1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/LoopUtils.h"
48 #include <cassert>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "loop-interchange"
55 
56 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
57 
58 static cl::opt<int> LoopInterchangeCostThreshold(
59     "loop-interchange-threshold", cl::init(0), cl::Hidden,
60     cl::desc("Interchange if you gain more than this number"));
61 
62 namespace {
63 
64 using LoopVector = SmallVector<Loop *, 8>;
65 
66 // TODO: Check if we can use a sparse matrix here.
67 using CharMatrix = std::vector<std::vector<char>>;
68 
69 } // end anonymous namespace
70 
71 // Maximum number of dependencies that can be handled in the dependency matrix.
72 static const unsigned MaxMemInstrCount = 100;
73 
74 // Maximum loop depth supported.
75 static const unsigned MaxLoopNestDepth = 10;
76 
77 #ifdef DUMP_DEP_MATRICIES
78 static void printDepMatrix(CharMatrix &DepMatrix) {
79   for (auto &Row : DepMatrix) {
80     for (auto D : Row)
81       LLVM_DEBUG(dbgs() << D << " ");
82     LLVM_DEBUG(dbgs() << "\n");
83   }
84 }
85 #endif
86 
87 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
88                                      Loop *L, DependenceInfo *DI) {
89   using ValueVector = SmallVector<Value *, 16>;
90 
91   ValueVector MemInstr;
92 
93   // For each block.
94   for (BasicBlock *BB : L->blocks()) {
95     // Scan the BB and collect legal loads and stores.
96     for (Instruction &I : *BB) {
97       if (!isa<Instruction>(I))
98         return false;
99       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
100         if (!Ld->isSimple())
101           return false;
102         MemInstr.push_back(&I);
103       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
104         if (!St->isSimple())
105           return false;
106         MemInstr.push_back(&I);
107       }
108     }
109   }
110 
111   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
112                     << " Loads and Stores to analyze\n");
113 
114   ValueVector::iterator I, IE, J, JE;
115 
116   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
117     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
118       std::vector<char> Dep;
119       Instruction *Src = cast<Instruction>(*I);
120       Instruction *Dst = cast<Instruction>(*J);
121       // Ignore Input dependencies.
122       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
123         continue;
124       // Track Output, Flow, and Anti dependencies.
125       if (auto D = DI->depends(Src, Dst, true)) {
126         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
127         LLVM_DEBUG(StringRef DepType =
128                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
129                    dbgs() << "Found " << DepType
130                           << " dependency between Src and Dst\n"
131                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
132         unsigned Levels = D->getLevels();
133         char Direction;
134         for (unsigned II = 1; II <= Levels; ++II) {
135           const SCEV *Distance = D->getDistance(II);
136           const SCEVConstant *SCEVConst =
137               dyn_cast_or_null<SCEVConstant>(Distance);
138           if (SCEVConst) {
139             const ConstantInt *CI = SCEVConst->getValue();
140             if (CI->isNegative())
141               Direction = '<';
142             else if (CI->isZero())
143               Direction = '=';
144             else
145               Direction = '>';
146             Dep.push_back(Direction);
147           } else if (D->isScalar(II)) {
148             Direction = 'S';
149             Dep.push_back(Direction);
150           } else {
151             unsigned Dir = D->getDirection(II);
152             if (Dir == Dependence::DVEntry::LT ||
153                 Dir == Dependence::DVEntry::LE)
154               Direction = '<';
155             else if (Dir == Dependence::DVEntry::GT ||
156                      Dir == Dependence::DVEntry::GE)
157               Direction = '>';
158             else if (Dir == Dependence::DVEntry::EQ)
159               Direction = '=';
160             else
161               Direction = '*';
162             Dep.push_back(Direction);
163           }
164         }
165         while (Dep.size() != Level) {
166           Dep.push_back('I');
167         }
168 
169         DepMatrix.push_back(Dep);
170         if (DepMatrix.size() > MaxMemInstrCount) {
171           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
172                             << " dependencies inside loop\n");
173           return false;
174         }
175       }
176     }
177   }
178 
179   return true;
180 }
181 
182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
183 // matrix by exchanging the two columns.
184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
185                                     unsigned ToIndx) {
186   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
187     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
188 }
189 
190 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
191 // '>'
192 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
193                                    unsigned Column) {
194   for (unsigned i = 0; i <= Column; ++i) {
195     if (DepMatrix[Row][i] == '<')
196       return false;
197     if (DepMatrix[Row][i] == '>')
198       return true;
199   }
200   // All dependencies were '=','S' or 'I'
201   return false;
202 }
203 
204 // Checks if no dependence exist in the dependency matrix in Row before Column.
205 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
206                                  unsigned Column) {
207   for (unsigned i = 0; i < Column; ++i) {
208     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
209         DepMatrix[Row][i] != 'I')
210       return false;
211   }
212   return true;
213 }
214 
215 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
216                                 unsigned OuterLoopId, char InnerDep,
217                                 char OuterDep) {
218   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
219     return false;
220 
221   if (InnerDep == OuterDep)
222     return true;
223 
224   // It is legal to interchange if and only if after interchange no row has a
225   // '>' direction as the leftmost non-'='.
226 
227   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
228     return true;
229 
230   if (InnerDep == '<')
231     return true;
232 
233   if (InnerDep == '>') {
234     // If OuterLoopId represents outermost loop then interchanging will make the
235     // 1st dependency as '>'
236     if (OuterLoopId == 0)
237       return false;
238 
239     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
240     // interchanging will result in this row having an outermost non '='
241     // dependency of '>'
242     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
243       return true;
244   }
245 
246   return false;
247 }
248 
249 // Checks if it is legal to interchange 2 loops.
250 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
251 // if the direction matrix, after the same permutation is applied to its
252 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
253 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
254                                       unsigned InnerLoopId,
255                                       unsigned OuterLoopId) {
256   unsigned NumRows = DepMatrix.size();
257   // For each row check if it is valid to interchange.
258   for (unsigned Row = 0; Row < NumRows; ++Row) {
259     char InnerDep = DepMatrix[Row][InnerLoopId];
260     char OuterDep = DepMatrix[Row][OuterLoopId];
261     if (InnerDep == '*' || OuterDep == '*')
262       return false;
263     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
264       return false;
265   }
266   return true;
267 }
268 
269 static void populateWorklist(Loop &L, LoopVector &LoopList) {
270   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
271                     << L.getHeader()->getParent()->getName() << " Loop: %"
272                     << L.getHeader()->getName() << '\n');
273   assert(LoopList.empty() && "LoopList should initially be empty!");
274   Loop *CurrentLoop = &L;
275   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
276   while (!Vec->empty()) {
277     // The current loop has multiple subloops in it hence it is not tightly
278     // nested.
279     // Discard all loops above it added into Worklist.
280     if (Vec->size() != 1) {
281       LoopList = {};
282       return;
283     }
284 
285     LoopList.push_back(CurrentLoop);
286     CurrentLoop = Vec->front();
287     Vec = &CurrentLoop->getSubLoops();
288   }
289   LoopList.push_back(CurrentLoop);
290   return;
291 }
292 
293 namespace {
294 
295 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
296 class LoopInterchangeLegality {
297 public:
298   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
299                           OptimizationRemarkEmitter *ORE)
300       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
301 
302   /// Check if the loops can be interchanged.
303   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
304                            CharMatrix &DepMatrix);
305 
306   /// Discover induction PHIs in the header of \p L. Induction
307   /// PHIs are added to \p Inductions.
308   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
309 
310   /// Check if the loop structure is understood. We do not handle triangular
311   /// loops for now.
312   bool isLoopStructureUnderstood();
313 
314   bool currentLimitations();
315 
316   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
317     return OuterInnerReductions;
318   }
319 
320   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
321     return InnerLoopInductions;
322   }
323 
324 private:
325   bool tightlyNested(Loop *Outer, Loop *Inner);
326   bool containsUnsafeInstructions(BasicBlock *BB);
327 
328   /// Discover induction and reduction PHIs in the header of \p L. Induction
329   /// PHIs are added to \p Inductions, reductions are added to
330   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
331   /// to be passed as \p InnerLoop.
332   bool findInductionAndReductions(Loop *L,
333                                   SmallVector<PHINode *, 8> &Inductions,
334                                   Loop *InnerLoop);
335 
336   Loop *OuterLoop;
337   Loop *InnerLoop;
338 
339   ScalarEvolution *SE;
340 
341   /// Interface to emit optimization remarks.
342   OptimizationRemarkEmitter *ORE;
343 
344   /// Set of reduction PHIs taking part of a reduction across the inner and
345   /// outer loop.
346   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
347 
348   /// Set of inner loop induction PHIs
349   SmallVector<PHINode *, 8> InnerLoopInductions;
350 };
351 
352 /// LoopInterchangeProfitability checks if it is profitable to interchange the
353 /// loop.
354 class LoopInterchangeProfitability {
355 public:
356   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
357                                OptimizationRemarkEmitter *ORE)
358       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
359 
360   /// Check if the loop interchange is profitable.
361   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
362                     CharMatrix &DepMatrix);
363 
364 private:
365   int getInstrOrderCost();
366 
367   Loop *OuterLoop;
368   Loop *InnerLoop;
369 
370   /// Scev analysis.
371   ScalarEvolution *SE;
372 
373   /// Interface to emit optimization remarks.
374   OptimizationRemarkEmitter *ORE;
375 };
376 
377 /// LoopInterchangeTransform interchanges the loop.
378 class LoopInterchangeTransform {
379 public:
380   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
381                            LoopInfo *LI, DominatorTree *DT,
382                            const LoopInterchangeLegality &LIL)
383       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
384 
385   /// Interchange OuterLoop and InnerLoop.
386   bool transform();
387   void restructureLoops(Loop *NewInner, Loop *NewOuter,
388                         BasicBlock *OrigInnerPreHeader,
389                         BasicBlock *OrigOuterPreHeader);
390   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
391 
392 private:
393   bool adjustLoopLinks();
394   bool adjustLoopBranches();
395 
396   Loop *OuterLoop;
397   Loop *InnerLoop;
398 
399   /// Scev analysis.
400   ScalarEvolution *SE;
401 
402   LoopInfo *LI;
403   DominatorTree *DT;
404 
405   const LoopInterchangeLegality &LIL;
406 };
407 
408 struct LoopInterchange {
409   ScalarEvolution *SE = nullptr;
410   LoopInfo *LI = nullptr;
411   DependenceInfo *DI = nullptr;
412   DominatorTree *DT = nullptr;
413 
414   /// Interface to emit optimization remarks.
415   OptimizationRemarkEmitter *ORE;
416 
417   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
418                   DominatorTree *DT, OptimizationRemarkEmitter *ORE)
419       : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
420 
421   bool run(Loop *L) {
422     if (L->getParentLoop())
423       return false;
424     SmallVector<Loop *, 8> LoopList;
425     populateWorklist(*L, LoopList);
426     return processLoopList(LoopList);
427   }
428 
429   bool run(LoopNest &LN) {
430     SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
431     for (unsigned I = 1; I < LoopList.size(); ++I)
432       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
433         return false;
434     return processLoopList(LoopList);
435   }
436 
437   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
438     for (Loop *L : LoopList) {
439       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
440       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
441         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
442         return false;
443       }
444       if (L->getNumBackEdges() != 1) {
445         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
446         return false;
447       }
448       if (!L->getExitingBlock()) {
449         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
450         return false;
451       }
452     }
453     return true;
454   }
455 
456   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
457     // TODO: Add a better heuristic to select the loop to be interchanged based
458     // on the dependence matrix. Currently we select the innermost loop.
459     return LoopList.size() - 1;
460   }
461 
462   bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
463     bool Changed = false;
464     unsigned LoopNestDepth = LoopList.size();
465     if (LoopNestDepth < 2) {
466       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
467       return false;
468     }
469     if (LoopNestDepth > MaxLoopNestDepth) {
470       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
471                         << MaxLoopNestDepth << "\n");
472       return false;
473     }
474     if (!isComputableLoopNest(LoopList)) {
475       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
476       return false;
477     }
478 
479     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
480                       << "\n");
481 
482     CharMatrix DependencyMatrix;
483     Loop *OuterMostLoop = *(LoopList.begin());
484     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
485                                   OuterMostLoop, DI)) {
486       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
487       return false;
488     }
489 #ifdef DUMP_DEP_MATRICIES
490     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
491     printDepMatrix(DependencyMatrix);
492 #endif
493 
494     // Get the Outermost loop exit.
495     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
496     if (!LoopNestExit) {
497       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
498       return false;
499     }
500 
501     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
502     // We try to achieve the globally optimal memory access for the loopnest,
503     // and do interchange based on a bubble-sort fasion. We start from
504     // the innermost loop, move it outwards to the best possible position
505     // and repeat this process.
506     for (unsigned j = SelecLoopId; j > 0; j--) {
507       bool ChangedPerIter = false;
508       for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
509         bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
510                                         DependencyMatrix);
511         if (!Interchanged)
512           continue;
513         // Loops interchanged, update LoopList accordingly.
514         std::swap(LoopList[i - 1], LoopList[i]);
515         // Update the DependencyMatrix
516         interChangeDependencies(DependencyMatrix, i, i - 1);
517 #ifdef DUMP_DEP_MATRICIES
518         LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
519         printDepMatrix(DependencyMatrix);
520 #endif
521         ChangedPerIter |= Interchanged;
522         Changed |= Interchanged;
523       }
524       // Early abort if there was no interchange during an entire round of
525       // moving loops outwards.
526       if (!ChangedPerIter)
527         break;
528     }
529     return Changed;
530   }
531 
532   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
533                    unsigned OuterLoopId,
534                    std::vector<std::vector<char>> &DependencyMatrix) {
535     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
536                       << " and OuterLoopId = " << OuterLoopId << "\n");
537     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
538     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
539       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
540       return false;
541     }
542     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
543     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
544     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
545       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
546       return false;
547     }
548 
549     ORE->emit([&]() {
550       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
551                                 InnerLoop->getStartLoc(),
552                                 InnerLoop->getHeader())
553              << "Loop interchanged with enclosing loop.";
554     });
555 
556     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
557     LIT.transform();
558     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
559     LoopsInterchanged++;
560 
561     assert(InnerLoop->isLCSSAForm(*DT) &&
562            "Inner loop not left in LCSSA form after loop interchange!");
563     assert(OuterLoop->isLCSSAForm(*DT) &&
564            "Outer loop not left in LCSSA form after loop interchange!");
565 
566     return true;
567   }
568 };
569 
570 } // end anonymous namespace
571 
572 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
573   return any_of(*BB, [](const Instruction &I) {
574     return I.mayHaveSideEffects() || I.mayReadFromMemory();
575   });
576 }
577 
578 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
579   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
580   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
581   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
582 
583   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
584 
585   // A perfectly nested loop will not have any branch in between the outer and
586   // inner block i.e. outer header will branch to either inner preheader and
587   // outerloop latch.
588   BranchInst *OuterLoopHeaderBI =
589       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
590   if (!OuterLoopHeaderBI)
591     return false;
592 
593   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
594     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
595         Succ != OuterLoopLatch)
596       return false;
597 
598   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
599   // We do not have any basic block in between now make sure the outer header
600   // and outer loop latch doesn't contain any unsafe instructions.
601   if (containsUnsafeInstructions(OuterLoopHeader) ||
602       containsUnsafeInstructions(OuterLoopLatch))
603     return false;
604 
605   // Also make sure the inner loop preheader does not contain any unsafe
606   // instructions. Note that all instructions in the preheader will be moved to
607   // the outer loop header when interchanging.
608   if (InnerLoopPreHeader != OuterLoopHeader &&
609       containsUnsafeInstructions(InnerLoopPreHeader))
610     return false;
611 
612   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
613   // Ensure the inner loop exit block flows to the outer loop latch possibly
614   // through empty blocks.
615   const BasicBlock &SuccInner =
616       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
617   if (&SuccInner != OuterLoopLatch) {
618     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
619                       << " does not lead to the outer loop latch.\n";);
620     return false;
621   }
622   // The inner loop exit block does flow to the outer loop latch and not some
623   // other BBs, now make sure it contains safe instructions, since it will be
624   // moved into the (new) inner loop after interchange.
625   if (containsUnsafeInstructions(InnerLoopExit))
626     return false;
627 
628   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
629   // We have a perfect loop nest.
630   return true;
631 }
632 
633 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
634   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
635   for (PHINode *InnerInduction : InnerLoopInductions) {
636     unsigned Num = InnerInduction->getNumOperands();
637     for (unsigned i = 0; i < Num; ++i) {
638       Value *Val = InnerInduction->getOperand(i);
639       if (isa<Constant>(Val))
640         continue;
641       Instruction *I = dyn_cast<Instruction>(Val);
642       if (!I)
643         return false;
644       // TODO: Handle triangular loops.
645       // e.g. for(int i=0;i<N;i++)
646       //        for(int j=i;j<N;j++)
647       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
648       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
649               InnerLoopPreheader &&
650           !OuterLoop->isLoopInvariant(I)) {
651         return false;
652       }
653     }
654   }
655 
656   // TODO: Handle triangular loops of another form.
657   // e.g. for(int i=0;i<N;i++)
658   //        for(int j=0;j<i;j++)
659   // or,
660   //      for(int i=0;i<N;i++)
661   //        for(int j=0;j*i<N;j++)
662   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
663   BranchInst *InnerLoopLatchBI =
664       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
665   if (!InnerLoopLatchBI->isConditional())
666     return false;
667   if (CmpInst *InnerLoopCmp =
668           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
669     Value *Op0 = InnerLoopCmp->getOperand(0);
670     Value *Op1 = InnerLoopCmp->getOperand(1);
671 
672     // LHS and RHS of the inner loop exit condition, e.g.,
673     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
674     Value *Left = nullptr;
675     Value *Right = nullptr;
676 
677     // Check if V only involves inner loop induction variable.
678     // Return true if V is InnerInduction, or a cast from
679     // InnerInduction, or a binary operator that involves
680     // InnerInduction and a constant.
681     std::function<bool(Value *)> IsPathToInnerIndVar;
682     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
683       if (llvm::is_contained(InnerLoopInductions, V))
684         return true;
685       if (isa<Constant>(V))
686         return true;
687       const Instruction *I = dyn_cast<Instruction>(V);
688       if (!I)
689         return false;
690       if (isa<CastInst>(I))
691         return IsPathToInnerIndVar(I->getOperand(0));
692       if (isa<BinaryOperator>(I))
693         return IsPathToInnerIndVar(I->getOperand(0)) &&
694                IsPathToInnerIndVar(I->getOperand(1));
695       return false;
696     };
697 
698     // In case of multiple inner loop indvars, it is okay if LHS and RHS
699     // are both inner indvar related variables.
700     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
701       return true;
702 
703     // Otherwise we check if the cmp instruction compares an inner indvar
704     // related variable (Left) with a outer loop invariant (Right).
705     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
706       Left = Op0;
707       Right = Op1;
708     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
709       Left = Op1;
710       Right = Op0;
711     }
712 
713     if (Left == nullptr)
714       return false;
715 
716     const SCEV *S = SE->getSCEV(Right);
717     if (!SE->isLoopInvariant(S, OuterLoop))
718       return false;
719   }
720 
721   return true;
722 }
723 
724 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
725 // value.
726 static Value *followLCSSA(Value *SV) {
727   PHINode *PHI = dyn_cast<PHINode>(SV);
728   if (!PHI)
729     return SV;
730 
731   if (PHI->getNumIncomingValues() != 1)
732     return SV;
733   return followLCSSA(PHI->getIncomingValue(0));
734 }
735 
736 // Check V's users to see if it is involved in a reduction in L.
737 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
738   // Reduction variables cannot be constants.
739   if (isa<Constant>(V))
740     return nullptr;
741 
742   for (Value *User : V->users()) {
743     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
744       if (PHI->getNumIncomingValues() == 1)
745         continue;
746       RecurrenceDescriptor RD;
747       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
748         // Detect floating point reduction only when it can be reordered.
749         if (RD.getExactFPMathInst() != nullptr)
750           return nullptr;
751         return PHI;
752       }
753       return nullptr;
754     }
755   }
756 
757   return nullptr;
758 }
759 
760 bool LoopInterchangeLegality::findInductionAndReductions(
761     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
762   if (!L->getLoopLatch() || !L->getLoopPredecessor())
763     return false;
764   for (PHINode &PHI : L->getHeader()->phis()) {
765     RecurrenceDescriptor RD;
766     InductionDescriptor ID;
767     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
768       Inductions.push_back(&PHI);
769     else {
770       // PHIs in inner loops need to be part of a reduction in the outer loop,
771       // discovered when checking the PHIs of the outer loop earlier.
772       if (!InnerLoop) {
773         if (!OuterInnerReductions.count(&PHI)) {
774           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
775                                "across the outer loop.\n");
776           return false;
777         }
778       } else {
779         assert(PHI.getNumIncomingValues() == 2 &&
780                "Phis in loop header should have exactly 2 incoming values");
781         // Check if we have a PHI node in the outer loop that has a reduction
782         // result from the inner loop as an incoming value.
783         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
784         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
785         if (!InnerRedPhi ||
786             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
787           LLVM_DEBUG(
788               dbgs()
789               << "Failed to recognize PHI as an induction or reduction.\n");
790           return false;
791         }
792         OuterInnerReductions.insert(&PHI);
793         OuterInnerReductions.insert(InnerRedPhi);
794       }
795     }
796   }
797   return true;
798 }
799 
800 // This function indicates the current limitations in the transform as a result
801 // of which we do not proceed.
802 bool LoopInterchangeLegality::currentLimitations() {
803   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
804 
805   // transform currently expects the loop latches to also be the exiting
806   // blocks.
807   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
808       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
809       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
810       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
811     LLVM_DEBUG(
812         dbgs() << "Loops where the latch is not the exiting block are not"
813                << " supported currently.\n");
814     ORE->emit([&]() {
815       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
816                                       OuterLoop->getStartLoc(),
817                                       OuterLoop->getHeader())
818              << "Loops where the latch is not the exiting block cannot be"
819                 " interchange currently.";
820     });
821     return true;
822   }
823 
824   SmallVector<PHINode *, 8> Inductions;
825   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
826     LLVM_DEBUG(
827         dbgs() << "Only outer loops with induction or reduction PHI nodes "
828                << "are supported currently.\n");
829     ORE->emit([&]() {
830       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
831                                       OuterLoop->getStartLoc(),
832                                       OuterLoop->getHeader())
833              << "Only outer loops with induction or reduction PHI nodes can be"
834                 " interchanged currently.";
835     });
836     return true;
837   }
838 
839   Inductions.clear();
840   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
841     LLVM_DEBUG(
842         dbgs() << "Only inner loops with induction or reduction PHI nodes "
843                << "are supported currently.\n");
844     ORE->emit([&]() {
845       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
846                                       InnerLoop->getStartLoc(),
847                                       InnerLoop->getHeader())
848              << "Only inner loops with induction or reduction PHI nodes can be"
849                 " interchange currently.";
850     });
851     return true;
852   }
853 
854   // TODO: Triangular loops are not handled for now.
855   if (!isLoopStructureUnderstood()) {
856     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
857     ORE->emit([&]() {
858       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
859                                       InnerLoop->getStartLoc(),
860                                       InnerLoop->getHeader())
861              << "Inner loop structure not understood currently.";
862     });
863     return true;
864   }
865 
866   return false;
867 }
868 
869 bool LoopInterchangeLegality::findInductions(
870     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
871   for (PHINode &PHI : L->getHeader()->phis()) {
872     InductionDescriptor ID;
873     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
874       Inductions.push_back(&PHI);
875   }
876   return !Inductions.empty();
877 }
878 
879 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
880 // users are either reduction PHIs or PHIs outside the outer loop (which means
881 // the we are only interested in the final value after the loop).
882 static bool
883 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
884                               SmallPtrSetImpl<PHINode *> &Reductions) {
885   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
886   for (PHINode &PHI : InnerExit->phis()) {
887     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
888     if (PHI.getNumIncomingValues() > 1)
889       return false;
890     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
891           PHINode *PN = dyn_cast<PHINode>(U);
892           return !PN ||
893                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
894         })) {
895       return false;
896     }
897   }
898   return true;
899 }
900 
901 // We currently support LCSSA PHI nodes in the outer loop exit, if their
902 // incoming values do not come from the outer loop latch or if the
903 // outer loop latch has a single predecessor. In that case, the value will
904 // be available if both the inner and outer loop conditions are true, which
905 // will still be true after interchanging. If we have multiple predecessor,
906 // that may not be the case, e.g. because the outer loop latch may be executed
907 // if the inner loop is not executed.
908 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
909   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
910   for (PHINode &PHI : LoopNestExit->phis()) {
911     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
912       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
913       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
914         continue;
915 
916       // The incoming value is defined in the outer loop latch. Currently we
917       // only support that in case the outer loop latch has a single predecessor.
918       // This guarantees that the outer loop latch is executed if and only if
919       // the inner loop is executed (because tightlyNested() guarantees that the
920       // outer loop header only branches to the inner loop or the outer loop
921       // latch).
922       // FIXME: We could weaken this logic and allow multiple predecessors,
923       //        if the values are produced outside the loop latch. We would need
924       //        additional logic to update the PHI nodes in the exit block as
925       //        well.
926       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
927         return false;
928     }
929   }
930   return true;
931 }
932 
933 // In case of multi-level nested loops, it may occur that lcssa phis exist in
934 // the latch of InnerLoop, i.e., when defs of the incoming values are further
935 // inside the loopnest. Sometimes those incoming values are not available
936 // after interchange, since the original inner latch will become the new outer
937 // latch which may have predecessor paths that do not include those incoming
938 // values.
939 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
940 // multi-level loop nests.
941 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
942   if (InnerLoop->getSubLoops().empty())
943     return true;
944   // If the original outer latch has only one predecessor, then values defined
945   // further inside the looploop, e.g., in the innermost loop, will be available
946   // at the new outer latch after interchange.
947   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
948     return true;
949 
950   // The outer latch has more than one predecessors, i.e., the inner
951   // exit and the inner header.
952   // PHI nodes in the inner latch are lcssa phis where the incoming values
953   // are defined further inside the loopnest. Check if those phis are used
954   // in the original inner latch. If that is the case then bail out since
955   // those incoming values may not be available at the new outer latch.
956   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
957   for (PHINode &PHI : InnerLoopLatch->phis()) {
958     for (auto *U : PHI.users()) {
959       Instruction *UI = cast<Instruction>(U);
960       if (InnerLoopLatch == UI->getParent())
961         return false;
962     }
963   }
964   return true;
965 }
966 
967 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
968                                                   unsigned OuterLoopId,
969                                                   CharMatrix &DepMatrix) {
970   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
971     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
972                       << " and OuterLoopId = " << OuterLoopId
973                       << " due to dependence\n");
974     ORE->emit([&]() {
975       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
976                                       InnerLoop->getStartLoc(),
977                                       InnerLoop->getHeader())
978              << "Cannot interchange loops due to dependences.";
979     });
980     return false;
981   }
982   // Check if outer and inner loop contain legal instructions only.
983   for (auto *BB : OuterLoop->blocks())
984     for (Instruction &I : BB->instructionsWithoutDebug())
985       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
986         // readnone functions do not prevent interchanging.
987         if (CI->onlyWritesMemory())
988           continue;
989         LLVM_DEBUG(
990             dbgs() << "Loops with call instructions cannot be interchanged "
991                    << "safely.");
992         ORE->emit([&]() {
993           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
994                                           CI->getDebugLoc(),
995                                           CI->getParent())
996                  << "Cannot interchange loops due to call instruction.";
997         });
998 
999         return false;
1000       }
1001 
1002   if (!findInductions(InnerLoop, InnerLoopInductions)) {
1003     LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
1004     return false;
1005   }
1006 
1007   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
1008     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1009     ORE->emit([&]() {
1010       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1011                                       InnerLoop->getStartLoc(),
1012                                       InnerLoop->getHeader())
1013              << "Cannot interchange loops because unsupported PHI nodes found "
1014                 "in inner loop latch.";
1015     });
1016     return false;
1017   }
1018 
1019   // TODO: The loops could not be interchanged due to current limitations in the
1020   // transform module.
1021   if (currentLimitations()) {
1022     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1023     return false;
1024   }
1025 
1026   // Check if the loops are tightly nested.
1027   if (!tightlyNested(OuterLoop, InnerLoop)) {
1028     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1029     ORE->emit([&]() {
1030       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1031                                       InnerLoop->getStartLoc(),
1032                                       InnerLoop->getHeader())
1033              << "Cannot interchange loops because they are not tightly "
1034                 "nested.";
1035     });
1036     return false;
1037   }
1038 
1039   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1040                                      OuterInnerReductions)) {
1041     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1042     ORE->emit([&]() {
1043       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1044                                       InnerLoop->getStartLoc(),
1045                                       InnerLoop->getHeader())
1046              << "Found unsupported PHI node in loop exit.";
1047     });
1048     return false;
1049   }
1050 
1051   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1052     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1053     ORE->emit([&]() {
1054       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1055                                       OuterLoop->getStartLoc(),
1056                                       OuterLoop->getHeader())
1057              << "Found unsupported PHI node in loop exit.";
1058     });
1059     return false;
1060   }
1061 
1062   return true;
1063 }
1064 
1065 int LoopInterchangeProfitability::getInstrOrderCost() {
1066   unsigned GoodOrder, BadOrder;
1067   BadOrder = GoodOrder = 0;
1068   for (BasicBlock *BB : InnerLoop->blocks()) {
1069     for (Instruction &Ins : *BB) {
1070       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1071         unsigned NumOp = GEP->getNumOperands();
1072         bool FoundInnerInduction = false;
1073         bool FoundOuterInduction = false;
1074         for (unsigned i = 0; i < NumOp; ++i) {
1075           // Skip operands that are not SCEV-able.
1076           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1077             continue;
1078 
1079           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1080           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1081           if (!AR)
1082             continue;
1083 
1084           // If we find the inner induction after an outer induction e.g.
1085           // for(int i=0;i<N;i++)
1086           //   for(int j=0;j<N;j++)
1087           //     A[i][j] = A[i-1][j-1]+k;
1088           // then it is a good order.
1089           if (AR->getLoop() == InnerLoop) {
1090             // We found an InnerLoop induction after OuterLoop induction. It is
1091             // a good order.
1092             FoundInnerInduction = true;
1093             if (FoundOuterInduction) {
1094               GoodOrder++;
1095               break;
1096             }
1097           }
1098           // If we find the outer induction after an inner induction e.g.
1099           // for(int i=0;i<N;i++)
1100           //   for(int j=0;j<N;j++)
1101           //     A[j][i] = A[j-1][i-1]+k;
1102           // then it is a bad order.
1103           if (AR->getLoop() == OuterLoop) {
1104             // We found an OuterLoop induction after InnerLoop induction. It is
1105             // a bad order.
1106             FoundOuterInduction = true;
1107             if (FoundInnerInduction) {
1108               BadOrder++;
1109               break;
1110             }
1111           }
1112         }
1113       }
1114     }
1115   }
1116   return GoodOrder - BadOrder;
1117 }
1118 
1119 static bool isProfitableForVectorization(unsigned InnerLoopId,
1120                                          unsigned OuterLoopId,
1121                                          CharMatrix &DepMatrix) {
1122   // TODO: Improve this heuristic to catch more cases.
1123   // If the inner loop is loop independent or doesn't carry any dependency it is
1124   // profitable to move this to outer position.
1125   for (auto &Row : DepMatrix) {
1126     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1127       return false;
1128     // TODO: We need to improve this heuristic.
1129     if (Row[OuterLoopId] != '=')
1130       return false;
1131   }
1132   // If outer loop has dependence and inner loop is loop independent then it is
1133   // profitable to interchange to enable parallelism.
1134   // If there are no dependences, interchanging will not improve anything.
1135   return !DepMatrix.empty();
1136 }
1137 
1138 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1139                                                 unsigned OuterLoopId,
1140                                                 CharMatrix &DepMatrix) {
1141   // TODO: Add better profitability checks.
1142   // e.g
1143   // 1) Construct dependency matrix and move the one with no loop carried dep
1144   //    inside to enable vectorization.
1145 
1146   // This is rough cost estimation algorithm. It counts the good and bad order
1147   // of induction variables in the instruction and allows reordering if number
1148   // of bad orders is more than good.
1149   int Cost = getInstrOrderCost();
1150   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1151   if (Cost < -LoopInterchangeCostThreshold)
1152     return true;
1153 
1154   // It is not profitable as per current cache profitability model. But check if
1155   // we can move this loop outside to improve parallelism.
1156   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1157     return true;
1158 
1159   ORE->emit([&]() {
1160     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1161                                     InnerLoop->getStartLoc(),
1162                                     InnerLoop->getHeader())
1163            << "Interchanging loops is too costly (cost="
1164            << ore::NV("Cost", Cost) << ", threshold="
1165            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1166            << ") and it does not improve parallelism.";
1167   });
1168   return false;
1169 }
1170 
1171 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1172                                                Loop *InnerLoop) {
1173   for (Loop *L : *OuterLoop)
1174     if (L == InnerLoop) {
1175       OuterLoop->removeChildLoop(L);
1176       return;
1177     }
1178   llvm_unreachable("Couldn't find loop");
1179 }
1180 
1181 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1182 /// new inner and outer loop after interchanging: NewInner is the original
1183 /// outer loop and NewOuter is the original inner loop.
1184 ///
1185 /// Before interchanging, we have the following structure
1186 /// Outer preheader
1187 //  Outer header
1188 //    Inner preheader
1189 //    Inner header
1190 //      Inner body
1191 //      Inner latch
1192 //   outer bbs
1193 //   Outer latch
1194 //
1195 // After interchanging:
1196 // Inner preheader
1197 // Inner header
1198 //   Outer preheader
1199 //   Outer header
1200 //     Inner body
1201 //     outer bbs
1202 //     Outer latch
1203 //   Inner latch
1204 void LoopInterchangeTransform::restructureLoops(
1205     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1206     BasicBlock *OrigOuterPreHeader) {
1207   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1208   // The original inner loop preheader moves from the new inner loop to
1209   // the parent loop, if there is one.
1210   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1211   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1212 
1213   // Switch the loop levels.
1214   if (OuterLoopParent) {
1215     // Remove the loop from its parent loop.
1216     removeChildLoop(OuterLoopParent, NewInner);
1217     removeChildLoop(NewInner, NewOuter);
1218     OuterLoopParent->addChildLoop(NewOuter);
1219   } else {
1220     removeChildLoop(NewInner, NewOuter);
1221     LI->changeTopLevelLoop(NewInner, NewOuter);
1222   }
1223   while (!NewOuter->isInnermost())
1224     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1225   NewOuter->addChildLoop(NewInner);
1226 
1227   // BBs from the original inner loop.
1228   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1229 
1230   // Add BBs from the original outer loop to the original inner loop (excluding
1231   // BBs already in inner loop)
1232   for (BasicBlock *BB : NewInner->blocks())
1233     if (LI->getLoopFor(BB) == NewInner)
1234       NewOuter->addBlockEntry(BB);
1235 
1236   // Now remove inner loop header and latch from the new inner loop and move
1237   // other BBs (the loop body) to the new inner loop.
1238   BasicBlock *OuterHeader = NewOuter->getHeader();
1239   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1240   for (BasicBlock *BB : OrigInnerBBs) {
1241     // Nothing will change for BBs in child loops.
1242     if (LI->getLoopFor(BB) != NewOuter)
1243       continue;
1244     // Remove the new outer loop header and latch from the new inner loop.
1245     if (BB == OuterHeader || BB == OuterLatch)
1246       NewInner->removeBlockFromLoop(BB);
1247     else
1248       LI->changeLoopFor(BB, NewInner);
1249   }
1250 
1251   // The preheader of the original outer loop becomes part of the new
1252   // outer loop.
1253   NewOuter->addBlockEntry(OrigOuterPreHeader);
1254   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1255 
1256   // Tell SE that we move the loops around.
1257   SE->forgetLoop(NewOuter);
1258   SE->forgetLoop(NewInner);
1259 }
1260 
1261 bool LoopInterchangeTransform::transform() {
1262   bool Transformed = false;
1263 
1264   if (InnerLoop->getSubLoops().empty()) {
1265     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1266     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1267     auto &InductionPHIs = LIL.getInnerLoopInductions();
1268     if (InductionPHIs.empty()) {
1269       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1270       return false;
1271     }
1272 
1273     SmallVector<Instruction *, 8> InnerIndexVarList;
1274     for (PHINode *CurInductionPHI : InductionPHIs) {
1275       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1276         InnerIndexVarList.push_back(
1277             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1278       else
1279         InnerIndexVarList.push_back(
1280             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1281     }
1282 
1283     // Create a new latch block for the inner loop. We split at the
1284     // current latch's terminator and then move the condition and all
1285     // operands that are not either loop-invariant or the induction PHI into the
1286     // new latch block.
1287     BasicBlock *NewLatch =
1288         SplitBlock(InnerLoop->getLoopLatch(),
1289                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1290 
1291     SmallSetVector<Instruction *, 4> WorkList;
1292     unsigned i = 0;
1293     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1294       for (; i < WorkList.size(); i++) {
1295         // Duplicate instruction and move it the new latch. Update uses that
1296         // have been moved.
1297         Instruction *NewI = WorkList[i]->clone();
1298         NewI->insertBefore(NewLatch->getFirstNonPHI());
1299         assert(!NewI->mayHaveSideEffects() &&
1300                "Moving instructions with side-effects may change behavior of "
1301                "the loop nest!");
1302         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1303           Instruction *UserI = cast<Instruction>(U.getUser());
1304           if (!InnerLoop->contains(UserI->getParent()) ||
1305               UserI->getParent() == NewLatch ||
1306               llvm::is_contained(InductionPHIs, UserI))
1307             U.set(NewI);
1308         }
1309         // Add operands of moved instruction to the worklist, except if they are
1310         // outside the inner loop or are the induction PHI.
1311         for (Value *Op : WorkList[i]->operands()) {
1312           Instruction *OpI = dyn_cast<Instruction>(Op);
1313           if (!OpI ||
1314               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1315               llvm::is_contained(InductionPHIs, OpI))
1316             continue;
1317           WorkList.insert(OpI);
1318         }
1319       }
1320     };
1321 
1322     // FIXME: Should we interchange when we have a constant condition?
1323     Instruction *CondI = dyn_cast<Instruction>(
1324         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1325             ->getCondition());
1326     if (CondI)
1327       WorkList.insert(CondI);
1328     MoveInstructions();
1329     for (Instruction *InnerIndexVar : InnerIndexVarList)
1330       WorkList.insert(cast<Instruction>(InnerIndexVar));
1331     MoveInstructions();
1332 
1333     // Splits the inner loops phi nodes out into a separate basic block.
1334     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1335     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1336     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1337   }
1338 
1339   // Instructions in the original inner loop preheader may depend on values
1340   // defined in the outer loop header. Move them there, because the original
1341   // inner loop preheader will become the entry into the interchanged loop nest.
1342   // Currently we move all instructions and rely on LICM to move invariant
1343   // instructions outside the loop nest.
1344   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1345   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1346   if (InnerLoopPreHeader != OuterLoopHeader) {
1347     SmallPtrSet<Instruction *, 4> NeedsMoving;
1348     for (Instruction &I :
1349          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1350                                          std::prev(InnerLoopPreHeader->end()))))
1351       I.moveBefore(OuterLoopHeader->getTerminator());
1352   }
1353 
1354   Transformed |= adjustLoopLinks();
1355   if (!Transformed) {
1356     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1357     return false;
1358   }
1359 
1360   return true;
1361 }
1362 
1363 /// \brief Move all instructions except the terminator from FromBB right before
1364 /// InsertBefore
1365 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1366   auto &ToList = InsertBefore->getParent()->getInstList();
1367   auto &FromList = FromBB->getInstList();
1368 
1369   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1370                 FromBB->getTerminator()->getIterator());
1371 }
1372 
1373 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1374 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1375   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1376   // from BB1 afterwards.
1377   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1378   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1379   for (Instruction *I : TempInstrs)
1380     I->removeFromParent();
1381 
1382   // Move instructions from BB2 to BB1.
1383   moveBBContents(BB2, BB1->getTerminator());
1384 
1385   // Move instructions from TempInstrs to BB2.
1386   for (Instruction *I : TempInstrs)
1387     I->insertBefore(BB2->getTerminator());
1388 }
1389 
1390 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1391 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1392 // \p OldBB  is exactly once in BI's successor list.
1393 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1394                             BasicBlock *NewBB,
1395                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1396                             bool MustUpdateOnce = true) {
1397   assert((!MustUpdateOnce ||
1398           llvm::count_if(successors(BI),
1399                          [OldBB](BasicBlock *BB) {
1400                            return BB == OldBB;
1401                          }) == 1) && "BI must jump to OldBB exactly once.");
1402   bool Changed = false;
1403   for (Use &Op : BI->operands())
1404     if (Op == OldBB) {
1405       Op.set(NewBB);
1406       Changed = true;
1407     }
1408 
1409   if (Changed) {
1410     DTUpdates.push_back(
1411         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1412     DTUpdates.push_back(
1413         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1414   }
1415   assert(Changed && "Expected a successor to be updated");
1416 }
1417 
1418 // Move Lcssa PHIs to the right place.
1419 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1420                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1421                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1422                           Loop *InnerLoop, LoopInfo *LI) {
1423 
1424   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1425   // defined either in the header or latch. Those blocks will become header and
1426   // latch of the new outer loop, and the only possible users can PHI nodes
1427   // in the exit block of the loop nest or the outer loop header (reduction
1428   // PHIs, in that case, the incoming value must be defined in the inner loop
1429   // header). We can just substitute the user with the incoming value and remove
1430   // the PHI.
1431   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1432     assert(P.getNumIncomingValues() == 1 &&
1433            "Only loops with a single exit are supported!");
1434 
1435     // Incoming values are guaranteed be instructions currently.
1436     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1437     // In case of multi-level nested loops, follow LCSSA to find the incoming
1438     // value defined from the innermost loop.
1439     auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1440     // Skip phis with incoming values from the inner loop body, excluding the
1441     // header and latch.
1442     if (IncIInnerMost->getParent() != InnerLatch &&
1443         IncIInnerMost->getParent() != InnerHeader)
1444       continue;
1445 
1446     assert(all_of(P.users(),
1447                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1448                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1449                             IncI->getParent() == InnerHeader) ||
1450                            cast<PHINode>(U)->getParent() == OuterExit;
1451                   }) &&
1452            "Can only replace phis iff the uses are in the loop nest exit or "
1453            "the incoming value is defined in the inner header (it will "
1454            "dominate all loop blocks after interchanging)");
1455     P.replaceAllUsesWith(IncI);
1456     P.eraseFromParent();
1457   }
1458 
1459   SmallVector<PHINode *, 8> LcssaInnerExit;
1460   for (PHINode &P : InnerExit->phis())
1461     LcssaInnerExit.push_back(&P);
1462 
1463   SmallVector<PHINode *, 8> LcssaInnerLatch;
1464   for (PHINode &P : InnerLatch->phis())
1465     LcssaInnerLatch.push_back(&P);
1466 
1467   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1468   // If a PHI node has users outside of InnerExit, it has a use outside the
1469   // interchanged loop and we have to preserve it. We move these to
1470   // InnerLatch, which will become the new exit block for the innermost
1471   // loop after interchanging.
1472   for (PHINode *P : LcssaInnerExit)
1473     P->moveBefore(InnerLatch->getFirstNonPHI());
1474 
1475   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1476   // and we have to move them to the new inner latch.
1477   for (PHINode *P : LcssaInnerLatch)
1478     P->moveBefore(InnerExit->getFirstNonPHI());
1479 
1480   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1481   // incoming values defined in the outer loop, we have to add a new PHI
1482   // in the inner loop latch, which became the exit block of the outer loop,
1483   // after interchanging.
1484   if (OuterExit) {
1485     for (PHINode &P : OuterExit->phis()) {
1486       if (P.getNumIncomingValues() != 1)
1487         continue;
1488       // Skip Phis with incoming values defined in the inner loop. Those should
1489       // already have been updated.
1490       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1491       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1492         continue;
1493 
1494       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1495       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1496       NewPhi->setIncomingBlock(0, OuterLatch);
1497       // We might have incoming edges from other BBs, i.e., the original outer
1498       // header.
1499       for (auto *Pred : predecessors(InnerLatch)) {
1500         if (Pred == OuterLatch)
1501           continue;
1502         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1503       }
1504       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1505       P.setIncomingValue(0, NewPhi);
1506     }
1507   }
1508 
1509   // Now adjust the incoming blocks for the LCSSA PHIs.
1510   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1511   // with the new latch.
1512   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1513 }
1514 
1515 bool LoopInterchangeTransform::adjustLoopBranches() {
1516   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1517   std::vector<DominatorTree::UpdateType> DTUpdates;
1518 
1519   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1520   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1521 
1522   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1523          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1524          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1525   // Ensure that both preheaders do not contain PHI nodes and have single
1526   // predecessors. This allows us to move them easily. We use
1527   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1528   // preheaders do not satisfy those conditions.
1529   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1530       !OuterLoopPreHeader->getUniquePredecessor())
1531     OuterLoopPreHeader =
1532         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1533   if (InnerLoopPreHeader == OuterLoop->getHeader())
1534     InnerLoopPreHeader =
1535         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1536 
1537   // Adjust the loop preheader
1538   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1539   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1540   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1541   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1542   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1543   BasicBlock *InnerLoopLatchPredecessor =
1544       InnerLoopLatch->getUniquePredecessor();
1545   BasicBlock *InnerLoopLatchSuccessor;
1546   BasicBlock *OuterLoopLatchSuccessor;
1547 
1548   BranchInst *OuterLoopLatchBI =
1549       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1550   BranchInst *InnerLoopLatchBI =
1551       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1552   BranchInst *OuterLoopHeaderBI =
1553       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1554   BranchInst *InnerLoopHeaderBI =
1555       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1556 
1557   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1558       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1559       !InnerLoopHeaderBI)
1560     return false;
1561 
1562   BranchInst *InnerLoopLatchPredecessorBI =
1563       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1564   BranchInst *OuterLoopPredecessorBI =
1565       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1566 
1567   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1568     return false;
1569   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1570   if (!InnerLoopHeaderSuccessor)
1571     return false;
1572 
1573   // Adjust Loop Preheader and headers.
1574   // The branches in the outer loop predecessor and the outer loop header can
1575   // be unconditional branches or conditional branches with duplicates. Consider
1576   // this when updating the successors.
1577   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1578                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1579   // The outer loop header might or might not branch to the outer latch.
1580   // We are guaranteed to branch to the inner loop preheader.
1581   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1582     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1583     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1584                     DTUpdates,
1585                     /*MustUpdateOnce=*/false);
1586   }
1587   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1588                   InnerLoopHeaderSuccessor, DTUpdates,
1589                   /*MustUpdateOnce=*/false);
1590 
1591   // Adjust reduction PHI's now that the incoming block has changed.
1592   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1593                                                OuterLoopHeader);
1594 
1595   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1596                   OuterLoopPreHeader, DTUpdates);
1597 
1598   // -------------Adjust loop latches-----------
1599   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1600     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1601   else
1602     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1603 
1604   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1605                   InnerLoopLatchSuccessor, DTUpdates);
1606 
1607   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1608     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1609   else
1610     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1611 
1612   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1613                   OuterLoopLatchSuccessor, DTUpdates);
1614   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1615                   DTUpdates);
1616 
1617   DT->applyUpdates(DTUpdates);
1618   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1619                    OuterLoopPreHeader);
1620 
1621   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1622                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1623                 InnerLoop, LI);
1624   // For PHIs in the exit block of the outer loop, outer's latch has been
1625   // replaced by Inners'.
1626   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1627 
1628   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1629   // Now update the reduction PHIs in the inner and outer loop headers.
1630   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1631   for (PHINode &PHI : InnerLoopHeader->phis())
1632     if (OuterInnerReductions.contains(&PHI))
1633       InnerLoopPHIs.push_back(&PHI);
1634 
1635   for (PHINode &PHI : OuterLoopHeader->phis())
1636     if (OuterInnerReductions.contains(&PHI))
1637       OuterLoopPHIs.push_back(&PHI);
1638 
1639   // Now move the remaining reduction PHIs from outer to inner loop header and
1640   // vice versa. The PHI nodes must be part of a reduction across the inner and
1641   // outer loop and all the remains to do is and updating the incoming blocks.
1642   for (PHINode *PHI : OuterLoopPHIs) {
1643     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1644     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1645     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1646   }
1647   for (PHINode *PHI : InnerLoopPHIs) {
1648     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1649     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1650     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1651   }
1652 
1653   // Update the incoming blocks for moved PHI nodes.
1654   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1655   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1656   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1657   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1658 
1659   // Values defined in the outer loop header could be used in the inner loop
1660   // latch. In that case, we need to create LCSSA phis for them, because after
1661   // interchanging they will be defined in the new inner loop and used in the
1662   // new outer loop.
1663   IRBuilder<> Builder(OuterLoopHeader->getContext());
1664   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1665   for (Instruction &I :
1666        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1667     MayNeedLCSSAPhis.push_back(&I);
1668   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1669 
1670   return true;
1671 }
1672 
1673 bool LoopInterchangeTransform::adjustLoopLinks() {
1674   // Adjust all branches in the inner and outer loop.
1675   bool Changed = adjustLoopBranches();
1676   if (Changed) {
1677     // We have interchanged the preheaders so we need to interchange the data in
1678     // the preheaders as well. This is because the content of the inner
1679     // preheader was previously executed inside the outer loop.
1680     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1681     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1682     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1683   }
1684   return Changed;
1685 }
1686 
1687 namespace {
1688 /// Main LoopInterchange Pass.
1689 struct LoopInterchangeLegacyPass : public LoopPass {
1690   static char ID;
1691 
1692   LoopInterchangeLegacyPass() : LoopPass(ID) {
1693     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1694   }
1695 
1696   void getAnalysisUsage(AnalysisUsage &AU) const override {
1697     AU.addRequired<DependenceAnalysisWrapperPass>();
1698     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1699 
1700     getLoopAnalysisUsage(AU);
1701   }
1702 
1703   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1704     if (skipLoop(L))
1705       return false;
1706 
1707     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1708     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1709     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1710     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1711     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1712 
1713     return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1714   }
1715 };
1716 } // namespace
1717 
1718 char LoopInterchangeLegacyPass::ID = 0;
1719 
1720 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1721                       "Interchanges loops for cache reuse", false, false)
1722 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1723 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1724 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1725 
1726 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1727                     "Interchanges loops for cache reuse", false, false)
1728 
1729 Pass *llvm::createLoopInterchangePass() {
1730   return new LoopInterchangeLegacyPass();
1731 }
1732 
1733 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1734                                            LoopAnalysisManager &AM,
1735                                            LoopStandardAnalysisResults &AR,
1736                                            LPMUpdater &U) {
1737   Function &F = *LN.getParent();
1738 
1739   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1740   OptimizationRemarkEmitter ORE(&F);
1741   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1742     return PreservedAnalyses::all();
1743   return getLoopPassPreservedAnalyses();
1744 }
1745