1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "loop-interchange"
54 
55 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56 
57 static cl::opt<int> LoopInterchangeCostThreshold(
58     "loop-interchange-threshold", cl::init(0), cl::Hidden,
59     cl::desc("Interchange if you gain more than this number"));
60 
61 namespace {
62 
63 using LoopVector = SmallVector<Loop *, 8>;
64 
65 // TODO: Check if we can use a sparse matrix here.
66 using CharMatrix = std::vector<std::vector<char>>;
67 
68 } // end anonymous namespace
69 
70 // Maximum number of dependencies that can be handled in the dependency matrix.
71 static const unsigned MaxMemInstrCount = 100;
72 
73 // Maximum loop depth supported.
74 static const unsigned MaxLoopNestDepth = 10;
75 
76 #ifdef DUMP_DEP_MATRICIES
77 static void printDepMatrix(CharMatrix &DepMatrix) {
78   for (auto &Row : DepMatrix) {
79     for (auto D : Row)
80       LLVM_DEBUG(dbgs() << D << " ");
81     LLVM_DEBUG(dbgs() << "\n");
82   }
83 }
84 #endif
85 
86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
87                                      Loop *L, DependenceInfo *DI) {
88   using ValueVector = SmallVector<Value *, 16>;
89 
90   ValueVector MemInstr;
91 
92   // For each block.
93   for (BasicBlock *BB : L->blocks()) {
94     // Scan the BB and collect legal loads and stores.
95     for (Instruction &I : *BB) {
96       if (!isa<Instruction>(I))
97         return false;
98       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99         if (!Ld->isSimple())
100           return false;
101         MemInstr.push_back(&I);
102       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103         if (!St->isSimple())
104           return false;
105         MemInstr.push_back(&I);
106       }
107     }
108   }
109 
110   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
111                     << " Loads and Stores to analyze\n");
112 
113   ValueVector::iterator I, IE, J, JE;
114 
115   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117       std::vector<char> Dep;
118       Instruction *Src = cast<Instruction>(*I);
119       Instruction *Dst = cast<Instruction>(*J);
120       if (Src == Dst)
121         continue;
122       // Ignore Input dependencies.
123       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124         continue;
125       // Track Output, Flow, and Anti dependencies.
126       if (auto D = DI->depends(Src, Dst, true)) {
127         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128         LLVM_DEBUG(StringRef DepType =
129                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130                    dbgs() << "Found " << DepType
131                           << " dependency between Src and Dst\n"
132                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133         unsigned Levels = D->getLevels();
134         char Direction;
135         for (unsigned II = 1; II <= Levels; ++II) {
136           const SCEV *Distance = D->getDistance(II);
137           const SCEVConstant *SCEVConst =
138               dyn_cast_or_null<SCEVConstant>(Distance);
139           if (SCEVConst) {
140             const ConstantInt *CI = SCEVConst->getValue();
141             if (CI->isNegative())
142               Direction = '<';
143             else if (CI->isZero())
144               Direction = '=';
145             else
146               Direction = '>';
147             Dep.push_back(Direction);
148           } else if (D->isScalar(II)) {
149             Direction = 'S';
150             Dep.push_back(Direction);
151           } else {
152             unsigned Dir = D->getDirection(II);
153             if (Dir == Dependence::DVEntry::LT ||
154                 Dir == Dependence::DVEntry::LE)
155               Direction = '<';
156             else if (Dir == Dependence::DVEntry::GT ||
157                      Dir == Dependence::DVEntry::GE)
158               Direction = '>';
159             else if (Dir == Dependence::DVEntry::EQ)
160               Direction = '=';
161             else
162               Direction = '*';
163             Dep.push_back(Direction);
164           }
165         }
166         while (Dep.size() != Level) {
167           Dep.push_back('I');
168         }
169 
170         DepMatrix.push_back(Dep);
171         if (DepMatrix.size() > MaxMemInstrCount) {
172           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173                             << " dependencies inside loop\n");
174           return false;
175         }
176       }
177     }
178   }
179 
180   return true;
181 }
182 
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186                                     unsigned ToIndx) {
187   unsigned numRows = DepMatrix.size();
188   for (unsigned i = 0; i < numRows; ++i) {
189     char TmpVal = DepMatrix[i][ToIndx];
190     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
191     DepMatrix[i][FromIndx] = TmpVal;
192   }
193 }
194 
195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 // '>'
197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
198                                    unsigned Column) {
199   for (unsigned i = 0; i <= Column; ++i) {
200     if (DepMatrix[Row][i] == '<')
201       return false;
202     if (DepMatrix[Row][i] == '>')
203       return true;
204   }
205   // All dependencies were '=','S' or 'I'
206   return false;
207 }
208 
209 // Checks if no dependence exist in the dependency matrix in Row before Column.
210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
211                                  unsigned Column) {
212   for (unsigned i = 0; i < Column; ++i) {
213     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
214         DepMatrix[Row][i] != 'I')
215       return false;
216   }
217   return true;
218 }
219 
220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
221                                 unsigned OuterLoopId, char InnerDep,
222                                 char OuterDep) {
223   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
224     return false;
225 
226   if (InnerDep == OuterDep)
227     return true;
228 
229   // It is legal to interchange if and only if after interchange no row has a
230   // '>' direction as the leftmost non-'='.
231 
232   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
233     return true;
234 
235   if (InnerDep == '<')
236     return true;
237 
238   if (InnerDep == '>') {
239     // If OuterLoopId represents outermost loop then interchanging will make the
240     // 1st dependency as '>'
241     if (OuterLoopId == 0)
242       return false;
243 
244     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
245     // interchanging will result in this row having an outermost non '='
246     // dependency of '>'
247     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
248       return true;
249   }
250 
251   return false;
252 }
253 
254 // Checks if it is legal to interchange 2 loops.
255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
256 // if the direction matrix, after the same permutation is applied to its
257 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
259                                       unsigned InnerLoopId,
260                                       unsigned OuterLoopId) {
261   unsigned NumRows = DepMatrix.size();
262   // For each row check if it is valid to interchange.
263   for (unsigned Row = 0; Row < NumRows; ++Row) {
264     char InnerDep = DepMatrix[Row][InnerLoopId];
265     char OuterDep = DepMatrix[Row][OuterLoopId];
266     if (InnerDep == '*' || OuterDep == '*')
267       return false;
268     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
269       return false;
270   }
271   return true;
272 }
273 
274 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
275   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
276                     << L.getHeader()->getParent()->getName() << " Loop: %"
277                     << L.getHeader()->getName() << '\n');
278   LoopVector LoopList;
279   Loop *CurrentLoop = &L;
280   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
281   while (!Vec->empty()) {
282     // The current loop has multiple subloops in it hence it is not tightly
283     // nested.
284     // Discard all loops above it added into Worklist.
285     if (Vec->size() != 1) {
286       LoopList.clear();
287       return;
288     }
289     LoopList.push_back(CurrentLoop);
290     CurrentLoop = Vec->front();
291     Vec = &CurrentLoop->getSubLoops();
292   }
293   LoopList.push_back(CurrentLoop);
294   V.push_back(std::move(LoopList));
295 }
296 
297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
298   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
299   if (InnerIndexVar)
300     return InnerIndexVar;
301   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
302     return nullptr;
303   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
304     PHINode *PhiVar = cast<PHINode>(I);
305     Type *PhiTy = PhiVar->getType();
306     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
307         !PhiTy->isPointerTy())
308       return nullptr;
309     const SCEVAddRecExpr *AddRec =
310         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
311     if (!AddRec || !AddRec->isAffine())
312       continue;
313     const SCEV *Step = AddRec->getStepRecurrence(*SE);
314     if (!isa<SCEVConstant>(Step))
315       continue;
316     // Found the induction variable.
317     // FIXME: Handle loops with more than one induction variable. Note that,
318     // currently, legality makes sure we have only one induction variable.
319     return PhiVar;
320   }
321   return nullptr;
322 }
323 
324 namespace {
325 
326 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
327 class LoopInterchangeLegality {
328 public:
329   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
330                           OptimizationRemarkEmitter *ORE)
331       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
332 
333   /// Check if the loops can be interchanged.
334   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
335                            CharMatrix &DepMatrix);
336 
337   /// Check if the loop structure is understood. We do not handle triangular
338   /// loops for now.
339   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
340 
341   bool currentLimitations();
342 
343   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
344 
345 private:
346   bool tightlyNested(Loop *Outer, Loop *Inner);
347   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
348   bool areAllUsesReductions(Instruction *Ins, Loop *L);
349   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
350   bool findInductionAndReductions(Loop *L,
351                                   SmallVector<PHINode *, 8> &Inductions,
352                                   SmallVector<PHINode *, 8> &Reductions);
353 
354   Loop *OuterLoop;
355   Loop *InnerLoop;
356 
357   ScalarEvolution *SE;
358 
359   /// Interface to emit optimization remarks.
360   OptimizationRemarkEmitter *ORE;
361 
362   bool InnerLoopHasReduction = false;
363 };
364 
365 /// LoopInterchangeProfitability checks if it is profitable to interchange the
366 /// loop.
367 class LoopInterchangeProfitability {
368 public:
369   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
370                                OptimizationRemarkEmitter *ORE)
371       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
372 
373   /// Check if the loop interchange is profitable.
374   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
375                     CharMatrix &DepMatrix);
376 
377 private:
378   int getInstrOrderCost();
379 
380   Loop *OuterLoop;
381   Loop *InnerLoop;
382 
383   /// Scev analysis.
384   ScalarEvolution *SE;
385 
386   /// Interface to emit optimization remarks.
387   OptimizationRemarkEmitter *ORE;
388 };
389 
390 /// LoopInterchangeTransform interchanges the loop.
391 class LoopInterchangeTransform {
392 public:
393   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
394                            LoopInfo *LI, DominatorTree *DT,
395                            BasicBlock *LoopNestExit,
396                            bool InnerLoopContainsReductions)
397       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
398         LoopExit(LoopNestExit),
399         InnerLoopHasReduction(InnerLoopContainsReductions) {}
400 
401   /// Interchange OuterLoop and InnerLoop.
402   bool transform();
403   void restructureLoops(Loop *NewInner, Loop *NewOuter,
404                         BasicBlock *OrigInnerPreHeader,
405                         BasicBlock *OrigOuterPreHeader);
406   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
407 
408 private:
409   void splitInnerLoopLatch(Instruction *);
410   void splitInnerLoopHeader();
411   bool adjustLoopLinks();
412   void adjustLoopPreheaders();
413   bool adjustLoopBranches();
414   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
415                            BasicBlock *NewPred);
416 
417   Loop *OuterLoop;
418   Loop *InnerLoop;
419 
420   /// Scev analysis.
421   ScalarEvolution *SE;
422 
423   LoopInfo *LI;
424   DominatorTree *DT;
425   BasicBlock *LoopExit;
426   bool InnerLoopHasReduction;
427 };
428 
429 // Main LoopInterchange Pass.
430 struct LoopInterchange : public FunctionPass {
431   static char ID;
432   ScalarEvolution *SE = nullptr;
433   LoopInfo *LI = nullptr;
434   DependenceInfo *DI = nullptr;
435   DominatorTree *DT = nullptr;
436   bool PreserveLCSSA;
437 
438   /// Interface to emit optimization remarks.
439   OptimizationRemarkEmitter *ORE;
440 
441   LoopInterchange() : FunctionPass(ID) {
442     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
443   }
444 
445   void getAnalysisUsage(AnalysisUsage &AU) const override {
446     AU.addRequired<ScalarEvolutionWrapperPass>();
447     AU.addRequired<AAResultsWrapperPass>();
448     AU.addRequired<DominatorTreeWrapperPass>();
449     AU.addRequired<LoopInfoWrapperPass>();
450     AU.addRequired<DependenceAnalysisWrapperPass>();
451     AU.addRequiredID(LoopSimplifyID);
452     AU.addRequiredID(LCSSAID);
453     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
454 
455     AU.addPreserved<DominatorTreeWrapperPass>();
456     AU.addPreserved<LoopInfoWrapperPass>();
457     AU.addPreserved<ScalarEvolutionWrapperPass>();
458   }
459 
460   bool runOnFunction(Function &F) override {
461     if (skipFunction(F))
462       return false;
463 
464     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
465     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
466     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
467     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
468     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
469     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
470 
471     // Build up a worklist of loop pairs to analyze.
472     SmallVector<LoopVector, 8> Worklist;
473 
474     for (Loop *L : *LI)
475       populateWorklist(*L, Worklist);
476 
477     LLVM_DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
478     bool Changed = true;
479     while (!Worklist.empty()) {
480       LoopVector LoopList = Worklist.pop_back_val();
481       Changed = processLoopList(LoopList, F);
482     }
483     return Changed;
484   }
485 
486   bool isComputableLoopNest(LoopVector LoopList) {
487     for (Loop *L : LoopList) {
488       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
489       if (ExitCountOuter == SE->getCouldNotCompute()) {
490         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
491         return false;
492       }
493       if (L->getNumBackEdges() != 1) {
494         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
495         return false;
496       }
497       if (!L->getExitingBlock()) {
498         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
499         return false;
500       }
501     }
502     return true;
503   }
504 
505   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
506     // TODO: Add a better heuristic to select the loop to be interchanged based
507     // on the dependence matrix. Currently we select the innermost loop.
508     return LoopList.size() - 1;
509   }
510 
511   bool processLoopList(LoopVector LoopList, Function &F) {
512     bool Changed = false;
513     unsigned LoopNestDepth = LoopList.size();
514     if (LoopNestDepth < 2) {
515       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
516       return false;
517     }
518     if (LoopNestDepth > MaxLoopNestDepth) {
519       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
520                         << MaxLoopNestDepth << "\n");
521       return false;
522     }
523     if (!isComputableLoopNest(LoopList)) {
524       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
525       return false;
526     }
527 
528     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
529                       << "\n");
530 
531     CharMatrix DependencyMatrix;
532     Loop *OuterMostLoop = *(LoopList.begin());
533     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
534                                   OuterMostLoop, DI)) {
535       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
536       return false;
537     }
538 #ifdef DUMP_DEP_MATRICIES
539     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
540     printDepMatrix(DependencyMatrix);
541 #endif
542 
543     // Get the Outermost loop exit.
544     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
545     if (!LoopNestExit) {
546       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
547       return false;
548     }
549 
550     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
551     // Move the selected loop outwards to the best possible position.
552     for (unsigned i = SelecLoopId; i > 0; i--) {
553       bool Interchanged =
554           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
555       if (!Interchanged)
556         return Changed;
557       // Loops interchanged reflect the same in LoopList
558       std::swap(LoopList[i - 1], LoopList[i]);
559 
560       // Update the DependencyMatrix
561       interChangeDependencies(DependencyMatrix, i, i - 1);
562 #ifdef DUMP_DEP_MATRICIES
563       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
564       printDepMatrix(DependencyMatrix);
565 #endif
566       Changed |= Interchanged;
567     }
568     return Changed;
569   }
570 
571   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
572                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
573                    std::vector<std::vector<char>> &DependencyMatrix) {
574     LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
575                       << " and OuterLoopId = " << OuterLoopId << "\n");
576     Loop *InnerLoop = LoopList[InnerLoopId];
577     Loop *OuterLoop = LoopList[OuterLoopId];
578 
579     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
580     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
581       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
582       return false;
583     }
584     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
585     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
586     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
587       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
588       return false;
589     }
590 
591     ORE->emit([&]() {
592       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
593                                 InnerLoop->getStartLoc(),
594                                 InnerLoop->getHeader())
595              << "Loop interchanged with enclosing loop.";
596     });
597 
598     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
599                                  LoopNestExit, LIL.hasInnerLoopReduction());
600     LIT.transform();
601     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
602     LoopsInterchanged++;
603     return true;
604   }
605 };
606 
607 } // end anonymous namespace
608 
609 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
610   return llvm::none_of(Ins->users(), [=](User *U) -> bool {
611     auto *UserIns = dyn_cast<PHINode>(U);
612     RecurrenceDescriptor RD;
613     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
614   });
615 }
616 
617 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
618     BasicBlock *BB) {
619   for (Instruction &I : *BB) {
620     // Load corresponding to reduction PHI's are safe while concluding if
621     // tightly nested.
622     if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
623       if (!areAllUsesReductions(L, InnerLoop))
624         return true;
625     } else if (I.mayHaveSideEffects() || I.mayReadFromMemory())
626       return true;
627   }
628   return false;
629 }
630 
631 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
632     BasicBlock *BB) {
633   for (Instruction &I : *BB) {
634     // Stores corresponding to reductions are safe while concluding if tightly
635     // nested.
636     if (StoreInst *L = dyn_cast<StoreInst>(&I)) {
637       if (!isa<PHINode>(L->getOperand(0)))
638         return true;
639     } else if (I.mayHaveSideEffects() || I.mayReadFromMemory())
640       return true;
641   }
642   return false;
643 }
644 
645 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
646   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
647   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
648   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
649 
650   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
651 
652   // A perfectly nested loop will not have any branch in between the outer and
653   // inner block i.e. outer header will branch to either inner preheader and
654   // outerloop latch.
655   BranchInst *OuterLoopHeaderBI =
656       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
657   if (!OuterLoopHeaderBI)
658     return false;
659 
660   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
661     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
662         Succ != OuterLoopLatch)
663       return false;
664 
665   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
666   // We do not have any basic block in between now make sure the outer header
667   // and outer loop latch doesn't contain any unsafe instructions.
668   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
669       containsUnsafeInstructionsInLatch(OuterLoopLatch))
670     return false;
671 
672   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
673   // We have a perfect loop nest.
674   return true;
675 }
676 
677 bool LoopInterchangeLegality::isLoopStructureUnderstood(
678     PHINode *InnerInduction) {
679   unsigned Num = InnerInduction->getNumOperands();
680   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
681   for (unsigned i = 0; i < Num; ++i) {
682     Value *Val = InnerInduction->getOperand(i);
683     if (isa<Constant>(Val))
684       continue;
685     Instruction *I = dyn_cast<Instruction>(Val);
686     if (!I)
687       return false;
688     // TODO: Handle triangular loops.
689     // e.g. for(int i=0;i<N;i++)
690     //        for(int j=i;j<N;j++)
691     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
692     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
693             InnerLoopPreheader &&
694         !OuterLoop->isLoopInvariant(I)) {
695       return false;
696     }
697   }
698   return true;
699 }
700 
701 bool LoopInterchangeLegality::findInductionAndReductions(
702     Loop *L, SmallVector<PHINode *, 8> &Inductions,
703     SmallVector<PHINode *, 8> &Reductions) {
704   if (!L->getLoopLatch() || !L->getLoopPredecessor())
705     return false;
706   for (PHINode &PHI : L->getHeader()->phis()) {
707     RecurrenceDescriptor RD;
708     InductionDescriptor ID;
709     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
710       Inductions.push_back(&PHI);
711     else if (RecurrenceDescriptor::isReductionPHI(&PHI, L, RD))
712       Reductions.push_back(&PHI);
713     else {
714       LLVM_DEBUG(
715           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
716       return false;
717     }
718   }
719   return true;
720 }
721 
722 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
723   for (PHINode &PHI : Block->phis()) {
724     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
725     if (PHI.getNumIncomingValues() > 1)
726       return false;
727     Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
728     if (!Ins)
729       return false;
730     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
731     // exits lcssa phi else it would not be tightly nested.
732     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
733       return false;
734   }
735   return true;
736 }
737 
738 // This function indicates the current limitations in the transform as a result
739 // of which we do not proceed.
740 bool LoopInterchangeLegality::currentLimitations() {
741   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
742   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
743 
744   // transform currently expects the loop latches to also be the exiting
745   // blocks.
746   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
747       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
748       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
749       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
750     LLVM_DEBUG(
751         dbgs() << "Loops where the latch is not the exiting block are not"
752                << " supported currently.\n");
753     ORE->emit([&]() {
754       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
755                                       OuterLoop->getStartLoc(),
756                                       OuterLoop->getHeader())
757              << "Loops where the latch is not the exiting block cannot be"
758                 " interchange currently.";
759     });
760     return true;
761   }
762 
763   PHINode *InnerInductionVar;
764   SmallVector<PHINode *, 8> Inductions;
765   SmallVector<PHINode *, 8> Reductions;
766   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
767     LLVM_DEBUG(
768         dbgs() << "Only inner loops with induction or reduction PHI nodes "
769                << "are supported currently.\n");
770     ORE->emit([&]() {
771       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
772                                       InnerLoop->getStartLoc(),
773                                       InnerLoop->getHeader())
774              << "Only inner loops with induction or reduction PHI nodes can be"
775                 " interchange currently.";
776     });
777     return true;
778   }
779 
780   // TODO: Currently we handle only loops with 1 induction variable.
781   if (Inductions.size() != 1) {
782     LLVM_DEBUG(
783         dbgs() << "We currently only support loops with 1 induction variable."
784                << "Failed to interchange due to current limitation\n");
785     ORE->emit([&]() {
786       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
787                                       InnerLoop->getStartLoc(),
788                                       InnerLoop->getHeader())
789              << "Only inner loops with 1 induction variable can be "
790                 "interchanged currently.";
791     });
792     return true;
793   }
794   if (Reductions.size() > 0)
795     InnerLoopHasReduction = true;
796 
797   InnerInductionVar = Inductions.pop_back_val();
798   Reductions.clear();
799   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
800     LLVM_DEBUG(
801         dbgs() << "Only outer loops with induction or reduction PHI nodes "
802                << "are supported currently.\n");
803     ORE->emit([&]() {
804       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
805                                       OuterLoop->getStartLoc(),
806                                       OuterLoop->getHeader())
807              << "Only outer loops with induction or reduction PHI nodes can be"
808                 " interchanged currently.";
809     });
810     return true;
811   }
812 
813   // Outer loop cannot have reduction because then loops will not be tightly
814   // nested.
815   if (!Reductions.empty()) {
816     LLVM_DEBUG(dbgs() << "Outer loops with reductions are not supported "
817                       << "currently.\n");
818     ORE->emit([&]() {
819       return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter",
820                                       OuterLoop->getStartLoc(),
821                                       OuterLoop->getHeader())
822              << "Outer loops with reductions cannot be interchangeed "
823                 "currently.";
824     });
825     return true;
826   }
827   // TODO: Currently we handle only loops with 1 induction variable.
828   if (Inductions.size() != 1) {
829     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
830                       << "supported currently.\n");
831     ORE->emit([&]() {
832       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
833                                       OuterLoop->getStartLoc(),
834                                       OuterLoop->getHeader())
835              << "Only outer loops with 1 induction variable can be "
836                 "interchanged currently.";
837     });
838     return true;
839   }
840 
841   // TODO: Triangular loops are not handled for now.
842   if (!isLoopStructureUnderstood(InnerInductionVar)) {
843     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
844     ORE->emit([&]() {
845       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
846                                       InnerLoop->getStartLoc(),
847                                       InnerLoop->getHeader())
848              << "Inner loop structure not understood currently.";
849     });
850     return true;
851   }
852 
853   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
854   BasicBlock *InnerExit = InnerLoop->getExitBlock();
855   if (!containsSafePHI(InnerExit, false)) {
856     LLVM_DEBUG(
857         dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
858     ORE->emit([&]() {
859       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
860                                       InnerLoop->getStartLoc(),
861                                       InnerLoop->getHeader())
862              << "Only inner loops with LCSSA PHIs can be interchange "
863                 "currently.";
864     });
865     return true;
866   }
867 
868   // TODO: Current limitation: Since we split the inner loop latch at the point
869   // were induction variable is incremented (induction.next); We cannot have
870   // more than 1 user of induction.next since it would result in broken code
871   // after split.
872   // e.g.
873   // for(i=0;i<N;i++) {
874   //    for(j = 0;j<M;j++) {
875   //      A[j+1][i+2] = A[j][i]+k;
876   //  }
877   // }
878   Instruction *InnerIndexVarInc = nullptr;
879   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
880     InnerIndexVarInc =
881         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
882   else
883     InnerIndexVarInc =
884         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
885 
886   if (!InnerIndexVarInc) {
887     LLVM_DEBUG(
888         dbgs() << "Did not find an instruction to increment the induction "
889                << "variable.\n");
890     ORE->emit([&]() {
891       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
892                                       InnerLoop->getStartLoc(),
893                                       InnerLoop->getHeader())
894              << "The inner loop does not increment the induction variable.";
895     });
896     return true;
897   }
898 
899   // Since we split the inner loop latch on this induction variable. Make sure
900   // we do not have any instruction between the induction variable and branch
901   // instruction.
902 
903   bool FoundInduction = false;
904   for (const Instruction &I :
905        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
906     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
907         isa<ZExtInst>(I))
908       continue;
909 
910     // We found an instruction. If this is not induction variable then it is not
911     // safe to split this loop latch.
912     if (!I.isIdenticalTo(InnerIndexVarInc)) {
913       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
914                         << "variable increment and branch.\n");
915       ORE->emit([&]() {
916         return OptimizationRemarkMissed(
917                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
918                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
919                << "Found unsupported instruction between induction variable "
920                   "increment and branch.";
921       });
922       return true;
923     }
924 
925     FoundInduction = true;
926     break;
927   }
928   // The loop latch ended and we didn't find the induction variable return as
929   // current limitation.
930   if (!FoundInduction) {
931     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
932     ORE->emit([&]() {
933       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
934                                       InnerLoop->getStartLoc(),
935                                       InnerLoop->getHeader())
936              << "Did not find the induction variable.";
937     });
938     return true;
939   }
940   return false;
941 }
942 
943 // We currently support LCSSA PHI nodes in the outer loop exit, if their
944 // incoming values do not come from the outer loop latch or if the
945 // outer loop latch has a single predecessor. In that case, the value will
946 // be available if both the inner and outer loop conditions are true, which
947 // will still be true after interchanging. If we have multiple predecessor,
948 // that may not be the case, e.g. because the outer loop latch may be executed
949 // if the inner loop is not executed.
950 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
951   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
952   for (PHINode &PHI : LoopNestExit->phis()) {
953     //  FIXME: We currently are not able to detect floating point reductions
954     //         and have to use floating point PHIs as a proxy to prevent
955     //         interchanging in the presence of floating point reductions.
956     if (PHI.getType()->isFloatingPointTy())
957       return false;
958     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
959      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
960      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
961        continue;
962 
963      // The incoming value is defined in the outer loop latch. Currently we
964      // only support that in case the outer loop latch has a single predecessor.
965      // This guarantees that the outer loop latch is executed if and only if
966      // the inner loop is executed (because tightlyNested() guarantees that the
967      // outer loop header only branches to the inner loop or the outer loop
968      // latch).
969      // FIXME: We could weaken this logic and allow multiple predecessors,
970      //        if the values are produced outside the loop latch. We would need
971      //        additional logic to update the PHI nodes in the exit block as
972      //        well.
973      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
974        return false;
975     }
976   }
977   return true;
978 }
979 
980 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
981                                                   unsigned OuterLoopId,
982                                                   CharMatrix &DepMatrix) {
983   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
984     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
985                       << " and OuterLoopId = " << OuterLoopId
986                       << " due to dependence\n");
987     ORE->emit([&]() {
988       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
989                                       InnerLoop->getStartLoc(),
990                                       InnerLoop->getHeader())
991              << "Cannot interchange loops due to dependences.";
992     });
993     return false;
994   }
995   // Check if outer and inner loop contain legal instructions only.
996   for (auto *BB : OuterLoop->blocks())
997     for (Instruction &I : BB->instructionsWithoutDebug())
998       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
999         // readnone functions do not prevent interchanging.
1000         if (CI->doesNotReadMemory())
1001           continue;
1002         LLVM_DEBUG(
1003             dbgs() << "Loops with call instructions cannot be interchanged "
1004                    << "safely.");
1005         ORE->emit([&]() {
1006           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1007                                           CI->getDebugLoc(),
1008                                           CI->getParent())
1009                  << "Cannot interchange loops due to call instruction.";
1010         });
1011 
1012         return false;
1013       }
1014 
1015   // TODO: The loops could not be interchanged due to current limitations in the
1016   // transform module.
1017   if (currentLimitations()) {
1018     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1019     return false;
1020   }
1021 
1022   // Check if the loops are tightly nested.
1023   if (!tightlyNested(OuterLoop, InnerLoop)) {
1024     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1025     ORE->emit([&]() {
1026       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1027                                       InnerLoop->getStartLoc(),
1028                                       InnerLoop->getHeader())
1029              << "Cannot interchange loops because they are not tightly "
1030                 "nested.";
1031     });
1032     return false;
1033   }
1034 
1035   if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1036     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1037     ORE->emit([&]() {
1038       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1039                                       OuterLoop->getStartLoc(),
1040                                       OuterLoop->getHeader())
1041              << "Found unsupported PHI node in loop exit.";
1042     });
1043     return false;
1044   }
1045 
1046   return true;
1047 }
1048 
1049 int LoopInterchangeProfitability::getInstrOrderCost() {
1050   unsigned GoodOrder, BadOrder;
1051   BadOrder = GoodOrder = 0;
1052   for (BasicBlock *BB : InnerLoop->blocks()) {
1053     for (Instruction &Ins : *BB) {
1054       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1055         unsigned NumOp = GEP->getNumOperands();
1056         bool FoundInnerInduction = false;
1057         bool FoundOuterInduction = false;
1058         for (unsigned i = 0; i < NumOp; ++i) {
1059           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1060           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1061           if (!AR)
1062             continue;
1063 
1064           // If we find the inner induction after an outer induction e.g.
1065           // for(int i=0;i<N;i++)
1066           //   for(int j=0;j<N;j++)
1067           //     A[i][j] = A[i-1][j-1]+k;
1068           // then it is a good order.
1069           if (AR->getLoop() == InnerLoop) {
1070             // We found an InnerLoop induction after OuterLoop induction. It is
1071             // a good order.
1072             FoundInnerInduction = true;
1073             if (FoundOuterInduction) {
1074               GoodOrder++;
1075               break;
1076             }
1077           }
1078           // If we find the outer induction after an inner induction e.g.
1079           // for(int i=0;i<N;i++)
1080           //   for(int j=0;j<N;j++)
1081           //     A[j][i] = A[j-1][i-1]+k;
1082           // then it is a bad order.
1083           if (AR->getLoop() == OuterLoop) {
1084             // We found an OuterLoop induction after InnerLoop induction. It is
1085             // a bad order.
1086             FoundOuterInduction = true;
1087             if (FoundInnerInduction) {
1088               BadOrder++;
1089               break;
1090             }
1091           }
1092         }
1093       }
1094     }
1095   }
1096   return GoodOrder - BadOrder;
1097 }
1098 
1099 static bool isProfitableForVectorization(unsigned InnerLoopId,
1100                                          unsigned OuterLoopId,
1101                                          CharMatrix &DepMatrix) {
1102   // TODO: Improve this heuristic to catch more cases.
1103   // If the inner loop is loop independent or doesn't carry any dependency it is
1104   // profitable to move this to outer position.
1105   for (auto &Row : DepMatrix) {
1106     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1107       return false;
1108     // TODO: We need to improve this heuristic.
1109     if (Row[OuterLoopId] != '=')
1110       return false;
1111   }
1112   // If outer loop has dependence and inner loop is loop independent then it is
1113   // profitable to interchange to enable parallelism.
1114   // If there are no dependences, interchanging will not improve anything.
1115   return !DepMatrix.empty();
1116 }
1117 
1118 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1119                                                 unsigned OuterLoopId,
1120                                                 CharMatrix &DepMatrix) {
1121   // TODO: Add better profitability checks.
1122   // e.g
1123   // 1) Construct dependency matrix and move the one with no loop carried dep
1124   //    inside to enable vectorization.
1125 
1126   // This is rough cost estimation algorithm. It counts the good and bad order
1127   // of induction variables in the instruction and allows reordering if number
1128   // of bad orders is more than good.
1129   int Cost = getInstrOrderCost();
1130   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1131   if (Cost < -LoopInterchangeCostThreshold)
1132     return true;
1133 
1134   // It is not profitable as per current cache profitability model. But check if
1135   // we can move this loop outside to improve parallelism.
1136   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1137     return true;
1138 
1139   ORE->emit([&]() {
1140     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1141                                     InnerLoop->getStartLoc(),
1142                                     InnerLoop->getHeader())
1143            << "Interchanging loops is too costly (cost="
1144            << ore::NV("Cost", Cost) << ", threshold="
1145            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1146            << ") and it does not improve parallelism.";
1147   });
1148   return false;
1149 }
1150 
1151 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1152                                                Loop *InnerLoop) {
1153   for (Loop *L : *OuterLoop)
1154     if (L == InnerLoop) {
1155       OuterLoop->removeChildLoop(L);
1156       return;
1157     }
1158   llvm_unreachable("Couldn't find loop");
1159 }
1160 
1161 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1162 /// new inner and outer loop after interchanging: NewInner is the original
1163 /// outer loop and NewOuter is the original inner loop.
1164 ///
1165 /// Before interchanging, we have the following structure
1166 /// Outer preheader
1167 //  Outer header
1168 //    Inner preheader
1169 //    Inner header
1170 //      Inner body
1171 //      Inner latch
1172 //   outer bbs
1173 //   Outer latch
1174 //
1175 // After interchanging:
1176 // Inner preheader
1177 // Inner header
1178 //   Outer preheader
1179 //   Outer header
1180 //     Inner body
1181 //     outer bbs
1182 //     Outer latch
1183 //   Inner latch
1184 void LoopInterchangeTransform::restructureLoops(
1185     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1186     BasicBlock *OrigOuterPreHeader) {
1187   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1188   // The original inner loop preheader moves from the new inner loop to
1189   // the parent loop, if there is one.
1190   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1191   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1192 
1193   // Switch the loop levels.
1194   if (OuterLoopParent) {
1195     // Remove the loop from its parent loop.
1196     removeChildLoop(OuterLoopParent, NewInner);
1197     removeChildLoop(NewInner, NewOuter);
1198     OuterLoopParent->addChildLoop(NewOuter);
1199   } else {
1200     removeChildLoop(NewInner, NewOuter);
1201     LI->changeTopLevelLoop(NewInner, NewOuter);
1202   }
1203   while (!NewOuter->empty())
1204     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1205   NewOuter->addChildLoop(NewInner);
1206 
1207   // BBs from the original inner loop.
1208   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1209 
1210   // Add BBs from the original outer loop to the original inner loop (excluding
1211   // BBs already in inner loop)
1212   for (BasicBlock *BB : NewInner->blocks())
1213     if (LI->getLoopFor(BB) == NewInner)
1214       NewOuter->addBlockEntry(BB);
1215 
1216   // Now remove inner loop header and latch from the new inner loop and move
1217   // other BBs (the loop body) to the new inner loop.
1218   BasicBlock *OuterHeader = NewOuter->getHeader();
1219   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1220   for (BasicBlock *BB : OrigInnerBBs) {
1221     // Nothing will change for BBs in child loops.
1222     if (LI->getLoopFor(BB) != NewOuter)
1223       continue;
1224     // Remove the new outer loop header and latch from the new inner loop.
1225     if (BB == OuterHeader || BB == OuterLatch)
1226       NewInner->removeBlockFromLoop(BB);
1227     else
1228       LI->changeLoopFor(BB, NewInner);
1229   }
1230 
1231   // The preheader of the original outer loop becomes part of the new
1232   // outer loop.
1233   NewOuter->addBlockEntry(OrigOuterPreHeader);
1234   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1235 
1236   // Tell SE that we move the loops around.
1237   SE->forgetLoop(NewOuter);
1238   SE->forgetLoop(NewInner);
1239 }
1240 
1241 bool LoopInterchangeTransform::transform() {
1242   bool Transformed = false;
1243   Instruction *InnerIndexVar;
1244 
1245   if (InnerLoop->getSubLoops().empty()) {
1246     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1247     LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
1248     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1249     if (!InductionPHI) {
1250       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1251       return false;
1252     }
1253 
1254     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1255       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1256     else
1257       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1258 
1259     // Ensure that InductionPHI is the first Phi node.
1260     if (&InductionPHI->getParent()->front() != InductionPHI)
1261       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1262 
1263     // Split at the place were the induction variable is
1264     // incremented/decremented.
1265     // TODO: This splitting logic may not work always. Fix this.
1266     splitInnerLoopLatch(InnerIndexVar);
1267     LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1268 
1269     // Splits the inner loops phi nodes out into a separate basic block.
1270     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1271     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1272     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1273   }
1274 
1275   Transformed |= adjustLoopLinks();
1276   if (!Transformed) {
1277     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1278     return false;
1279   }
1280 
1281   return true;
1282 }
1283 
1284 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1285   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1286   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1287   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1288 }
1289 
1290 /// \brief Move all instructions except the terminator from FromBB right before
1291 /// InsertBefore
1292 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1293   auto &ToList = InsertBefore->getParent()->getInstList();
1294   auto &FromList = FromBB->getInstList();
1295 
1296   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1297                 FromBB->getTerminator()->getIterator());
1298 }
1299 
1300 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1301                                                    BasicBlock *OldPred,
1302                                                    BasicBlock *NewPred) {
1303   for (PHINode &PHI : CurrBlock->phis()) {
1304     unsigned Num = PHI.getNumIncomingValues();
1305     for (unsigned i = 0; i < Num; ++i) {
1306       if (PHI.getIncomingBlock(i) == OldPred)
1307         PHI.setIncomingBlock(i, NewPred);
1308     }
1309   }
1310 }
1311 
1312 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1313 /// the dominator tree in DTUpdates, if DT should be preserved.
1314 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1315                             BasicBlock *NewBB,
1316                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1317   assert(llvm::count_if(successors(BI),
1318                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1319          "BI must jump to OldBB at most once.");
1320   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1321     if (BI->getSuccessor(i) == OldBB) {
1322       BI->setSuccessor(i, NewBB);
1323 
1324       DTUpdates.push_back(
1325           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1326       DTUpdates.push_back(
1327           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1328       break;
1329     }
1330   }
1331 }
1332 
1333 bool LoopInterchangeTransform::adjustLoopBranches() {
1334   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1335   std::vector<DominatorTree::UpdateType> DTUpdates;
1336 
1337   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1338   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1339 
1340   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1341          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1342          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1343   // Ensure that both preheaders do not contain PHI nodes and have single
1344   // predecessors. This allows us to move them easily. We use
1345   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1346   // preheaders do not satisfy those conditions.
1347   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1348       !OuterLoopPreHeader->getUniquePredecessor())
1349     OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, DT, LI, true);
1350   if (InnerLoopPreHeader == OuterLoop->getHeader())
1351     InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, DT, LI, true);
1352 
1353   // Adjust the loop preheader
1354   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1355   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1356   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1357   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1358   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1359   BasicBlock *InnerLoopLatchPredecessor =
1360       InnerLoopLatch->getUniquePredecessor();
1361   BasicBlock *InnerLoopLatchSuccessor;
1362   BasicBlock *OuterLoopLatchSuccessor;
1363 
1364   BranchInst *OuterLoopLatchBI =
1365       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1366   BranchInst *InnerLoopLatchBI =
1367       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1368   BranchInst *OuterLoopHeaderBI =
1369       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1370   BranchInst *InnerLoopHeaderBI =
1371       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1372 
1373   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1374       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1375       !InnerLoopHeaderBI)
1376     return false;
1377 
1378   BranchInst *InnerLoopLatchPredecessorBI =
1379       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1380   BranchInst *OuterLoopPredecessorBI =
1381       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1382 
1383   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1384     return false;
1385   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1386   if (!InnerLoopHeaderSuccessor)
1387     return false;
1388 
1389   // Adjust Loop Preheader and headers
1390   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1391                   InnerLoopPreHeader, DTUpdates);
1392   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1393   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1394                   InnerLoopHeaderSuccessor, DTUpdates);
1395 
1396   // Adjust reduction PHI's now that the incoming block has changed.
1397   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1398                       OuterLoopHeader);
1399 
1400   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1401                   OuterLoopPreHeader, DTUpdates);
1402 
1403   // -------------Adjust loop latches-----------
1404   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1405     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1406   else
1407     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1408 
1409   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1410                   InnerLoopLatchSuccessor, DTUpdates);
1411 
1412   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1413   // the value and remove this PHI node from inner loop.
1414   SmallVector<PHINode *, 8> LcssaVec;
1415   for (PHINode &P : InnerLoopLatchSuccessor->phis())
1416     LcssaVec.push_back(&P);
1417 
1418   for (PHINode *P : LcssaVec) {
1419     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1420     P->replaceAllUsesWith(Incoming);
1421     P->eraseFromParent();
1422   }
1423 
1424   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1425     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1426   else
1427     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1428 
1429   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1430                   OuterLoopLatchSuccessor, DTUpdates);
1431   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1432                   DTUpdates);
1433 
1434   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1435 
1436   DT->applyUpdates(DTUpdates);
1437   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1438                    OuterLoopPreHeader);
1439 
1440   // Now update the reduction PHIs in the inner and outer loop headers.
1441   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1442   for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
1443     InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1444   for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
1445     OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1446 
1447   for (PHINode *PHI : OuterLoopPHIs)
1448     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1449 
1450   // Move the PHI nodes from the inner loop header to the outer loop header.
1451   // We have to deal with one kind of PHI nodes:
1452   //  1) PHI nodes that are part of inner loop-only reductions.
1453   // We only have to move the PHI node and update the incoming blocks.
1454   for (PHINode *PHI : InnerLoopPHIs) {
1455     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1456     for (BasicBlock *InBB : PHI->blocks()) {
1457       if (InnerLoop->contains(InBB))
1458         continue;
1459 
1460       assert(!isa<PHINode>(PHI->getIncomingValueForBlock(InBB)) &&
1461              "Unexpected incoming PHI node, reductions in outer loop are not "
1462              "supported yet");
1463       PHI->replaceAllUsesWith(PHI->getIncomingValueForBlock(InBB));
1464       PHI->eraseFromParent();
1465       break;
1466     }
1467   }
1468 
1469   // Update the incoming blocks for moved PHI nodes.
1470   updateIncomingBlock(OuterLoopHeader, InnerLoopPreHeader, OuterLoopPreHeader);
1471   updateIncomingBlock(OuterLoopHeader, InnerLoopLatch, OuterLoopLatch);
1472   updateIncomingBlock(InnerLoopHeader, OuterLoopPreHeader, InnerLoopPreHeader);
1473   updateIncomingBlock(InnerLoopHeader, OuterLoopLatch, InnerLoopLatch);
1474 
1475   return true;
1476 }
1477 
1478 void LoopInterchangeTransform::adjustLoopPreheaders() {
1479   // We have interchanged the preheaders so we need to interchange the data in
1480   // the preheader as well.
1481   // This is because the content of inner preheader was previously executed
1482   // inside the outer loop.
1483   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1484   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1485   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1486   BranchInst *InnerTermBI =
1487       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1488 
1489   // These instructions should now be executed inside the loop.
1490   // Move instruction into a new block after outer header.
1491   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1492   // These instructions were not executed previously in the loop so move them to
1493   // the older inner loop preheader.
1494   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1495 }
1496 
1497 bool LoopInterchangeTransform::adjustLoopLinks() {
1498   // Adjust all branches in the inner and outer loop.
1499   bool Changed = adjustLoopBranches();
1500   if (Changed)
1501     adjustLoopPreheaders();
1502   return Changed;
1503 }
1504 
1505 char LoopInterchange::ID = 0;
1506 
1507 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1508                       "Interchanges loops for cache reuse", false, false)
1509 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1510 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1511 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1512 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1513 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1514 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1515 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1516 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1517 
1518 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1519                     "Interchanges loops for cache reuse", false, false)
1520 
1521 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1522