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing)) 4480912b06fSPhilip Reames return false; 4490912b06fSPhilip Reames // The active bits should be less than the bits in the RangeCheckType. This 4500912b06fSPhilip Reames // guarantees that truncating the latch check to RangeCheckType is a safe 4510912b06fSPhilip Reames // operation. 4520912b06fSPhilip Reames auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType); 4530912b06fSPhilip Reames return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 4540912b06fSPhilip Reames Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 4550912b06fSPhilip Reames } 4560912b06fSPhilip Reames 4570912b06fSPhilip Reames 4589ed16737SPhilip Reames // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 4599ed16737SPhilip Reames // the requested type if safe to do so. May involve the use of a new IV. 4609ed16737SPhilip Reames static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 4619ed16737SPhilip Reames ScalarEvolution &SE, 4629ed16737SPhilip Reames const LoopICmp LatchCheck, 4639ed16737SPhilip Reames Type *RangeCheckType) { 4641d02b13eSAnna Thomas 4651d02b13eSAnna Thomas auto *LatchType = LatchCheck.IV->getType(); 4661d02b13eSAnna Thomas if (RangeCheckType == LatchType) 4671d02b13eSAnna Thomas return LatchCheck; 4681d02b13eSAnna Thomas // For now, bail out if latch type is narrower than range type. 4699ed16737SPhilip Reames if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType)) 4701d02b13eSAnna Thomas return None; 4719ed16737SPhilip Reames if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 4721d02b13eSAnna Thomas return None; 4731d02b13eSAnna Thomas // We can now safely identify the truncated version of the IV and limit for 4741d02b13eSAnna Thomas // RangeCheckType. 4751d02b13eSAnna Thomas LoopICmp NewLatchCheck; 4761d02b13eSAnna Thomas NewLatchCheck.Pred = LatchCheck.Pred; 4771d02b13eSAnna Thomas NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 4789ed16737SPhilip Reames SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 4791d02b13eSAnna Thomas if (!NewLatchCheck.IV) 4801d02b13eSAnna Thomas return None; 4819ed16737SPhilip Reames NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 482d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 483d34e60caSNicola Zaghen << "can be represented as range check type:" 484d34e60caSNicola Zaghen << *RangeCheckType << "\n"); 485d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 486d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 4871d02b13eSAnna Thomas return NewLatchCheck; 4881d02b13eSAnna Thomas } 4891d02b13eSAnna Thomas 49068797214SAnna Thomas bool LoopPredication::isSupportedStep(const SCEV* Step) { 4917b360434SAnna Thomas return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 4921d02b13eSAnna Thomas } 4938fb3d57eSArtur Pilipenko 494fbe64a2cSPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use, 495fbe64a2cSPhilip Reames ArrayRef<Value*> Ops) { 496fbe64a2cSPhilip Reames for (Value *Op : Ops) 497fbe64a2cSPhilip Reames if (!L->isLoopInvariant(Op)) 498fbe64a2cSPhilip Reames return Use; 499fbe64a2cSPhilip Reames return Preheader->getTerminator(); 500fbe64a2cSPhilip Reames } 501fbe64a2cSPhilip Reames 502e46d77d1SPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use, 503e46d77d1SPhilip Reames ArrayRef<const SCEV*> Ops) { 50492a7177eSPhilip Reames // Subtlety: SCEV considers things to be invariant if the value produced is 50592a7177eSPhilip Reames // the same across iterations. This is not the same as being able to 50692a7177eSPhilip Reames // evaluate outside the loop, which is what we actually need here. 507e46d77d1SPhilip Reames for (const SCEV *Op : Ops) 50892a7177eSPhilip Reames if (!SE->isLoopInvariant(Op, L) || 50992a7177eSPhilip Reames !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE)) 510e46d77d1SPhilip Reames return Use; 511e46d77d1SPhilip Reames return Preheader->getTerminator(); 512e46d77d1SPhilip Reames } 513e46d77d1SPhilip Reames 51492a7177eSPhilip Reames bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 51592a7177eSPhilip Reames // Handling expressions which produce invariant results, but *haven't* yet 51692a7177eSPhilip Reames // been removed from the loop serves two important purposes. 51792a7177eSPhilip Reames // 1) Most importantly, it resolves a pass ordering cycle which would 51892a7177eSPhilip Reames // otherwise need us to iteration licm, loop-predication, and either 51992a7177eSPhilip Reames // loop-unswitch or loop-peeling to make progress on examples with lots of 52092a7177eSPhilip Reames // predicable range checks in a row. (Since, in the general case, we can't 52192a7177eSPhilip Reames // hoist the length checks until the dominating checks have been discharged 52292a7177eSPhilip Reames // as we can't prove doing so is safe.) 52392a7177eSPhilip Reames // 2) As a nice side effect, this exposes the value of peeling or unswitching 52492a7177eSPhilip Reames // much more obviously in the IR. Otherwise, the cost modeling for other 52592a7177eSPhilip Reames // transforms would end up needing to duplicate all of this logic to model a 52692a7177eSPhilip Reames // check which becomes predictable based on a modeled peel or unswitch. 52792a7177eSPhilip Reames // 52892a7177eSPhilip Reames // The cost of doing so in the worst case is an extra fill from the stack in 52992a7177eSPhilip Reames // the loop to materialize the loop invariant test value instead of checking 53092a7177eSPhilip Reames // against the original IV which is presumable in a register inside the loop. 53192a7177eSPhilip Reames // Such cases are presumably rare, and hint at missing oppurtunities for 53292a7177eSPhilip Reames // other passes. 533e46d77d1SPhilip Reames 53492a7177eSPhilip Reames if (SE->isLoopInvariant(S, L)) 53592a7177eSPhilip Reames // Note: This the SCEV variant, so the original Value* may be within the 53692a7177eSPhilip Reames // loop even though SCEV has proven it is loop invariant. 53792a7177eSPhilip Reames return true; 53892a7177eSPhilip Reames 53992a7177eSPhilip Reames // Handle a particular important case which SCEV doesn't yet know about which 54092a7177eSPhilip Reames // shows up in range checks on arrays with immutable lengths. 54192a7177eSPhilip Reames // TODO: This should be sunk inside SCEV. 54292a7177eSPhilip Reames if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 54392a7177eSPhilip Reames if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 544adf288c5SPhilip Reames if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 54592a7177eSPhilip Reames if (AA->pointsToConstantMemory(LI->getOperand(0)) || 54627820f99SPhilip Reames LI->hasMetadata(LLVMContext::MD_invariant_load)) 54792a7177eSPhilip Reames return true; 54892a7177eSPhilip Reames return false; 54968797214SAnna Thomas } 55068797214SAnna Thomas 55168797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 552099eca83SPhilip Reames LoopICmp LatchCheck, LoopICmp RangeCheck, 553e46d77d1SPhilip Reames SCEVExpander &Expander, Instruction *Guard) { 55468797214SAnna Thomas auto *Ty = RangeCheck.IV->getType(); 55568797214SAnna Thomas // Generate the widened condition for the forward loop: 5568aadc643SArtur Pilipenko // guardStart u< guardLimit && 5578aadc643SArtur Pilipenko // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 558b4527e1cSArtur Pilipenko // where <pred> depends on the latch condition predicate. See the file 559b4527e1cSArtur Pilipenko // header comment for the reasoning. 56068797214SAnna Thomas // guardLimit - guardStart + latchStart - 1 56168797214SAnna Thomas const SCEV *GuardStart = RangeCheck.IV->getStart(); 56268797214SAnna Thomas const SCEV *GuardLimit = RangeCheck.Limit; 56368797214SAnna Thomas const SCEV *LatchStart = LatchCheck.IV->getStart(); 56468797214SAnna Thomas const SCEV *LatchLimit = LatchCheck.Limit; 56592a7177eSPhilip Reames // Subtlety: We need all the values to be *invariant* across all iterations, 56692a7177eSPhilip Reames // but we only need to check expansion safety for those which *aren't* 56792a7177eSPhilip Reames // already guaranteed to dominate the guard. 56892a7177eSPhilip Reames if (!isLoopInvariantValue(GuardStart) || 56992a7177eSPhilip Reames !isLoopInvariantValue(GuardLimit) || 57092a7177eSPhilip Reames !isLoopInvariantValue(LatchStart) || 57192a7177eSPhilip Reames !isLoopInvariantValue(LatchLimit)) { 57292a7177eSPhilip Reames LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 57392a7177eSPhilip Reames return None; 57492a7177eSPhilip Reames } 57592a7177eSPhilip Reames if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 57692a7177eSPhilip Reames !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 57792a7177eSPhilip Reames LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 57892a7177eSPhilip Reames return None; 57992a7177eSPhilip Reames } 5808aadc643SArtur Pilipenko 5818aadc643SArtur Pilipenko // guardLimit - guardStart + latchStart - 1 5828aadc643SArtur Pilipenko const SCEV *RHS = 5838aadc643SArtur Pilipenko SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 5848aadc643SArtur Pilipenko SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 5853cb4c34aSSerguei Katkov auto LimitCheckPred = 5863cb4c34aSSerguei Katkov ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 587aab28666SArtur Pilipenko 588d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 589d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 590d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 5918aadc643SArtur Pilipenko 5928aadc643SArtur Pilipenko auto *LimitCheck = 593e46d77d1SPhilip Reames expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 594e46d77d1SPhilip Reames auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 5953d4e1082SPhilip Reames GuardStart, GuardLimit); 596e46d77d1SPhilip Reames IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 597889dc1e3SArtur Pilipenko return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 5988fb3d57eSArtur Pilipenko } 5997b360434SAnna Thomas 6007b360434SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 601099eca83SPhilip Reames LoopICmp LatchCheck, LoopICmp RangeCheck, 602e46d77d1SPhilip Reames SCEVExpander &Expander, Instruction *Guard) { 6037b360434SAnna Thomas auto *Ty = RangeCheck.IV->getType(); 6047b360434SAnna Thomas const SCEV *GuardStart = RangeCheck.IV->getStart(); 6057b360434SAnna Thomas const SCEV *GuardLimit = RangeCheck.Limit; 60692a7177eSPhilip Reames const SCEV *LatchStart = LatchCheck.IV->getStart(); 6077b360434SAnna Thomas const SCEV *LatchLimit = LatchCheck.Limit; 60892a7177eSPhilip Reames // Subtlety: We need all the values to be *invariant* across all iterations, 60992a7177eSPhilip Reames // but we only need to check expansion safety for those which *aren't* 61092a7177eSPhilip Reames // already guaranteed to dominate the guard. 61192a7177eSPhilip Reames if (!isLoopInvariantValue(GuardStart) || 61292a7177eSPhilip Reames !isLoopInvariantValue(GuardLimit) || 61392a7177eSPhilip Reames !isLoopInvariantValue(LatchStart) || 61492a7177eSPhilip Reames !isLoopInvariantValue(LatchLimit)) { 61592a7177eSPhilip Reames LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 61692a7177eSPhilip Reames return None; 61792a7177eSPhilip Reames } 61892a7177eSPhilip Reames if (!isSafeToExpandAt(LatchStart, Guard, *SE) || 61992a7177eSPhilip Reames !isSafeToExpandAt(LatchLimit, Guard, *SE)) { 620d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 6217b360434SAnna Thomas return None; 6227b360434SAnna Thomas } 6237b360434SAnna Thomas // The decrement of the latch check IV should be the same as the 6247b360434SAnna Thomas // rangeCheckIV. 6257b360434SAnna Thomas auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 6267b360434SAnna Thomas if (RangeCheck.IV != PostDecLatchCheckIV) { 627d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 6287b360434SAnna Thomas << *PostDecLatchCheckIV 6297b360434SAnna Thomas << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 6307b360434SAnna Thomas return None; 6317b360434SAnna Thomas } 6327b360434SAnna Thomas 6337b360434SAnna Thomas // Generate the widened condition for CountDownLoop: 6347b360434SAnna Thomas // guardStart u< guardLimit && 6357b360434SAnna Thomas // latchLimit <pred> 1. 6367b360434SAnna Thomas // See the header comment for reasoning of the checks. 6373cb4c34aSSerguei Katkov auto LimitCheckPred = 6383cb4c34aSSerguei Katkov ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 639e46d77d1SPhilip Reames auto *FirstIterationCheck = expandCheck(Expander, Guard, 640e46d77d1SPhilip Reames ICmpInst::ICMP_ULT, 6413d4e1082SPhilip Reames GuardStart, GuardLimit); 642e46d77d1SPhilip Reames auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 6433d4e1082SPhilip Reames SE->getOne(Ty)); 644e46d77d1SPhilip Reames IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 6457b360434SAnna Thomas return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 6467b360434SAnna Thomas } 6477b360434SAnna Thomas 648099eca83SPhilip Reames static void normalizePredicate(ScalarEvolution *SE, Loop *L, 649099eca83SPhilip Reames LoopICmp& RC) { 6500e344e9dSPhilip Reames // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 6510e344e9dSPhilip Reames // ULT/UGE form for ease of handling by our caller. 6520e344e9dSPhilip Reames if (ICmpInst::isEquality(RC.Pred) && 653099eca83SPhilip Reames RC.IV->getStepRecurrence(*SE)->isOne() && 654099eca83SPhilip Reames SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 6550e344e9dSPhilip Reames RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 6560e344e9dSPhilip Reames ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 657099eca83SPhilip Reames } 658099eca83SPhilip Reames 659099eca83SPhilip Reames 66068797214SAnna Thomas /// If ICI can be widened to a loop invariant condition emits the loop 66168797214SAnna Thomas /// invariant condition in the loop preheader and return it, otherwise 66268797214SAnna Thomas /// returns None. 66368797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 66468797214SAnna Thomas SCEVExpander &Expander, 665e46d77d1SPhilip Reames Instruction *Guard) { 666d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 667d34e60caSNicola Zaghen LLVM_DEBUG(ICI->dump()); 66868797214SAnna Thomas 66968797214SAnna Thomas // parseLoopStructure guarantees that the latch condition is: 67068797214SAnna Thomas // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 67168797214SAnna Thomas // We are looking for the range checks of the form: 67268797214SAnna Thomas // i u< guardLimit 67368797214SAnna Thomas auto RangeCheck = parseLoopICmp(ICI); 67468797214SAnna Thomas if (!RangeCheck) { 675d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 67668797214SAnna Thomas return None; 67768797214SAnna Thomas } 678d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Guard check:\n"); 679d34e60caSNicola Zaghen LLVM_DEBUG(RangeCheck->dump()); 68068797214SAnna Thomas if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 681d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 682d34e60caSNicola Zaghen << RangeCheck->Pred << ")!\n"); 68368797214SAnna Thomas return None; 68468797214SAnna Thomas } 68568797214SAnna Thomas auto *RangeCheckIV = RangeCheck->IV; 68668797214SAnna Thomas if (!RangeCheckIV->isAffine()) { 687d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 68868797214SAnna Thomas return None; 68968797214SAnna Thomas } 69068797214SAnna Thomas auto *Step = RangeCheckIV->getStepRecurrence(*SE); 69168797214SAnna Thomas // We cannot just compare with latch IV step because the latch and range IVs 69268797214SAnna Thomas // may have different types. 69368797214SAnna Thomas if (!isSupportedStep(Step)) { 694d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 69568797214SAnna Thomas return None; 69668797214SAnna Thomas } 69768797214SAnna Thomas auto *Ty = RangeCheckIV->getType(); 6989ed16737SPhilip Reames auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 69968797214SAnna Thomas if (!CurrLatchCheckOpt) { 700d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 70168797214SAnna Thomas "corresponding to range type: " 70268797214SAnna Thomas << *Ty << "\n"); 70368797214SAnna Thomas return None; 70468797214SAnna Thomas } 70568797214SAnna Thomas 70668797214SAnna Thomas LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 7077b360434SAnna Thomas // At this point, the range and latch step should have the same type, but need 7087b360434SAnna Thomas // not have the same value (we support both 1 and -1 steps). 7097b360434SAnna Thomas assert(Step->getType() == 7107b360434SAnna Thomas CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 7117b360434SAnna Thomas "Range and latch steps should be of same type!"); 7127b360434SAnna Thomas if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 713d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 7147b360434SAnna Thomas return None; 7157b360434SAnna Thomas } 71668797214SAnna Thomas 7177b360434SAnna Thomas if (Step->isOne()) 71868797214SAnna Thomas return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 719e46d77d1SPhilip Reames Expander, Guard); 7207b360434SAnna Thomas else { 7217b360434SAnna Thomas assert(Step->isAllOnesValue() && "Step should be -1!"); 7227b360434SAnna Thomas return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 723e46d77d1SPhilip Reames Expander, Guard); 7247b360434SAnna Thomas } 72568797214SAnna Thomas } 7268fb3d57eSArtur Pilipenko 727ca450878SMax Kazantsev unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 728ca450878SMax Kazantsev Value *Condition, 729ca450878SMax Kazantsev SCEVExpander &Expander, 730e46d77d1SPhilip Reames Instruction *Guard) { 731ca450878SMax Kazantsev unsigned NumWidened = 0; 7328fb3d57eSArtur Pilipenko // The guard condition is expected to be in form of: 7338fb3d57eSArtur Pilipenko // cond1 && cond2 && cond3 ... 7340909ca13SHiroshi Inoue // Iterate over subconditions looking for icmp conditions which can be 7358fb3d57eSArtur Pilipenko // widened across loop iterations. Widening these conditions remember the 7368fb3d57eSArtur Pilipenko // resulting list of subconditions in Checks vector. 737ca450878SMax Kazantsev SmallVector<Value *, 4> Worklist(1, Condition); 7388fb3d57eSArtur Pilipenko SmallPtrSet<Value *, 4> Visited; 739adb3ece2SPhilip Reames Value *WideableCond = nullptr; 7408fb3d57eSArtur Pilipenko do { 7418fb3d57eSArtur Pilipenko Value *Condition = Worklist.pop_back_val(); 7428fb3d57eSArtur Pilipenko if (!Visited.insert(Condition).second) 7438fb3d57eSArtur Pilipenko continue; 7448fb3d57eSArtur Pilipenko 7458fb3d57eSArtur Pilipenko Value *LHS, *RHS; 7468fb3d57eSArtur Pilipenko using namespace llvm::PatternMatch; 7478fb3d57eSArtur Pilipenko if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 7488fb3d57eSArtur Pilipenko Worklist.push_back(LHS); 7498fb3d57eSArtur Pilipenko Worklist.push_back(RHS); 7508fb3d57eSArtur Pilipenko continue; 7518fb3d57eSArtur Pilipenko } 7528fb3d57eSArtur Pilipenko 753adb3ece2SPhilip Reames if (match(Condition, 754adb3ece2SPhilip Reames m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 755adb3ece2SPhilip Reames // Pick any, we don't care which 756adb3ece2SPhilip Reames WideableCond = Condition; 757adb3ece2SPhilip Reames continue; 758adb3ece2SPhilip Reames } 759adb3ece2SPhilip Reames 7608fb3d57eSArtur Pilipenko if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 7613d4e1082SPhilip Reames if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 762e46d77d1SPhilip Reames Guard)) { 7638fb3d57eSArtur Pilipenko Checks.push_back(NewRangeCheck.getValue()); 7648fb3d57eSArtur Pilipenko NumWidened++; 7658fb3d57eSArtur Pilipenko continue; 7668fb3d57eSArtur Pilipenko } 7678fb3d57eSArtur Pilipenko } 7688fb3d57eSArtur Pilipenko 7698fb3d57eSArtur Pilipenko // Save the condition as is if we can't widen it 7708fb3d57eSArtur Pilipenko Checks.push_back(Condition); 771ca450878SMax Kazantsev } while (!Worklist.empty()); 772adb3ece2SPhilip Reames // At the moment, our matching logic for wideable conditions implicitly 773adb3ece2SPhilip Reames // assumes we preserve the form: (br (and Cond, WC())). FIXME 774adb3ece2SPhilip Reames // Note that if there were multiple calls to wideable condition in the 775adb3ece2SPhilip Reames // traversal, we only need to keep one, and which one is arbitrary. 776adb3ece2SPhilip Reames if (WideableCond) 777adb3ece2SPhilip Reames Checks.push_back(WideableCond); 778ca450878SMax Kazantsev return NumWidened; 779ca450878SMax Kazantsev } 7808fb3d57eSArtur Pilipenko 781ca450878SMax Kazantsev bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 782ca450878SMax Kazantsev SCEVExpander &Expander) { 783ca450878SMax Kazantsev LLVM_DEBUG(dbgs() << "Processing guard:\n"); 784ca450878SMax Kazantsev LLVM_DEBUG(Guard->dump()); 785ca450878SMax Kazantsev 786ca450878SMax Kazantsev TotalConsidered++; 787ca450878SMax Kazantsev SmallVector<Value *, 4> Checks; 788ca450878SMax Kazantsev unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 789e46d77d1SPhilip Reames Guard); 7908fb3d57eSArtur Pilipenko if (NumWidened == 0) 7918fb3d57eSArtur Pilipenko return false; 7928fb3d57eSArtur Pilipenko 793c297e84bSFedor Sergeev TotalWidened += NumWidened; 794c297e84bSFedor Sergeev 7958fb3d57eSArtur Pilipenko // Emit the new guard condition 796e46d77d1SPhilip Reames IRBuilder<> Builder(findInsertPt(Guard, Checks)); 7979e62c864SPhilip Reames Value *AllChecks = Builder.CreateAnd(Checks); 798d109e2a7SPhilip Reames auto *OldCond = Guard->getOperand(0); 7999e62c864SPhilip Reames Guard->setOperand(0, AllChecks); 800d109e2a7SPhilip Reames RecursivelyDeleteTriviallyDeadInstructions(OldCond); 8018fb3d57eSArtur Pilipenko 802d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 8038fb3d57eSArtur Pilipenko return true; 8048fb3d57eSArtur Pilipenko } 8058fb3d57eSArtur Pilipenko 806feb475f4SMax Kazantsev bool LoopPredication::widenWidenableBranchGuardConditions( 807f608678fSPhilip Reames BranchInst *BI, SCEVExpander &Expander) { 808f608678fSPhilip Reames assert(isGuardAsWidenableBranch(BI) && "Must be!"); 809feb475f4SMax Kazantsev LLVM_DEBUG(dbgs() << "Processing guard:\n"); 810f608678fSPhilip Reames LLVM_DEBUG(BI->dump()); 811feb475f4SMax Kazantsev 812feb475f4SMax Kazantsev TotalConsidered++; 813feb475f4SMax Kazantsev SmallVector<Value *, 4> Checks; 814adb3ece2SPhilip Reames unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 815e46d77d1SPhilip Reames Expander, BI); 816feb475f4SMax Kazantsev if (NumWidened == 0) 817feb475f4SMax Kazantsev return false; 818feb475f4SMax Kazantsev 819feb475f4SMax Kazantsev TotalWidened += NumWidened; 820feb475f4SMax Kazantsev 821feb475f4SMax Kazantsev // Emit the new guard condition 822e46d77d1SPhilip Reames IRBuilder<> Builder(findInsertPt(BI, Checks)); 8239e62c864SPhilip Reames Value *AllChecks = Builder.CreateAnd(Checks); 824adb3ece2SPhilip Reames auto *OldCond = BI->getCondition(); 8259e62c864SPhilip Reames BI->setCondition(AllChecks); 826*686f449eSPhilip Reames RecursivelyDeleteTriviallyDeadInstructions(OldCond); 827f608678fSPhilip Reames assert(isGuardAsWidenableBranch(BI) && 828feb475f4SMax Kazantsev "Stopped being a guard after transform?"); 829feb475f4SMax Kazantsev 830feb475f4SMax Kazantsev LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 831feb475f4SMax Kazantsev return true; 832feb475f4SMax Kazantsev } 833feb475f4SMax Kazantsev 834099eca83SPhilip Reames Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 835889dc1e3SArtur Pilipenko using namespace PatternMatch; 836889dc1e3SArtur Pilipenko 837889dc1e3SArtur Pilipenko BasicBlock *LoopLatch = L->getLoopLatch(); 838889dc1e3SArtur Pilipenko if (!LoopLatch) { 839d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 840889dc1e3SArtur Pilipenko return None; 841889dc1e3SArtur Pilipenko } 842889dc1e3SArtur Pilipenko 84319afdf74SPhilip Reames auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 844101915cfSPhilip Reames if (!BI || !BI->isConditional()) { 845d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 846889dc1e3SArtur Pilipenko return None; 847889dc1e3SArtur Pilipenko } 84819afdf74SPhilip Reames BasicBlock *TrueDest = BI->getSuccessor(0); 8494e875464SRichard Trieu assert( 8504e875464SRichard Trieu (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 851889dc1e3SArtur Pilipenko "One of the latch's destinations must be the header"); 852889dc1e3SArtur Pilipenko 85319afdf74SPhilip Reames auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 854101915cfSPhilip Reames if (!ICI) { 85519afdf74SPhilip Reames LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 85619afdf74SPhilip Reames return None; 85719afdf74SPhilip Reames } 85819afdf74SPhilip Reames auto Result = parseLoopICmp(ICI); 859889dc1e3SArtur Pilipenko if (!Result) { 860d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 861889dc1e3SArtur Pilipenko return None; 862889dc1e3SArtur Pilipenko } 863889dc1e3SArtur Pilipenko 86419afdf74SPhilip Reames if (TrueDest != L->getHeader()) 86519afdf74SPhilip Reames Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 86619afdf74SPhilip Reames 867889dc1e3SArtur Pilipenko // Check affine first, so if it's not we don't try to compute the step 868889dc1e3SArtur Pilipenko // recurrence. 869889dc1e3SArtur Pilipenko if (!Result->IV->isAffine()) { 870d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 871889dc1e3SArtur Pilipenko return None; 872889dc1e3SArtur Pilipenko } 873889dc1e3SArtur Pilipenko 874889dc1e3SArtur Pilipenko auto *Step = Result->IV->getStepRecurrence(*SE); 87568797214SAnna Thomas if (!isSupportedStep(Step)) { 876d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 877889dc1e3SArtur Pilipenko return None; 878889dc1e3SArtur Pilipenko } 879889dc1e3SArtur Pilipenko 88068797214SAnna Thomas auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 8817b360434SAnna Thomas if (Step->isOne()) { 88268797214SAnna Thomas return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 88368797214SAnna Thomas Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 8847b360434SAnna Thomas } else { 8857b360434SAnna Thomas assert(Step->isAllOnesValue() && "Step should be -1!"); 886c8016e7aSSerguei Katkov return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 887c8016e7aSSerguei Katkov Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 8887b360434SAnna Thomas } 88968797214SAnna Thomas }; 89068797214SAnna Thomas 891099eca83SPhilip Reames normalizePredicate(SE, L, *Result); 89268797214SAnna Thomas if (IsUnsupportedPredicate(Step, Result->Pred)) { 893d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 89468797214SAnna Thomas << ")!\n"); 89568797214SAnna Thomas return None; 89668797214SAnna Thomas } 89719afdf74SPhilip Reames 898889dc1e3SArtur Pilipenko return Result; 899889dc1e3SArtur Pilipenko } 900889dc1e3SArtur Pilipenko 9011d02b13eSAnna Thomas 9029b1176b0SAnna Thomas bool LoopPredication::isLoopProfitableToPredicate() { 9039b1176b0SAnna Thomas if (SkipProfitabilityChecks || !BPI) 9049b1176b0SAnna Thomas return true; 9059b1176b0SAnna Thomas 906c6caddb7SSerguei Katkov SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 9079b1176b0SAnna Thomas L->getExitEdges(ExitEdges); 9089b1176b0SAnna Thomas // If there is only one exiting edge in the loop, it is always profitable to 9099b1176b0SAnna Thomas // predicate the loop. 9109b1176b0SAnna Thomas if (ExitEdges.size() == 1) 9119b1176b0SAnna Thomas return true; 9129b1176b0SAnna Thomas 9139b1176b0SAnna Thomas // Calculate the exiting probabilities of all exiting edges from the loop, 9149b1176b0SAnna Thomas // starting with the LatchExitProbability. 9159b1176b0SAnna Thomas // Heuristic for profitability: If any of the exiting blocks' probability of 9169b1176b0SAnna Thomas // exiting the loop is larger than exiting through the latch block, it's not 9179b1176b0SAnna Thomas // profitable to predicate the loop. 9189b1176b0SAnna Thomas auto *LatchBlock = L->getLoopLatch(); 9199b1176b0SAnna Thomas assert(LatchBlock && "Should have a single latch at this point!"); 9209b1176b0SAnna Thomas auto *LatchTerm = LatchBlock->getTerminator(); 9219b1176b0SAnna Thomas assert(LatchTerm->getNumSuccessors() == 2 && 9229b1176b0SAnna Thomas "expected to be an exiting block with 2 succs!"); 9239b1176b0SAnna Thomas unsigned LatchBrExitIdx = 9249b1176b0SAnna Thomas LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 9259b1176b0SAnna Thomas BranchProbability LatchExitProbability = 9269b1176b0SAnna Thomas BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx); 9279b1176b0SAnna Thomas 9289b1176b0SAnna Thomas // Protect against degenerate inputs provided by the user. Providing a value 9299b1176b0SAnna Thomas // less than one, can invert the definition of profitable loop predication. 9309b1176b0SAnna Thomas float ScaleFactor = LatchExitProbabilityScale; 9319b1176b0SAnna Thomas if (ScaleFactor < 1) { 932d34e60caSNicola Zaghen LLVM_DEBUG( 9339b1176b0SAnna Thomas dbgs() 9349b1176b0SAnna Thomas << "Ignored user setting for loop-predication-latch-probability-scale: " 9359b1176b0SAnna Thomas << LatchExitProbabilityScale << "\n"); 936d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 9379b1176b0SAnna Thomas ScaleFactor = 1.0; 9389b1176b0SAnna Thomas } 9399b1176b0SAnna Thomas const auto LatchProbabilityThreshold = 9409b1176b0SAnna Thomas LatchExitProbability * ScaleFactor; 9419b1176b0SAnna Thomas 9429b1176b0SAnna Thomas for (const auto &ExitEdge : ExitEdges) { 9439b1176b0SAnna Thomas BranchProbability ExitingBlockProbability = 9449b1176b0SAnna Thomas BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second); 9459b1176b0SAnna Thomas // Some exiting edge has higher probability than the latch exiting edge. 9469b1176b0SAnna Thomas // No longer profitable to predicate. 9479b1176b0SAnna Thomas if (ExitingBlockProbability > LatchProbabilityThreshold) 9489b1176b0SAnna Thomas return false; 9499b1176b0SAnna Thomas } 9509b1176b0SAnna Thomas // Using BPI, we have concluded that the most probable way to exit from the 9519b1176b0SAnna Thomas // loop is through the latch (or there's no profile information and all 9529b1176b0SAnna Thomas // exits are equally likely). 9539b1176b0SAnna Thomas return true; 9549b1176b0SAnna Thomas } 9559b1176b0SAnna Thomas 9568fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) { 9578fb3d57eSArtur Pilipenko L = Loop; 9588fb3d57eSArtur Pilipenko 959d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Analyzing "); 960d34e60caSNicola Zaghen LLVM_DEBUG(L->dump()); 9618fb3d57eSArtur Pilipenko 9628fb3d57eSArtur Pilipenko Module *M = L->getHeader()->getModule(); 9638fb3d57eSArtur Pilipenko 9648fb3d57eSArtur Pilipenko // There is nothing to do if the module doesn't use guards 9658fb3d57eSArtur Pilipenko auto *GuardDecl = 9668fb3d57eSArtur Pilipenko M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 967feb475f4SMax Kazantsev bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 968feb475f4SMax Kazantsev auto *WCDecl = M->getFunction( 969feb475f4SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 970feb475f4SMax Kazantsev bool HasWidenableConditions = 971feb475f4SMax Kazantsev PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 972feb475f4SMax Kazantsev if (!HasIntrinsicGuards && !HasWidenableConditions) 9738fb3d57eSArtur Pilipenko return false; 9748fb3d57eSArtur Pilipenko 9758fb3d57eSArtur Pilipenko DL = &M->getDataLayout(); 9768fb3d57eSArtur Pilipenko 9778fb3d57eSArtur Pilipenko Preheader = L->getLoopPreheader(); 9788fb3d57eSArtur Pilipenko if (!Preheader) 9798fb3d57eSArtur Pilipenko return false; 9808fb3d57eSArtur Pilipenko 981889dc1e3SArtur Pilipenko auto LatchCheckOpt = parseLoopLatchICmp(); 982889dc1e3SArtur Pilipenko if (!LatchCheckOpt) 983889dc1e3SArtur Pilipenko return false; 984889dc1e3SArtur Pilipenko LatchCheck = *LatchCheckOpt; 985889dc1e3SArtur Pilipenko 986d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Latch check:\n"); 987d34e60caSNicola Zaghen LLVM_DEBUG(LatchCheck.dump()); 98868797214SAnna Thomas 9899b1176b0SAnna Thomas if (!isLoopProfitableToPredicate()) { 990d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 9919b1176b0SAnna Thomas return false; 9929b1176b0SAnna Thomas } 9938fb3d57eSArtur Pilipenko // Collect all the guards into a vector and process later, so as not 9948fb3d57eSArtur Pilipenko // to invalidate the instruction iterator. 9958fb3d57eSArtur Pilipenko SmallVector<IntrinsicInst *, 4> Guards; 996feb475f4SMax Kazantsev SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 997feb475f4SMax Kazantsev for (const auto BB : L->blocks()) { 9988fb3d57eSArtur Pilipenko for (auto &I : *BB) 99928298e96SMax Kazantsev if (isGuard(&I)) 100028298e96SMax Kazantsev Guards.push_back(cast<IntrinsicInst>(&I)); 1001feb475f4SMax Kazantsev if (PredicateWidenableBranchGuards && 1002feb475f4SMax Kazantsev isGuardAsWidenableBranch(BB->getTerminator())) 1003feb475f4SMax Kazantsev GuardsAsWidenableBranches.push_back( 1004feb475f4SMax Kazantsev cast<BranchInst>(BB->getTerminator())); 1005feb475f4SMax Kazantsev } 10068fb3d57eSArtur Pilipenko 1007feb475f4SMax Kazantsev if (Guards.empty() && GuardsAsWidenableBranches.empty()) 100846c4e0a4SArtur Pilipenko return false; 100946c4e0a4SArtur Pilipenko 10108fb3d57eSArtur Pilipenko SCEVExpander Expander(*SE, *DL, "loop-predication"); 10118fb3d57eSArtur Pilipenko 10128fb3d57eSArtur Pilipenko bool Changed = false; 10138fb3d57eSArtur Pilipenko for (auto *Guard : Guards) 10148fb3d57eSArtur Pilipenko Changed |= widenGuardConditions(Guard, Expander); 1015feb475f4SMax Kazantsev for (auto *Guard : GuardsAsWidenableBranches) 1016feb475f4SMax Kazantsev Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 10178fb3d57eSArtur Pilipenko 10188fb3d57eSArtur Pilipenko return Changed; 10198fb3d57eSArtur Pilipenko } 1020