1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopNestAnalysis.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 #include <cassert> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "loop-interchange" 55 56 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 57 58 static cl::opt<int> LoopInterchangeCostThreshold( 59 "loop-interchange-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Interchange if you gain more than this number")); 61 62 namespace { 63 64 using LoopVector = SmallVector<Loop *, 8>; 65 66 // TODO: Check if we can use a sparse matrix here. 67 using CharMatrix = std::vector<std::vector<char>>; 68 69 } // end anonymous namespace 70 71 // Maximum number of dependencies that can be handled in the dependency matrix. 72 static const unsigned MaxMemInstrCount = 100; 73 74 // Maximum loop depth supported. 75 static const unsigned MaxLoopNestDepth = 10; 76 77 #ifdef DUMP_DEP_MATRICIES 78 static void printDepMatrix(CharMatrix &DepMatrix) { 79 for (auto &Row : DepMatrix) { 80 for (auto D : Row) 81 LLVM_DEBUG(dbgs() << D << " "); 82 LLVM_DEBUG(dbgs() << "\n"); 83 } 84 } 85 #endif 86 87 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 88 Loop *L, DependenceInfo *DI) { 89 using ValueVector = SmallVector<Value *, 16>; 90 91 ValueVector MemInstr; 92 93 // For each block. 94 for (BasicBlock *BB : L->blocks()) { 95 // Scan the BB and collect legal loads and stores. 96 for (Instruction &I : *BB) { 97 if (!isa<Instruction>(I)) 98 return false; 99 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 100 if (!Ld->isSimple()) 101 return false; 102 MemInstr.push_back(&I); 103 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 104 if (!St->isSimple()) 105 return false; 106 MemInstr.push_back(&I); 107 } 108 } 109 } 110 111 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 112 << " Loads and Stores to analyze\n"); 113 114 ValueVector::iterator I, IE, J, JE; 115 116 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 117 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 118 std::vector<char> Dep; 119 Instruction *Src = cast<Instruction>(*I); 120 Instruction *Dst = cast<Instruction>(*J); 121 // Ignore Input dependencies. 122 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 123 continue; 124 // Track Output, Flow, and Anti dependencies. 125 if (auto D = DI->depends(Src, Dst, true)) { 126 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 127 LLVM_DEBUG(StringRef DepType = 128 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 129 dbgs() << "Found " << DepType 130 << " dependency between Src and Dst\n" 131 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 132 unsigned Levels = D->getLevels(); 133 char Direction; 134 for (unsigned II = 1; II <= Levels; ++II) { 135 const SCEV *Distance = D->getDistance(II); 136 const SCEVConstant *SCEVConst = 137 dyn_cast_or_null<SCEVConstant>(Distance); 138 if (SCEVConst) { 139 const ConstantInt *CI = SCEVConst->getValue(); 140 if (CI->isNegative()) 141 Direction = '<'; 142 else if (CI->isZero()) 143 Direction = '='; 144 else 145 Direction = '>'; 146 Dep.push_back(Direction); 147 } else if (D->isScalar(II)) { 148 Direction = 'S'; 149 Dep.push_back(Direction); 150 } else { 151 unsigned Dir = D->getDirection(II); 152 if (Dir == Dependence::DVEntry::LT || 153 Dir == Dependence::DVEntry::LE) 154 Direction = '<'; 155 else if (Dir == Dependence::DVEntry::GT || 156 Dir == Dependence::DVEntry::GE) 157 Direction = '>'; 158 else if (Dir == Dependence::DVEntry::EQ) 159 Direction = '='; 160 else 161 Direction = '*'; 162 Dep.push_back(Direction); 163 } 164 } 165 while (Dep.size() != Level) { 166 Dep.push_back('I'); 167 } 168 169 DepMatrix.push_back(Dep); 170 if (DepMatrix.size() > MaxMemInstrCount) { 171 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 172 << " dependencies inside loop\n"); 173 return false; 174 } 175 } 176 } 177 } 178 179 return true; 180 } 181 182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 183 // matrix by exchanging the two columns. 184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 185 unsigned ToIndx) { 186 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 187 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 188 } 189 190 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 191 // '>' 192 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 193 unsigned Column) { 194 for (unsigned i = 0; i <= Column; ++i) { 195 if (DepMatrix[Row][i] == '<') 196 return false; 197 if (DepMatrix[Row][i] == '>') 198 return true; 199 } 200 // All dependencies were '=','S' or 'I' 201 return false; 202 } 203 204 // Checks if no dependence exist in the dependency matrix in Row before Column. 205 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 206 unsigned Column) { 207 for (unsigned i = 0; i < Column; ++i) { 208 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 209 DepMatrix[Row][i] != 'I') 210 return false; 211 } 212 return true; 213 } 214 215 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 216 unsigned OuterLoopId, char InnerDep, 217 char OuterDep) { 218 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 219 return false; 220 221 if (InnerDep == OuterDep) 222 return true; 223 224 // It is legal to interchange if and only if after interchange no row has a 225 // '>' direction as the leftmost non-'='. 226 227 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 228 return true; 229 230 if (InnerDep == '<') 231 return true; 232 233 if (InnerDep == '>') { 234 // If OuterLoopId represents outermost loop then interchanging will make the 235 // 1st dependency as '>' 236 if (OuterLoopId == 0) 237 return false; 238 239 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 240 // interchanging will result in this row having an outermost non '=' 241 // dependency of '>' 242 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 243 return true; 244 } 245 246 return false; 247 } 248 249 // Checks if it is legal to interchange 2 loops. 250 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 251 // if the direction matrix, after the same permutation is applied to its 252 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 253 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 254 unsigned InnerLoopId, 255 unsigned OuterLoopId) { 256 unsigned NumRows = DepMatrix.size(); 257 // For each row check if it is valid to interchange. 258 for (unsigned Row = 0; Row < NumRows; ++Row) { 259 char InnerDep = DepMatrix[Row][InnerLoopId]; 260 char OuterDep = DepMatrix[Row][OuterLoopId]; 261 if (InnerDep == '*' || OuterDep == '*') 262 return false; 263 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 264 return false; 265 } 266 return true; 267 } 268 269 static LoopVector populateWorklist(Loop &L) { 270 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 271 << L.getHeader()->getParent()->getName() << " Loop: %" 272 << L.getHeader()->getName() << '\n'); 273 LoopVector LoopList; 274 Loop *CurrentLoop = &L; 275 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 276 while (!Vec->empty()) { 277 // The current loop has multiple subloops in it hence it is not tightly 278 // nested. 279 // Discard all loops above it added into Worklist. 280 if (Vec->size() != 1) 281 return {}; 282 283 LoopList.push_back(CurrentLoop); 284 CurrentLoop = Vec->front(); 285 Vec = &CurrentLoop->getSubLoops(); 286 } 287 LoopList.push_back(CurrentLoop); 288 return LoopList; 289 } 290 291 namespace { 292 293 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 294 class LoopInterchangeLegality { 295 public: 296 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 297 OptimizationRemarkEmitter *ORE) 298 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 299 300 /// Check if the loops can be interchanged. 301 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 302 CharMatrix &DepMatrix); 303 304 /// Discover induction PHIs in the header of \p L. Induction 305 /// PHIs are added to \p Inductions. 306 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 307 308 /// Check if the loop structure is understood. We do not handle triangular 309 /// loops for now. 310 bool isLoopStructureUnderstood(); 311 312 bool currentLimitations(); 313 314 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 315 return OuterInnerReductions; 316 } 317 318 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 319 return InnerLoopInductions; 320 } 321 322 private: 323 bool tightlyNested(Loop *Outer, Loop *Inner); 324 bool containsUnsafeInstructions(BasicBlock *BB); 325 326 /// Discover induction and reduction PHIs in the header of \p L. Induction 327 /// PHIs are added to \p Inductions, reductions are added to 328 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 329 /// to be passed as \p InnerLoop. 330 bool findInductionAndReductions(Loop *L, 331 SmallVector<PHINode *, 8> &Inductions, 332 Loop *InnerLoop); 333 334 Loop *OuterLoop; 335 Loop *InnerLoop; 336 337 ScalarEvolution *SE; 338 339 /// Interface to emit optimization remarks. 340 OptimizationRemarkEmitter *ORE; 341 342 /// Set of reduction PHIs taking part of a reduction across the inner and 343 /// outer loop. 344 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 345 346 /// Set of inner loop induction PHIs 347 SmallVector<PHINode *, 8> InnerLoopInductions; 348 }; 349 350 /// LoopInterchangeProfitability checks if it is profitable to interchange the 351 /// loop. 352 class LoopInterchangeProfitability { 353 public: 354 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 355 OptimizationRemarkEmitter *ORE) 356 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 357 358 /// Check if the loop interchange is profitable. 359 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 360 CharMatrix &DepMatrix); 361 362 private: 363 int getInstrOrderCost(); 364 365 Loop *OuterLoop; 366 Loop *InnerLoop; 367 368 /// Scev analysis. 369 ScalarEvolution *SE; 370 371 /// Interface to emit optimization remarks. 372 OptimizationRemarkEmitter *ORE; 373 }; 374 375 /// LoopInterchangeTransform interchanges the loop. 376 class LoopInterchangeTransform { 377 public: 378 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 379 LoopInfo *LI, DominatorTree *DT, 380 const LoopInterchangeLegality &LIL) 381 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 382 383 /// Interchange OuterLoop and InnerLoop. 384 bool transform(); 385 void restructureLoops(Loop *NewInner, Loop *NewOuter, 386 BasicBlock *OrigInnerPreHeader, 387 BasicBlock *OrigOuterPreHeader); 388 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 389 390 private: 391 bool adjustLoopLinks(); 392 bool adjustLoopBranches(); 393 394 Loop *OuterLoop; 395 Loop *InnerLoop; 396 397 /// Scev analysis. 398 ScalarEvolution *SE; 399 400 LoopInfo *LI; 401 DominatorTree *DT; 402 403 const LoopInterchangeLegality &LIL; 404 }; 405 406 struct LoopInterchange { 407 ScalarEvolution *SE = nullptr; 408 LoopInfo *LI = nullptr; 409 DependenceInfo *DI = nullptr; 410 DominatorTree *DT = nullptr; 411 412 /// Interface to emit optimization remarks. 413 OptimizationRemarkEmitter *ORE; 414 415 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 416 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 417 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 418 419 bool run(Loop *L) { 420 if (L->getParentLoop()) 421 return false; 422 423 return processLoopList(populateWorklist(*L)); 424 } 425 426 bool run(LoopNest &LN) { 427 const auto &LoopList = LN.getLoops(); 428 for (unsigned I = 1; I < LoopList.size(); ++I) 429 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 430 return false; 431 return processLoopList(LoopList); 432 } 433 434 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 435 for (Loop *L : LoopList) { 436 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 437 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 438 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 439 return false; 440 } 441 if (L->getNumBackEdges() != 1) { 442 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 443 return false; 444 } 445 if (!L->getExitingBlock()) { 446 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 447 return false; 448 } 449 } 450 return true; 451 } 452 453 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 454 // TODO: Add a better heuristic to select the loop to be interchanged based 455 // on the dependence matrix. Currently we select the innermost loop. 456 return LoopList.size() - 1; 457 } 458 459 bool processLoopList(ArrayRef<Loop *> LoopList) { 460 bool Changed = false; 461 unsigned LoopNestDepth = LoopList.size(); 462 if (LoopNestDepth < 2) { 463 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 464 return false; 465 } 466 if (LoopNestDepth > MaxLoopNestDepth) { 467 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 468 << MaxLoopNestDepth << "\n"); 469 return false; 470 } 471 if (!isComputableLoopNest(LoopList)) { 472 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 473 return false; 474 } 475 476 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 477 << "\n"); 478 479 CharMatrix DependencyMatrix; 480 Loop *OuterMostLoop = *(LoopList.begin()); 481 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 482 OuterMostLoop, DI)) { 483 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 484 return false; 485 } 486 #ifdef DUMP_DEP_MATRICIES 487 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 488 printDepMatrix(DependencyMatrix); 489 #endif 490 491 // Get the Outermost loop exit. 492 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 493 if (!LoopNestExit) { 494 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 495 return false; 496 } 497 498 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 499 // Move the selected loop outwards to the best possible position. 500 Loop *LoopToBeInterchanged = LoopList[SelecLoopId]; 501 for (unsigned i = SelecLoopId; i > 0; i--) { 502 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i, 503 i - 1, DependencyMatrix); 504 if (!Interchanged) 505 return Changed; 506 // Update the DependencyMatrix 507 interChangeDependencies(DependencyMatrix, i, i - 1); 508 #ifdef DUMP_DEP_MATRICIES 509 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 510 printDepMatrix(DependencyMatrix); 511 #endif 512 Changed |= Interchanged; 513 } 514 return Changed; 515 } 516 517 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 518 unsigned OuterLoopId, 519 std::vector<std::vector<char>> &DependencyMatrix) { 520 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 521 << " and OuterLoopId = " << OuterLoopId << "\n"); 522 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 523 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 524 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 525 return false; 526 } 527 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 528 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 529 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 530 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 531 return false; 532 } 533 534 ORE->emit([&]() { 535 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 536 InnerLoop->getStartLoc(), 537 InnerLoop->getHeader()) 538 << "Loop interchanged with enclosing loop."; 539 }); 540 541 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 542 LIT.transform(); 543 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 544 LoopsInterchanged++; 545 546 assert(InnerLoop->isLCSSAForm(*DT) && 547 "Inner loop not left in LCSSA form after loop interchange!"); 548 assert(OuterLoop->isLCSSAForm(*DT) && 549 "Outer loop not left in LCSSA form after loop interchange!"); 550 551 return true; 552 } 553 }; 554 555 } // end anonymous namespace 556 557 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 558 return any_of(*BB, [](const Instruction &I) { 559 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 560 }); 561 } 562 563 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 564 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 565 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 566 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 567 568 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 569 570 // A perfectly nested loop will not have any branch in between the outer and 571 // inner block i.e. outer header will branch to either inner preheader and 572 // outerloop latch. 573 BranchInst *OuterLoopHeaderBI = 574 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 575 if (!OuterLoopHeaderBI) 576 return false; 577 578 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 579 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 580 Succ != OuterLoopLatch) 581 return false; 582 583 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 584 // We do not have any basic block in between now make sure the outer header 585 // and outer loop latch doesn't contain any unsafe instructions. 586 if (containsUnsafeInstructions(OuterLoopHeader) || 587 containsUnsafeInstructions(OuterLoopLatch)) 588 return false; 589 590 // Also make sure the inner loop preheader does not contain any unsafe 591 // instructions. Note that all instructions in the preheader will be moved to 592 // the outer loop header when interchanging. 593 if (InnerLoopPreHeader != OuterLoopHeader && 594 containsUnsafeInstructions(InnerLoopPreHeader)) 595 return false; 596 597 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 598 // Ensure the inner loop exit block flows to the outer loop latch possibly 599 // through empty blocks. 600 const BasicBlock &SuccInner = 601 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 602 if (&SuccInner != OuterLoopLatch) { 603 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 604 << " does not lead to the outer loop latch.\n";); 605 return false; 606 } 607 // The inner loop exit block does flow to the outer loop latch and not some 608 // other BBs, now make sure it contains safe instructions, since it will be 609 // moved into the (new) inner loop after interchange. 610 if (containsUnsafeInstructions(InnerLoopExit)) 611 return false; 612 613 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 614 // We have a perfect loop nest. 615 return true; 616 } 617 618 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 619 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 620 for (PHINode *InnerInduction : InnerLoopInductions) { 621 unsigned Num = InnerInduction->getNumOperands(); 622 for (unsigned i = 0; i < Num; ++i) { 623 Value *Val = InnerInduction->getOperand(i); 624 if (isa<Constant>(Val)) 625 continue; 626 Instruction *I = dyn_cast<Instruction>(Val); 627 if (!I) 628 return false; 629 // TODO: Handle triangular loops. 630 // e.g. for(int i=0;i<N;i++) 631 // for(int j=i;j<N;j++) 632 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 633 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 634 InnerLoopPreheader && 635 !OuterLoop->isLoopInvariant(I)) { 636 return false; 637 } 638 } 639 } 640 641 // TODO: Handle triangular loops of another form. 642 // e.g. for(int i=0;i<N;i++) 643 // for(int j=0;j<i;j++) 644 // or, 645 // for(int i=0;i<N;i++) 646 // for(int j=0;j*i<N;j++) 647 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 648 BranchInst *InnerLoopLatchBI = 649 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 650 if (!InnerLoopLatchBI->isConditional()) 651 return false; 652 if (CmpInst *InnerLoopCmp = 653 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 654 Value *Op0 = InnerLoopCmp->getOperand(0); 655 Value *Op1 = InnerLoopCmp->getOperand(1); 656 657 // LHS and RHS of the inner loop exit condition, e.g., 658 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 659 Value *Left = nullptr; 660 Value *Right = nullptr; 661 662 // Check if V only involves inner loop induction variable. 663 // Return true if V is InnerInduction, or a cast from 664 // InnerInduction, or a binary operator that involves 665 // InnerInduction and a constant. 666 std::function<bool(Value *)> IsPathToInnerIndVar; 667 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 668 if (llvm::is_contained(InnerLoopInductions, V)) 669 return true; 670 if (isa<Constant>(V)) 671 return true; 672 const Instruction *I = dyn_cast<Instruction>(V); 673 if (!I) 674 return false; 675 if (isa<CastInst>(I)) 676 return IsPathToInnerIndVar(I->getOperand(0)); 677 if (isa<BinaryOperator>(I)) 678 return IsPathToInnerIndVar(I->getOperand(0)) && 679 IsPathToInnerIndVar(I->getOperand(1)); 680 return false; 681 }; 682 683 // In case of multiple inner loop indvars, it is okay if LHS and RHS 684 // are both inner indvar related variables. 685 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 686 return true; 687 688 // Otherwise we check if the cmp instruction compares an inner indvar 689 // related variable (Left) with a outer loop invariant (Right). 690 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 691 Left = Op0; 692 Right = Op1; 693 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 694 Left = Op1; 695 Right = Op0; 696 } 697 698 if (Left == nullptr) 699 return false; 700 701 const SCEV *S = SE->getSCEV(Right); 702 if (!SE->isLoopInvariant(S, OuterLoop)) 703 return false; 704 } 705 706 return true; 707 } 708 709 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 710 // value. 711 static Value *followLCSSA(Value *SV) { 712 PHINode *PHI = dyn_cast<PHINode>(SV); 713 if (!PHI) 714 return SV; 715 716 if (PHI->getNumIncomingValues() != 1) 717 return SV; 718 return followLCSSA(PHI->getIncomingValue(0)); 719 } 720 721 // Check V's users to see if it is involved in a reduction in L. 722 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 723 // Reduction variables cannot be constants. 724 if (isa<Constant>(V)) 725 return nullptr; 726 727 for (Value *User : V->users()) { 728 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 729 if (PHI->getNumIncomingValues() == 1) 730 continue; 731 RecurrenceDescriptor RD; 732 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 733 // Detect floating point reduction only when it can be reordered. 734 if (RD.getExactFPMathInst() != nullptr) 735 return nullptr; 736 return PHI; 737 } 738 return nullptr; 739 } 740 } 741 742 return nullptr; 743 } 744 745 bool LoopInterchangeLegality::findInductionAndReductions( 746 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 747 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 748 return false; 749 for (PHINode &PHI : L->getHeader()->phis()) { 750 RecurrenceDescriptor RD; 751 InductionDescriptor ID; 752 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 753 Inductions.push_back(&PHI); 754 else { 755 // PHIs in inner loops need to be part of a reduction in the outer loop, 756 // discovered when checking the PHIs of the outer loop earlier. 757 if (!InnerLoop) { 758 if (!OuterInnerReductions.count(&PHI)) { 759 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 760 "across the outer loop.\n"); 761 return false; 762 } 763 } else { 764 assert(PHI.getNumIncomingValues() == 2 && 765 "Phis in loop header should have exactly 2 incoming values"); 766 // Check if we have a PHI node in the outer loop that has a reduction 767 // result from the inner loop as an incoming value. 768 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 769 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 770 if (!InnerRedPhi || 771 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 772 LLVM_DEBUG( 773 dbgs() 774 << "Failed to recognize PHI as an induction or reduction.\n"); 775 return false; 776 } 777 OuterInnerReductions.insert(&PHI); 778 OuterInnerReductions.insert(InnerRedPhi); 779 } 780 } 781 } 782 return true; 783 } 784 785 // This function indicates the current limitations in the transform as a result 786 // of which we do not proceed. 787 bool LoopInterchangeLegality::currentLimitations() { 788 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 789 790 // transform currently expects the loop latches to also be the exiting 791 // blocks. 792 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 793 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 794 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 795 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 796 LLVM_DEBUG( 797 dbgs() << "Loops where the latch is not the exiting block are not" 798 << " supported currently.\n"); 799 ORE->emit([&]() { 800 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 801 OuterLoop->getStartLoc(), 802 OuterLoop->getHeader()) 803 << "Loops where the latch is not the exiting block cannot be" 804 " interchange currently."; 805 }); 806 return true; 807 } 808 809 SmallVector<PHINode *, 8> Inductions; 810 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 811 LLVM_DEBUG( 812 dbgs() << "Only outer loops with induction or reduction PHI nodes " 813 << "are supported currently.\n"); 814 ORE->emit([&]() { 815 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 816 OuterLoop->getStartLoc(), 817 OuterLoop->getHeader()) 818 << "Only outer loops with induction or reduction PHI nodes can be" 819 " interchanged currently."; 820 }); 821 return true; 822 } 823 824 Inductions.clear(); 825 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 826 LLVM_DEBUG( 827 dbgs() << "Only inner loops with induction or reduction PHI nodes " 828 << "are supported currently.\n"); 829 ORE->emit([&]() { 830 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 831 InnerLoop->getStartLoc(), 832 InnerLoop->getHeader()) 833 << "Only inner loops with induction or reduction PHI nodes can be" 834 " interchange currently."; 835 }); 836 return true; 837 } 838 839 // TODO: Triangular loops are not handled for now. 840 if (!isLoopStructureUnderstood()) { 841 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 842 ORE->emit([&]() { 843 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 844 InnerLoop->getStartLoc(), 845 InnerLoop->getHeader()) 846 << "Inner loop structure not understood currently."; 847 }); 848 return true; 849 } 850 851 return false; 852 } 853 854 bool LoopInterchangeLegality::findInductions( 855 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 856 for (PHINode &PHI : L->getHeader()->phis()) { 857 InductionDescriptor ID; 858 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 859 Inductions.push_back(&PHI); 860 } 861 return !Inductions.empty(); 862 } 863 864 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 865 // users are either reduction PHIs or PHIs outside the outer loop (which means 866 // the we are only interested in the final value after the loop). 867 static bool 868 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 869 SmallPtrSetImpl<PHINode *> &Reductions) { 870 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 871 for (PHINode &PHI : InnerExit->phis()) { 872 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 873 if (PHI.getNumIncomingValues() > 1) 874 return false; 875 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 876 PHINode *PN = dyn_cast<PHINode>(U); 877 return !PN || 878 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 879 })) { 880 return false; 881 } 882 } 883 return true; 884 } 885 886 // We currently support LCSSA PHI nodes in the outer loop exit, if their 887 // incoming values do not come from the outer loop latch or if the 888 // outer loop latch has a single predecessor. In that case, the value will 889 // be available if both the inner and outer loop conditions are true, which 890 // will still be true after interchanging. If we have multiple predecessor, 891 // that may not be the case, e.g. because the outer loop latch may be executed 892 // if the inner loop is not executed. 893 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 894 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 895 for (PHINode &PHI : LoopNestExit->phis()) { 896 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 897 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 898 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 899 continue; 900 901 // The incoming value is defined in the outer loop latch. Currently we 902 // only support that in case the outer loop latch has a single predecessor. 903 // This guarantees that the outer loop latch is executed if and only if 904 // the inner loop is executed (because tightlyNested() guarantees that the 905 // outer loop header only branches to the inner loop or the outer loop 906 // latch). 907 // FIXME: We could weaken this logic and allow multiple predecessors, 908 // if the values are produced outside the loop latch. We would need 909 // additional logic to update the PHI nodes in the exit block as 910 // well. 911 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 912 return false; 913 } 914 } 915 return true; 916 } 917 918 // In case of multi-level nested loops, it may occur that lcssa phis exist in 919 // the latch of InnerLoop, i.e., when defs of the incoming values are further 920 // inside the loopnest. Sometimes those incoming values are not available 921 // after interchange, since the original inner latch will become the new outer 922 // latch which may have predecessor paths that do not include those incoming 923 // values. 924 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 925 // multi-level loop nests. 926 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 927 if (InnerLoop->getSubLoops().empty()) 928 return true; 929 // If the original outer latch has only one predecessor, then values defined 930 // further inside the looploop, e.g., in the innermost loop, will be available 931 // at the new outer latch after interchange. 932 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 933 return true; 934 935 // The outer latch has more than one predecessors, i.e., the inner 936 // exit and the inner header. 937 // PHI nodes in the inner latch are lcssa phis where the incoming values 938 // are defined further inside the loopnest. Check if those phis are used 939 // in the original inner latch. If that is the case then bail out since 940 // those incoming values may not be available at the new outer latch. 941 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 942 for (PHINode &PHI : InnerLoopLatch->phis()) { 943 for (auto *U : PHI.users()) { 944 Instruction *UI = cast<Instruction>(U); 945 if (InnerLoopLatch == UI->getParent()) 946 return false; 947 } 948 } 949 return true; 950 } 951 952 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 953 unsigned OuterLoopId, 954 CharMatrix &DepMatrix) { 955 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 956 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 957 << " and OuterLoopId = " << OuterLoopId 958 << " due to dependence\n"); 959 ORE->emit([&]() { 960 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 961 InnerLoop->getStartLoc(), 962 InnerLoop->getHeader()) 963 << "Cannot interchange loops due to dependences."; 964 }); 965 return false; 966 } 967 // Check if outer and inner loop contain legal instructions only. 968 for (auto *BB : OuterLoop->blocks()) 969 for (Instruction &I : BB->instructionsWithoutDebug()) 970 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 971 // readnone functions do not prevent interchanging. 972 if (CI->onlyWritesMemory()) 973 continue; 974 LLVM_DEBUG( 975 dbgs() << "Loops with call instructions cannot be interchanged " 976 << "safely."); 977 ORE->emit([&]() { 978 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 979 CI->getDebugLoc(), 980 CI->getParent()) 981 << "Cannot interchange loops due to call instruction."; 982 }); 983 984 return false; 985 } 986 987 if (!findInductions(InnerLoop, InnerLoopInductions)) { 988 LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n"); 989 return false; 990 } 991 992 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 993 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 994 ORE->emit([&]() { 995 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 996 InnerLoop->getStartLoc(), 997 InnerLoop->getHeader()) 998 << "Cannot interchange loops because unsupported PHI nodes found " 999 "in inner loop latch."; 1000 }); 1001 return false; 1002 } 1003 1004 // TODO: The loops could not be interchanged due to current limitations in the 1005 // transform module. 1006 if (currentLimitations()) { 1007 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1008 return false; 1009 } 1010 1011 // Check if the loops are tightly nested. 1012 if (!tightlyNested(OuterLoop, InnerLoop)) { 1013 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1014 ORE->emit([&]() { 1015 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1016 InnerLoop->getStartLoc(), 1017 InnerLoop->getHeader()) 1018 << "Cannot interchange loops because they are not tightly " 1019 "nested."; 1020 }); 1021 return false; 1022 } 1023 1024 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1025 OuterInnerReductions)) { 1026 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1027 ORE->emit([&]() { 1028 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1029 InnerLoop->getStartLoc(), 1030 InnerLoop->getHeader()) 1031 << "Found unsupported PHI node in loop exit."; 1032 }); 1033 return false; 1034 } 1035 1036 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1037 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1038 ORE->emit([&]() { 1039 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1040 OuterLoop->getStartLoc(), 1041 OuterLoop->getHeader()) 1042 << "Found unsupported PHI node in loop exit."; 1043 }); 1044 return false; 1045 } 1046 1047 return true; 1048 } 1049 1050 int LoopInterchangeProfitability::getInstrOrderCost() { 1051 unsigned GoodOrder, BadOrder; 1052 BadOrder = GoodOrder = 0; 1053 for (BasicBlock *BB : InnerLoop->blocks()) { 1054 for (Instruction &Ins : *BB) { 1055 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1056 unsigned NumOp = GEP->getNumOperands(); 1057 bool FoundInnerInduction = false; 1058 bool FoundOuterInduction = false; 1059 for (unsigned i = 0; i < NumOp; ++i) { 1060 // Skip operands that are not SCEV-able. 1061 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1062 continue; 1063 1064 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1065 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1066 if (!AR) 1067 continue; 1068 1069 // If we find the inner induction after an outer induction e.g. 1070 // for(int i=0;i<N;i++) 1071 // for(int j=0;j<N;j++) 1072 // A[i][j] = A[i-1][j-1]+k; 1073 // then it is a good order. 1074 if (AR->getLoop() == InnerLoop) { 1075 // We found an InnerLoop induction after OuterLoop induction. It is 1076 // a good order. 1077 FoundInnerInduction = true; 1078 if (FoundOuterInduction) { 1079 GoodOrder++; 1080 break; 1081 } 1082 } 1083 // If we find the outer induction after an inner induction e.g. 1084 // for(int i=0;i<N;i++) 1085 // for(int j=0;j<N;j++) 1086 // A[j][i] = A[j-1][i-1]+k; 1087 // then it is a bad order. 1088 if (AR->getLoop() == OuterLoop) { 1089 // We found an OuterLoop induction after InnerLoop induction. It is 1090 // a bad order. 1091 FoundOuterInduction = true; 1092 if (FoundInnerInduction) { 1093 BadOrder++; 1094 break; 1095 } 1096 } 1097 } 1098 } 1099 } 1100 } 1101 return GoodOrder - BadOrder; 1102 } 1103 1104 static bool isProfitableForVectorization(unsigned InnerLoopId, 1105 unsigned OuterLoopId, 1106 CharMatrix &DepMatrix) { 1107 // TODO: Improve this heuristic to catch more cases. 1108 // If the inner loop is loop independent or doesn't carry any dependency it is 1109 // profitable to move this to outer position. 1110 for (auto &Row : DepMatrix) { 1111 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1112 return false; 1113 // TODO: We need to improve this heuristic. 1114 if (Row[OuterLoopId] != '=') 1115 return false; 1116 } 1117 // If outer loop has dependence and inner loop is loop independent then it is 1118 // profitable to interchange to enable parallelism. 1119 // If there are no dependences, interchanging will not improve anything. 1120 return !DepMatrix.empty(); 1121 } 1122 1123 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1124 unsigned OuterLoopId, 1125 CharMatrix &DepMatrix) { 1126 // TODO: Add better profitability checks. 1127 // e.g 1128 // 1) Construct dependency matrix and move the one with no loop carried dep 1129 // inside to enable vectorization. 1130 1131 // This is rough cost estimation algorithm. It counts the good and bad order 1132 // of induction variables in the instruction and allows reordering if number 1133 // of bad orders is more than good. 1134 int Cost = getInstrOrderCost(); 1135 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1136 if (Cost < -LoopInterchangeCostThreshold) 1137 return true; 1138 1139 // It is not profitable as per current cache profitability model. But check if 1140 // we can move this loop outside to improve parallelism. 1141 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1142 return true; 1143 1144 ORE->emit([&]() { 1145 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1146 InnerLoop->getStartLoc(), 1147 InnerLoop->getHeader()) 1148 << "Interchanging loops is too costly (cost=" 1149 << ore::NV("Cost", Cost) << ", threshold=" 1150 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1151 << ") and it does not improve parallelism."; 1152 }); 1153 return false; 1154 } 1155 1156 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1157 Loop *InnerLoop) { 1158 for (Loop *L : *OuterLoop) 1159 if (L == InnerLoop) { 1160 OuterLoop->removeChildLoop(L); 1161 return; 1162 } 1163 llvm_unreachable("Couldn't find loop"); 1164 } 1165 1166 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1167 /// new inner and outer loop after interchanging: NewInner is the original 1168 /// outer loop and NewOuter is the original inner loop. 1169 /// 1170 /// Before interchanging, we have the following structure 1171 /// Outer preheader 1172 // Outer header 1173 // Inner preheader 1174 // Inner header 1175 // Inner body 1176 // Inner latch 1177 // outer bbs 1178 // Outer latch 1179 // 1180 // After interchanging: 1181 // Inner preheader 1182 // Inner header 1183 // Outer preheader 1184 // Outer header 1185 // Inner body 1186 // outer bbs 1187 // Outer latch 1188 // Inner latch 1189 void LoopInterchangeTransform::restructureLoops( 1190 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1191 BasicBlock *OrigOuterPreHeader) { 1192 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1193 // The original inner loop preheader moves from the new inner loop to 1194 // the parent loop, if there is one. 1195 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1196 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1197 1198 // Switch the loop levels. 1199 if (OuterLoopParent) { 1200 // Remove the loop from its parent loop. 1201 removeChildLoop(OuterLoopParent, NewInner); 1202 removeChildLoop(NewInner, NewOuter); 1203 OuterLoopParent->addChildLoop(NewOuter); 1204 } else { 1205 removeChildLoop(NewInner, NewOuter); 1206 LI->changeTopLevelLoop(NewInner, NewOuter); 1207 } 1208 while (!NewOuter->isInnermost()) 1209 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1210 NewOuter->addChildLoop(NewInner); 1211 1212 // BBs from the original inner loop. 1213 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1214 1215 // Add BBs from the original outer loop to the original inner loop (excluding 1216 // BBs already in inner loop) 1217 for (BasicBlock *BB : NewInner->blocks()) 1218 if (LI->getLoopFor(BB) == NewInner) 1219 NewOuter->addBlockEntry(BB); 1220 1221 // Now remove inner loop header and latch from the new inner loop and move 1222 // other BBs (the loop body) to the new inner loop. 1223 BasicBlock *OuterHeader = NewOuter->getHeader(); 1224 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1225 for (BasicBlock *BB : OrigInnerBBs) { 1226 // Nothing will change for BBs in child loops. 1227 if (LI->getLoopFor(BB) != NewOuter) 1228 continue; 1229 // Remove the new outer loop header and latch from the new inner loop. 1230 if (BB == OuterHeader || BB == OuterLatch) 1231 NewInner->removeBlockFromLoop(BB); 1232 else 1233 LI->changeLoopFor(BB, NewInner); 1234 } 1235 1236 // The preheader of the original outer loop becomes part of the new 1237 // outer loop. 1238 NewOuter->addBlockEntry(OrigOuterPreHeader); 1239 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1240 1241 // Tell SE that we move the loops around. 1242 SE->forgetLoop(NewOuter); 1243 SE->forgetLoop(NewInner); 1244 } 1245 1246 bool LoopInterchangeTransform::transform() { 1247 bool Transformed = false; 1248 1249 if (InnerLoop->getSubLoops().empty()) { 1250 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1251 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1252 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1253 if (InductionPHIs.empty()) { 1254 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1255 return false; 1256 } 1257 1258 SmallVector<Instruction *, 8> InnerIndexVarList; 1259 for (PHINode *CurInductionPHI : InductionPHIs) { 1260 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1261 InnerIndexVarList.push_back( 1262 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1263 else 1264 InnerIndexVarList.push_back( 1265 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1266 } 1267 1268 // Create a new latch block for the inner loop. We split at the 1269 // current latch's terminator and then move the condition and all 1270 // operands that are not either loop-invariant or the induction PHI into the 1271 // new latch block. 1272 BasicBlock *NewLatch = 1273 SplitBlock(InnerLoop->getLoopLatch(), 1274 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1275 1276 SmallSetVector<Instruction *, 4> WorkList; 1277 unsigned i = 0; 1278 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1279 for (; i < WorkList.size(); i++) { 1280 // Duplicate instruction and move it the new latch. Update uses that 1281 // have been moved. 1282 Instruction *NewI = WorkList[i]->clone(); 1283 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1284 assert(!NewI->mayHaveSideEffects() && 1285 "Moving instructions with side-effects may change behavior of " 1286 "the loop nest!"); 1287 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1288 Instruction *UserI = cast<Instruction>(U.getUser()); 1289 if (!InnerLoop->contains(UserI->getParent()) || 1290 UserI->getParent() == NewLatch || 1291 llvm::is_contained(InductionPHIs, UserI)) 1292 U.set(NewI); 1293 } 1294 // Add operands of moved instruction to the worklist, except if they are 1295 // outside the inner loop or are the induction PHI. 1296 for (Value *Op : WorkList[i]->operands()) { 1297 Instruction *OpI = dyn_cast<Instruction>(Op); 1298 if (!OpI || 1299 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1300 llvm::is_contained(InductionPHIs, OpI)) 1301 continue; 1302 WorkList.insert(OpI); 1303 } 1304 } 1305 }; 1306 1307 // FIXME: Should we interchange when we have a constant condition? 1308 Instruction *CondI = dyn_cast<Instruction>( 1309 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1310 ->getCondition()); 1311 if (CondI) 1312 WorkList.insert(CondI); 1313 MoveInstructions(); 1314 for (Instruction *InnerIndexVar : InnerIndexVarList) 1315 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1316 MoveInstructions(); 1317 1318 // Splits the inner loops phi nodes out into a separate basic block. 1319 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1320 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1321 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1322 } 1323 1324 // Instructions in the original inner loop preheader may depend on values 1325 // defined in the outer loop header. Move them there, because the original 1326 // inner loop preheader will become the entry into the interchanged loop nest. 1327 // Currently we move all instructions and rely on LICM to move invariant 1328 // instructions outside the loop nest. 1329 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1330 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1331 if (InnerLoopPreHeader != OuterLoopHeader) { 1332 SmallPtrSet<Instruction *, 4> NeedsMoving; 1333 for (Instruction &I : 1334 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1335 std::prev(InnerLoopPreHeader->end())))) 1336 I.moveBefore(OuterLoopHeader->getTerminator()); 1337 } 1338 1339 Transformed |= adjustLoopLinks(); 1340 if (!Transformed) { 1341 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1342 return false; 1343 } 1344 1345 return true; 1346 } 1347 1348 /// \brief Move all instructions except the terminator from FromBB right before 1349 /// InsertBefore 1350 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1351 auto &ToList = InsertBefore->getParent()->getInstList(); 1352 auto &FromList = FromBB->getInstList(); 1353 1354 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1355 FromBB->getTerminator()->getIterator()); 1356 } 1357 1358 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1359 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1360 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1361 // from BB1 afterwards. 1362 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1363 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1364 for (Instruction *I : TempInstrs) 1365 I->removeFromParent(); 1366 1367 // Move instructions from BB2 to BB1. 1368 moveBBContents(BB2, BB1->getTerminator()); 1369 1370 // Move instructions from TempInstrs to BB2. 1371 for (Instruction *I : TempInstrs) 1372 I->insertBefore(BB2->getTerminator()); 1373 } 1374 1375 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1376 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1377 // \p OldBB is exactly once in BI's successor list. 1378 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1379 BasicBlock *NewBB, 1380 std::vector<DominatorTree::UpdateType> &DTUpdates, 1381 bool MustUpdateOnce = true) { 1382 assert((!MustUpdateOnce || 1383 llvm::count_if(successors(BI), 1384 [OldBB](BasicBlock *BB) { 1385 return BB == OldBB; 1386 }) == 1) && "BI must jump to OldBB exactly once."); 1387 bool Changed = false; 1388 for (Use &Op : BI->operands()) 1389 if (Op == OldBB) { 1390 Op.set(NewBB); 1391 Changed = true; 1392 } 1393 1394 if (Changed) { 1395 DTUpdates.push_back( 1396 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1397 DTUpdates.push_back( 1398 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1399 } 1400 assert(Changed && "Expected a successor to be updated"); 1401 } 1402 1403 // Move Lcssa PHIs to the right place. 1404 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1405 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1406 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1407 Loop *InnerLoop, LoopInfo *LI) { 1408 1409 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1410 // defined either in the header or latch. Those blocks will become header and 1411 // latch of the new outer loop, and the only possible users can PHI nodes 1412 // in the exit block of the loop nest or the outer loop header (reduction 1413 // PHIs, in that case, the incoming value must be defined in the inner loop 1414 // header). We can just substitute the user with the incoming value and remove 1415 // the PHI. 1416 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1417 assert(P.getNumIncomingValues() == 1 && 1418 "Only loops with a single exit are supported!"); 1419 1420 // Incoming values are guaranteed be instructions currently. 1421 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1422 // Skip phis with incoming values from the inner loop body, excluding the 1423 // header and latch. 1424 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1425 continue; 1426 1427 assert(all_of(P.users(), 1428 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1429 return (cast<PHINode>(U)->getParent() == OuterHeader && 1430 IncI->getParent() == InnerHeader) || 1431 cast<PHINode>(U)->getParent() == OuterExit; 1432 }) && 1433 "Can only replace phis iff the uses are in the loop nest exit or " 1434 "the incoming value is defined in the inner header (it will " 1435 "dominate all loop blocks after interchanging)"); 1436 P.replaceAllUsesWith(IncI); 1437 P.eraseFromParent(); 1438 } 1439 1440 SmallVector<PHINode *, 8> LcssaInnerExit; 1441 for (PHINode &P : InnerExit->phis()) 1442 LcssaInnerExit.push_back(&P); 1443 1444 SmallVector<PHINode *, 8> LcssaInnerLatch; 1445 for (PHINode &P : InnerLatch->phis()) 1446 LcssaInnerLatch.push_back(&P); 1447 1448 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1449 // If a PHI node has users outside of InnerExit, it has a use outside the 1450 // interchanged loop and we have to preserve it. We move these to 1451 // InnerLatch, which will become the new exit block for the innermost 1452 // loop after interchanging. 1453 for (PHINode *P : LcssaInnerExit) 1454 P->moveBefore(InnerLatch->getFirstNonPHI()); 1455 1456 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1457 // and we have to move them to the new inner latch. 1458 for (PHINode *P : LcssaInnerLatch) 1459 P->moveBefore(InnerExit->getFirstNonPHI()); 1460 1461 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1462 // incoming values defined in the outer loop, we have to add a new PHI 1463 // in the inner loop latch, which became the exit block of the outer loop, 1464 // after interchanging. 1465 if (OuterExit) { 1466 for (PHINode &P : OuterExit->phis()) { 1467 if (P.getNumIncomingValues() != 1) 1468 continue; 1469 // Skip Phis with incoming values defined in the inner loop. Those should 1470 // already have been updated. 1471 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1472 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1473 continue; 1474 1475 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1476 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1477 NewPhi->setIncomingBlock(0, OuterLatch); 1478 // We might have incoming edges from other BBs, i.e., the original outer 1479 // header. 1480 for (auto *Pred : predecessors(InnerLatch)) { 1481 if (Pred == OuterLatch) 1482 continue; 1483 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1484 } 1485 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1486 P.setIncomingValue(0, NewPhi); 1487 } 1488 } 1489 1490 // Now adjust the incoming blocks for the LCSSA PHIs. 1491 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1492 // with the new latch. 1493 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1494 } 1495 1496 bool LoopInterchangeTransform::adjustLoopBranches() { 1497 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1498 std::vector<DominatorTree::UpdateType> DTUpdates; 1499 1500 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1501 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1502 1503 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1504 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1505 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1506 // Ensure that both preheaders do not contain PHI nodes and have single 1507 // predecessors. This allows us to move them easily. We use 1508 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1509 // preheaders do not satisfy those conditions. 1510 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1511 !OuterLoopPreHeader->getUniquePredecessor()) 1512 OuterLoopPreHeader = 1513 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1514 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1515 InnerLoopPreHeader = 1516 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1517 1518 // Adjust the loop preheader 1519 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1520 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1521 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1522 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1523 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1524 BasicBlock *InnerLoopLatchPredecessor = 1525 InnerLoopLatch->getUniquePredecessor(); 1526 BasicBlock *InnerLoopLatchSuccessor; 1527 BasicBlock *OuterLoopLatchSuccessor; 1528 1529 BranchInst *OuterLoopLatchBI = 1530 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1531 BranchInst *InnerLoopLatchBI = 1532 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1533 BranchInst *OuterLoopHeaderBI = 1534 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1535 BranchInst *InnerLoopHeaderBI = 1536 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1537 1538 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1539 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1540 !InnerLoopHeaderBI) 1541 return false; 1542 1543 BranchInst *InnerLoopLatchPredecessorBI = 1544 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1545 BranchInst *OuterLoopPredecessorBI = 1546 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1547 1548 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1549 return false; 1550 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1551 if (!InnerLoopHeaderSuccessor) 1552 return false; 1553 1554 // Adjust Loop Preheader and headers. 1555 // The branches in the outer loop predecessor and the outer loop header can 1556 // be unconditional branches or conditional branches with duplicates. Consider 1557 // this when updating the successors. 1558 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1559 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1560 // The outer loop header might or might not branch to the outer latch. 1561 // We are guaranteed to branch to the inner loop preheader. 1562 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1563 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1564 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1565 DTUpdates, 1566 /*MustUpdateOnce=*/false); 1567 } 1568 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1569 InnerLoopHeaderSuccessor, DTUpdates, 1570 /*MustUpdateOnce=*/false); 1571 1572 // Adjust reduction PHI's now that the incoming block has changed. 1573 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1574 OuterLoopHeader); 1575 1576 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1577 OuterLoopPreHeader, DTUpdates); 1578 1579 // -------------Adjust loop latches----------- 1580 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1581 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1582 else 1583 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1584 1585 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1586 InnerLoopLatchSuccessor, DTUpdates); 1587 1588 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1589 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1590 else 1591 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1592 1593 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1594 OuterLoopLatchSuccessor, DTUpdates); 1595 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1596 DTUpdates); 1597 1598 DT->applyUpdates(DTUpdates); 1599 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1600 OuterLoopPreHeader); 1601 1602 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1603 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1604 InnerLoop, LI); 1605 // For PHIs in the exit block of the outer loop, outer's latch has been 1606 // replaced by Inners'. 1607 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1608 1609 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1610 // Now update the reduction PHIs in the inner and outer loop headers. 1611 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1612 for (PHINode &PHI : InnerLoopHeader->phis()) 1613 if (OuterInnerReductions.contains(&PHI)) 1614 InnerLoopPHIs.push_back(&PHI); 1615 1616 for (PHINode &PHI : OuterLoopHeader->phis()) 1617 if (OuterInnerReductions.contains(&PHI)) 1618 OuterLoopPHIs.push_back(&PHI); 1619 1620 // Now move the remaining reduction PHIs from outer to inner loop header and 1621 // vice versa. The PHI nodes must be part of a reduction across the inner and 1622 // outer loop and all the remains to do is and updating the incoming blocks. 1623 for (PHINode *PHI : OuterLoopPHIs) { 1624 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1625 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1626 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1627 } 1628 for (PHINode *PHI : InnerLoopPHIs) { 1629 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1630 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1631 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1632 } 1633 1634 // Update the incoming blocks for moved PHI nodes. 1635 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1636 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1637 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1638 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1639 1640 // Values defined in the outer loop header could be used in the inner loop 1641 // latch. In that case, we need to create LCSSA phis for them, because after 1642 // interchanging they will be defined in the new inner loop and used in the 1643 // new outer loop. 1644 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1645 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1646 for (Instruction &I : 1647 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1648 MayNeedLCSSAPhis.push_back(&I); 1649 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1650 1651 return true; 1652 } 1653 1654 bool LoopInterchangeTransform::adjustLoopLinks() { 1655 // Adjust all branches in the inner and outer loop. 1656 bool Changed = adjustLoopBranches(); 1657 if (Changed) { 1658 // We have interchanged the preheaders so we need to interchange the data in 1659 // the preheaders as well. This is because the content of the inner 1660 // preheader was previously executed inside the outer loop. 1661 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1662 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1663 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1664 } 1665 return Changed; 1666 } 1667 1668 namespace { 1669 /// Main LoopInterchange Pass. 1670 struct LoopInterchangeLegacyPass : public LoopPass { 1671 static char ID; 1672 1673 LoopInterchangeLegacyPass() : LoopPass(ID) { 1674 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1675 } 1676 1677 void getAnalysisUsage(AnalysisUsage &AU) const override { 1678 AU.addRequired<DependenceAnalysisWrapperPass>(); 1679 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1680 1681 getLoopAnalysisUsage(AU); 1682 } 1683 1684 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1685 if (skipLoop(L)) 1686 return false; 1687 1688 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1689 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1690 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1691 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1692 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1693 1694 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1695 } 1696 }; 1697 } // namespace 1698 1699 char LoopInterchangeLegacyPass::ID = 0; 1700 1701 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1702 "Interchanges loops for cache reuse", false, false) 1703 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1704 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1705 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1706 1707 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1708 "Interchanges loops for cache reuse", false, false) 1709 1710 Pass *llvm::createLoopInterchangePass() { 1711 return new LoopInterchangeLegacyPass(); 1712 } 1713 1714 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1715 LoopAnalysisManager &AM, 1716 LoopStandardAnalysisResults &AR, 1717 LPMUpdater &U) { 1718 Function &F = *LN.getParent(); 1719 1720 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1721 OptimizationRemarkEmitter ORE(&F); 1722 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN)) 1723 return PreservedAnalyses::all(); 1724 return getLoopPassPreservedAnalyses(); 1725 } 1726