18fb3d57eSArtur Pilipenko //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
28fb3d57eSArtur Pilipenko //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
68fb3d57eSArtur Pilipenko //
78fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
88fb3d57eSArtur Pilipenko //
98fb3d57eSArtur Pilipenko // The LoopPredication pass tries to convert loop variant range checks to loop
108fb3d57eSArtur Pilipenko // invariant by widening checks across loop iterations. For example, it will
118fb3d57eSArtur Pilipenko // convert
128fb3d57eSArtur Pilipenko //
138fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
148fb3d57eSArtur Pilipenko //     guard(i < len);
158fb3d57eSArtur Pilipenko //     ...
168fb3d57eSArtur Pilipenko //   }
178fb3d57eSArtur Pilipenko //
188fb3d57eSArtur Pilipenko // to
198fb3d57eSArtur Pilipenko //
208fb3d57eSArtur Pilipenko //   for (i = 0; i < n; i++) {
218fb3d57eSArtur Pilipenko //     guard(n - 1 < len);
228fb3d57eSArtur Pilipenko //     ...
238fb3d57eSArtur Pilipenko //   }
248fb3d57eSArtur Pilipenko //
258fb3d57eSArtur Pilipenko // After this transformation the condition of the guard is loop invariant, so
268fb3d57eSArtur Pilipenko // loop-unswitch can later unswitch the loop by this condition which basically
278fb3d57eSArtur Pilipenko // predicates the loop by the widened condition:
288fb3d57eSArtur Pilipenko //
298fb3d57eSArtur Pilipenko //   if (n - 1 < len)
308fb3d57eSArtur Pilipenko //     for (i = 0; i < n; i++) {
318fb3d57eSArtur Pilipenko //       ...
328fb3d57eSArtur Pilipenko //     }
338fb3d57eSArtur Pilipenko //   else
348fb3d57eSArtur Pilipenko //     deoptimize
358fb3d57eSArtur Pilipenko //
36889dc1e3SArtur Pilipenko // It's tempting to rely on SCEV here, but it has proven to be problematic.
37889dc1e3SArtur Pilipenko // Generally the facts SCEV provides about the increment step of add
38889dc1e3SArtur Pilipenko // recurrences are true if the backedge of the loop is taken, which implicitly
39889dc1e3SArtur Pilipenko // assumes that the guard doesn't fail. Using these facts to optimize the
40889dc1e3SArtur Pilipenko // guard results in a circular logic where the guard is optimized under the
41889dc1e3SArtur Pilipenko // assumption that it never fails.
42889dc1e3SArtur Pilipenko //
43889dc1e3SArtur Pilipenko // For example, in the loop below the induction variable will be marked as nuw
44889dc1e3SArtur Pilipenko // basing on the guard. Basing on nuw the guard predicate will be considered
45889dc1e3SArtur Pilipenko // monotonic. Given a monotonic condition it's tempting to replace the induction
46889dc1e3SArtur Pilipenko // variable in the condition with its value on the last iteration. But this
47889dc1e3SArtur Pilipenko // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48889dc1e3SArtur Pilipenko //
49889dc1e3SArtur Pilipenko //   for (int i = b; i != e; i++)
50889dc1e3SArtur Pilipenko //     guard(i u< len)
51889dc1e3SArtur Pilipenko //
52889dc1e3SArtur Pilipenko // One of the ways to reason about this problem is to use an inductive proof
53889dc1e3SArtur Pilipenko // approach. Given the loop:
54889dc1e3SArtur Pilipenko //
558aadc643SArtur Pilipenko //   if (B(0)) {
56889dc1e3SArtur Pilipenko //     do {
578aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
58889dc1e3SArtur Pilipenko //       I.INC = I + Step
59889dc1e3SArtur Pilipenko //       guard(G(I));
608aadc643SArtur Pilipenko //     } while (B(I));
61889dc1e3SArtur Pilipenko //   }
62889dc1e3SArtur Pilipenko //
63889dc1e3SArtur Pilipenko // where B(x) and G(x) are predicates that map integers to booleans, we want a
64889dc1e3SArtur Pilipenko // loop invariant expression M such the following program has the same semantics
65889dc1e3SArtur Pilipenko // as the above:
66889dc1e3SArtur Pilipenko //
678aadc643SArtur Pilipenko //   if (B(0)) {
68889dc1e3SArtur Pilipenko //     do {
698aadc643SArtur Pilipenko //       I = PHI(0, I.INC)
70889dc1e3SArtur Pilipenko //       I.INC = I + Step
718aadc643SArtur Pilipenko //       guard(G(0) && M);
728aadc643SArtur Pilipenko //     } while (B(I));
73889dc1e3SArtur Pilipenko //   }
74889dc1e3SArtur Pilipenko //
758aadc643SArtur Pilipenko // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76889dc1e3SArtur Pilipenko //
77889dc1e3SArtur Pilipenko // Informal proof that the transformation above is correct:
78889dc1e3SArtur Pilipenko //
79889dc1e3SArtur Pilipenko //   By the definition of guards we can rewrite the guard condition to:
808aadc643SArtur Pilipenko //     G(I) && G(0) && M
81889dc1e3SArtur Pilipenko //
82889dc1e3SArtur Pilipenko //   Let's prove that for each iteration of the loop:
838aadc643SArtur Pilipenko //     G(0) && M => G(I)
84889dc1e3SArtur Pilipenko //   And the condition above can be simplified to G(Start) && M.
85889dc1e3SArtur Pilipenko //
86889dc1e3SArtur Pilipenko //   Induction base.
878aadc643SArtur Pilipenko //     G(0) && M => G(0)
88889dc1e3SArtur Pilipenko //
898aadc643SArtur Pilipenko //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90889dc1e3SArtur Pilipenko //   iteration:
91889dc1e3SArtur Pilipenko //
928aadc643SArtur Pilipenko //     B(I) is true because it's the backedge condition.
93889dc1e3SArtur Pilipenko //     G(I) is true because the backedge is guarded by this condition.
94889dc1e3SArtur Pilipenko //
958aadc643SArtur Pilipenko //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96889dc1e3SArtur Pilipenko //
97889dc1e3SArtur Pilipenko // Note that we can use anything stronger than M, i.e. any condition which
98889dc1e3SArtur Pilipenko // implies M.
99889dc1e3SArtur Pilipenko //
1007b360434SAnna Thomas // When S = 1 (i.e. forward iterating loop), the transformation is supported
1017b360434SAnna Thomas // when:
102b4527e1cSArtur Pilipenko //   * The loop has a single latch with the condition of the form:
1038aadc643SArtur Pilipenko //     B(X) = latchStart + X <pred> latchLimit,
1048aadc643SArtur Pilipenko //     where <pred> is u<, u<=, s<, or s<=.
1058aadc643SArtur Pilipenko //   * The guard condition is of the form
1068aadc643SArtur Pilipenko //     G(X) = guardStart + X u< guardLimit
107889dc1e3SArtur Pilipenko //
108b4527e1cSArtur Pilipenko //   For the ult latch comparison case M is:
1098aadc643SArtur Pilipenko //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
1108aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
111889dc1e3SArtur Pilipenko //
112889dc1e3SArtur Pilipenko //   The only way the antecedent can be true and the consequent can be false is
113889dc1e3SArtur Pilipenko //   if
1148aadc643SArtur Pilipenko //     X == guardLimit - 1 - guardStart
115889dc1e3SArtur Pilipenko //   (and guardLimit is non-zero, but we won't use this latter fact).
1168aadc643SArtur Pilipenko //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
1178aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118889dc1e3SArtur Pilipenko //   and its negation is
1198aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120889dc1e3SArtur Pilipenko //
1218aadc643SArtur Pilipenko //   In other words, if
1228aadc643SArtur Pilipenko //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
1238aadc643SArtur Pilipenko //   then:
124889dc1e3SArtur Pilipenko //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125889dc1e3SArtur Pilipenko //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126889dc1e3SArtur Pilipenko //
1278aadc643SArtur Pilipenko //      forall X . guardStart + X u< guardLimit &&
1288aadc643SArtur Pilipenko //                 latchStart + X u< latchLimit =>
1298aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1308aadc643SArtur Pilipenko //   == forall X . guardStart + X u< guardLimit &&
1318aadc643SArtur Pilipenko //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
1328aadc643SArtur Pilipenko //        guardStart + X + 1 u< guardLimit
1338aadc643SArtur Pilipenko //   == forall X . (guardStart + X) in [0, guardLimit) &&
1348aadc643SArtur Pilipenko //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
1358aadc643SArtur Pilipenko //        (guardStart + X + 1) in [0, guardLimit)
1368aadc643SArtur Pilipenko //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
1378aadc643SArtur Pilipenko //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
1388aadc643SArtur Pilipenko //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139889dc1e3SArtur Pilipenko //   == true
140889dc1e3SArtur Pilipenko //
141889dc1e3SArtur Pilipenko //   So the widened condition is:
1428aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1438aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
1448aadc643SArtur Pilipenko //   Similarly for ule condition the widened condition is:
1458aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1468aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart u> latchLimit
1478aadc643SArtur Pilipenko //   For slt condition the widened condition is:
1488aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1498aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
1508aadc643SArtur Pilipenko //   For sle condition the widened condition is:
1518aadc643SArtur Pilipenko //     guardStart u< guardLimit &&
1528aadc643SArtur Pilipenko //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153889dc1e3SArtur Pilipenko //
1547b360434SAnna Thomas // When S = -1 (i.e. reverse iterating loop), the transformation is supported
1557b360434SAnna Thomas // when:
1567b360434SAnna Thomas //   * The loop has a single latch with the condition of the form:
157c8016e7aSSerguei Katkov //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
1587b360434SAnna Thomas //   * The guard condition is of the form
1597b360434SAnna Thomas //     G(X) = X - 1 u< guardLimit
1607b360434SAnna Thomas //
1617b360434SAnna Thomas //   For the ugt latch comparison case M is:
1627b360434SAnna Thomas //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
1637b360434SAnna Thomas //
1647b360434SAnna Thomas //   The only way the antecedent can be true and the consequent can be false is if
1657b360434SAnna Thomas //     X == 1.
1667b360434SAnna Thomas //   If X == 1 then the second half of the antecedent is
1677b360434SAnna Thomas //     1 u> latchLimit, and its negation is latchLimit u>= 1.
1687b360434SAnna Thomas //
1697b360434SAnna Thomas //   So the widened condition is:
1707b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit u>= 1.
1717b360434SAnna Thomas //   Similarly for sgt condition the widened condition is:
1727b360434SAnna Thomas //     guardStart u< guardLimit && latchLimit s>= 1.
173c8016e7aSSerguei Katkov //   For uge condition the widened condition is:
174c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit u> 1.
175c8016e7aSSerguei Katkov //   For sge condition the widened condition is:
176c8016e7aSSerguei Katkov //     guardStart u< guardLimit && latchLimit s> 1.
1778fb3d57eSArtur Pilipenko //===----------------------------------------------------------------------===//
1788fb3d57eSArtur Pilipenko 
1798fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar/LoopPredication.h"
180c297e84bSFedor Sergeev #include "llvm/ADT/Statistic.h"
18192a7177eSPhilip Reames #include "llvm/Analysis/AliasAnalysis.h"
1829b1176b0SAnna Thomas #include "llvm/Analysis/BranchProbabilityInfo.h"
18328298e96SMax Kazantsev #include "llvm/Analysis/GuardUtils.h"
1848fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopInfo.h"
1858fb3d57eSArtur Pilipenko #include "llvm/Analysis/LoopPass.h"
1868fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolution.h"
1878fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpander.h"
1888fb3d57eSArtur Pilipenko #include "llvm/Analysis/ScalarEvolutionExpressions.h"
1898fb3d57eSArtur Pilipenko #include "llvm/IR/Function.h"
1908fb3d57eSArtur Pilipenko #include "llvm/IR/GlobalValue.h"
1918fb3d57eSArtur Pilipenko #include "llvm/IR/IntrinsicInst.h"
1928fb3d57eSArtur Pilipenko #include "llvm/IR/Module.h"
1938fb3d57eSArtur Pilipenko #include "llvm/IR/PatternMatch.h"
1946bda14b3SChandler Carruth #include "llvm/Pass.h"
1958fb3d57eSArtur Pilipenko #include "llvm/Support/Debug.h"
1968fb3d57eSArtur Pilipenko #include "llvm/Transforms/Scalar.h"
197d109e2a7SPhilip Reames #include "llvm/Transforms/Utils/Local.h"
1988fb3d57eSArtur Pilipenko #include "llvm/Transforms/Utils/LoopUtils.h"
1998fb3d57eSArtur Pilipenko 
2008fb3d57eSArtur Pilipenko #define DEBUG_TYPE "loop-predication"
2018fb3d57eSArtur Pilipenko 
202c297e84bSFedor Sergeev STATISTIC(TotalConsidered, "Number of guards considered");
203c297e84bSFedor Sergeev STATISTIC(TotalWidened, "Number of checks widened");
204c297e84bSFedor Sergeev 
2058fb3d57eSArtur Pilipenko using namespace llvm;
2068fb3d57eSArtur Pilipenko 
2071d02b13eSAnna Thomas static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
2081d02b13eSAnna Thomas                                         cl::Hidden, cl::init(true));
2091d02b13eSAnna Thomas 
2107b360434SAnna Thomas static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
2117b360434SAnna Thomas                                         cl::Hidden, cl::init(true));
2129b1176b0SAnna Thomas 
2139b1176b0SAnna Thomas static cl::opt<bool>
2149b1176b0SAnna Thomas     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
2159b1176b0SAnna Thomas                             cl::Hidden, cl::init(false));
2169b1176b0SAnna Thomas 
2179b1176b0SAnna Thomas // This is the scale factor for the latch probability. We use this during
2189b1176b0SAnna Thomas // profitability analysis to find other exiting blocks that have a much higher
2199b1176b0SAnna Thomas // probability of exiting the loop instead of loop exiting via latch.
2209b1176b0SAnna Thomas // This value should be greater than 1 for a sane profitability check.
2219b1176b0SAnna Thomas static cl::opt<float> LatchExitProbabilityScale(
2229b1176b0SAnna Thomas     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
2239b1176b0SAnna Thomas     cl::desc("scale factor for the latch probability. Value should be greater "
2249b1176b0SAnna Thomas              "than 1. Lower values are ignored"));
2259b1176b0SAnna Thomas 
226feb475f4SMax Kazantsev static cl::opt<bool> PredicateWidenableBranchGuards(
227feb475f4SMax Kazantsev     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228feb475f4SMax Kazantsev     cl::desc("Whether or not we should predicate guards "
229feb475f4SMax Kazantsev              "expressed as widenable branches to deoptimize blocks"),
230feb475f4SMax Kazantsev     cl::init(true));
231feb475f4SMax Kazantsev 
2328fb3d57eSArtur Pilipenko namespace {
233a6c27804SArtur Pilipenko /// Represents an induction variable check:
234a6c27804SArtur Pilipenko ///   icmp Pred, <induction variable>, <loop invariant limit>
235a6c27804SArtur Pilipenko struct LoopICmp {
236a6c27804SArtur Pilipenko   ICmpInst::Predicate Pred;
237a6c27804SArtur Pilipenko   const SCEVAddRecExpr *IV;
238a6c27804SArtur Pilipenko   const SCEV *Limit;
239c488dfabSArtur Pilipenko   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240c488dfabSArtur Pilipenko            const SCEV *Limit)
241a6c27804SArtur Pilipenko     : Pred(Pred), IV(IV), Limit(Limit) {}
242a6c27804SArtur Pilipenko   LoopICmp() {}
24368797214SAnna Thomas   void dump() {
24468797214SAnna Thomas     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
24568797214SAnna Thomas            << ", Limit = " << *Limit << "\n";
24668797214SAnna Thomas   }
247a6c27804SArtur Pilipenko };
248c488dfabSArtur Pilipenko 
249099eca83SPhilip Reames class LoopPredication {
25092a7177eSPhilip Reames   AliasAnalysis *AA;
251c488dfabSArtur Pilipenko   ScalarEvolution *SE;
2529b1176b0SAnna Thomas   BranchProbabilityInfo *BPI;
253c488dfabSArtur Pilipenko 
254c488dfabSArtur Pilipenko   Loop *L;
255c488dfabSArtur Pilipenko   const DataLayout *DL;
256c488dfabSArtur Pilipenko   BasicBlock *Preheader;
257889dc1e3SArtur Pilipenko   LoopICmp LatchCheck;
258c488dfabSArtur Pilipenko 
25968797214SAnna Thomas   bool isSupportedStep(const SCEV* Step);
26019afdf74SPhilip Reames   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
261889dc1e3SArtur Pilipenko   Optional<LoopICmp> parseLoopLatchICmp();
262a6c27804SArtur Pilipenko 
263fbe64a2cSPhilip Reames   /// Return an insertion point suitable for inserting a safe to speculate
264fbe64a2cSPhilip Reames   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
265fbe64a2cSPhilip Reames   /// trivial result would be the at the User itself, but we try to return a
266fbe64a2cSPhilip Reames   /// loop invariant location if possible.
267fbe64a2cSPhilip Reames   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
268e46d77d1SPhilip Reames   /// Same as above, *except* that this uses the SCEV definition of invariant
269e46d77d1SPhilip Reames   /// which is that an expression *can be made* invariant via SCEVExpander.
270e46d77d1SPhilip Reames   /// Thus, this version is only suitable for finding an insert point to be be
271e46d77d1SPhilip Reames   /// passed to SCEVExpander!
272e46d77d1SPhilip Reames   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
273fbe64a2cSPhilip Reames 
27492a7177eSPhilip Reames   /// Return true if the value is known to produce a single fixed value across
27592a7177eSPhilip Reames   /// all iterations on which it executes.  Note that this does not imply
27692a7177eSPhilip Reames   /// speculation safety.  That must be established seperately.
27792a7177eSPhilip Reames   bool isLoopInvariantValue(const SCEV* S);
27892a7177eSPhilip Reames 
279e46d77d1SPhilip Reames   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
2803d4e1082SPhilip Reames                      ICmpInst::Predicate Pred, const SCEV *LHS,
2813d4e1082SPhilip Reames                      const SCEV *RHS);
2826780ba65SArtur Pilipenko 
2838fb3d57eSArtur Pilipenko   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
284e46d77d1SPhilip Reames                                         Instruction *Guard);
28568797214SAnna Thomas   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
28668797214SAnna Thomas                                                         LoopICmp RangeCheck,
28768797214SAnna Thomas                                                         SCEVExpander &Expander,
288e46d77d1SPhilip Reames                                                         Instruction *Guard);
2897b360434SAnna Thomas   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
2907b360434SAnna Thomas                                                         LoopICmp RangeCheck,
2917b360434SAnna Thomas                                                         SCEVExpander &Expander,
292e46d77d1SPhilip Reames                                                         Instruction *Guard);
293ca450878SMax Kazantsev   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
294e46d77d1SPhilip Reames                          SCEVExpander &Expander, Instruction *Guard);
2958fb3d57eSArtur Pilipenko   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
296feb475f4SMax Kazantsev   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
2979b1176b0SAnna Thomas   // If the loop always exits through another block in the loop, we should not
2989b1176b0SAnna Thomas   // predicate based on the latch check. For example, the latch check can be a
2999b1176b0SAnna Thomas   // very coarse grained check and there can be more fine grained exit checks
3009b1176b0SAnna Thomas   // within the loop. We identify such unprofitable loops through BPI.
3019b1176b0SAnna Thomas   bool isLoopProfitableToPredicate();
3029b1176b0SAnna Thomas 
3031d02b13eSAnna Thomas   // When the IV type is wider than the range operand type, we can still do loop
3041d02b13eSAnna Thomas   // predication, by generating SCEVs for the range and latch that are of the
3051d02b13eSAnna Thomas   // same type. We achieve this by generating a SCEV truncate expression for the
3061d02b13eSAnna Thomas   // latch IV. This is done iff truncation of the IV is a safe operation,
3071d02b13eSAnna Thomas   // without loss of information.
3081d02b13eSAnna Thomas   // Another way to achieve this is by generating a wider type SCEV for the
3091d02b13eSAnna Thomas   // range check operand, however, this needs a more involved check that
3101d02b13eSAnna Thomas   // operands do not overflow. This can lead to loss of information when the
3111d02b13eSAnna Thomas   // range operand is of the form: add i32 %offset, %iv. We need to prove that
3121d02b13eSAnna Thomas   // sext(x + y) is same as sext(x) + sext(y).
3131d02b13eSAnna Thomas   // This function returns true if we can safely represent the IV type in
3141d02b13eSAnna Thomas   // the RangeCheckType without loss of information.
3151d02b13eSAnna Thomas   bool isSafeToTruncateWideIVType(Type *RangeCheckType);
3161d02b13eSAnna Thomas   // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
3171d02b13eSAnna Thomas   // so.
3181d02b13eSAnna Thomas   Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
319ebc9031bSSerguei Katkov 
3208fb3d57eSArtur Pilipenko public:
32192a7177eSPhilip Reames   LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
32292a7177eSPhilip Reames                   BranchProbabilityInfo *BPI)
32392a7177eSPhilip Reames     : AA(AA), SE(SE), BPI(BPI){};
3248fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L);
3258fb3d57eSArtur Pilipenko };
3268fb3d57eSArtur Pilipenko 
3278fb3d57eSArtur Pilipenko class LoopPredicationLegacyPass : public LoopPass {
3288fb3d57eSArtur Pilipenko public:
3298fb3d57eSArtur Pilipenko   static char ID;
3308fb3d57eSArtur Pilipenko   LoopPredicationLegacyPass() : LoopPass(ID) {
3318fb3d57eSArtur Pilipenko     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
3328fb3d57eSArtur Pilipenko   }
3338fb3d57eSArtur Pilipenko 
3348fb3d57eSArtur Pilipenko   void getAnalysisUsage(AnalysisUsage &AU) const override {
3359b1176b0SAnna Thomas     AU.addRequired<BranchProbabilityInfoWrapperPass>();
3368fb3d57eSArtur Pilipenko     getLoopAnalysisUsage(AU);
3378fb3d57eSArtur Pilipenko   }
3388fb3d57eSArtur Pilipenko 
3398fb3d57eSArtur Pilipenko   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
3408fb3d57eSArtur Pilipenko     if (skipLoop(L))
3418fb3d57eSArtur Pilipenko       return false;
3428fb3d57eSArtur Pilipenko     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3439b1176b0SAnna Thomas     BranchProbabilityInfo &BPI =
3449b1176b0SAnna Thomas         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
34592a7177eSPhilip Reames     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
34692a7177eSPhilip Reames     LoopPredication LP(AA, SE, &BPI);
3478fb3d57eSArtur Pilipenko     return LP.runOnLoop(L);
3488fb3d57eSArtur Pilipenko   }
3498fb3d57eSArtur Pilipenko };
3508fb3d57eSArtur Pilipenko 
3518fb3d57eSArtur Pilipenko char LoopPredicationLegacyPass::ID = 0;
3528fb3d57eSArtur Pilipenko } // end namespace llvm
3538fb3d57eSArtur Pilipenko 
3548fb3d57eSArtur Pilipenko INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
3558fb3d57eSArtur Pilipenko                       "Loop predication", false, false)
3569b1176b0SAnna Thomas INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
3578fb3d57eSArtur Pilipenko INITIALIZE_PASS_DEPENDENCY(LoopPass)
3588fb3d57eSArtur Pilipenko INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
3598fb3d57eSArtur Pilipenko                     "Loop predication", false, false)
3608fb3d57eSArtur Pilipenko 
3618fb3d57eSArtur Pilipenko Pass *llvm::createLoopPredicationPass() {
3628fb3d57eSArtur Pilipenko   return new LoopPredicationLegacyPass();
3638fb3d57eSArtur Pilipenko }
3648fb3d57eSArtur Pilipenko 
3658fb3d57eSArtur Pilipenko PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
3668fb3d57eSArtur Pilipenko                                            LoopStandardAnalysisResults &AR,
3678fb3d57eSArtur Pilipenko                                            LPMUpdater &U) {
3689b1176b0SAnna Thomas   const auto &FAM =
3699b1176b0SAnna Thomas       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
3709b1176b0SAnna Thomas   Function *F = L.getHeader()->getParent();
3719b1176b0SAnna Thomas   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
37292a7177eSPhilip Reames   LoopPredication LP(&AR.AA, &AR.SE, BPI);
3738fb3d57eSArtur Pilipenko   if (!LP.runOnLoop(&L))
3748fb3d57eSArtur Pilipenko     return PreservedAnalyses::all();
3758fb3d57eSArtur Pilipenko 
3768fb3d57eSArtur Pilipenko   return getLoopPassPreservedAnalyses();
3778fb3d57eSArtur Pilipenko }
3788fb3d57eSArtur Pilipenko 
379099eca83SPhilip Reames Optional<LoopICmp>
38019afdf74SPhilip Reames LoopPredication::parseLoopICmp(ICmpInst *ICI) {
38119afdf74SPhilip Reames   auto Pred = ICI->getPredicate();
38219afdf74SPhilip Reames   auto *LHS = ICI->getOperand(0);
38319afdf74SPhilip Reames   auto *RHS = ICI->getOperand(1);
38419afdf74SPhilip Reames 
385a6c27804SArtur Pilipenko   const SCEV *LHSS = SE->getSCEV(LHS);
386a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(LHSS))
387a6c27804SArtur Pilipenko     return None;
388a6c27804SArtur Pilipenko   const SCEV *RHSS = SE->getSCEV(RHS);
389a6c27804SArtur Pilipenko   if (isa<SCEVCouldNotCompute>(RHSS))
390a6c27804SArtur Pilipenko     return None;
391a6c27804SArtur Pilipenko 
392a6c27804SArtur Pilipenko   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
393a6c27804SArtur Pilipenko   if (SE->isLoopInvariant(LHSS, L)) {
394a6c27804SArtur Pilipenko     std::swap(LHS, RHS);
395a6c27804SArtur Pilipenko     std::swap(LHSS, RHSS);
396a6c27804SArtur Pilipenko     Pred = ICmpInst::getSwappedPredicate(Pred);
397a6c27804SArtur Pilipenko   }
398a6c27804SArtur Pilipenko 
399a6c27804SArtur Pilipenko   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
400a6c27804SArtur Pilipenko   if (!AR || AR->getLoop() != L)
401a6c27804SArtur Pilipenko     return None;
402a6c27804SArtur Pilipenko 
403a6c27804SArtur Pilipenko   return LoopICmp(Pred, AR, RHSS);
404a6c27804SArtur Pilipenko }
405a6c27804SArtur Pilipenko 
4066780ba65SArtur Pilipenko Value *LoopPredication::expandCheck(SCEVExpander &Expander,
407e46d77d1SPhilip Reames                                     Instruction *Guard,
4086780ba65SArtur Pilipenko                                     ICmpInst::Predicate Pred, const SCEV *LHS,
4093d4e1082SPhilip Reames                                     const SCEV *RHS) {
4106780ba65SArtur Pilipenko   Type *Ty = LHS->getType();
4116780ba65SArtur Pilipenko   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
412ead69ee4SArtur Pilipenko 
413e46d77d1SPhilip Reames   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
414e46d77d1SPhilip Reames     IRBuilder<> Builder(Guard);
415ead69ee4SArtur Pilipenko     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
416ead69ee4SArtur Pilipenko       return Builder.getTrue();
41705e3e554SPhilip Reames     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
41805e3e554SPhilip Reames                                      LHS, RHS))
41905e3e554SPhilip Reames       return Builder.getFalse();
420e46d77d1SPhilip Reames   }
421ead69ee4SArtur Pilipenko 
422e46d77d1SPhilip Reames   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
423e46d77d1SPhilip Reames   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
424e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
4256780ba65SArtur Pilipenko   return Builder.CreateICmp(Pred, LHSV, RHSV);
4266780ba65SArtur Pilipenko }
4276780ba65SArtur Pilipenko 
428099eca83SPhilip Reames Optional<LoopICmp>
4291d02b13eSAnna Thomas LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
4301d02b13eSAnna Thomas 
4311d02b13eSAnna Thomas   auto *LatchType = LatchCheck.IV->getType();
4321d02b13eSAnna Thomas   if (RangeCheckType == LatchType)
4331d02b13eSAnna Thomas     return LatchCheck;
4341d02b13eSAnna Thomas   // For now, bail out if latch type is narrower than range type.
4351d02b13eSAnna Thomas   if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
4361d02b13eSAnna Thomas     return None;
4371d02b13eSAnna Thomas   if (!isSafeToTruncateWideIVType(RangeCheckType))
4381d02b13eSAnna Thomas     return None;
4391d02b13eSAnna Thomas   // We can now safely identify the truncated version of the IV and limit for
4401d02b13eSAnna Thomas   // RangeCheckType.
4411d02b13eSAnna Thomas   LoopICmp NewLatchCheck;
4421d02b13eSAnna Thomas   NewLatchCheck.Pred = LatchCheck.Pred;
4431d02b13eSAnna Thomas   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
4441d02b13eSAnna Thomas       SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
4451d02b13eSAnna Thomas   if (!NewLatchCheck.IV)
4461d02b13eSAnna Thomas     return None;
4471d02b13eSAnna Thomas   NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
448d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
449d34e60caSNicola Zaghen                     << "can be represented as range check type:"
450d34e60caSNicola Zaghen                     << *RangeCheckType << "\n");
451d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
452d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
4531d02b13eSAnna Thomas   return NewLatchCheck;
4541d02b13eSAnna Thomas }
4551d02b13eSAnna Thomas 
45668797214SAnna Thomas bool LoopPredication::isSupportedStep(const SCEV* Step) {
4577b360434SAnna Thomas   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
4581d02b13eSAnna Thomas }
4598fb3d57eSArtur Pilipenko 
460fbe64a2cSPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use,
461fbe64a2cSPhilip Reames                                            ArrayRef<Value*> Ops) {
462fbe64a2cSPhilip Reames   for (Value *Op : Ops)
463fbe64a2cSPhilip Reames     if (!L->isLoopInvariant(Op))
464fbe64a2cSPhilip Reames       return Use;
465fbe64a2cSPhilip Reames   return Preheader->getTerminator();
466fbe64a2cSPhilip Reames }
467fbe64a2cSPhilip Reames 
468e46d77d1SPhilip Reames Instruction *LoopPredication::findInsertPt(Instruction *Use,
469e46d77d1SPhilip Reames                                            ArrayRef<const SCEV*> Ops) {
47092a7177eSPhilip Reames   // Subtlety: SCEV considers things to be invariant if the value produced is
47192a7177eSPhilip Reames   // the same across iterations.  This is not the same as being able to
47292a7177eSPhilip Reames   // evaluate outside the loop, which is what we actually need here.
473e46d77d1SPhilip Reames   for (const SCEV *Op : Ops)
47492a7177eSPhilip Reames     if (!SE->isLoopInvariant(Op, L) ||
47592a7177eSPhilip Reames         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
476e46d77d1SPhilip Reames       return Use;
477e46d77d1SPhilip Reames   return Preheader->getTerminator();
478e46d77d1SPhilip Reames }
479e46d77d1SPhilip Reames 
48092a7177eSPhilip Reames bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
48192a7177eSPhilip Reames   // Handling expressions which produce invariant results, but *haven't* yet
48292a7177eSPhilip Reames   // been removed from the loop serves two important purposes.
48392a7177eSPhilip Reames   // 1) Most importantly, it resolves a pass ordering cycle which would
48492a7177eSPhilip Reames   // otherwise need us to iteration licm, loop-predication, and either
48592a7177eSPhilip Reames   // loop-unswitch or loop-peeling to make progress on examples with lots of
48692a7177eSPhilip Reames   // predicable range checks in a row.  (Since, in the general case,  we can't
48792a7177eSPhilip Reames   // hoist the length checks until the dominating checks have been discharged
48892a7177eSPhilip Reames   // as we can't prove doing so is safe.)
48992a7177eSPhilip Reames   // 2) As a nice side effect, this exposes the value of peeling or unswitching
49092a7177eSPhilip Reames   // much more obviously in the IR.  Otherwise, the cost modeling for other
49192a7177eSPhilip Reames   // transforms would end up needing to duplicate all of this logic to model a
49292a7177eSPhilip Reames   // check which becomes predictable based on a modeled peel or unswitch.
49392a7177eSPhilip Reames   //
49492a7177eSPhilip Reames   // The cost of doing so in the worst case is an extra fill from the stack  in
49592a7177eSPhilip Reames   // the loop to materialize the loop invariant test value instead of checking
49692a7177eSPhilip Reames   // against the original IV which is presumable in a register inside the loop.
49792a7177eSPhilip Reames   // Such cases are presumably rare, and hint at missing oppurtunities for
49892a7177eSPhilip Reames   // other passes.
499e46d77d1SPhilip Reames 
50092a7177eSPhilip Reames   if (SE->isLoopInvariant(S, L))
50192a7177eSPhilip Reames     // Note: This the SCEV variant, so the original Value* may be within the
50292a7177eSPhilip Reames     // loop even though SCEV has proven it is loop invariant.
50392a7177eSPhilip Reames     return true;
50492a7177eSPhilip Reames 
50592a7177eSPhilip Reames   // Handle a particular important case which SCEV doesn't yet know about which
50692a7177eSPhilip Reames   // shows up in range checks on arrays with immutable lengths.
50792a7177eSPhilip Reames   // TODO: This should be sunk inside SCEV.
50892a7177eSPhilip Reames   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
50992a7177eSPhilip Reames     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
510adf288c5SPhilip Reames       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
51192a7177eSPhilip Reames         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
51292a7177eSPhilip Reames             LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
51392a7177eSPhilip Reames           return true;
51492a7177eSPhilip Reames   return false;
51568797214SAnna Thomas }
51668797214SAnna Thomas 
51768797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
518099eca83SPhilip Reames     LoopICmp LatchCheck, LoopICmp RangeCheck,
519e46d77d1SPhilip Reames     SCEVExpander &Expander, Instruction *Guard) {
52068797214SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
52168797214SAnna Thomas   // Generate the widened condition for the forward loop:
5228aadc643SArtur Pilipenko   //   guardStart u< guardLimit &&
5238aadc643SArtur Pilipenko   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
524b4527e1cSArtur Pilipenko   // where <pred> depends on the latch condition predicate. See the file
525b4527e1cSArtur Pilipenko   // header comment for the reasoning.
52668797214SAnna Thomas   // guardLimit - guardStart + latchStart - 1
52768797214SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
52868797214SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
52968797214SAnna Thomas   const SCEV *LatchStart = LatchCheck.IV->getStart();
53068797214SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
53192a7177eSPhilip Reames   // Subtlety: We need all the values to be *invariant* across all iterations,
53292a7177eSPhilip Reames   // but we only need to check expansion safety for those which *aren't*
53392a7177eSPhilip Reames   // already guaranteed to dominate the guard.
53492a7177eSPhilip Reames   if (!isLoopInvariantValue(GuardStart) ||
53592a7177eSPhilip Reames       !isLoopInvariantValue(GuardLimit) ||
53692a7177eSPhilip Reames       !isLoopInvariantValue(LatchStart) ||
53792a7177eSPhilip Reames       !isLoopInvariantValue(LatchLimit)) {
53892a7177eSPhilip Reames     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
53992a7177eSPhilip Reames     return None;
54092a7177eSPhilip Reames   }
54192a7177eSPhilip Reames   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
54292a7177eSPhilip Reames       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
54392a7177eSPhilip Reames     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
54492a7177eSPhilip Reames     return None;
54592a7177eSPhilip Reames   }
5468aadc643SArtur Pilipenko 
5478aadc643SArtur Pilipenko   // guardLimit - guardStart + latchStart - 1
5488aadc643SArtur Pilipenko   const SCEV *RHS =
5498aadc643SArtur Pilipenko       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
5508aadc643SArtur Pilipenko                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
5513cb4c34aSSerguei Katkov   auto LimitCheckPred =
5523cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
553aab28666SArtur Pilipenko 
554d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
555d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
556d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
5578aadc643SArtur Pilipenko 
5588aadc643SArtur Pilipenko   auto *LimitCheck =
559e46d77d1SPhilip Reames       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
560e46d77d1SPhilip Reames   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
5613d4e1082SPhilip Reames                                           GuardStart, GuardLimit);
562e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
563889dc1e3SArtur Pilipenko   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
5648fb3d57eSArtur Pilipenko }
5657b360434SAnna Thomas 
5667b360434SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
567099eca83SPhilip Reames     LoopICmp LatchCheck, LoopICmp RangeCheck,
568e46d77d1SPhilip Reames     SCEVExpander &Expander, Instruction *Guard) {
5697b360434SAnna Thomas   auto *Ty = RangeCheck.IV->getType();
5707b360434SAnna Thomas   const SCEV *GuardStart = RangeCheck.IV->getStart();
5717b360434SAnna Thomas   const SCEV *GuardLimit = RangeCheck.Limit;
57292a7177eSPhilip Reames   const SCEV *LatchStart = LatchCheck.IV->getStart();
5737b360434SAnna Thomas   const SCEV *LatchLimit = LatchCheck.Limit;
57492a7177eSPhilip Reames   // Subtlety: We need all the values to be *invariant* across all iterations,
57592a7177eSPhilip Reames   // but we only need to check expansion safety for those which *aren't*
57692a7177eSPhilip Reames   // already guaranteed to dominate the guard.
57792a7177eSPhilip Reames   if (!isLoopInvariantValue(GuardStart) ||
57892a7177eSPhilip Reames       !isLoopInvariantValue(GuardLimit) ||
57992a7177eSPhilip Reames       !isLoopInvariantValue(LatchStart) ||
58092a7177eSPhilip Reames       !isLoopInvariantValue(LatchLimit)) {
58192a7177eSPhilip Reames     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
58292a7177eSPhilip Reames     return None;
58392a7177eSPhilip Reames   }
58492a7177eSPhilip Reames   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
58592a7177eSPhilip Reames       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
586d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
5877b360434SAnna Thomas     return None;
5887b360434SAnna Thomas   }
5897b360434SAnna Thomas   // The decrement of the latch check IV should be the same as the
5907b360434SAnna Thomas   // rangeCheckIV.
5917b360434SAnna Thomas   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
5927b360434SAnna Thomas   if (RangeCheck.IV != PostDecLatchCheckIV) {
593d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
5947b360434SAnna Thomas                       << *PostDecLatchCheckIV
5957b360434SAnna Thomas                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
5967b360434SAnna Thomas     return None;
5977b360434SAnna Thomas   }
5987b360434SAnna Thomas 
5997b360434SAnna Thomas   // Generate the widened condition for CountDownLoop:
6007b360434SAnna Thomas   // guardStart u< guardLimit &&
6017b360434SAnna Thomas   // latchLimit <pred> 1.
6027b360434SAnna Thomas   // See the header comment for reasoning of the checks.
6033cb4c34aSSerguei Katkov   auto LimitCheckPred =
6043cb4c34aSSerguei Katkov       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
605e46d77d1SPhilip Reames   auto *FirstIterationCheck = expandCheck(Expander, Guard,
606e46d77d1SPhilip Reames                                           ICmpInst::ICMP_ULT,
6073d4e1082SPhilip Reames                                           GuardStart, GuardLimit);
608e46d77d1SPhilip Reames   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
6093d4e1082SPhilip Reames                                  SE->getOne(Ty));
610e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
6117b360434SAnna Thomas   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
6127b360434SAnna Thomas }
6137b360434SAnna Thomas 
614099eca83SPhilip Reames static void normalizePredicate(ScalarEvolution *SE, Loop *L,
615099eca83SPhilip Reames                                LoopICmp& RC) {
616099eca83SPhilip Reames   // LFTR canonicalizes checks to the ICMP_NE form instead of an ULT/SLT form.
617099eca83SPhilip Reames   // Normalize back to the ULT/SLT form for ease of handling.
618099eca83SPhilip Reames   if (RC.Pred == ICmpInst::ICMP_NE &&
619099eca83SPhilip Reames       RC.IV->getStepRecurrence(*SE)->isOne() &&
620099eca83SPhilip Reames       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
621099eca83SPhilip Reames     RC.Pred = ICmpInst::ICMP_ULT;
622099eca83SPhilip Reames }
623099eca83SPhilip Reames 
624099eca83SPhilip Reames 
62568797214SAnna Thomas /// If ICI can be widened to a loop invariant condition emits the loop
62668797214SAnna Thomas /// invariant condition in the loop preheader and return it, otherwise
62768797214SAnna Thomas /// returns None.
62868797214SAnna Thomas Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
62968797214SAnna Thomas                                                        SCEVExpander &Expander,
630e46d77d1SPhilip Reames                                                        Instruction *Guard) {
631d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
632d34e60caSNicola Zaghen   LLVM_DEBUG(ICI->dump());
63368797214SAnna Thomas 
63468797214SAnna Thomas   // parseLoopStructure guarantees that the latch condition is:
63568797214SAnna Thomas   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
63668797214SAnna Thomas   // We are looking for the range checks of the form:
63768797214SAnna Thomas   //   i u< guardLimit
63868797214SAnna Thomas   auto RangeCheck = parseLoopICmp(ICI);
63968797214SAnna Thomas   if (!RangeCheck) {
640d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
64168797214SAnna Thomas     return None;
64268797214SAnna Thomas   }
643d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Guard check:\n");
644d34e60caSNicola Zaghen   LLVM_DEBUG(RangeCheck->dump());
64568797214SAnna Thomas   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
646d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
647d34e60caSNicola Zaghen                       << RangeCheck->Pred << ")!\n");
64868797214SAnna Thomas     return None;
64968797214SAnna Thomas   }
65068797214SAnna Thomas   auto *RangeCheckIV = RangeCheck->IV;
65168797214SAnna Thomas   if (!RangeCheckIV->isAffine()) {
652d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
65368797214SAnna Thomas     return None;
65468797214SAnna Thomas   }
65568797214SAnna Thomas   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
65668797214SAnna Thomas   // We cannot just compare with latch IV step because the latch and range IVs
65768797214SAnna Thomas   // may have different types.
65868797214SAnna Thomas   if (!isSupportedStep(Step)) {
659d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
66068797214SAnna Thomas     return None;
66168797214SAnna Thomas   }
66268797214SAnna Thomas   auto *Ty = RangeCheckIV->getType();
66368797214SAnna Thomas   auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
66468797214SAnna Thomas   if (!CurrLatchCheckOpt) {
665d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
66668797214SAnna Thomas                          "corresponding to range type: "
66768797214SAnna Thomas                       << *Ty << "\n");
66868797214SAnna Thomas     return None;
66968797214SAnna Thomas   }
67068797214SAnna Thomas 
67168797214SAnna Thomas   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
6727b360434SAnna Thomas   // At this point, the range and latch step should have the same type, but need
6737b360434SAnna Thomas   // not have the same value (we support both 1 and -1 steps).
6747b360434SAnna Thomas   assert(Step->getType() ==
6757b360434SAnna Thomas              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
6767b360434SAnna Thomas          "Range and latch steps should be of same type!");
6777b360434SAnna Thomas   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
678d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
6797b360434SAnna Thomas     return None;
6807b360434SAnna Thomas   }
68168797214SAnna Thomas 
6827b360434SAnna Thomas   if (Step->isOne())
68368797214SAnna Thomas     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
684e46d77d1SPhilip Reames                                                Expander, Guard);
6857b360434SAnna Thomas   else {
6867b360434SAnna Thomas     assert(Step->isAllOnesValue() && "Step should be -1!");
6877b360434SAnna Thomas     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
688e46d77d1SPhilip Reames                                                Expander, Guard);
6897b360434SAnna Thomas   }
69068797214SAnna Thomas }
6918fb3d57eSArtur Pilipenko 
692ca450878SMax Kazantsev unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
693ca450878SMax Kazantsev                                         Value *Condition,
694ca450878SMax Kazantsev                                         SCEVExpander &Expander,
695e46d77d1SPhilip Reames                                         Instruction *Guard) {
696ca450878SMax Kazantsev   unsigned NumWidened = 0;
6978fb3d57eSArtur Pilipenko   // The guard condition is expected to be in form of:
6988fb3d57eSArtur Pilipenko   //   cond1 && cond2 && cond3 ...
6990909ca13SHiroshi Inoue   // Iterate over subconditions looking for icmp conditions which can be
7008fb3d57eSArtur Pilipenko   // widened across loop iterations. Widening these conditions remember the
7018fb3d57eSArtur Pilipenko   // resulting list of subconditions in Checks vector.
702ca450878SMax Kazantsev   SmallVector<Value *, 4> Worklist(1, Condition);
7038fb3d57eSArtur Pilipenko   SmallPtrSet<Value *, 4> Visited;
704adb3ece2SPhilip Reames   Value *WideableCond = nullptr;
7058fb3d57eSArtur Pilipenko   do {
7068fb3d57eSArtur Pilipenko     Value *Condition = Worklist.pop_back_val();
7078fb3d57eSArtur Pilipenko     if (!Visited.insert(Condition).second)
7088fb3d57eSArtur Pilipenko       continue;
7098fb3d57eSArtur Pilipenko 
7108fb3d57eSArtur Pilipenko     Value *LHS, *RHS;
7118fb3d57eSArtur Pilipenko     using namespace llvm::PatternMatch;
7128fb3d57eSArtur Pilipenko     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
7138fb3d57eSArtur Pilipenko       Worklist.push_back(LHS);
7148fb3d57eSArtur Pilipenko       Worklist.push_back(RHS);
7158fb3d57eSArtur Pilipenko       continue;
7168fb3d57eSArtur Pilipenko     }
7178fb3d57eSArtur Pilipenko 
718adb3ece2SPhilip Reames     if (match(Condition,
719adb3ece2SPhilip Reames               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
720adb3ece2SPhilip Reames       // Pick any, we don't care which
721adb3ece2SPhilip Reames       WideableCond = Condition;
722adb3ece2SPhilip Reames       continue;
723adb3ece2SPhilip Reames     }
724adb3ece2SPhilip Reames 
7258fb3d57eSArtur Pilipenko     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
7263d4e1082SPhilip Reames       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
727e46d77d1SPhilip Reames                                                    Guard)) {
7288fb3d57eSArtur Pilipenko         Checks.push_back(NewRangeCheck.getValue());
7298fb3d57eSArtur Pilipenko         NumWidened++;
7308fb3d57eSArtur Pilipenko         continue;
7318fb3d57eSArtur Pilipenko       }
7328fb3d57eSArtur Pilipenko     }
7338fb3d57eSArtur Pilipenko 
7348fb3d57eSArtur Pilipenko     // Save the condition as is if we can't widen it
7358fb3d57eSArtur Pilipenko     Checks.push_back(Condition);
736ca450878SMax Kazantsev   } while (!Worklist.empty());
737adb3ece2SPhilip Reames   // At the moment, our matching logic for wideable conditions implicitly
738adb3ece2SPhilip Reames   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
739adb3ece2SPhilip Reames   // Note that if there were multiple calls to wideable condition in the
740adb3ece2SPhilip Reames   // traversal, we only need to keep one, and which one is arbitrary.
741adb3ece2SPhilip Reames   if (WideableCond)
742adb3ece2SPhilip Reames     Checks.push_back(WideableCond);
743ca450878SMax Kazantsev   return NumWidened;
744ca450878SMax Kazantsev }
7458fb3d57eSArtur Pilipenko 
746ca450878SMax Kazantsev bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
747ca450878SMax Kazantsev                                            SCEVExpander &Expander) {
748ca450878SMax Kazantsev   LLVM_DEBUG(dbgs() << "Processing guard:\n");
749ca450878SMax Kazantsev   LLVM_DEBUG(Guard->dump());
750ca450878SMax Kazantsev 
751ca450878SMax Kazantsev   TotalConsidered++;
752ca450878SMax Kazantsev   SmallVector<Value *, 4> Checks;
753ca450878SMax Kazantsev   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
754e46d77d1SPhilip Reames                                       Guard);
7558fb3d57eSArtur Pilipenko   if (NumWidened == 0)
7568fb3d57eSArtur Pilipenko     return false;
7578fb3d57eSArtur Pilipenko 
758c297e84bSFedor Sergeev   TotalWidened += NumWidened;
759c297e84bSFedor Sergeev 
7608fb3d57eSArtur Pilipenko   // Emit the new guard condition
761e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(Guard, Checks));
7628fb3d57eSArtur Pilipenko   Value *LastCheck = nullptr;
7638fb3d57eSArtur Pilipenko   for (auto *Check : Checks)
7648fb3d57eSArtur Pilipenko     if (!LastCheck)
7658fb3d57eSArtur Pilipenko       LastCheck = Check;
7668fb3d57eSArtur Pilipenko     else
7678fb3d57eSArtur Pilipenko       LastCheck = Builder.CreateAnd(LastCheck, Check);
768d109e2a7SPhilip Reames   auto *OldCond = Guard->getOperand(0);
7698fb3d57eSArtur Pilipenko   Guard->setOperand(0, LastCheck);
770d109e2a7SPhilip Reames   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7718fb3d57eSArtur Pilipenko 
772d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
7738fb3d57eSArtur Pilipenko   return true;
7748fb3d57eSArtur Pilipenko }
7758fb3d57eSArtur Pilipenko 
776feb475f4SMax Kazantsev bool LoopPredication::widenWidenableBranchGuardConditions(
777f608678fSPhilip Reames     BranchInst *BI, SCEVExpander &Expander) {
778f608678fSPhilip Reames   assert(isGuardAsWidenableBranch(BI) && "Must be!");
779feb475f4SMax Kazantsev   LLVM_DEBUG(dbgs() << "Processing guard:\n");
780f608678fSPhilip Reames   LLVM_DEBUG(BI->dump());
781feb475f4SMax Kazantsev 
782feb475f4SMax Kazantsev   TotalConsidered++;
783feb475f4SMax Kazantsev   SmallVector<Value *, 4> Checks;
784adb3ece2SPhilip Reames   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
785e46d77d1SPhilip Reames                                       Expander, BI);
786feb475f4SMax Kazantsev   if (NumWidened == 0)
787feb475f4SMax Kazantsev     return false;
788feb475f4SMax Kazantsev 
789feb475f4SMax Kazantsev   TotalWidened += NumWidened;
790feb475f4SMax Kazantsev 
791feb475f4SMax Kazantsev   // Emit the new guard condition
792e46d77d1SPhilip Reames   IRBuilder<> Builder(findInsertPt(BI, Checks));
793feb475f4SMax Kazantsev   Value *LastCheck = nullptr;
794feb475f4SMax Kazantsev   for (auto *Check : Checks)
795feb475f4SMax Kazantsev     if (!LastCheck)
796feb475f4SMax Kazantsev       LastCheck = Check;
797feb475f4SMax Kazantsev     else
798feb475f4SMax Kazantsev       LastCheck = Builder.CreateAnd(LastCheck, Check);
799adb3ece2SPhilip Reames   auto *OldCond = BI->getCondition();
800adb3ece2SPhilip Reames   BI->setCondition(LastCheck);
801f608678fSPhilip Reames   assert(isGuardAsWidenableBranch(BI) &&
802feb475f4SMax Kazantsev          "Stopped being a guard after transform?");
803d109e2a7SPhilip Reames   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
804feb475f4SMax Kazantsev 
805feb475f4SMax Kazantsev   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
806feb475f4SMax Kazantsev   return true;
807feb475f4SMax Kazantsev }
808feb475f4SMax Kazantsev 
809099eca83SPhilip Reames Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
810889dc1e3SArtur Pilipenko   using namespace PatternMatch;
811889dc1e3SArtur Pilipenko 
812889dc1e3SArtur Pilipenko   BasicBlock *LoopLatch = L->getLoopLatch();
813889dc1e3SArtur Pilipenko   if (!LoopLatch) {
814d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
815889dc1e3SArtur Pilipenko     return None;
816889dc1e3SArtur Pilipenko   }
817889dc1e3SArtur Pilipenko 
81819afdf74SPhilip Reames   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
81919afdf74SPhilip Reames   if (!BI) {
820d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
821889dc1e3SArtur Pilipenko     return None;
822889dc1e3SArtur Pilipenko   }
82319afdf74SPhilip Reames   BasicBlock *TrueDest = BI->getSuccessor(0);
824*4e875464SRichard Trieu   assert(
825*4e875464SRichard Trieu       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
826889dc1e3SArtur Pilipenko       "One of the latch's destinations must be the header");
827889dc1e3SArtur Pilipenko 
82819afdf74SPhilip Reames   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
82919afdf74SPhilip Reames   if (!ICI || !BI->isConditional()) {
83019afdf74SPhilip Reames     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
83119afdf74SPhilip Reames     return None;
83219afdf74SPhilip Reames   }
83319afdf74SPhilip Reames   auto Result = parseLoopICmp(ICI);
834889dc1e3SArtur Pilipenko   if (!Result) {
835d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
836889dc1e3SArtur Pilipenko     return None;
837889dc1e3SArtur Pilipenko   }
838889dc1e3SArtur Pilipenko 
83919afdf74SPhilip Reames   if (TrueDest != L->getHeader())
84019afdf74SPhilip Reames     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
84119afdf74SPhilip Reames 
842889dc1e3SArtur Pilipenko   // Check affine first, so if it's not we don't try to compute the step
843889dc1e3SArtur Pilipenko   // recurrence.
844889dc1e3SArtur Pilipenko   if (!Result->IV->isAffine()) {
845d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
846889dc1e3SArtur Pilipenko     return None;
847889dc1e3SArtur Pilipenko   }
848889dc1e3SArtur Pilipenko 
849889dc1e3SArtur Pilipenko   auto *Step = Result->IV->getStepRecurrence(*SE);
85068797214SAnna Thomas   if (!isSupportedStep(Step)) {
851d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
852889dc1e3SArtur Pilipenko     return None;
853889dc1e3SArtur Pilipenko   }
854889dc1e3SArtur Pilipenko 
85568797214SAnna Thomas   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
8567b360434SAnna Thomas     if (Step->isOne()) {
85768797214SAnna Thomas       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
85868797214SAnna Thomas              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
8597b360434SAnna Thomas     } else {
8607b360434SAnna Thomas       assert(Step->isAllOnesValue() && "Step should be -1!");
861c8016e7aSSerguei Katkov       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
862c8016e7aSSerguei Katkov              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
8637b360434SAnna Thomas     }
86468797214SAnna Thomas   };
86568797214SAnna Thomas 
866099eca83SPhilip Reames   normalizePredicate(SE, L, *Result);
86768797214SAnna Thomas   if (IsUnsupportedPredicate(Step, Result->Pred)) {
868d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
86968797214SAnna Thomas                       << ")!\n");
87068797214SAnna Thomas     return None;
87168797214SAnna Thomas   }
87219afdf74SPhilip Reames 
873889dc1e3SArtur Pilipenko   return Result;
874889dc1e3SArtur Pilipenko }
875889dc1e3SArtur Pilipenko 
8761d02b13eSAnna Thomas // Returns true if its safe to truncate the IV to RangeCheckType.
8771d02b13eSAnna Thomas bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
8781d02b13eSAnna Thomas   if (!EnableIVTruncation)
8791d02b13eSAnna Thomas     return false;
8801d02b13eSAnna Thomas   assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
8811d02b13eSAnna Thomas              DL->getTypeSizeInBits(RangeCheckType) &&
8821d02b13eSAnna Thomas          "Expected latch check IV type to be larger than range check operand "
8831d02b13eSAnna Thomas          "type!");
8841d02b13eSAnna Thomas   // The start and end values of the IV should be known. This is to guarantee
8851d02b13eSAnna Thomas   // that truncating the wide type will not lose information.
8861d02b13eSAnna Thomas   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
8871d02b13eSAnna Thomas   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
8881d02b13eSAnna Thomas   if (!Limit || !Start)
8891d02b13eSAnna Thomas     return false;
8901d02b13eSAnna Thomas   // This check makes sure that the IV does not change sign during loop
8911d02b13eSAnna Thomas   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
8921d02b13eSAnna Thomas   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
8931d02b13eSAnna Thomas   // IV wraps around, and the truncation of the IV would lose the range of
8941d02b13eSAnna Thomas   // iterations between 2^32 and 2^64.
8951d02b13eSAnna Thomas   bool Increasing;
8961d02b13eSAnna Thomas   if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
8971d02b13eSAnna Thomas     return false;
8981d02b13eSAnna Thomas   // The active bits should be less than the bits in the RangeCheckType. This
8991d02b13eSAnna Thomas   // guarantees that truncating the latch check to RangeCheckType is a safe
9001d02b13eSAnna Thomas   // operation.
9011d02b13eSAnna Thomas   auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
9021d02b13eSAnna Thomas   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
9031d02b13eSAnna Thomas          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
9041d02b13eSAnna Thomas }
9051d02b13eSAnna Thomas 
9069b1176b0SAnna Thomas bool LoopPredication::isLoopProfitableToPredicate() {
9079b1176b0SAnna Thomas   if (SkipProfitabilityChecks || !BPI)
9089b1176b0SAnna Thomas     return true;
9099b1176b0SAnna Thomas 
9109b1176b0SAnna Thomas   SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
9119b1176b0SAnna Thomas   L->getExitEdges(ExitEdges);
9129b1176b0SAnna Thomas   // If there is only one exiting edge in the loop, it is always profitable to
9139b1176b0SAnna Thomas   // predicate the loop.
9149b1176b0SAnna Thomas   if (ExitEdges.size() == 1)
9159b1176b0SAnna Thomas     return true;
9169b1176b0SAnna Thomas 
9179b1176b0SAnna Thomas   // Calculate the exiting probabilities of all exiting edges from the loop,
9189b1176b0SAnna Thomas   // starting with the LatchExitProbability.
9199b1176b0SAnna Thomas   // Heuristic for profitability: If any of the exiting blocks' probability of
9209b1176b0SAnna Thomas   // exiting the loop is larger than exiting through the latch block, it's not
9219b1176b0SAnna Thomas   // profitable to predicate the loop.
9229b1176b0SAnna Thomas   auto *LatchBlock = L->getLoopLatch();
9239b1176b0SAnna Thomas   assert(LatchBlock && "Should have a single latch at this point!");
9249b1176b0SAnna Thomas   auto *LatchTerm = LatchBlock->getTerminator();
9259b1176b0SAnna Thomas   assert(LatchTerm->getNumSuccessors() == 2 &&
9269b1176b0SAnna Thomas          "expected to be an exiting block with 2 succs!");
9279b1176b0SAnna Thomas   unsigned LatchBrExitIdx =
9289b1176b0SAnna Thomas       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
9299b1176b0SAnna Thomas   BranchProbability LatchExitProbability =
9309b1176b0SAnna Thomas       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
9319b1176b0SAnna Thomas 
9329b1176b0SAnna Thomas   // Protect against degenerate inputs provided by the user. Providing a value
9339b1176b0SAnna Thomas   // less than one, can invert the definition of profitable loop predication.
9349b1176b0SAnna Thomas   float ScaleFactor = LatchExitProbabilityScale;
9359b1176b0SAnna Thomas   if (ScaleFactor < 1) {
936d34e60caSNicola Zaghen     LLVM_DEBUG(
9379b1176b0SAnna Thomas         dbgs()
9389b1176b0SAnna Thomas         << "Ignored user setting for loop-predication-latch-probability-scale: "
9399b1176b0SAnna Thomas         << LatchExitProbabilityScale << "\n");
940d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
9419b1176b0SAnna Thomas     ScaleFactor = 1.0;
9429b1176b0SAnna Thomas   }
9439b1176b0SAnna Thomas   const auto LatchProbabilityThreshold =
9449b1176b0SAnna Thomas       LatchExitProbability * ScaleFactor;
9459b1176b0SAnna Thomas 
9469b1176b0SAnna Thomas   for (const auto &ExitEdge : ExitEdges) {
9479b1176b0SAnna Thomas     BranchProbability ExitingBlockProbability =
9489b1176b0SAnna Thomas         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
9499b1176b0SAnna Thomas     // Some exiting edge has higher probability than the latch exiting edge.
9509b1176b0SAnna Thomas     // No longer profitable to predicate.
9519b1176b0SAnna Thomas     if (ExitingBlockProbability > LatchProbabilityThreshold)
9529b1176b0SAnna Thomas       return false;
9539b1176b0SAnna Thomas   }
9549b1176b0SAnna Thomas   // Using BPI, we have concluded that the most probable way to exit from the
9559b1176b0SAnna Thomas   // loop is through the latch (or there's no profile information and all
9569b1176b0SAnna Thomas   // exits are equally likely).
9579b1176b0SAnna Thomas   return true;
9589b1176b0SAnna Thomas }
9599b1176b0SAnna Thomas 
9608fb3d57eSArtur Pilipenko bool LoopPredication::runOnLoop(Loop *Loop) {
9618fb3d57eSArtur Pilipenko   L = Loop;
9628fb3d57eSArtur Pilipenko 
963d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Analyzing ");
964d34e60caSNicola Zaghen   LLVM_DEBUG(L->dump());
9658fb3d57eSArtur Pilipenko 
9668fb3d57eSArtur Pilipenko   Module *M = L->getHeader()->getModule();
9678fb3d57eSArtur Pilipenko 
9688fb3d57eSArtur Pilipenko   // There is nothing to do if the module doesn't use guards
9698fb3d57eSArtur Pilipenko   auto *GuardDecl =
9708fb3d57eSArtur Pilipenko       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
971feb475f4SMax Kazantsev   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
972feb475f4SMax Kazantsev   auto *WCDecl = M->getFunction(
973feb475f4SMax Kazantsev       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
974feb475f4SMax Kazantsev   bool HasWidenableConditions =
975feb475f4SMax Kazantsev       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
976feb475f4SMax Kazantsev   if (!HasIntrinsicGuards && !HasWidenableConditions)
9778fb3d57eSArtur Pilipenko     return false;
9788fb3d57eSArtur Pilipenko 
9798fb3d57eSArtur Pilipenko   DL = &M->getDataLayout();
9808fb3d57eSArtur Pilipenko 
9818fb3d57eSArtur Pilipenko   Preheader = L->getLoopPreheader();
9828fb3d57eSArtur Pilipenko   if (!Preheader)
9838fb3d57eSArtur Pilipenko     return false;
9848fb3d57eSArtur Pilipenko 
985889dc1e3SArtur Pilipenko   auto LatchCheckOpt = parseLoopLatchICmp();
986889dc1e3SArtur Pilipenko   if (!LatchCheckOpt)
987889dc1e3SArtur Pilipenko     return false;
988889dc1e3SArtur Pilipenko   LatchCheck = *LatchCheckOpt;
989889dc1e3SArtur Pilipenko 
990d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Latch check:\n");
991d34e60caSNicola Zaghen   LLVM_DEBUG(LatchCheck.dump());
99268797214SAnna Thomas 
9939b1176b0SAnna Thomas   if (!isLoopProfitableToPredicate()) {
994d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
9959b1176b0SAnna Thomas     return false;
9969b1176b0SAnna Thomas   }
9978fb3d57eSArtur Pilipenko   // Collect all the guards into a vector and process later, so as not
9988fb3d57eSArtur Pilipenko   // to invalidate the instruction iterator.
9998fb3d57eSArtur Pilipenko   SmallVector<IntrinsicInst *, 4> Guards;
1000feb475f4SMax Kazantsev   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1001feb475f4SMax Kazantsev   for (const auto BB : L->blocks()) {
10028fb3d57eSArtur Pilipenko     for (auto &I : *BB)
100328298e96SMax Kazantsev       if (isGuard(&I))
100428298e96SMax Kazantsev         Guards.push_back(cast<IntrinsicInst>(&I));
1005feb475f4SMax Kazantsev     if (PredicateWidenableBranchGuards &&
1006feb475f4SMax Kazantsev         isGuardAsWidenableBranch(BB->getTerminator()))
1007feb475f4SMax Kazantsev       GuardsAsWidenableBranches.push_back(
1008feb475f4SMax Kazantsev           cast<BranchInst>(BB->getTerminator()));
1009feb475f4SMax Kazantsev   }
10108fb3d57eSArtur Pilipenko 
1011feb475f4SMax Kazantsev   if (Guards.empty() && GuardsAsWidenableBranches.empty())
101246c4e0a4SArtur Pilipenko     return false;
101346c4e0a4SArtur Pilipenko 
10148fb3d57eSArtur Pilipenko   SCEVExpander Expander(*SE, *DL, "loop-predication");
10158fb3d57eSArtur Pilipenko 
10168fb3d57eSArtur Pilipenko   bool Changed = false;
10178fb3d57eSArtur Pilipenko   for (auto *Guard : Guards)
10188fb3d57eSArtur Pilipenko     Changed |= widenGuardConditions(Guard, Expander);
1019feb475f4SMax Kazantsev   for (auto *Guard : GuardsAsWidenableBranches)
1020feb475f4SMax Kazantsev     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
10218fb3d57eSArtur Pilipenko 
10228fb3d57eSArtur Pilipenko   return Changed;
10238fb3d57eSArtur Pilipenko }
1024