1 //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-interchange"
46 
47 namespace {
48 
49 typedef SmallVector<Loop *, 8> LoopVector;
50 
51 // TODO: Check if we can use a sparse matrix here.
52 typedef std::vector<std::vector<char>> CharMatrix;
53 
54 // Maximum number of dependencies that can be handled in the dependency matrix.
55 static const unsigned MaxMemInstrCount = 100;
56 
57 // Maximum loop depth supported.
58 static const unsigned MaxLoopNestDepth = 10;
59 
60 struct LoopInterchange;
61 
62 #ifdef DUMP_DEP_MATRICIES
63 void printDepMatrix(CharMatrix &DepMatrix) {
64   for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
65     std::vector<char> Vec = *I;
66     for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
67       DEBUG(dbgs() << *II << " ");
68     DEBUG(dbgs() << "\n");
69   }
70 }
71 #endif
72 
73 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
74                                      Loop *L, DependenceInfo *DI) {
75   typedef SmallVector<Value *, 16> ValueVector;
76   ValueVector MemInstr;
77 
78   if (Level > MaxLoopNestDepth) {
79     DEBUG(dbgs() << "Cannot handle loops of depth greater than "
80                  << MaxLoopNestDepth << "\n");
81     return false;
82   }
83 
84   // For each block.
85   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
86        BB != BE; ++BB) {
87     // Scan the BB and collect legal loads and stores.
88     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
89          ++I) {
90       Instruction *Ins = dyn_cast<Instruction>(I);
91       if (!Ins)
92         return false;
93       LoadInst *Ld = dyn_cast<LoadInst>(I);
94       StoreInst *St = dyn_cast<StoreInst>(I);
95       if (!St && !Ld)
96         continue;
97       if (Ld && !Ld->isSimple())
98         return false;
99       if (St && !St->isSimple())
100         return false;
101       MemInstr.push_back(&*I);
102     }
103   }
104 
105   DEBUG(dbgs() << "Found " << MemInstr.size()
106                << " Loads and Stores to analyze\n");
107 
108   ValueVector::iterator I, IE, J, JE;
109 
110   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
111     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
112       std::vector<char> Dep;
113       Instruction *Src = dyn_cast<Instruction>(*I);
114       Instruction *Dst = dyn_cast<Instruction>(*J);
115       if (Src == Dst)
116         continue;
117       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
118         continue;
119       if (auto D = DI->depends(Src, Dst, true)) {
120         DEBUG(dbgs() << "Found Dependency between Src and Dst\n"
121                      << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
122         if (D->isFlow()) {
123           // TODO: Handle Flow dependence.Check if it is sufficient to populate
124           // the Dependence Matrix with the direction reversed.
125           DEBUG(dbgs() << "Flow dependence not handled\n");
126           return false;
127         }
128         if (D->isAnti()) {
129           DEBUG(dbgs() << "Found Anti dependence\n");
130           unsigned Levels = D->getLevels();
131           char Direction;
132           for (unsigned II = 1; II <= Levels; ++II) {
133             const SCEV *Distance = D->getDistance(II);
134             const SCEVConstant *SCEVConst =
135                 dyn_cast_or_null<SCEVConstant>(Distance);
136             if (SCEVConst) {
137               const ConstantInt *CI = SCEVConst->getValue();
138               if (CI->isNegative())
139                 Direction = '<';
140               else if (CI->isZero())
141                 Direction = '=';
142               else
143                 Direction = '>';
144               Dep.push_back(Direction);
145             } else if (D->isScalar(II)) {
146               Direction = 'S';
147               Dep.push_back(Direction);
148             } else {
149               unsigned Dir = D->getDirection(II);
150               if (Dir == Dependence::DVEntry::LT ||
151                   Dir == Dependence::DVEntry::LE)
152                 Direction = '<';
153               else if (Dir == Dependence::DVEntry::GT ||
154                        Dir == Dependence::DVEntry::GE)
155                 Direction = '>';
156               else if (Dir == Dependence::DVEntry::EQ)
157                 Direction = '=';
158               else
159                 Direction = '*';
160               Dep.push_back(Direction);
161             }
162           }
163           while (Dep.size() != Level) {
164             Dep.push_back('I');
165           }
166 
167           DepMatrix.push_back(Dep);
168           if (DepMatrix.size() > MaxMemInstrCount) {
169             DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
170                          << " dependencies inside loop\n");
171             return false;
172           }
173         }
174       }
175     }
176   }
177 
178   // We don't have a DepMatrix to check legality return false.
179   if (DepMatrix.size() == 0)
180     return false;
181   return true;
182 }
183 
184 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
185 // matrix by exchanging the two columns.
186 static void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
187                                    unsigned ToIndx) {
188   unsigned numRows = DepMatrix.size();
189   for (unsigned i = 0; i < numRows; ++i) {
190     char TmpVal = DepMatrix[i][ToIndx];
191     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
192     DepMatrix[i][FromIndx] = TmpVal;
193   }
194 }
195 
196 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
197 // '>'
198 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
199                                    unsigned Column) {
200   for (unsigned i = 0; i <= Column; ++i) {
201     if (DepMatrix[Row][i] == '<')
202       return false;
203     if (DepMatrix[Row][i] == '>')
204       return true;
205   }
206   // All dependencies were '=','S' or 'I'
207   return false;
208 }
209 
210 // Checks if no dependence exist in the dependency matrix in Row before Column.
211 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
212                                  unsigned Column) {
213   for (unsigned i = 0; i < Column; ++i) {
214     if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
215         DepMatrix[Row][i] != 'I')
216       return false;
217   }
218   return true;
219 }
220 
221 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
222                                 unsigned OuterLoopId, char InnerDep,
223                                 char OuterDep) {
224 
225   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
226     return false;
227 
228   if (InnerDep == OuterDep)
229     return true;
230 
231   // It is legal to interchange if and only if after interchange no row has a
232   // '>' direction as the leftmost non-'='.
233 
234   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
235     return true;
236 
237   if (InnerDep == '<')
238     return true;
239 
240   if (InnerDep == '>') {
241     // If OuterLoopId represents outermost loop then interchanging will make the
242     // 1st dependency as '>'
243     if (OuterLoopId == 0)
244       return false;
245 
246     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
247     // interchanging will result in this row having an outermost non '='
248     // dependency of '>'
249     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
250       return true;
251   }
252 
253   return false;
254 }
255 
256 // Checks if it is legal to interchange 2 loops.
257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
258 // if
259 // the direction matrix, after the same permutation is applied to its columns,
260 // has no ">" direction as the leftmost non-"=" direction in any row.
261 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
262                                       unsigned InnerLoopId,
263                                       unsigned OuterLoopId) {
264 
265   unsigned NumRows = DepMatrix.size();
266   // For each row check if it is valid to interchange.
267   for (unsigned Row = 0; Row < NumRows; ++Row) {
268     char InnerDep = DepMatrix[Row][InnerLoopId];
269     char OuterDep = DepMatrix[Row][OuterLoopId];
270     if (InnerDep == '*' || OuterDep == '*')
271       return false;
272     else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
273                                   OuterDep))
274       return false;
275   }
276   return true;
277 }
278 
279 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
280 
281   DEBUG(dbgs() << "Calling populateWorklist on Func: "
282                << L.getHeader()->getParent()->getName() << " Loop: %"
283                << L.getHeader()->getName() << '\n');
284   LoopVector LoopList;
285   Loop *CurrentLoop = &L;
286   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
287   while (!Vec->empty()) {
288     // The current loop has multiple subloops in it hence it is not tightly
289     // nested.
290     // Discard all loops above it added into Worklist.
291     if (Vec->size() != 1) {
292       LoopList.clear();
293       return;
294     }
295     LoopList.push_back(CurrentLoop);
296     CurrentLoop = Vec->front();
297     Vec = &CurrentLoop->getSubLoops();
298   }
299   LoopList.push_back(CurrentLoop);
300   V.push_back(std::move(LoopList));
301   DEBUG(dbgs() << "Worklist size = " << V.size() << "\n");
302 }
303 
304 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
305   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
306   if (InnerIndexVar)
307     return InnerIndexVar;
308   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
309     return nullptr;
310   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
311     PHINode *PhiVar = cast<PHINode>(I);
312     Type *PhiTy = PhiVar->getType();
313     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
314         !PhiTy->isPointerTy())
315       return nullptr;
316     const SCEVAddRecExpr *AddRec =
317         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
318     if (!AddRec || !AddRec->isAffine())
319       continue;
320     const SCEV *Step = AddRec->getStepRecurrence(*SE);
321     const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
322     if (!C)
323       continue;
324     // Found the induction variable.
325     // FIXME: Handle loops with more than one induction variable. Note that,
326     // currently, legality makes sure we have only one induction variable.
327     return PhiVar;
328   }
329   return nullptr;
330 }
331 
332 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
333 class LoopInterchangeLegality {
334 public:
335   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
336                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA)
337       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
338         PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {}
339 
340   /// Check if the loops can be interchanged.
341   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
342                            CharMatrix &DepMatrix);
343   /// Check if the loop structure is understood. We do not handle triangular
344   /// loops for now.
345   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
346 
347   bool currentLimitations();
348 
349   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
350 
351 private:
352   bool tightlyNested(Loop *Outer, Loop *Inner);
353   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
354   bool areAllUsesReductions(Instruction *Ins, Loop *L);
355   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
356   bool findInductionAndReductions(Loop *L,
357                                   SmallVector<PHINode *, 8> &Inductions,
358                                   SmallVector<PHINode *, 8> &Reductions);
359   Loop *OuterLoop;
360   Loop *InnerLoop;
361 
362   ScalarEvolution *SE;
363   LoopInfo *LI;
364   DominatorTree *DT;
365   bool PreserveLCSSA;
366 
367   bool InnerLoopHasReduction;
368 };
369 
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
375       : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
376 
377   /// Check if the loop interchange is profitable.
378   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
379                     CharMatrix &DepMatrix);
380 
381 private:
382   int getInstrOrderCost();
383 
384   Loop *OuterLoop;
385   Loop *InnerLoop;
386 
387   /// Scev analysis.
388   ScalarEvolution *SE;
389 };
390 
391 /// LoopInterchangeTransform interchanges the loop.
392 class LoopInterchangeTransform {
393 public:
394   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
395                            LoopInfo *LI, DominatorTree *DT,
396                            BasicBlock *LoopNestExit,
397                            bool InnerLoopContainsReductions)
398       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
399         LoopExit(LoopNestExit),
400         InnerLoopHasReduction(InnerLoopContainsReductions) {}
401 
402   /// Interchange OuterLoop and InnerLoop.
403   bool transform();
404   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
405   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
406 
407 private:
408   void splitInnerLoopLatch(Instruction *);
409   void splitInnerLoopHeader();
410   bool adjustLoopLinks();
411   void adjustLoopPreheaders();
412   bool adjustLoopBranches();
413   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
414                            BasicBlock *NewPred);
415 
416   Loop *OuterLoop;
417   Loop *InnerLoop;
418 
419   /// Scev analysis.
420   ScalarEvolution *SE;
421   LoopInfo *LI;
422   DominatorTree *DT;
423   BasicBlock *LoopExit;
424   bool InnerLoopHasReduction;
425 };
426 
427 // Main LoopInterchange Pass.
428 struct LoopInterchange : public FunctionPass {
429   static char ID;
430   ScalarEvolution *SE;
431   LoopInfo *LI;
432   DependenceInfo *DI;
433   DominatorTree *DT;
434   bool PreserveLCSSA;
435   LoopInterchange()
436       : FunctionPass(ID), SE(nullptr), LI(nullptr), DI(nullptr), DT(nullptr) {
437     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
438   }
439 
440   void getAnalysisUsage(AnalysisUsage &AU) const override {
441     AU.addRequired<ScalarEvolutionWrapperPass>();
442     AU.addRequired<AAResultsWrapperPass>();
443     AU.addRequired<DominatorTreeWrapperPass>();
444     AU.addRequired<LoopInfoWrapperPass>();
445     AU.addRequired<DependenceAnalysisWrapperPass>();
446     AU.addRequiredID(LoopSimplifyID);
447     AU.addRequiredID(LCSSAID);
448   }
449 
450   bool runOnFunction(Function &F) override {
451     if (skipFunction(F))
452       return false;
453 
454     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
455     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
456     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
457     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
458     DT = DTWP ? &DTWP->getDomTree() : nullptr;
459     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
460 
461     // Build up a worklist of loop pairs to analyze.
462     SmallVector<LoopVector, 8> Worklist;
463 
464     for (Loop *L : *LI)
465       populateWorklist(*L, Worklist);
466 
467     bool Changed = true;
468     while (!Worklist.empty()) {
469       LoopVector LoopList = Worklist.pop_back_val();
470       Changed = processLoopList(LoopList, F);
471     }
472     return Changed;
473   }
474 
475   bool isComputableLoopNest(LoopVector LoopList) {
476     for (Loop *L : LoopList) {
477       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
478       if (ExitCountOuter == SE->getCouldNotCompute()) {
479         DEBUG(dbgs() << "Couldn't compute Backedge count\n");
480         return false;
481       }
482       if (L->getNumBackEdges() != 1) {
483         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
484         return false;
485       }
486       if (!L->getExitingBlock()) {
487         DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
488         return false;
489       }
490     }
491     return true;
492   }
493 
494   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
495     // TODO: Add a better heuristic to select the loop to be interchanged based
496     // on the dependence matrix. Currently we select the innermost loop.
497     return LoopList.size() - 1;
498   }
499 
500   bool processLoopList(LoopVector LoopList, Function &F) {
501 
502     bool Changed = false;
503     CharMatrix DependencyMatrix;
504     if (LoopList.size() < 2) {
505       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
506       return false;
507     }
508     if (!isComputableLoopNest(LoopList)) {
509       DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
510       return false;
511     }
512     Loop *OuterMostLoop = *(LoopList.begin());
513 
514     DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
515                  << "\n");
516 
517     if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
518                                   OuterMostLoop, DI)) {
519       DEBUG(dbgs() << "Populating Dependency matrix failed\n");
520       return false;
521     }
522 #ifdef DUMP_DEP_MATRICIES
523     DEBUG(dbgs() << "Dependence before inter change \n");
524     printDepMatrix(DependencyMatrix);
525 #endif
526 
527     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
528     BranchInst *OuterMostLoopLatchBI =
529         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
530     if (!OuterMostLoopLatchBI)
531       return false;
532 
533     // Since we currently do not handle LCSSA PHI's any failure in loop
534     // condition will now branch to LoopNestExit.
535     // TODO: This should be removed once we handle LCSSA PHI nodes.
536 
537     // Get the Outermost loop exit.
538     BasicBlock *LoopNestExit;
539     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
540       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
541     else
542       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
543 
544     if (isa<PHINode>(LoopNestExit->begin())) {
545       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
546                       "since on failure all loops branch to loop nest exit.\n");
547       return false;
548     }
549 
550     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
551     // Move the selected loop outwards to the best possible position.
552     for (unsigned i = SelecLoopId; i > 0; i--) {
553       bool Interchanged =
554           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
555       if (!Interchanged)
556         return Changed;
557       // Loops interchanged reflect the same in LoopList
558       std::swap(LoopList[i - 1], LoopList[i]);
559 
560       // Update the DependencyMatrix
561       interChangeDepedencies(DependencyMatrix, i, i - 1);
562       DT->recalculate(F);
563 #ifdef DUMP_DEP_MATRICIES
564       DEBUG(dbgs() << "Dependence after inter change \n");
565       printDepMatrix(DependencyMatrix);
566 #endif
567       Changed |= Interchanged;
568     }
569     return Changed;
570   }
571 
572   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
573                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
574                    std::vector<std::vector<char>> &DependencyMatrix) {
575 
576     DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
577                  << " and OuterLoopId = " << OuterLoopId << "\n");
578     Loop *InnerLoop = LoopList[InnerLoopId];
579     Loop *OuterLoop = LoopList[OuterLoopId];
580 
581     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
582                                 PreserveLCSSA);
583     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
584       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
585       return false;
586     }
587     DEBUG(dbgs() << "Loops are legal to interchange\n");
588     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
589     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
590       DEBUG(dbgs() << "Interchanging Loops not profitable\n");
591       return false;
592     }
593 
594     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
595                                  LoopNestExit, LIL.hasInnerLoopReduction());
596     LIT.transform();
597     DEBUG(dbgs() << "Loops interchanged\n");
598     return true;
599   }
600 };
601 
602 } // end of namespace
603 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
604   return none_of(Ins->users(), [=](User *U) -> bool {
605     auto *UserIns = dyn_cast<PHINode>(U);
606     RecurrenceDescriptor RD;
607     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
608   });
609 }
610 
611 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
612     BasicBlock *BB) {
613   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
614     // Load corresponding to reduction PHI's are safe while concluding if
615     // tightly nested.
616     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
617       if (!areAllUsesReductions(L, InnerLoop))
618         return true;
619     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
620       return true;
621   }
622   return false;
623 }
624 
625 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
626     BasicBlock *BB) {
627   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
628     // Stores corresponding to reductions are safe while concluding if tightly
629     // nested.
630     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
631       PHINode *PHI = dyn_cast<PHINode>(L->getOperand(0));
632       if (!PHI)
633         return true;
634     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
635       return true;
636   }
637   return false;
638 }
639 
640 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
641   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
642   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
643   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
644 
645   DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
646 
647   // A perfectly nested loop will not have any branch in between the outer and
648   // inner block i.e. outer header will branch to either inner preheader and
649   // outerloop latch.
650   BranchInst *outerLoopHeaderBI =
651       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
652   if (!outerLoopHeaderBI)
653     return false;
654   unsigned num = outerLoopHeaderBI->getNumSuccessors();
655   for (unsigned i = 0; i < num; i++) {
656     if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
657         outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
658       return false;
659   }
660 
661   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
662   // We do not have any basic block in between now make sure the outer header
663   // and outer loop latch doesn't contain any unsafe instructions.
664   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
665       containsUnsafeInstructionsInLatch(OuterLoopLatch))
666     return false;
667 
668   DEBUG(dbgs() << "Loops are perfectly nested \n");
669   // We have a perfect loop nest.
670   return true;
671 }
672 
673 
674 bool LoopInterchangeLegality::isLoopStructureUnderstood(
675     PHINode *InnerInduction) {
676 
677   unsigned Num = InnerInduction->getNumOperands();
678   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
679   for (unsigned i = 0; i < Num; ++i) {
680     Value *Val = InnerInduction->getOperand(i);
681     if (isa<Constant>(Val))
682       continue;
683     Instruction *I = dyn_cast<Instruction>(Val);
684     if (!I)
685       return false;
686     // TODO: Handle triangular loops.
687     // e.g. for(int i=0;i<N;i++)
688     //        for(int j=i;j<N;j++)
689     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
690     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
691             InnerLoopPreheader &&
692         !OuterLoop->isLoopInvariant(I)) {
693       return false;
694     }
695   }
696   return true;
697 }
698 
699 bool LoopInterchangeLegality::findInductionAndReductions(
700     Loop *L, SmallVector<PHINode *, 8> &Inductions,
701     SmallVector<PHINode *, 8> &Reductions) {
702   if (!L->getLoopLatch() || !L->getLoopPredecessor())
703     return false;
704   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
705     RecurrenceDescriptor RD;
706     InductionDescriptor ID;
707     PHINode *PHI = cast<PHINode>(I);
708     if (InductionDescriptor::isInductionPHI(PHI, L, SE, ID))
709       Inductions.push_back(PHI);
710     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
711       Reductions.push_back(PHI);
712     else {
713       DEBUG(
714           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
715       return false;
716     }
717   }
718   return true;
719 }
720 
721 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
722   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
723     PHINode *PHI = cast<PHINode>(I);
724     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
725     if (PHI->getNumIncomingValues() > 1)
726       return false;
727     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
728     if (!Ins)
729       return false;
730     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
731     // exits lcssa phi else it would not be tightly nested.
732     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
733       return false;
734   }
735   return true;
736 }
737 
738 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
739                                          BasicBlock *LoopHeader) {
740   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
741     unsigned Num = BI->getNumSuccessors();
742     assert(Num == 2);
743     for (unsigned i = 0; i < Num; ++i) {
744       if (BI->getSuccessor(i) == LoopHeader)
745         continue;
746       return BI->getSuccessor(i);
747     }
748   }
749   return nullptr;
750 }
751 
752 // This function indicates the current limitations in the transform as a result
753 // of which we do not proceed.
754 bool LoopInterchangeLegality::currentLimitations() {
755 
756   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
757   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
758   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
759   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
760   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
761 
762   PHINode *InnerInductionVar;
763   SmallVector<PHINode *, 8> Inductions;
764   SmallVector<PHINode *, 8> Reductions;
765   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions))
766     return true;
767 
768   // TODO: Currently we handle only loops with 1 induction variable.
769   if (Inductions.size() != 1) {
770     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
771                  << "Failed to interchange due to current limitation\n");
772     return true;
773   }
774   if (Reductions.size() > 0)
775     InnerLoopHasReduction = true;
776 
777   InnerInductionVar = Inductions.pop_back_val();
778   Reductions.clear();
779   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions))
780     return true;
781 
782   // Outer loop cannot have reduction because then loops will not be tightly
783   // nested.
784   if (!Reductions.empty())
785     return true;
786   // TODO: Currently we handle only loops with 1 induction variable.
787   if (Inductions.size() != 1)
788     return true;
789 
790   // TODO: Triangular loops are not handled for now.
791   if (!isLoopStructureUnderstood(InnerInductionVar)) {
792     DEBUG(dbgs() << "Loop structure not understood by pass\n");
793     return true;
794   }
795 
796   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
797   BasicBlock *LoopExitBlock =
798       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
799   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true))
800     return true;
801 
802   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
803   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false))
804     return true;
805 
806   // TODO: Current limitation: Since we split the inner loop latch at the point
807   // were induction variable is incremented (induction.next); We cannot have
808   // more than 1 user of induction.next since it would result in broken code
809   // after split.
810   // e.g.
811   // for(i=0;i<N;i++) {
812   //    for(j = 0;j<M;j++) {
813   //      A[j+1][i+2] = A[j][i]+k;
814   //  }
815   // }
816   Instruction *InnerIndexVarInc = nullptr;
817   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
818     InnerIndexVarInc =
819         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
820   else
821     InnerIndexVarInc =
822         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
823 
824   if (!InnerIndexVarInc)
825     return true;
826 
827   // Since we split the inner loop latch on this induction variable. Make sure
828   // we do not have any instruction between the induction variable and branch
829   // instruction.
830 
831   bool FoundInduction = false;
832   for (const Instruction &I : reverse(*InnerLoopLatch)) {
833     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I))
834       continue;
835     // We found an instruction. If this is not induction variable then it is not
836     // safe to split this loop latch.
837     if (!I.isIdenticalTo(InnerIndexVarInc))
838       return true;
839 
840     FoundInduction = true;
841     break;
842   }
843   // The loop latch ended and we didn't find the induction variable return as
844   // current limitation.
845   if (!FoundInduction)
846     return true;
847 
848   return false;
849 }
850 
851 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
852                                                   unsigned OuterLoopId,
853                                                   CharMatrix &DepMatrix) {
854 
855   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
856     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
857                  << "and OuterLoopId = " << OuterLoopId
858                  << "due to dependence\n");
859     return false;
860   }
861 
862   // Create unique Preheaders if we already do not have one.
863   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
864   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
865 
866   // Create  a unique outer preheader -
867   // 1) If OuterLoop preheader is not present.
868   // 2) If OuterLoop Preheader is same as OuterLoop Header
869   // 3) If OuterLoop Preheader is same as Header of the previous loop.
870   // 4) If OuterLoop Preheader is Entry node.
871   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
872       isa<PHINode>(OuterLoopPreHeader->begin()) ||
873       !OuterLoopPreHeader->getUniquePredecessor()) {
874     OuterLoopPreHeader =
875         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
876   }
877 
878   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
879       InnerLoopPreHeader == OuterLoop->getHeader()) {
880     InnerLoopPreHeader =
881         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
882   }
883 
884   // TODO: The loops could not be interchanged due to current limitations in the
885   // transform module.
886   if (currentLimitations()) {
887     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
888     return false;
889   }
890 
891   // Check if the loops are tightly nested.
892   if (!tightlyNested(OuterLoop, InnerLoop)) {
893     DEBUG(dbgs() << "Loops not tightly nested\n");
894     return false;
895   }
896 
897   return true;
898 }
899 
900 int LoopInterchangeProfitability::getInstrOrderCost() {
901   unsigned GoodOrder, BadOrder;
902   BadOrder = GoodOrder = 0;
903   for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
904        BI != BE; ++BI) {
905     for (Instruction &Ins : **BI) {
906       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
907         unsigned NumOp = GEP->getNumOperands();
908         bool FoundInnerInduction = false;
909         bool FoundOuterInduction = false;
910         for (unsigned i = 0; i < NumOp; ++i) {
911           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
912           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
913           if (!AR)
914             continue;
915 
916           // If we find the inner induction after an outer induction e.g.
917           // for(int i=0;i<N;i++)
918           //   for(int j=0;j<N;j++)
919           //     A[i][j] = A[i-1][j-1]+k;
920           // then it is a good order.
921           if (AR->getLoop() == InnerLoop) {
922             // We found an InnerLoop induction after OuterLoop induction. It is
923             // a good order.
924             FoundInnerInduction = true;
925             if (FoundOuterInduction) {
926               GoodOrder++;
927               break;
928             }
929           }
930           // If we find the outer induction after an inner induction e.g.
931           // for(int i=0;i<N;i++)
932           //   for(int j=0;j<N;j++)
933           //     A[j][i] = A[j-1][i-1]+k;
934           // then it is a bad order.
935           if (AR->getLoop() == OuterLoop) {
936             // We found an OuterLoop induction after InnerLoop induction. It is
937             // a bad order.
938             FoundOuterInduction = true;
939             if (FoundInnerInduction) {
940               BadOrder++;
941               break;
942             }
943           }
944         }
945       }
946     }
947   }
948   return GoodOrder - BadOrder;
949 }
950 
951 static bool isProfitabileForVectorization(unsigned InnerLoopId,
952                                           unsigned OuterLoopId,
953                                           CharMatrix &DepMatrix) {
954   // TODO: Improve this heuristic to catch more cases.
955   // If the inner loop is loop independent or doesn't carry any dependency it is
956   // profitable to move this to outer position.
957   unsigned Row = DepMatrix.size();
958   for (unsigned i = 0; i < Row; ++i) {
959     if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
960       return false;
961     // TODO: We need to improve this heuristic.
962     if (DepMatrix[i][OuterLoopId] != '=')
963       return false;
964   }
965   // If outer loop has dependence and inner loop is loop independent then it is
966   // profitable to interchange to enable parallelism.
967   return true;
968 }
969 
970 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
971                                                 unsigned OuterLoopId,
972                                                 CharMatrix &DepMatrix) {
973 
974   // TODO: Add better profitability checks.
975   // e.g
976   // 1) Construct dependency matrix and move the one with no loop carried dep
977   //    inside to enable vectorization.
978 
979   // This is rough cost estimation algorithm. It counts the good and bad order
980   // of induction variables in the instruction and allows reordering if number
981   // of bad orders is more than good.
982   int Cost = 0;
983   Cost += getInstrOrderCost();
984   DEBUG(dbgs() << "Cost = " << Cost << "\n");
985   if (Cost < 0)
986     return true;
987 
988   // It is not profitable as per current cache profitability model. But check if
989   // we can move this loop outside to improve parallelism.
990   bool ImprovesPar =
991       isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
992   return ImprovesPar;
993 }
994 
995 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
996                                                Loop *InnerLoop) {
997   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
998        ++I) {
999     if (*I == InnerLoop) {
1000       OuterLoop->removeChildLoop(I);
1001       return;
1002     }
1003   }
1004   llvm_unreachable("Couldn't find loop");
1005 }
1006 
1007 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1008                                                 Loop *OuterLoop) {
1009   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1010   if (OuterLoopParent) {
1011     // Remove the loop from its parent loop.
1012     removeChildLoop(OuterLoopParent, OuterLoop);
1013     removeChildLoop(OuterLoop, InnerLoop);
1014     OuterLoopParent->addChildLoop(InnerLoop);
1015   } else {
1016     removeChildLoop(OuterLoop, InnerLoop);
1017     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1018   }
1019 
1020   while (!InnerLoop->empty())
1021     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1022 
1023   InnerLoop->addChildLoop(OuterLoop);
1024 }
1025 
1026 bool LoopInterchangeTransform::transform() {
1027 
1028   DEBUG(dbgs() << "transform\n");
1029   bool Transformed = false;
1030   Instruction *InnerIndexVar;
1031 
1032   if (InnerLoop->getSubLoops().size() == 0) {
1033     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1034     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1035     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1036     if (!InductionPHI) {
1037       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1038       return false;
1039     }
1040 
1041     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1042       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1043     else
1044       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1045 
1046     //
1047     // Split at the place were the induction variable is
1048     // incremented/decremented.
1049     // TODO: This splitting logic may not work always. Fix this.
1050     splitInnerLoopLatch(InnerIndexVar);
1051     DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
1052 
1053     // Splits the inner loops phi nodes out into a separate basic block.
1054     splitInnerLoopHeader();
1055     DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
1056   }
1057 
1058   Transformed |= adjustLoopLinks();
1059   if (!Transformed) {
1060     DEBUG(dbgs() << "adjustLoopLinks Failed\n");
1061     return false;
1062   }
1063 
1064   restructureLoops(InnerLoop, OuterLoop);
1065   return true;
1066 }
1067 
1068 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1069   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1070   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1071   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1072 }
1073 
1074 void LoopInterchangeTransform::splitInnerLoopHeader() {
1075 
1076   // Split the inner loop header out. Here make sure that the reduction PHI's
1077   // stay in the innerloop body.
1078   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1079   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1080   if (InnerLoopHasReduction) {
1081     // FIXME: Check if the induction PHI will always be the first PHI.
1082     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
1083         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
1084     if (LI)
1085       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
1086         L->addBasicBlockToLoop(New, *LI);
1087 
1088     // Adjust Reduction PHI's in the block.
1089     SmallVector<PHINode *, 8> PHIVec;
1090     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
1091       PHINode *PHI = dyn_cast<PHINode>(I);
1092       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1093       PHI->replaceAllUsesWith(V);
1094       PHIVec.push_back((PHI));
1095     }
1096     for (PHINode *P : PHIVec) {
1097       P->eraseFromParent();
1098     }
1099   } else {
1100     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1101   }
1102 
1103   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1104                   "InnerLoopHeader \n");
1105 }
1106 
1107 /// \brief Move all instructions except the terminator from FromBB right before
1108 /// InsertBefore
1109 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1110   auto &ToList = InsertBefore->getParent()->getInstList();
1111   auto &FromList = FromBB->getInstList();
1112 
1113   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1114                 FromBB->getTerminator()->getIterator());
1115 }
1116 
1117 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1118                                                    BasicBlock *OldPred,
1119                                                    BasicBlock *NewPred) {
1120   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1121     PHINode *PHI = cast<PHINode>(I);
1122     unsigned Num = PHI->getNumIncomingValues();
1123     for (unsigned i = 0; i < Num; ++i) {
1124       if (PHI->getIncomingBlock(i) == OldPred)
1125         PHI->setIncomingBlock(i, NewPred);
1126     }
1127   }
1128 }
1129 
1130 bool LoopInterchangeTransform::adjustLoopBranches() {
1131 
1132   DEBUG(dbgs() << "adjustLoopBranches called\n");
1133   // Adjust the loop preheader
1134   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1135   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1136   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1137   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1138   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1139   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1140   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1141   BasicBlock *InnerLoopLatchPredecessor =
1142       InnerLoopLatch->getUniquePredecessor();
1143   BasicBlock *InnerLoopLatchSuccessor;
1144   BasicBlock *OuterLoopLatchSuccessor;
1145 
1146   BranchInst *OuterLoopLatchBI =
1147       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1148   BranchInst *InnerLoopLatchBI =
1149       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1150   BranchInst *OuterLoopHeaderBI =
1151       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1152   BranchInst *InnerLoopHeaderBI =
1153       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1154 
1155   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1156       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1157       !InnerLoopHeaderBI)
1158     return false;
1159 
1160   BranchInst *InnerLoopLatchPredecessorBI =
1161       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1162   BranchInst *OuterLoopPredecessorBI =
1163       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1164 
1165   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1166     return false;
1167   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1168   if (!InnerLoopHeaderSuccessor)
1169     return false;
1170 
1171   // Adjust Loop Preheader and headers
1172 
1173   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
1174   for (unsigned i = 0; i < NumSucc; ++i) {
1175     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
1176       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
1177   }
1178 
1179   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
1180   for (unsigned i = 0; i < NumSucc; ++i) {
1181     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
1182       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
1183     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
1184       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
1185   }
1186 
1187   // Adjust reduction PHI's now that the incoming block has changed.
1188   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1189                       OuterLoopHeader);
1190 
1191   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
1192   InnerLoopHeaderBI->eraseFromParent();
1193 
1194   // -------------Adjust loop latches-----------
1195   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1196     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1197   else
1198     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1199 
1200   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
1201   for (unsigned i = 0; i < NumSucc; ++i) {
1202     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
1203       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
1204   }
1205 
1206   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1207   // the value and remove this PHI node from inner loop.
1208   SmallVector<PHINode *, 8> LcssaVec;
1209   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1210     PHINode *LcssaPhi = cast<PHINode>(I);
1211     LcssaVec.push_back(LcssaPhi);
1212   }
1213   for (PHINode *P : LcssaVec) {
1214     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1215     P->replaceAllUsesWith(Incoming);
1216     P->eraseFromParent();
1217   }
1218 
1219   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1220     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1221   else
1222     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1223 
1224   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
1225     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
1226   else
1227     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
1228 
1229   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1230 
1231   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
1232     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
1233   } else {
1234     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
1235   }
1236 
1237   return true;
1238 }
1239 void LoopInterchangeTransform::adjustLoopPreheaders() {
1240 
1241   // We have interchanged the preheaders so we need to interchange the data in
1242   // the preheader as well.
1243   // This is because the content of inner preheader was previously executed
1244   // inside the outer loop.
1245   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1246   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1247   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1248   BranchInst *InnerTermBI =
1249       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1250 
1251   // These instructions should now be executed inside the loop.
1252   // Move instruction into a new block after outer header.
1253   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1254   // These instructions were not executed previously in the loop so move them to
1255   // the older inner loop preheader.
1256   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1257 }
1258 
1259 bool LoopInterchangeTransform::adjustLoopLinks() {
1260 
1261   // Adjust all branches in the inner and outer loop.
1262   bool Changed = adjustLoopBranches();
1263   if (Changed)
1264     adjustLoopPreheaders();
1265   return Changed;
1266 }
1267 
1268 char LoopInterchange::ID = 0;
1269 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1270                       "Interchanges loops for cache reuse", false, false)
1271 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1272 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1273 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1274 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1275 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1276 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1277 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1278 
1279 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1280                     "Interchanges loops for cache reuse", false, false)
1281 
1282 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1283