1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This Pass handles loop interchange transform. 11 // This pass interchanges loops to provide a more cache-friendly memory access 12 // patterns. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/DependenceAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include <cassert> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "loop-interchange" 54 55 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 56 57 static cl::opt<int> LoopInterchangeCostThreshold( 58 "loop-interchange-threshold", cl::init(0), cl::Hidden, 59 cl::desc("Interchange if you gain more than this number")); 60 61 namespace { 62 63 using LoopVector = SmallVector<Loop *, 8>; 64 65 // TODO: Check if we can use a sparse matrix here. 66 using CharMatrix = std::vector<std::vector<char>>; 67 68 } // end anonymous namespace 69 70 // Maximum number of dependencies that can be handled in the dependency matrix. 71 static const unsigned MaxMemInstrCount = 100; 72 73 // Maximum loop depth supported. 74 static const unsigned MaxLoopNestDepth = 10; 75 76 #ifdef DUMP_DEP_MATRICIES 77 static void printDepMatrix(CharMatrix &DepMatrix) { 78 for (auto &Row : DepMatrix) { 79 for (auto D : Row) 80 LLVM_DEBUG(dbgs() << D << " "); 81 LLVM_DEBUG(dbgs() << "\n"); 82 } 83 } 84 #endif 85 86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 87 Loop *L, DependenceInfo *DI) { 88 using ValueVector = SmallVector<Value *, 16>; 89 90 ValueVector MemInstr; 91 92 // For each block. 93 for (BasicBlock *BB : L->blocks()) { 94 // Scan the BB and collect legal loads and stores. 95 for (Instruction &I : *BB) { 96 if (!isa<Instruction>(I)) 97 return false; 98 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 99 if (!Ld->isSimple()) 100 return false; 101 MemInstr.push_back(&I); 102 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 103 if (!St->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } 107 } 108 } 109 110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 111 << " Loads and Stores to analyze\n"); 112 113 ValueVector::iterator I, IE, J, JE; 114 115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 116 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 117 std::vector<char> Dep; 118 Instruction *Src = cast<Instruction>(*I); 119 Instruction *Dst = cast<Instruction>(*J); 120 if (Src == Dst) 121 continue; 122 // Ignore Input dependencies. 123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 124 continue; 125 // Track Output, Flow, and Anti dependencies. 126 if (auto D = DI->depends(Src, Dst, true)) { 127 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 128 LLVM_DEBUG(StringRef DepType = 129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 130 dbgs() << "Found " << DepType 131 << " dependency between Src and Dst\n" 132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 133 unsigned Levels = D->getLevels(); 134 char Direction; 135 for (unsigned II = 1; II <= Levels; ++II) { 136 const SCEV *Distance = D->getDistance(II); 137 const SCEVConstant *SCEVConst = 138 dyn_cast_or_null<SCEVConstant>(Distance); 139 if (SCEVConst) { 140 const ConstantInt *CI = SCEVConst->getValue(); 141 if (CI->isNegative()) 142 Direction = '<'; 143 else if (CI->isZero()) 144 Direction = '='; 145 else 146 Direction = '>'; 147 Dep.push_back(Direction); 148 } else if (D->isScalar(II)) { 149 Direction = 'S'; 150 Dep.push_back(Direction); 151 } else { 152 unsigned Dir = D->getDirection(II); 153 if (Dir == Dependence::DVEntry::LT || 154 Dir == Dependence::DVEntry::LE) 155 Direction = '<'; 156 else if (Dir == Dependence::DVEntry::GT || 157 Dir == Dependence::DVEntry::GE) 158 Direction = '>'; 159 else if (Dir == Dependence::DVEntry::EQ) 160 Direction = '='; 161 else 162 Direction = '*'; 163 Dep.push_back(Direction); 164 } 165 } 166 while (Dep.size() != Level) { 167 Dep.push_back('I'); 168 } 169 170 DepMatrix.push_back(Dep); 171 if (DepMatrix.size() > MaxMemInstrCount) { 172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 173 << " dependencies inside loop\n"); 174 return false; 175 } 176 } 177 } 178 } 179 180 return true; 181 } 182 183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 184 // matrix by exchanging the two columns. 185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 186 unsigned ToIndx) { 187 unsigned numRows = DepMatrix.size(); 188 for (unsigned i = 0; i < numRows; ++i) { 189 char TmpVal = DepMatrix[i][ToIndx]; 190 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 191 DepMatrix[i][FromIndx] = TmpVal; 192 } 193 } 194 195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 196 // '>' 197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 198 unsigned Column) { 199 for (unsigned i = 0; i <= Column; ++i) { 200 if (DepMatrix[Row][i] == '<') 201 return false; 202 if (DepMatrix[Row][i] == '>') 203 return true; 204 } 205 // All dependencies were '=','S' or 'I' 206 return false; 207 } 208 209 // Checks if no dependence exist in the dependency matrix in Row before Column. 210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 211 unsigned Column) { 212 for (unsigned i = 0; i < Column; ++i) { 213 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 214 DepMatrix[Row][i] != 'I') 215 return false; 216 } 217 return true; 218 } 219 220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 221 unsigned OuterLoopId, char InnerDep, 222 char OuterDep) { 223 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 224 return false; 225 226 if (InnerDep == OuterDep) 227 return true; 228 229 // It is legal to interchange if and only if after interchange no row has a 230 // '>' direction as the leftmost non-'='. 231 232 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 233 return true; 234 235 if (InnerDep == '<') 236 return true; 237 238 if (InnerDep == '>') { 239 // If OuterLoopId represents outermost loop then interchanging will make the 240 // 1st dependency as '>' 241 if (OuterLoopId == 0) 242 return false; 243 244 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 245 // interchanging will result in this row having an outermost non '=' 246 // dependency of '>' 247 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 248 return true; 249 } 250 251 return false; 252 } 253 254 // Checks if it is legal to interchange 2 loops. 255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 256 // if the direction matrix, after the same permutation is applied to its 257 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 259 unsigned InnerLoopId, 260 unsigned OuterLoopId) { 261 unsigned NumRows = DepMatrix.size(); 262 // For each row check if it is valid to interchange. 263 for (unsigned Row = 0; Row < NumRows; ++Row) { 264 char InnerDep = DepMatrix[Row][InnerLoopId]; 265 char OuterDep = DepMatrix[Row][OuterLoopId]; 266 if (InnerDep == '*' || OuterDep == '*') 267 return false; 268 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 269 return false; 270 } 271 return true; 272 } 273 274 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) { 275 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 276 << L.getHeader()->getParent()->getName() << " Loop: %" 277 << L.getHeader()->getName() << '\n'); 278 LoopVector LoopList; 279 Loop *CurrentLoop = &L; 280 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 281 while (!Vec->empty()) { 282 // The current loop has multiple subloops in it hence it is not tightly 283 // nested. 284 // Discard all loops above it added into Worklist. 285 if (Vec->size() != 1) { 286 LoopList.clear(); 287 return; 288 } 289 LoopList.push_back(CurrentLoop); 290 CurrentLoop = Vec->front(); 291 Vec = &CurrentLoop->getSubLoops(); 292 } 293 LoopList.push_back(CurrentLoop); 294 V.push_back(std::move(LoopList)); 295 } 296 297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 298 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 299 if (InnerIndexVar) 300 return InnerIndexVar; 301 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 302 return nullptr; 303 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 304 PHINode *PhiVar = cast<PHINode>(I); 305 Type *PhiTy = PhiVar->getType(); 306 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 307 !PhiTy->isPointerTy()) 308 return nullptr; 309 const SCEVAddRecExpr *AddRec = 310 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 311 if (!AddRec || !AddRec->isAffine()) 312 continue; 313 const SCEV *Step = AddRec->getStepRecurrence(*SE); 314 if (!isa<SCEVConstant>(Step)) 315 continue; 316 // Found the induction variable. 317 // FIXME: Handle loops with more than one induction variable. Note that, 318 // currently, legality makes sure we have only one induction variable. 319 return PhiVar; 320 } 321 return nullptr; 322 } 323 324 namespace { 325 326 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 327 class LoopInterchangeLegality { 328 public: 329 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 330 OptimizationRemarkEmitter *ORE) 331 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 332 333 /// Check if the loops can be interchanged. 334 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 335 CharMatrix &DepMatrix); 336 337 /// Check if the loop structure is understood. We do not handle triangular 338 /// loops for now. 339 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 340 341 bool currentLimitations(); 342 343 bool hasInnerLoopReduction() { return InnerLoopHasReduction; } 344 345 private: 346 bool tightlyNested(Loop *Outer, Loop *Inner); 347 bool containsUnsafeInstructionsInHeader(BasicBlock *BB); 348 bool areAllUsesReductions(Instruction *Ins, Loop *L); 349 bool containsUnsafeInstructionsInLatch(BasicBlock *BB); 350 bool findInductionAndReductions(Loop *L, 351 SmallVector<PHINode *, 8> &Inductions, 352 SmallVector<PHINode *, 8> &Reductions); 353 354 Loop *OuterLoop; 355 Loop *InnerLoop; 356 357 ScalarEvolution *SE; 358 359 /// Interface to emit optimization remarks. 360 OptimizationRemarkEmitter *ORE; 361 362 bool InnerLoopHasReduction = false; 363 }; 364 365 /// LoopInterchangeProfitability checks if it is profitable to interchange the 366 /// loop. 367 class LoopInterchangeProfitability { 368 public: 369 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 370 OptimizationRemarkEmitter *ORE) 371 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 372 373 /// Check if the loop interchange is profitable. 374 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 375 CharMatrix &DepMatrix); 376 377 private: 378 int getInstrOrderCost(); 379 380 Loop *OuterLoop; 381 Loop *InnerLoop; 382 383 /// Scev analysis. 384 ScalarEvolution *SE; 385 386 /// Interface to emit optimization remarks. 387 OptimizationRemarkEmitter *ORE; 388 }; 389 390 /// LoopInterchangeTransform interchanges the loop. 391 class LoopInterchangeTransform { 392 public: 393 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 394 LoopInfo *LI, DominatorTree *DT, 395 BasicBlock *LoopNestExit, 396 bool InnerLoopContainsReductions) 397 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 398 LoopExit(LoopNestExit), 399 InnerLoopHasReduction(InnerLoopContainsReductions) {} 400 401 /// Interchange OuterLoop and InnerLoop. 402 bool transform(); 403 void restructureLoops(Loop *NewInner, Loop *NewOuter, 404 BasicBlock *OrigInnerPreHeader, 405 BasicBlock *OrigOuterPreHeader); 406 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 407 408 private: 409 void splitInnerLoopLatch(Instruction *); 410 void splitInnerLoopHeader(); 411 bool adjustLoopLinks(); 412 void adjustLoopPreheaders(); 413 bool adjustLoopBranches(); 414 void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred, 415 BasicBlock *NewPred); 416 417 Loop *OuterLoop; 418 Loop *InnerLoop; 419 420 /// Scev analysis. 421 ScalarEvolution *SE; 422 423 LoopInfo *LI; 424 DominatorTree *DT; 425 BasicBlock *LoopExit; 426 bool InnerLoopHasReduction; 427 }; 428 429 // Main LoopInterchange Pass. 430 struct LoopInterchange : public FunctionPass { 431 static char ID; 432 ScalarEvolution *SE = nullptr; 433 LoopInfo *LI = nullptr; 434 DependenceInfo *DI = nullptr; 435 DominatorTree *DT = nullptr; 436 bool PreserveLCSSA; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange() : FunctionPass(ID) { 442 initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); 443 } 444 445 void getAnalysisUsage(AnalysisUsage &AU) const override { 446 AU.addRequired<ScalarEvolutionWrapperPass>(); 447 AU.addRequired<AAResultsWrapperPass>(); 448 AU.addRequired<DominatorTreeWrapperPass>(); 449 AU.addRequired<LoopInfoWrapperPass>(); 450 AU.addRequired<DependenceAnalysisWrapperPass>(); 451 AU.addRequiredID(LoopSimplifyID); 452 AU.addRequiredID(LCSSAID); 453 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 454 455 AU.addPreserved<DominatorTreeWrapperPass>(); 456 AU.addPreserved<LoopInfoWrapperPass>(); 457 AU.addPreserved<ScalarEvolutionWrapperPass>(); 458 } 459 460 bool runOnFunction(Function &F) override { 461 if (skipFunction(F)) 462 return false; 463 464 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 465 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 466 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 467 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 468 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 469 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 470 471 // Build up a worklist of loop pairs to analyze. 472 SmallVector<LoopVector, 8> Worklist; 473 474 for (Loop *L : *LI) 475 populateWorklist(*L, Worklist); 476 477 LLVM_DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n"); 478 bool Changed = true; 479 while (!Worklist.empty()) { 480 LoopVector LoopList = Worklist.pop_back_val(); 481 Changed = processLoopList(LoopList, F); 482 } 483 return Changed; 484 } 485 486 bool isComputableLoopNest(LoopVector LoopList) { 487 for (Loop *L : LoopList) { 488 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 489 if (ExitCountOuter == SE->getCouldNotCompute()) { 490 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 491 return false; 492 } 493 if (L->getNumBackEdges() != 1) { 494 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 495 return false; 496 } 497 if (!L->getExitingBlock()) { 498 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 499 return false; 500 } 501 } 502 return true; 503 } 504 505 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 506 // TODO: Add a better heuristic to select the loop to be interchanged based 507 // on the dependence matrix. Currently we select the innermost loop. 508 return LoopList.size() - 1; 509 } 510 511 bool processLoopList(LoopVector LoopList, Function &F) { 512 bool Changed = false; 513 unsigned LoopNestDepth = LoopList.size(); 514 if (LoopNestDepth < 2) { 515 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 516 return false; 517 } 518 if (LoopNestDepth > MaxLoopNestDepth) { 519 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 520 << MaxLoopNestDepth << "\n"); 521 return false; 522 } 523 if (!isComputableLoopNest(LoopList)) { 524 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 525 return false; 526 } 527 528 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 529 << "\n"); 530 531 CharMatrix DependencyMatrix; 532 Loop *OuterMostLoop = *(LoopList.begin()); 533 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 534 OuterMostLoop, DI)) { 535 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 536 return false; 537 } 538 #ifdef DUMP_DEP_MATRICIES 539 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 540 printDepMatrix(DependencyMatrix); 541 #endif 542 543 // Get the Outermost loop exit. 544 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 545 if (!LoopNestExit) { 546 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 547 return false; 548 } 549 550 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 551 // Move the selected loop outwards to the best possible position. 552 for (unsigned i = SelecLoopId; i > 0; i--) { 553 bool Interchanged = 554 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 555 if (!Interchanged) 556 return Changed; 557 // Loops interchanged reflect the same in LoopList 558 std::swap(LoopList[i - 1], LoopList[i]); 559 560 // Update the DependencyMatrix 561 interChangeDependencies(DependencyMatrix, i, i - 1); 562 #ifdef DUMP_DEP_MATRICIES 563 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 564 printDepMatrix(DependencyMatrix); 565 #endif 566 Changed |= Interchanged; 567 } 568 return Changed; 569 } 570 571 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 572 unsigned OuterLoopId, BasicBlock *LoopNestExit, 573 std::vector<std::vector<char>> &DependencyMatrix) { 574 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 575 << " and OuterLoopId = " << OuterLoopId << "\n"); 576 Loop *InnerLoop = LoopList[InnerLoopId]; 577 Loop *OuterLoop = LoopList[OuterLoopId]; 578 579 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 580 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 581 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 582 return false; 583 } 584 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 585 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 586 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 587 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 588 return false; 589 } 590 591 ORE->emit([&]() { 592 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 593 InnerLoop->getStartLoc(), 594 InnerLoop->getHeader()) 595 << "Loop interchanged with enclosing loop."; 596 }); 597 598 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, 599 LoopNestExit, LIL.hasInnerLoopReduction()); 600 LIT.transform(); 601 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 602 LoopsInterchanged++; 603 return true; 604 } 605 }; 606 607 } // end anonymous namespace 608 609 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) { 610 return llvm::none_of(Ins->users(), [=](User *U) -> bool { 611 auto *UserIns = dyn_cast<PHINode>(U); 612 RecurrenceDescriptor RD; 613 return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD); 614 }); 615 } 616 617 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader( 618 BasicBlock *BB) { 619 for (Instruction &I : *BB) { 620 // Load corresponding to reduction PHI's are safe while concluding if 621 // tightly nested. 622 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 623 if (!areAllUsesReductions(L, InnerLoop)) 624 return true; 625 } else if (I.mayHaveSideEffects() || I.mayReadFromMemory()) 626 return true; 627 } 628 return false; 629 } 630 631 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch( 632 BasicBlock *BB) { 633 for (Instruction &I : *BB) { 634 // Stores corresponding to reductions are safe while concluding if tightly 635 // nested. 636 if (StoreInst *L = dyn_cast<StoreInst>(&I)) { 637 if (!isa<PHINode>(L->getOperand(0))) 638 return true; 639 } else if (I.mayHaveSideEffects() || I.mayReadFromMemory()) 640 return true; 641 } 642 return false; 643 } 644 645 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 646 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 647 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 648 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 649 650 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 651 652 // A perfectly nested loop will not have any branch in between the outer and 653 // inner block i.e. outer header will branch to either inner preheader and 654 // outerloop latch. 655 BranchInst *OuterLoopHeaderBI = 656 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 657 if (!OuterLoopHeaderBI) 658 return false; 659 660 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 661 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 662 Succ != OuterLoopLatch) 663 return false; 664 665 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 666 // We do not have any basic block in between now make sure the outer header 667 // and outer loop latch doesn't contain any unsafe instructions. 668 if (containsUnsafeInstructionsInHeader(OuterLoopHeader) || 669 containsUnsafeInstructionsInLatch(OuterLoopLatch)) 670 return false; 671 672 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 673 // We have a perfect loop nest. 674 return true; 675 } 676 677 bool LoopInterchangeLegality::isLoopStructureUnderstood( 678 PHINode *InnerInduction) { 679 unsigned Num = InnerInduction->getNumOperands(); 680 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 681 for (unsigned i = 0; i < Num; ++i) { 682 Value *Val = InnerInduction->getOperand(i); 683 if (isa<Constant>(Val)) 684 continue; 685 Instruction *I = dyn_cast<Instruction>(Val); 686 if (!I) 687 return false; 688 // TODO: Handle triangular loops. 689 // e.g. for(int i=0;i<N;i++) 690 // for(int j=i;j<N;j++) 691 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 692 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 693 InnerLoopPreheader && 694 !OuterLoop->isLoopInvariant(I)) { 695 return false; 696 } 697 } 698 return true; 699 } 700 701 bool LoopInterchangeLegality::findInductionAndReductions( 702 Loop *L, SmallVector<PHINode *, 8> &Inductions, 703 SmallVector<PHINode *, 8> &Reductions) { 704 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 705 return false; 706 for (PHINode &PHI : L->getHeader()->phis()) { 707 RecurrenceDescriptor RD; 708 InductionDescriptor ID; 709 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 710 Inductions.push_back(&PHI); 711 else if (RecurrenceDescriptor::isReductionPHI(&PHI, L, RD)) 712 Reductions.push_back(&PHI); 713 else { 714 LLVM_DEBUG( 715 dbgs() << "Failed to recognize PHI as an induction or reduction.\n"); 716 return false; 717 } 718 } 719 return true; 720 } 721 722 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { 723 for (PHINode &PHI : Block->phis()) { 724 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 725 if (PHI.getNumIncomingValues() > 1) 726 return false; 727 Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0)); 728 if (!Ins) 729 return false; 730 // Incoming value for lcssa phi's in outer loop exit can only be inner loop 731 // exits lcssa phi else it would not be tightly nested. 732 if (!isa<PHINode>(Ins) && isOuterLoopExitBlock) 733 return false; 734 } 735 return true; 736 } 737 738 // This function indicates the current limitations in the transform as a result 739 // of which we do not proceed. 740 bool LoopInterchangeLegality::currentLimitations() { 741 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 742 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 743 744 // transform currently expects the loop latches to also be the exiting 745 // blocks. 746 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 747 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 748 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 749 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 750 LLVM_DEBUG( 751 dbgs() << "Loops where the latch is not the exiting block are not" 752 << " supported currently.\n"); 753 ORE->emit([&]() { 754 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 755 OuterLoop->getStartLoc(), 756 OuterLoop->getHeader()) 757 << "Loops where the latch is not the exiting block cannot be" 758 " interchange currently."; 759 }); 760 return true; 761 } 762 763 PHINode *InnerInductionVar; 764 SmallVector<PHINode *, 8> Inductions; 765 SmallVector<PHINode *, 8> Reductions; 766 if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) { 767 LLVM_DEBUG( 768 dbgs() << "Only inner loops with induction or reduction PHI nodes " 769 << "are supported currently.\n"); 770 ORE->emit([&]() { 771 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 772 InnerLoop->getStartLoc(), 773 InnerLoop->getHeader()) 774 << "Only inner loops with induction or reduction PHI nodes can be" 775 " interchange currently."; 776 }); 777 return true; 778 } 779 780 // TODO: Currently we handle only loops with 1 induction variable. 781 if (Inductions.size() != 1) { 782 LLVM_DEBUG( 783 dbgs() << "We currently only support loops with 1 induction variable." 784 << "Failed to interchange due to current limitation\n"); 785 ORE->emit([&]() { 786 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 787 InnerLoop->getStartLoc(), 788 InnerLoop->getHeader()) 789 << "Only inner loops with 1 induction variable can be " 790 "interchanged currently."; 791 }); 792 return true; 793 } 794 if (Reductions.size() > 0) 795 InnerLoopHasReduction = true; 796 797 InnerInductionVar = Inductions.pop_back_val(); 798 Reductions.clear(); 799 if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) { 800 LLVM_DEBUG( 801 dbgs() << "Only outer loops with induction or reduction PHI nodes " 802 << "are supported currently.\n"); 803 ORE->emit([&]() { 804 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 805 OuterLoop->getStartLoc(), 806 OuterLoop->getHeader()) 807 << "Only outer loops with induction or reduction PHI nodes can be" 808 " interchanged currently."; 809 }); 810 return true; 811 } 812 813 // Outer loop cannot have reduction because then loops will not be tightly 814 // nested. 815 if (!Reductions.empty()) { 816 LLVM_DEBUG(dbgs() << "Outer loops with reductions are not supported " 817 << "currently.\n"); 818 ORE->emit([&]() { 819 return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter", 820 OuterLoop->getStartLoc(), 821 OuterLoop->getHeader()) 822 << "Outer loops with reductions cannot be interchangeed " 823 "currently."; 824 }); 825 return true; 826 } 827 // TODO: Currently we handle only loops with 1 induction variable. 828 if (Inductions.size() != 1) { 829 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 830 << "supported currently.\n"); 831 ORE->emit([&]() { 832 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 833 OuterLoop->getStartLoc(), 834 OuterLoop->getHeader()) 835 << "Only outer loops with 1 induction variable can be " 836 "interchanged currently."; 837 }); 838 return true; 839 } 840 841 // TODO: Triangular loops are not handled for now. 842 if (!isLoopStructureUnderstood(InnerInductionVar)) { 843 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 844 ORE->emit([&]() { 845 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 846 InnerLoop->getStartLoc(), 847 InnerLoop->getHeader()) 848 << "Inner loop structure not understood currently."; 849 }); 850 return true; 851 } 852 853 // TODO: We only handle LCSSA PHI's corresponding to reduction for now. 854 BasicBlock *InnerExit = InnerLoop->getExitBlock(); 855 if (!containsSafePHI(InnerExit, false)) { 856 LLVM_DEBUG( 857 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n"); 858 ORE->emit([&]() { 859 return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner", 860 InnerLoop->getStartLoc(), 861 InnerLoop->getHeader()) 862 << "Only inner loops with LCSSA PHIs can be interchange " 863 "currently."; 864 }); 865 return true; 866 } 867 868 // TODO: Current limitation: Since we split the inner loop latch at the point 869 // were induction variable is incremented (induction.next); We cannot have 870 // more than 1 user of induction.next since it would result in broken code 871 // after split. 872 // e.g. 873 // for(i=0;i<N;i++) { 874 // for(j = 0;j<M;j++) { 875 // A[j+1][i+2] = A[j][i]+k; 876 // } 877 // } 878 Instruction *InnerIndexVarInc = nullptr; 879 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 880 InnerIndexVarInc = 881 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 882 else 883 InnerIndexVarInc = 884 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 885 886 if (!InnerIndexVarInc) { 887 LLVM_DEBUG( 888 dbgs() << "Did not find an instruction to increment the induction " 889 << "variable.\n"); 890 ORE->emit([&]() { 891 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 892 InnerLoop->getStartLoc(), 893 InnerLoop->getHeader()) 894 << "The inner loop does not increment the induction variable."; 895 }); 896 return true; 897 } 898 899 // Since we split the inner loop latch on this induction variable. Make sure 900 // we do not have any instruction between the induction variable and branch 901 // instruction. 902 903 bool FoundInduction = false; 904 for (const Instruction &I : 905 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 906 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 907 isa<ZExtInst>(I)) 908 continue; 909 910 // We found an instruction. If this is not induction variable then it is not 911 // safe to split this loop latch. 912 if (!I.isIdenticalTo(InnerIndexVarInc)) { 913 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 914 << "variable increment and branch.\n"); 915 ORE->emit([&]() { 916 return OptimizationRemarkMissed( 917 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 918 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 919 << "Found unsupported instruction between induction variable " 920 "increment and branch."; 921 }); 922 return true; 923 } 924 925 FoundInduction = true; 926 break; 927 } 928 // The loop latch ended and we didn't find the induction variable return as 929 // current limitation. 930 if (!FoundInduction) { 931 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 932 ORE->emit([&]() { 933 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 934 InnerLoop->getStartLoc(), 935 InnerLoop->getHeader()) 936 << "Did not find the induction variable."; 937 }); 938 return true; 939 } 940 return false; 941 } 942 943 // We currently support LCSSA PHI nodes in the outer loop exit, if their 944 // incoming values do not come from the outer loop latch or if the 945 // outer loop latch has a single predecessor. In that case, the value will 946 // be available if both the inner and outer loop conditions are true, which 947 // will still be true after interchanging. If we have multiple predecessor, 948 // that may not be the case, e.g. because the outer loop latch may be executed 949 // if the inner loop is not executed. 950 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 951 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 952 for (PHINode &PHI : LoopNestExit->phis()) { 953 // FIXME: We currently are not able to detect floating point reductions 954 // and have to use floating point PHIs as a proxy to prevent 955 // interchanging in the presence of floating point reductions. 956 if (PHI.getType()->isFloatingPointTy()) 957 return false; 958 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 959 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 960 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 961 continue; 962 963 // The incoming value is defined in the outer loop latch. Currently we 964 // only support that in case the outer loop latch has a single predecessor. 965 // This guarantees that the outer loop latch is executed if and only if 966 // the inner loop is executed (because tightlyNested() guarantees that the 967 // outer loop header only branches to the inner loop or the outer loop 968 // latch). 969 // FIXME: We could weaken this logic and allow multiple predecessors, 970 // if the values are produced outside the loop latch. We would need 971 // additional logic to update the PHI nodes in the exit block as 972 // well. 973 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 974 return false; 975 } 976 } 977 return true; 978 } 979 980 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 981 unsigned OuterLoopId, 982 CharMatrix &DepMatrix) { 983 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 984 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 985 << " and OuterLoopId = " << OuterLoopId 986 << " due to dependence\n"); 987 ORE->emit([&]() { 988 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 989 InnerLoop->getStartLoc(), 990 InnerLoop->getHeader()) 991 << "Cannot interchange loops due to dependences."; 992 }); 993 return false; 994 } 995 // Check if outer and inner loop contain legal instructions only. 996 for (auto *BB : OuterLoop->blocks()) 997 for (Instruction &I : BB->instructionsWithoutDebug()) 998 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 999 // readnone functions do not prevent interchanging. 1000 if (CI->doesNotReadMemory()) 1001 continue; 1002 LLVM_DEBUG( 1003 dbgs() << "Loops with call instructions cannot be interchanged " 1004 << "safely."); 1005 ORE->emit([&]() { 1006 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1007 CI->getDebugLoc(), 1008 CI->getParent()) 1009 << "Cannot interchange loops due to call instruction."; 1010 }); 1011 1012 return false; 1013 } 1014 1015 // TODO: The loops could not be interchanged due to current limitations in the 1016 // transform module. 1017 if (currentLimitations()) { 1018 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1019 return false; 1020 } 1021 1022 // Check if the loops are tightly nested. 1023 if (!tightlyNested(OuterLoop, InnerLoop)) { 1024 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1025 ORE->emit([&]() { 1026 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1027 InnerLoop->getStartLoc(), 1028 InnerLoop->getHeader()) 1029 << "Cannot interchange loops because they are not tightly " 1030 "nested."; 1031 }); 1032 return false; 1033 } 1034 1035 if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1036 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1037 ORE->emit([&]() { 1038 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1039 OuterLoop->getStartLoc(), 1040 OuterLoop->getHeader()) 1041 << "Found unsupported PHI node in loop exit."; 1042 }); 1043 return false; 1044 } 1045 1046 return true; 1047 } 1048 1049 int LoopInterchangeProfitability::getInstrOrderCost() { 1050 unsigned GoodOrder, BadOrder; 1051 BadOrder = GoodOrder = 0; 1052 for (BasicBlock *BB : InnerLoop->blocks()) { 1053 for (Instruction &Ins : *BB) { 1054 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1055 unsigned NumOp = GEP->getNumOperands(); 1056 bool FoundInnerInduction = false; 1057 bool FoundOuterInduction = false; 1058 for (unsigned i = 0; i < NumOp; ++i) { 1059 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1060 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1061 if (!AR) 1062 continue; 1063 1064 // If we find the inner induction after an outer induction e.g. 1065 // for(int i=0;i<N;i++) 1066 // for(int j=0;j<N;j++) 1067 // A[i][j] = A[i-1][j-1]+k; 1068 // then it is a good order. 1069 if (AR->getLoop() == InnerLoop) { 1070 // We found an InnerLoop induction after OuterLoop induction. It is 1071 // a good order. 1072 FoundInnerInduction = true; 1073 if (FoundOuterInduction) { 1074 GoodOrder++; 1075 break; 1076 } 1077 } 1078 // If we find the outer induction after an inner induction e.g. 1079 // for(int i=0;i<N;i++) 1080 // for(int j=0;j<N;j++) 1081 // A[j][i] = A[j-1][i-1]+k; 1082 // then it is a bad order. 1083 if (AR->getLoop() == OuterLoop) { 1084 // We found an OuterLoop induction after InnerLoop induction. It is 1085 // a bad order. 1086 FoundOuterInduction = true; 1087 if (FoundInnerInduction) { 1088 BadOrder++; 1089 break; 1090 } 1091 } 1092 } 1093 } 1094 } 1095 } 1096 return GoodOrder - BadOrder; 1097 } 1098 1099 static bool isProfitableForVectorization(unsigned InnerLoopId, 1100 unsigned OuterLoopId, 1101 CharMatrix &DepMatrix) { 1102 // TODO: Improve this heuristic to catch more cases. 1103 // If the inner loop is loop independent or doesn't carry any dependency it is 1104 // profitable to move this to outer position. 1105 for (auto &Row : DepMatrix) { 1106 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1107 return false; 1108 // TODO: We need to improve this heuristic. 1109 if (Row[OuterLoopId] != '=') 1110 return false; 1111 } 1112 // If outer loop has dependence and inner loop is loop independent then it is 1113 // profitable to interchange to enable parallelism. 1114 // If there are no dependences, interchanging will not improve anything. 1115 return !DepMatrix.empty(); 1116 } 1117 1118 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1119 unsigned OuterLoopId, 1120 CharMatrix &DepMatrix) { 1121 // TODO: Add better profitability checks. 1122 // e.g 1123 // 1) Construct dependency matrix and move the one with no loop carried dep 1124 // inside to enable vectorization. 1125 1126 // This is rough cost estimation algorithm. It counts the good and bad order 1127 // of induction variables in the instruction and allows reordering if number 1128 // of bad orders is more than good. 1129 int Cost = getInstrOrderCost(); 1130 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1131 if (Cost < -LoopInterchangeCostThreshold) 1132 return true; 1133 1134 // It is not profitable as per current cache profitability model. But check if 1135 // we can move this loop outside to improve parallelism. 1136 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1137 return true; 1138 1139 ORE->emit([&]() { 1140 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1141 InnerLoop->getStartLoc(), 1142 InnerLoop->getHeader()) 1143 << "Interchanging loops is too costly (cost=" 1144 << ore::NV("Cost", Cost) << ", threshold=" 1145 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1146 << ") and it does not improve parallelism."; 1147 }); 1148 return false; 1149 } 1150 1151 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1152 Loop *InnerLoop) { 1153 for (Loop *L : *OuterLoop) 1154 if (L == InnerLoop) { 1155 OuterLoop->removeChildLoop(L); 1156 return; 1157 } 1158 llvm_unreachable("Couldn't find loop"); 1159 } 1160 1161 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1162 /// new inner and outer loop after interchanging: NewInner is the original 1163 /// outer loop and NewOuter is the original inner loop. 1164 /// 1165 /// Before interchanging, we have the following structure 1166 /// Outer preheader 1167 // Outer header 1168 // Inner preheader 1169 // Inner header 1170 // Inner body 1171 // Inner latch 1172 // outer bbs 1173 // Outer latch 1174 // 1175 // After interchanging: 1176 // Inner preheader 1177 // Inner header 1178 // Outer preheader 1179 // Outer header 1180 // Inner body 1181 // outer bbs 1182 // Outer latch 1183 // Inner latch 1184 void LoopInterchangeTransform::restructureLoops( 1185 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1186 BasicBlock *OrigOuterPreHeader) { 1187 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1188 // The original inner loop preheader moves from the new inner loop to 1189 // the parent loop, if there is one. 1190 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1191 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1192 1193 // Switch the loop levels. 1194 if (OuterLoopParent) { 1195 // Remove the loop from its parent loop. 1196 removeChildLoop(OuterLoopParent, NewInner); 1197 removeChildLoop(NewInner, NewOuter); 1198 OuterLoopParent->addChildLoop(NewOuter); 1199 } else { 1200 removeChildLoop(NewInner, NewOuter); 1201 LI->changeTopLevelLoop(NewInner, NewOuter); 1202 } 1203 while (!NewOuter->empty()) 1204 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1205 NewOuter->addChildLoop(NewInner); 1206 1207 // BBs from the original inner loop. 1208 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1209 1210 // Add BBs from the original outer loop to the original inner loop (excluding 1211 // BBs already in inner loop) 1212 for (BasicBlock *BB : NewInner->blocks()) 1213 if (LI->getLoopFor(BB) == NewInner) 1214 NewOuter->addBlockEntry(BB); 1215 1216 // Now remove inner loop header and latch from the new inner loop and move 1217 // other BBs (the loop body) to the new inner loop. 1218 BasicBlock *OuterHeader = NewOuter->getHeader(); 1219 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1220 for (BasicBlock *BB : OrigInnerBBs) { 1221 // Nothing will change for BBs in child loops. 1222 if (LI->getLoopFor(BB) != NewOuter) 1223 continue; 1224 // Remove the new outer loop header and latch from the new inner loop. 1225 if (BB == OuterHeader || BB == OuterLatch) 1226 NewInner->removeBlockFromLoop(BB); 1227 else 1228 LI->changeLoopFor(BB, NewInner); 1229 } 1230 1231 // The preheader of the original outer loop becomes part of the new 1232 // outer loop. 1233 NewOuter->addBlockEntry(OrigOuterPreHeader); 1234 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1235 1236 // Tell SE that we move the loops around. 1237 SE->forgetLoop(NewOuter); 1238 SE->forgetLoop(NewInner); 1239 } 1240 1241 bool LoopInterchangeTransform::transform() { 1242 bool Transformed = false; 1243 Instruction *InnerIndexVar; 1244 1245 if (InnerLoop->getSubLoops().empty()) { 1246 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1247 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n"); 1248 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1249 if (!InductionPHI) { 1250 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1251 return false; 1252 } 1253 1254 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1255 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1256 else 1257 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1258 1259 // Ensure that InductionPHI is the first Phi node. 1260 if (&InductionPHI->getParent()->front() != InductionPHI) 1261 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1262 1263 // Split at the place were the induction variable is 1264 // incremented/decremented. 1265 // TODO: This splitting logic may not work always. Fix this. 1266 splitInnerLoopLatch(InnerIndexVar); 1267 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n"); 1268 1269 // Splits the inner loops phi nodes out into a separate basic block. 1270 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1271 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1272 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1273 } 1274 1275 Transformed |= adjustLoopLinks(); 1276 if (!Transformed) { 1277 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1278 return false; 1279 } 1280 1281 return true; 1282 } 1283 1284 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) { 1285 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1286 BasicBlock *InnerLoopLatchPred = InnerLoopLatch; 1287 InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI); 1288 } 1289 1290 /// \brief Move all instructions except the terminator from FromBB right before 1291 /// InsertBefore 1292 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1293 auto &ToList = InsertBefore->getParent()->getInstList(); 1294 auto &FromList = FromBB->getInstList(); 1295 1296 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1297 FromBB->getTerminator()->getIterator()); 1298 } 1299 1300 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock, 1301 BasicBlock *OldPred, 1302 BasicBlock *NewPred) { 1303 for (PHINode &PHI : CurrBlock->phis()) { 1304 unsigned Num = PHI.getNumIncomingValues(); 1305 for (unsigned i = 0; i < Num; ++i) { 1306 if (PHI.getIncomingBlock(i) == OldPred) 1307 PHI.setIncomingBlock(i, NewPred); 1308 } 1309 } 1310 } 1311 1312 /// Update BI to jump to NewBB instead of OldBB. Records updates to 1313 /// the dominator tree in DTUpdates, if DT should be preserved. 1314 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1315 BasicBlock *NewBB, 1316 std::vector<DominatorTree::UpdateType> &DTUpdates) { 1317 assert(llvm::count_if(successors(BI), 1318 [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 && 1319 "BI must jump to OldBB at most once."); 1320 for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) { 1321 if (BI->getSuccessor(i) == OldBB) { 1322 BI->setSuccessor(i, NewBB); 1323 1324 DTUpdates.push_back( 1325 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1326 DTUpdates.push_back( 1327 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1328 break; 1329 } 1330 } 1331 } 1332 1333 bool LoopInterchangeTransform::adjustLoopBranches() { 1334 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1335 std::vector<DominatorTree::UpdateType> DTUpdates; 1336 1337 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1338 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1339 1340 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1341 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1342 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1343 // Ensure that both preheaders do not contain PHI nodes and have single 1344 // predecessors. This allows us to move them easily. We use 1345 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1346 // preheaders do not satisfy those conditions. 1347 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1348 !OuterLoopPreHeader->getUniquePredecessor()) 1349 OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, DT, LI, true); 1350 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1351 InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, DT, LI, true); 1352 1353 // Adjust the loop preheader 1354 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1355 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1356 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1357 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1358 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1359 BasicBlock *InnerLoopLatchPredecessor = 1360 InnerLoopLatch->getUniquePredecessor(); 1361 BasicBlock *InnerLoopLatchSuccessor; 1362 BasicBlock *OuterLoopLatchSuccessor; 1363 1364 BranchInst *OuterLoopLatchBI = 1365 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1366 BranchInst *InnerLoopLatchBI = 1367 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1368 BranchInst *OuterLoopHeaderBI = 1369 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1370 BranchInst *InnerLoopHeaderBI = 1371 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1372 1373 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1374 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1375 !InnerLoopHeaderBI) 1376 return false; 1377 1378 BranchInst *InnerLoopLatchPredecessorBI = 1379 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1380 BranchInst *OuterLoopPredecessorBI = 1381 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1382 1383 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1384 return false; 1385 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1386 if (!InnerLoopHeaderSuccessor) 1387 return false; 1388 1389 // Adjust Loop Preheader and headers 1390 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1391 InnerLoopPreHeader, DTUpdates); 1392 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates); 1393 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1394 InnerLoopHeaderSuccessor, DTUpdates); 1395 1396 // Adjust reduction PHI's now that the incoming block has changed. 1397 updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader, 1398 OuterLoopHeader); 1399 1400 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1401 OuterLoopPreHeader, DTUpdates); 1402 1403 // -------------Adjust loop latches----------- 1404 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1405 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1406 else 1407 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1408 1409 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1410 InnerLoopLatchSuccessor, DTUpdates); 1411 1412 // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with 1413 // the value and remove this PHI node from inner loop. 1414 SmallVector<PHINode *, 8> LcssaVec; 1415 for (PHINode &P : InnerLoopLatchSuccessor->phis()) 1416 LcssaVec.push_back(&P); 1417 1418 for (PHINode *P : LcssaVec) { 1419 Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch); 1420 P->replaceAllUsesWith(Incoming); 1421 P->eraseFromParent(); 1422 } 1423 1424 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1425 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1426 else 1427 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1428 1429 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1430 OuterLoopLatchSuccessor, DTUpdates); 1431 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1432 DTUpdates); 1433 1434 updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch); 1435 1436 DT->applyUpdates(DTUpdates); 1437 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1438 OuterLoopPreHeader); 1439 1440 // Now update the reduction PHIs in the inner and outer loop headers. 1441 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1442 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1443 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1444 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1445 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1446 1447 for (PHINode *PHI : OuterLoopPHIs) 1448 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1449 1450 // Move the PHI nodes from the inner loop header to the outer loop header. 1451 // We have to deal with one kind of PHI nodes: 1452 // 1) PHI nodes that are part of inner loop-only reductions. 1453 // We only have to move the PHI node and update the incoming blocks. 1454 for (PHINode *PHI : InnerLoopPHIs) { 1455 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1456 for (BasicBlock *InBB : PHI->blocks()) { 1457 if (InnerLoop->contains(InBB)) 1458 continue; 1459 1460 assert(!isa<PHINode>(PHI->getIncomingValueForBlock(InBB)) && 1461 "Unexpected incoming PHI node, reductions in outer loop are not " 1462 "supported yet"); 1463 PHI->replaceAllUsesWith(PHI->getIncomingValueForBlock(InBB)); 1464 PHI->eraseFromParent(); 1465 break; 1466 } 1467 } 1468 1469 // Update the incoming blocks for moved PHI nodes. 1470 updateIncomingBlock(OuterLoopHeader, InnerLoopPreHeader, OuterLoopPreHeader); 1471 updateIncomingBlock(OuterLoopHeader, InnerLoopLatch, OuterLoopLatch); 1472 updateIncomingBlock(InnerLoopHeader, OuterLoopPreHeader, InnerLoopPreHeader); 1473 updateIncomingBlock(InnerLoopHeader, OuterLoopLatch, InnerLoopLatch); 1474 1475 return true; 1476 } 1477 1478 void LoopInterchangeTransform::adjustLoopPreheaders() { 1479 // We have interchanged the preheaders so we need to interchange the data in 1480 // the preheader as well. 1481 // This is because the content of inner preheader was previously executed 1482 // inside the outer loop. 1483 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1484 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1485 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1486 BranchInst *InnerTermBI = 1487 cast<BranchInst>(InnerLoopPreHeader->getTerminator()); 1488 1489 // These instructions should now be executed inside the loop. 1490 // Move instruction into a new block after outer header. 1491 moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); 1492 // These instructions were not executed previously in the loop so move them to 1493 // the older inner loop preheader. 1494 moveBBContents(OuterLoopPreHeader, InnerTermBI); 1495 } 1496 1497 bool LoopInterchangeTransform::adjustLoopLinks() { 1498 // Adjust all branches in the inner and outer loop. 1499 bool Changed = adjustLoopBranches(); 1500 if (Changed) 1501 adjustLoopPreheaders(); 1502 return Changed; 1503 } 1504 1505 char LoopInterchange::ID = 0; 1506 1507 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", 1508 "Interchanges loops for cache reuse", false, false) 1509 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1510 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1511 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1512 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1513 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1514 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 1515 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1516 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1517 1518 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", 1519 "Interchanges loops for cache reuse", false, false) 1520 1521 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } 1522