1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This Pass handles loop interchange transform. 11 // This pass interchanges loops to provide a more cache-friendly memory access 12 // patterns. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/DependenceAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include <cassert> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "loop-interchange" 54 55 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 56 57 static cl::opt<int> LoopInterchangeCostThreshold( 58 "loop-interchange-threshold", cl::init(0), cl::Hidden, 59 cl::desc("Interchange if you gain more than this number")); 60 61 namespace { 62 63 using LoopVector = SmallVector<Loop *, 8>; 64 65 // TODO: Check if we can use a sparse matrix here. 66 using CharMatrix = std::vector<std::vector<char>>; 67 68 } // end anonymous namespace 69 70 // Maximum number of dependencies that can be handled in the dependency matrix. 71 static const unsigned MaxMemInstrCount = 100; 72 73 // Maximum loop depth supported. 74 static const unsigned MaxLoopNestDepth = 10; 75 76 #ifdef DUMP_DEP_MATRICIES 77 static void printDepMatrix(CharMatrix &DepMatrix) { 78 for (auto &Row : DepMatrix) { 79 for (auto D : Row) 80 LLVM_DEBUG(dbgs() << D << " "); 81 LLVM_DEBUG(dbgs() << "\n"); 82 } 83 } 84 #endif 85 86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 87 Loop *L, DependenceInfo *DI) { 88 using ValueVector = SmallVector<Value *, 16>; 89 90 ValueVector MemInstr; 91 92 // For each block. 93 for (BasicBlock *BB : L->blocks()) { 94 // Scan the BB and collect legal loads and stores. 95 for (Instruction &I : *BB) { 96 if (!isa<Instruction>(I)) 97 return false; 98 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 99 if (!Ld->isSimple()) 100 return false; 101 MemInstr.push_back(&I); 102 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 103 if (!St->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } 107 } 108 } 109 110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 111 << " Loads and Stores to analyze\n"); 112 113 ValueVector::iterator I, IE, J, JE; 114 115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 116 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 117 std::vector<char> Dep; 118 Instruction *Src = cast<Instruction>(*I); 119 Instruction *Dst = cast<Instruction>(*J); 120 if (Src == Dst) 121 continue; 122 // Ignore Input dependencies. 123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 124 continue; 125 // Track Output, Flow, and Anti dependencies. 126 if (auto D = DI->depends(Src, Dst, true)) { 127 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 128 LLVM_DEBUG(StringRef DepType = 129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 130 dbgs() << "Found " << DepType 131 << " dependency between Src and Dst\n" 132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 133 unsigned Levels = D->getLevels(); 134 char Direction; 135 for (unsigned II = 1; II <= Levels; ++II) { 136 const SCEV *Distance = D->getDistance(II); 137 const SCEVConstant *SCEVConst = 138 dyn_cast_or_null<SCEVConstant>(Distance); 139 if (SCEVConst) { 140 const ConstantInt *CI = SCEVConst->getValue(); 141 if (CI->isNegative()) 142 Direction = '<'; 143 else if (CI->isZero()) 144 Direction = '='; 145 else 146 Direction = '>'; 147 Dep.push_back(Direction); 148 } else if (D->isScalar(II)) { 149 Direction = 'S'; 150 Dep.push_back(Direction); 151 } else { 152 unsigned Dir = D->getDirection(II); 153 if (Dir == Dependence::DVEntry::LT || 154 Dir == Dependence::DVEntry::LE) 155 Direction = '<'; 156 else if (Dir == Dependence::DVEntry::GT || 157 Dir == Dependence::DVEntry::GE) 158 Direction = '>'; 159 else if (Dir == Dependence::DVEntry::EQ) 160 Direction = '='; 161 else 162 Direction = '*'; 163 Dep.push_back(Direction); 164 } 165 } 166 while (Dep.size() != Level) { 167 Dep.push_back('I'); 168 } 169 170 DepMatrix.push_back(Dep); 171 if (DepMatrix.size() > MaxMemInstrCount) { 172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 173 << " dependencies inside loop\n"); 174 return false; 175 } 176 } 177 } 178 } 179 180 return true; 181 } 182 183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 184 // matrix by exchanging the two columns. 185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 186 unsigned ToIndx) { 187 unsigned numRows = DepMatrix.size(); 188 for (unsigned i = 0; i < numRows; ++i) { 189 char TmpVal = DepMatrix[i][ToIndx]; 190 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 191 DepMatrix[i][FromIndx] = TmpVal; 192 } 193 } 194 195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 196 // '>' 197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 198 unsigned Column) { 199 for (unsigned i = 0; i <= Column; ++i) { 200 if (DepMatrix[Row][i] == '<') 201 return false; 202 if (DepMatrix[Row][i] == '>') 203 return true; 204 } 205 // All dependencies were '=','S' or 'I' 206 return false; 207 } 208 209 // Checks if no dependence exist in the dependency matrix in Row before Column. 210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 211 unsigned Column) { 212 for (unsigned i = 0; i < Column; ++i) { 213 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 214 DepMatrix[Row][i] != 'I') 215 return false; 216 } 217 return true; 218 } 219 220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 221 unsigned OuterLoopId, char InnerDep, 222 char OuterDep) { 223 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 224 return false; 225 226 if (InnerDep == OuterDep) 227 return true; 228 229 // It is legal to interchange if and only if after interchange no row has a 230 // '>' direction as the leftmost non-'='. 231 232 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 233 return true; 234 235 if (InnerDep == '<') 236 return true; 237 238 if (InnerDep == '>') { 239 // If OuterLoopId represents outermost loop then interchanging will make the 240 // 1st dependency as '>' 241 if (OuterLoopId == 0) 242 return false; 243 244 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 245 // interchanging will result in this row having an outermost non '=' 246 // dependency of '>' 247 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 248 return true; 249 } 250 251 return false; 252 } 253 254 // Checks if it is legal to interchange 2 loops. 255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 256 // if the direction matrix, after the same permutation is applied to its 257 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 259 unsigned InnerLoopId, 260 unsigned OuterLoopId) { 261 unsigned NumRows = DepMatrix.size(); 262 // For each row check if it is valid to interchange. 263 for (unsigned Row = 0; Row < NumRows; ++Row) { 264 char InnerDep = DepMatrix[Row][InnerLoopId]; 265 char OuterDep = DepMatrix[Row][OuterLoopId]; 266 if (InnerDep == '*' || OuterDep == '*') 267 return false; 268 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 269 return false; 270 } 271 return true; 272 } 273 274 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) { 275 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 276 << L.getHeader()->getParent()->getName() << " Loop: %" 277 << L.getHeader()->getName() << '\n'); 278 LoopVector LoopList; 279 Loop *CurrentLoop = &L; 280 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 281 while (!Vec->empty()) { 282 // The current loop has multiple subloops in it hence it is not tightly 283 // nested. 284 // Discard all loops above it added into Worklist. 285 if (Vec->size() != 1) { 286 LoopList.clear(); 287 return; 288 } 289 LoopList.push_back(CurrentLoop); 290 CurrentLoop = Vec->front(); 291 Vec = &CurrentLoop->getSubLoops(); 292 } 293 LoopList.push_back(CurrentLoop); 294 V.push_back(std::move(LoopList)); 295 } 296 297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 298 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 299 if (InnerIndexVar) 300 return InnerIndexVar; 301 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 302 return nullptr; 303 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 304 PHINode *PhiVar = cast<PHINode>(I); 305 Type *PhiTy = PhiVar->getType(); 306 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 307 !PhiTy->isPointerTy()) 308 return nullptr; 309 const SCEVAddRecExpr *AddRec = 310 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 311 if (!AddRec || !AddRec->isAffine()) 312 continue; 313 const SCEV *Step = AddRec->getStepRecurrence(*SE); 314 if (!isa<SCEVConstant>(Step)) 315 continue; 316 // Found the induction variable. 317 // FIXME: Handle loops with more than one induction variable. Note that, 318 // currently, legality makes sure we have only one induction variable. 319 return PhiVar; 320 } 321 return nullptr; 322 } 323 324 namespace { 325 326 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 327 class LoopInterchangeLegality { 328 public: 329 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 330 LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA, 331 OptimizationRemarkEmitter *ORE) 332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 333 PreserveLCSSA(PreserveLCSSA), ORE(ORE) {} 334 335 /// Check if the loops can be interchanged. 336 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 337 CharMatrix &DepMatrix); 338 339 /// Check if the loop structure is understood. We do not handle triangular 340 /// loops for now. 341 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 342 343 bool currentLimitations(); 344 345 bool hasInnerLoopReduction() { return InnerLoopHasReduction; } 346 347 private: 348 bool tightlyNested(Loop *Outer, Loop *Inner); 349 bool containsUnsafeInstructionsInHeader(BasicBlock *BB); 350 bool areAllUsesReductions(Instruction *Ins, Loop *L); 351 bool containsUnsafeInstructionsInLatch(BasicBlock *BB); 352 bool findInductionAndReductions(Loop *L, 353 SmallVector<PHINode *, 8> &Inductions, 354 SmallVector<PHINode *, 8> &Reductions); 355 356 Loop *OuterLoop; 357 Loop *InnerLoop; 358 359 ScalarEvolution *SE; 360 LoopInfo *LI; 361 DominatorTree *DT; 362 bool PreserveLCSSA; 363 364 /// Interface to emit optimization remarks. 365 OptimizationRemarkEmitter *ORE; 366 367 bool InnerLoopHasReduction = false; 368 }; 369 370 /// LoopInterchangeProfitability checks if it is profitable to interchange the 371 /// loop. 372 class LoopInterchangeProfitability { 373 public: 374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 375 OptimizationRemarkEmitter *ORE) 376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 377 378 /// Check if the loop interchange is profitable. 379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 380 CharMatrix &DepMatrix); 381 382 private: 383 int getInstrOrderCost(); 384 385 Loop *OuterLoop; 386 Loop *InnerLoop; 387 388 /// Scev analysis. 389 ScalarEvolution *SE; 390 391 /// Interface to emit optimization remarks. 392 OptimizationRemarkEmitter *ORE; 393 }; 394 395 /// LoopInterchangeTransform interchanges the loop. 396 class LoopInterchangeTransform { 397 public: 398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 399 LoopInfo *LI, DominatorTree *DT, 400 BasicBlock *LoopNestExit, 401 bool InnerLoopContainsReductions) 402 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 403 LoopExit(LoopNestExit), 404 InnerLoopHasReduction(InnerLoopContainsReductions) {} 405 406 /// Interchange OuterLoop and InnerLoop. 407 bool transform(); 408 void restructureLoops(Loop *NewInner, Loop *NewOuter, 409 BasicBlock *OrigInnerPreHeader, 410 BasicBlock *OrigOuterPreHeader); 411 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 412 413 private: 414 void splitInnerLoopLatch(Instruction *); 415 void splitInnerLoopHeader(); 416 bool adjustLoopLinks(); 417 void adjustLoopPreheaders(); 418 bool adjustLoopBranches(); 419 void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred, 420 BasicBlock *NewPred); 421 422 Loop *OuterLoop; 423 Loop *InnerLoop; 424 425 /// Scev analysis. 426 ScalarEvolution *SE; 427 428 LoopInfo *LI; 429 DominatorTree *DT; 430 BasicBlock *LoopExit; 431 bool InnerLoopHasReduction; 432 }; 433 434 // Main LoopInterchange Pass. 435 struct LoopInterchange : public FunctionPass { 436 static char ID; 437 ScalarEvolution *SE = nullptr; 438 LoopInfo *LI = nullptr; 439 DependenceInfo *DI = nullptr; 440 DominatorTree *DT = nullptr; 441 bool PreserveLCSSA; 442 443 /// Interface to emit optimization remarks. 444 OptimizationRemarkEmitter *ORE; 445 446 LoopInterchange() : FunctionPass(ID) { 447 initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); 448 } 449 450 void getAnalysisUsage(AnalysisUsage &AU) const override { 451 AU.addRequired<ScalarEvolutionWrapperPass>(); 452 AU.addRequired<AAResultsWrapperPass>(); 453 AU.addRequired<DominatorTreeWrapperPass>(); 454 AU.addRequired<LoopInfoWrapperPass>(); 455 AU.addRequired<DependenceAnalysisWrapperPass>(); 456 AU.addRequiredID(LoopSimplifyID); 457 AU.addRequiredID(LCSSAID); 458 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 459 460 AU.addPreserved<DominatorTreeWrapperPass>(); 461 AU.addPreserved<LoopInfoWrapperPass>(); 462 } 463 464 bool runOnFunction(Function &F) override { 465 if (skipFunction(F)) 466 return false; 467 468 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 471 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 472 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 473 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 474 475 // Build up a worklist of loop pairs to analyze. 476 SmallVector<LoopVector, 8> Worklist; 477 478 for (Loop *L : *LI) 479 populateWorklist(*L, Worklist); 480 481 LLVM_DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n"); 482 bool Changed = true; 483 while (!Worklist.empty()) { 484 LoopVector LoopList = Worklist.pop_back_val(); 485 Changed = processLoopList(LoopList, F); 486 } 487 return Changed; 488 } 489 490 bool isComputableLoopNest(LoopVector LoopList) { 491 for (Loop *L : LoopList) { 492 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 493 if (ExitCountOuter == SE->getCouldNotCompute()) { 494 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 495 return false; 496 } 497 if (L->getNumBackEdges() != 1) { 498 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 499 return false; 500 } 501 if (!L->getExitingBlock()) { 502 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 503 return false; 504 } 505 } 506 return true; 507 } 508 509 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 510 // TODO: Add a better heuristic to select the loop to be interchanged based 511 // on the dependence matrix. Currently we select the innermost loop. 512 return LoopList.size() - 1; 513 } 514 515 bool processLoopList(LoopVector LoopList, Function &F) { 516 bool Changed = false; 517 unsigned LoopNestDepth = LoopList.size(); 518 if (LoopNestDepth < 2) { 519 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 520 return false; 521 } 522 if (LoopNestDepth > MaxLoopNestDepth) { 523 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 524 << MaxLoopNestDepth << "\n"); 525 return false; 526 } 527 if (!isComputableLoopNest(LoopList)) { 528 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 529 return false; 530 } 531 532 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 533 << "\n"); 534 535 CharMatrix DependencyMatrix; 536 Loop *OuterMostLoop = *(LoopList.begin()); 537 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 538 OuterMostLoop, DI)) { 539 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 540 return false; 541 } 542 #ifdef DUMP_DEP_MATRICIES 543 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 544 printDepMatrix(DependencyMatrix); 545 #endif 546 547 // Get the Outermost loop exit. 548 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 549 if (!LoopNestExit) { 550 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 551 return false; 552 } 553 554 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 555 // Move the selected loop outwards to the best possible position. 556 for (unsigned i = SelecLoopId; i > 0; i--) { 557 bool Interchanged = 558 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 559 if (!Interchanged) 560 return Changed; 561 // Loops interchanged reflect the same in LoopList 562 std::swap(LoopList[i - 1], LoopList[i]); 563 564 // Update the DependencyMatrix 565 interChangeDependencies(DependencyMatrix, i, i - 1); 566 #ifdef DUMP_DEP_MATRICIES 567 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 568 printDepMatrix(DependencyMatrix); 569 #endif 570 Changed |= Interchanged; 571 } 572 return Changed; 573 } 574 575 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 576 unsigned OuterLoopId, BasicBlock *LoopNestExit, 577 std::vector<std::vector<char>> &DependencyMatrix) { 578 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 579 << " and OuterLoopId = " << OuterLoopId << "\n"); 580 Loop *InnerLoop = LoopList[InnerLoopId]; 581 Loop *OuterLoop = LoopList[OuterLoopId]; 582 583 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT, 584 PreserveLCSSA, ORE); 585 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 586 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 587 return false; 588 } 589 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 590 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 591 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 592 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 593 return false; 594 } 595 596 ORE->emit([&]() { 597 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 598 InnerLoop->getStartLoc(), 599 InnerLoop->getHeader()) 600 << "Loop interchanged with enclosing loop."; 601 }); 602 603 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, 604 LoopNestExit, LIL.hasInnerLoopReduction()); 605 LIT.transform(); 606 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 607 LoopsInterchanged++; 608 return true; 609 } 610 }; 611 612 } // end anonymous namespace 613 614 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) { 615 return llvm::none_of(Ins->users(), [=](User *U) -> bool { 616 auto *UserIns = dyn_cast<PHINode>(U); 617 RecurrenceDescriptor RD; 618 return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD); 619 }); 620 } 621 622 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader( 623 BasicBlock *BB) { 624 for (Instruction &I : *BB) { 625 // Load corresponding to reduction PHI's are safe while concluding if 626 // tightly nested. 627 if (LoadInst *L = dyn_cast<LoadInst>(&I)) { 628 if (!areAllUsesReductions(L, InnerLoop)) 629 return true; 630 } else if (I.mayHaveSideEffects() || I.mayReadFromMemory()) 631 return true; 632 } 633 return false; 634 } 635 636 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch( 637 BasicBlock *BB) { 638 for (Instruction &I : *BB) { 639 // Stores corresponding to reductions are safe while concluding if tightly 640 // nested. 641 if (StoreInst *L = dyn_cast<StoreInst>(&I)) { 642 if (!isa<PHINode>(L->getOperand(0))) 643 return true; 644 } else if (I.mayHaveSideEffects() || I.mayReadFromMemory()) 645 return true; 646 } 647 return false; 648 } 649 650 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 651 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 652 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 653 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 654 655 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 656 657 // A perfectly nested loop will not have any branch in between the outer and 658 // inner block i.e. outer header will branch to either inner preheader and 659 // outerloop latch. 660 BranchInst *OuterLoopHeaderBI = 661 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 662 if (!OuterLoopHeaderBI) 663 return false; 664 665 for (BasicBlock *Succ : OuterLoopHeaderBI->successors()) 666 if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch) 667 return false; 668 669 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 670 // We do not have any basic block in between now make sure the outer header 671 // and outer loop latch doesn't contain any unsafe instructions. 672 if (containsUnsafeInstructionsInHeader(OuterLoopHeader) || 673 containsUnsafeInstructionsInLatch(OuterLoopLatch)) 674 return false; 675 676 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 677 // We have a perfect loop nest. 678 return true; 679 } 680 681 bool LoopInterchangeLegality::isLoopStructureUnderstood( 682 PHINode *InnerInduction) { 683 unsigned Num = InnerInduction->getNumOperands(); 684 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 685 for (unsigned i = 0; i < Num; ++i) { 686 Value *Val = InnerInduction->getOperand(i); 687 if (isa<Constant>(Val)) 688 continue; 689 Instruction *I = dyn_cast<Instruction>(Val); 690 if (!I) 691 return false; 692 // TODO: Handle triangular loops. 693 // e.g. for(int i=0;i<N;i++) 694 // for(int j=i;j<N;j++) 695 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 696 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 697 InnerLoopPreheader && 698 !OuterLoop->isLoopInvariant(I)) { 699 return false; 700 } 701 } 702 return true; 703 } 704 705 bool LoopInterchangeLegality::findInductionAndReductions( 706 Loop *L, SmallVector<PHINode *, 8> &Inductions, 707 SmallVector<PHINode *, 8> &Reductions) { 708 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 709 return false; 710 for (PHINode &PHI : L->getHeader()->phis()) { 711 RecurrenceDescriptor RD; 712 InductionDescriptor ID; 713 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 714 Inductions.push_back(&PHI); 715 else if (RecurrenceDescriptor::isReductionPHI(&PHI, L, RD)) 716 Reductions.push_back(&PHI); 717 else { 718 LLVM_DEBUG( 719 dbgs() << "Failed to recognize PHI as an induction or reduction.\n"); 720 return false; 721 } 722 } 723 return true; 724 } 725 726 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { 727 for (PHINode &PHI : Block->phis()) { 728 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 729 if (PHI.getNumIncomingValues() > 1) 730 return false; 731 Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0)); 732 if (!Ins) 733 return false; 734 // Incoming value for lcssa phi's in outer loop exit can only be inner loop 735 // exits lcssa phi else it would not be tightly nested. 736 if (!isa<PHINode>(Ins) && isOuterLoopExitBlock) 737 return false; 738 } 739 return true; 740 } 741 742 // This function indicates the current limitations in the transform as a result 743 // of which we do not proceed. 744 bool LoopInterchangeLegality::currentLimitations() { 745 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 746 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 747 748 // transform currently expects the loop latches to also be the exiting 749 // blocks. 750 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 751 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 752 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 753 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 754 LLVM_DEBUG( 755 dbgs() << "Loops where the latch is not the exiting block are not" 756 << " supported currently.\n"); 757 ORE->emit([&]() { 758 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 759 OuterLoop->getStartLoc(), 760 OuterLoop->getHeader()) 761 << "Loops where the latch is not the exiting block cannot be" 762 " interchange currently."; 763 }); 764 return true; 765 } 766 767 PHINode *InnerInductionVar; 768 SmallVector<PHINode *, 8> Inductions; 769 SmallVector<PHINode *, 8> Reductions; 770 if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) { 771 LLVM_DEBUG( 772 dbgs() << "Only inner loops with induction or reduction PHI nodes " 773 << "are supported currently.\n"); 774 ORE->emit([&]() { 775 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 776 InnerLoop->getStartLoc(), 777 InnerLoop->getHeader()) 778 << "Only inner loops with induction or reduction PHI nodes can be" 779 " interchange currently."; 780 }); 781 return true; 782 } 783 784 // TODO: Currently we handle only loops with 1 induction variable. 785 if (Inductions.size() != 1) { 786 LLVM_DEBUG( 787 dbgs() << "We currently only support loops with 1 induction variable." 788 << "Failed to interchange due to current limitation\n"); 789 ORE->emit([&]() { 790 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 791 InnerLoop->getStartLoc(), 792 InnerLoop->getHeader()) 793 << "Only inner loops with 1 induction variable can be " 794 "interchanged currently."; 795 }); 796 return true; 797 } 798 if (Reductions.size() > 0) 799 InnerLoopHasReduction = true; 800 801 InnerInductionVar = Inductions.pop_back_val(); 802 Reductions.clear(); 803 if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) { 804 LLVM_DEBUG( 805 dbgs() << "Only outer loops with induction or reduction PHI nodes " 806 << "are supported currently.\n"); 807 ORE->emit([&]() { 808 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 809 OuterLoop->getStartLoc(), 810 OuterLoop->getHeader()) 811 << "Only outer loops with induction or reduction PHI nodes can be" 812 " interchanged currently."; 813 }); 814 return true; 815 } 816 817 // Outer loop cannot have reduction because then loops will not be tightly 818 // nested. 819 if (!Reductions.empty()) { 820 LLVM_DEBUG(dbgs() << "Outer loops with reductions are not supported " 821 << "currently.\n"); 822 ORE->emit([&]() { 823 return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter", 824 OuterLoop->getStartLoc(), 825 OuterLoop->getHeader()) 826 << "Outer loops with reductions cannot be interchangeed " 827 "currently."; 828 }); 829 return true; 830 } 831 // TODO: Currently we handle only loops with 1 induction variable. 832 if (Inductions.size() != 1) { 833 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 834 << "supported currently.\n"); 835 ORE->emit([&]() { 836 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 837 OuterLoop->getStartLoc(), 838 OuterLoop->getHeader()) 839 << "Only outer loops with 1 induction variable can be " 840 "interchanged currently."; 841 }); 842 return true; 843 } 844 845 // TODO: Triangular loops are not handled for now. 846 if (!isLoopStructureUnderstood(InnerInductionVar)) { 847 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 848 ORE->emit([&]() { 849 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 850 InnerLoop->getStartLoc(), 851 InnerLoop->getHeader()) 852 << "Inner loop structure not understood currently."; 853 }); 854 return true; 855 } 856 857 // TODO: We only handle LCSSA PHI's corresponding to reduction for now. 858 BasicBlock *InnerExit = InnerLoop->getExitBlock(); 859 if (!containsSafePHI(InnerExit, false)) { 860 LLVM_DEBUG( 861 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n"); 862 ORE->emit([&]() { 863 return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner", 864 InnerLoop->getStartLoc(), 865 InnerLoop->getHeader()) 866 << "Only inner loops with LCSSA PHIs can be interchange " 867 "currently."; 868 }); 869 return true; 870 } 871 872 // TODO: Current limitation: Since we split the inner loop latch at the point 873 // were induction variable is incremented (induction.next); We cannot have 874 // more than 1 user of induction.next since it would result in broken code 875 // after split. 876 // e.g. 877 // for(i=0;i<N;i++) { 878 // for(j = 0;j<M;j++) { 879 // A[j+1][i+2] = A[j][i]+k; 880 // } 881 // } 882 Instruction *InnerIndexVarInc = nullptr; 883 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 884 InnerIndexVarInc = 885 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 886 else 887 InnerIndexVarInc = 888 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 889 890 if (!InnerIndexVarInc) { 891 LLVM_DEBUG( 892 dbgs() << "Did not find an instruction to increment the induction " 893 << "variable.\n"); 894 ORE->emit([&]() { 895 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 896 InnerLoop->getStartLoc(), 897 InnerLoop->getHeader()) 898 << "The inner loop does not increment the induction variable."; 899 }); 900 return true; 901 } 902 903 // Since we split the inner loop latch on this induction variable. Make sure 904 // we do not have any instruction between the induction variable and branch 905 // instruction. 906 907 bool FoundInduction = false; 908 for (const Instruction &I : 909 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 910 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 911 isa<ZExtInst>(I)) 912 continue; 913 914 // We found an instruction. If this is not induction variable then it is not 915 // safe to split this loop latch. 916 if (!I.isIdenticalTo(InnerIndexVarInc)) { 917 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 918 << "variable increment and branch.\n"); 919 ORE->emit([&]() { 920 return OptimizationRemarkMissed( 921 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 922 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 923 << "Found unsupported instruction between induction variable " 924 "increment and branch."; 925 }); 926 return true; 927 } 928 929 FoundInduction = true; 930 break; 931 } 932 // The loop latch ended and we didn't find the induction variable return as 933 // current limitation. 934 if (!FoundInduction) { 935 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 936 ORE->emit([&]() { 937 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 938 InnerLoop->getStartLoc(), 939 InnerLoop->getHeader()) 940 << "Did not find the induction variable."; 941 }); 942 return true; 943 } 944 return false; 945 } 946 947 // We currently support LCSSA PHI nodes in the outer loop exit, if their 948 // incoming values do not come from the outer loop latch or if the 949 // outer loop latch has a single predecessor. In that case, the value will 950 // be available if both the inner and outer loop conditions are true, which 951 // will still be true after interchanging. If we have multiple predecessor, 952 // that may not be the case, e.g. because the outer loop latch may be executed 953 // if the inner loop is not executed. 954 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 955 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 956 for (PHINode &PHI : LoopNestExit->phis()) { 957 // FIXME: We currently are not able to detect floating point reductions 958 // and have to use floating point PHIs as a proxy to prevent 959 // interchanging in the presence of floating point reductions. 960 if (PHI.getType()->isFloatingPointTy()) 961 return false; 962 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 963 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 964 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 965 continue; 966 967 // The incoming value is defined in the outer loop latch. Currently we 968 // only support that in case the outer loop latch has a single predecessor. 969 // This guarantees that the outer loop latch is executed if and only if 970 // the inner loop is executed (because tightlyNested() guarantees that the 971 // outer loop header only branches to the inner loop or the outer loop 972 // latch). 973 // FIXME: We could weaken this logic and allow multiple predecessors, 974 // if the values are produced outside the loop latch. We would need 975 // additional logic to update the PHI nodes in the exit block as 976 // well. 977 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 978 return false; 979 } 980 } 981 return true; 982 } 983 984 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 985 unsigned OuterLoopId, 986 CharMatrix &DepMatrix) { 987 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 988 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 989 << " and OuterLoopId = " << OuterLoopId 990 << " due to dependence\n"); 991 ORE->emit([&]() { 992 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 993 InnerLoop->getStartLoc(), 994 InnerLoop->getHeader()) 995 << "Cannot interchange loops due to dependences."; 996 }); 997 return false; 998 } 999 // Check if outer and inner loop contain legal instructions only. 1000 for (auto *BB : OuterLoop->blocks()) 1001 for (Instruction &I : BB->instructionsWithoutDebug()) 1002 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1003 // readnone functions do not prevent interchanging. 1004 if (CI->doesNotReadMemory()) 1005 continue; 1006 LLVM_DEBUG( 1007 dbgs() << "Loops with call instructions cannot be interchanged " 1008 << "safely."); 1009 ORE->emit([&]() { 1010 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1011 CI->getDebugLoc(), 1012 CI->getParent()) 1013 << "Cannot interchange loops due to call instruction."; 1014 }); 1015 1016 return false; 1017 } 1018 1019 // Create unique Preheaders if we already do not have one. 1020 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1021 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1022 1023 // Create a unique outer preheader - 1024 // 1) If OuterLoop preheader is not present. 1025 // 2) If OuterLoop Preheader is same as OuterLoop Header 1026 // 3) If OuterLoop Preheader is same as Header of the previous loop. 1027 // 4) If OuterLoop Preheader is Entry node. 1028 if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() || 1029 isa<PHINode>(OuterLoopPreHeader->begin()) || 1030 !OuterLoopPreHeader->getUniquePredecessor()) { 1031 OuterLoopPreHeader = 1032 InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA); 1033 } 1034 1035 if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() || 1036 InnerLoopPreHeader == OuterLoop->getHeader()) { 1037 InnerLoopPreHeader = 1038 InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA); 1039 } 1040 1041 // TODO: The loops could not be interchanged due to current limitations in the 1042 // transform module. 1043 if (currentLimitations()) { 1044 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1045 return false; 1046 } 1047 1048 // Check if the loops are tightly nested. 1049 if (!tightlyNested(OuterLoop, InnerLoop)) { 1050 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1051 ORE->emit([&]() { 1052 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1053 InnerLoop->getStartLoc(), 1054 InnerLoop->getHeader()) 1055 << "Cannot interchange loops because they are not tightly " 1056 "nested."; 1057 }); 1058 return false; 1059 } 1060 1061 if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1062 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1063 ORE->emit([&]() { 1064 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1065 OuterLoop->getStartLoc(), 1066 OuterLoop->getHeader()) 1067 << "Found unsupported PHI node in loop exit."; 1068 }); 1069 return false; 1070 } 1071 1072 return true; 1073 } 1074 1075 int LoopInterchangeProfitability::getInstrOrderCost() { 1076 unsigned GoodOrder, BadOrder; 1077 BadOrder = GoodOrder = 0; 1078 for (BasicBlock *BB : InnerLoop->blocks()) { 1079 for (Instruction &Ins : *BB) { 1080 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1081 unsigned NumOp = GEP->getNumOperands(); 1082 bool FoundInnerInduction = false; 1083 bool FoundOuterInduction = false; 1084 for (unsigned i = 0; i < NumOp; ++i) { 1085 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1086 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1087 if (!AR) 1088 continue; 1089 1090 // If we find the inner induction after an outer induction e.g. 1091 // for(int i=0;i<N;i++) 1092 // for(int j=0;j<N;j++) 1093 // A[i][j] = A[i-1][j-1]+k; 1094 // then it is a good order. 1095 if (AR->getLoop() == InnerLoop) { 1096 // We found an InnerLoop induction after OuterLoop induction. It is 1097 // a good order. 1098 FoundInnerInduction = true; 1099 if (FoundOuterInduction) { 1100 GoodOrder++; 1101 break; 1102 } 1103 } 1104 // If we find the outer induction after an inner induction e.g. 1105 // for(int i=0;i<N;i++) 1106 // for(int j=0;j<N;j++) 1107 // A[j][i] = A[j-1][i-1]+k; 1108 // then it is a bad order. 1109 if (AR->getLoop() == OuterLoop) { 1110 // We found an OuterLoop induction after InnerLoop induction. It is 1111 // a bad order. 1112 FoundOuterInduction = true; 1113 if (FoundInnerInduction) { 1114 BadOrder++; 1115 break; 1116 } 1117 } 1118 } 1119 } 1120 } 1121 } 1122 return GoodOrder - BadOrder; 1123 } 1124 1125 static bool isProfitableForVectorization(unsigned InnerLoopId, 1126 unsigned OuterLoopId, 1127 CharMatrix &DepMatrix) { 1128 // TODO: Improve this heuristic to catch more cases. 1129 // If the inner loop is loop independent or doesn't carry any dependency it is 1130 // profitable to move this to outer position. 1131 for (auto &Row : DepMatrix) { 1132 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1133 return false; 1134 // TODO: We need to improve this heuristic. 1135 if (Row[OuterLoopId] != '=') 1136 return false; 1137 } 1138 // If outer loop has dependence and inner loop is loop independent then it is 1139 // profitable to interchange to enable parallelism. 1140 // If there are no dependences, interchanging will not improve anything. 1141 return !DepMatrix.empty(); 1142 } 1143 1144 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1145 unsigned OuterLoopId, 1146 CharMatrix &DepMatrix) { 1147 // TODO: Add better profitability checks. 1148 // e.g 1149 // 1) Construct dependency matrix and move the one with no loop carried dep 1150 // inside to enable vectorization. 1151 1152 // This is rough cost estimation algorithm. It counts the good and bad order 1153 // of induction variables in the instruction and allows reordering if number 1154 // of bad orders is more than good. 1155 int Cost = getInstrOrderCost(); 1156 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1157 if (Cost < -LoopInterchangeCostThreshold) 1158 return true; 1159 1160 // It is not profitable as per current cache profitability model. But check if 1161 // we can move this loop outside to improve parallelism. 1162 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1163 return true; 1164 1165 ORE->emit([&]() { 1166 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1167 InnerLoop->getStartLoc(), 1168 InnerLoop->getHeader()) 1169 << "Interchanging loops is too costly (cost=" 1170 << ore::NV("Cost", Cost) << ", threshold=" 1171 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1172 << ") and it does not improve parallelism."; 1173 }); 1174 return false; 1175 } 1176 1177 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1178 Loop *InnerLoop) { 1179 for (Loop *L : *OuterLoop) 1180 if (L == InnerLoop) { 1181 OuterLoop->removeChildLoop(L); 1182 return; 1183 } 1184 llvm_unreachable("Couldn't find loop"); 1185 } 1186 1187 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1188 /// new inner and outer loop after interchanging: NewInner is the original 1189 /// outer loop and NewOuter is the original inner loop. 1190 /// 1191 /// Before interchanging, we have the following structure 1192 /// Outer preheader 1193 // Outer header 1194 // Inner preheader 1195 // Inner header 1196 // Inner body 1197 // Inner latch 1198 // outer bbs 1199 // Outer latch 1200 // 1201 // After interchanging: 1202 // Inner preheader 1203 // Inner header 1204 // Outer preheader 1205 // Outer header 1206 // Inner body 1207 // outer bbs 1208 // Outer latch 1209 // Inner latch 1210 void LoopInterchangeTransform::restructureLoops( 1211 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1212 BasicBlock *OrigOuterPreHeader) { 1213 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1214 // The original inner loop preheader moves from the new inner loop to 1215 // the parent loop, if there is one. 1216 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1217 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1218 1219 // Switch the loop levels. 1220 if (OuterLoopParent) { 1221 // Remove the loop from its parent loop. 1222 removeChildLoop(OuterLoopParent, NewInner); 1223 removeChildLoop(NewInner, NewOuter); 1224 OuterLoopParent->addChildLoop(NewOuter); 1225 } else { 1226 removeChildLoop(NewInner, NewOuter); 1227 LI->changeTopLevelLoop(NewInner, NewOuter); 1228 } 1229 while (!NewOuter->empty()) 1230 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1231 NewOuter->addChildLoop(NewInner); 1232 1233 // BBs from the original inner loop. 1234 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1235 1236 // Add BBs from the original outer loop to the original inner loop (excluding 1237 // BBs already in inner loop) 1238 for (BasicBlock *BB : NewInner->blocks()) 1239 if (LI->getLoopFor(BB) == NewInner) 1240 NewOuter->addBlockEntry(BB); 1241 1242 // Now remove inner loop header and latch from the new inner loop and move 1243 // other BBs (the loop body) to the new inner loop. 1244 BasicBlock *OuterHeader = NewOuter->getHeader(); 1245 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1246 for (BasicBlock *BB : OrigInnerBBs) { 1247 // Nothing will change for BBs in child loops. 1248 if (LI->getLoopFor(BB) != NewOuter) 1249 continue; 1250 // Remove the new outer loop header and latch from the new inner loop. 1251 if (BB == OuterHeader || BB == OuterLatch) 1252 NewInner->removeBlockFromLoop(BB); 1253 else 1254 LI->changeLoopFor(BB, NewInner); 1255 } 1256 1257 // The preheader of the original outer loop becomes part of the new 1258 // outer loop. 1259 NewOuter->addBlockEntry(OrigOuterPreHeader); 1260 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1261 } 1262 1263 bool LoopInterchangeTransform::transform() { 1264 bool Transformed = false; 1265 Instruction *InnerIndexVar; 1266 1267 if (InnerLoop->getSubLoops().empty()) { 1268 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1269 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n"); 1270 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1271 if (!InductionPHI) { 1272 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1273 return false; 1274 } 1275 1276 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1277 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1278 else 1279 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1280 1281 // Ensure that InductionPHI is the first Phi node. 1282 if (&InductionPHI->getParent()->front() != InductionPHI) 1283 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1284 1285 // Split at the place were the induction variable is 1286 // incremented/decremented. 1287 // TODO: This splitting logic may not work always. Fix this. 1288 splitInnerLoopLatch(InnerIndexVar); 1289 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n"); 1290 1291 // Splits the inner loops phi nodes out into a separate basic block. 1292 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1293 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1294 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1295 } 1296 1297 Transformed |= adjustLoopLinks(); 1298 if (!Transformed) { 1299 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1300 return false; 1301 } 1302 1303 return true; 1304 } 1305 1306 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) { 1307 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1308 BasicBlock *InnerLoopLatchPred = InnerLoopLatch; 1309 InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI); 1310 } 1311 1312 /// \brief Move all instructions except the terminator from FromBB right before 1313 /// InsertBefore 1314 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1315 auto &ToList = InsertBefore->getParent()->getInstList(); 1316 auto &FromList = FromBB->getInstList(); 1317 1318 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1319 FromBB->getTerminator()->getIterator()); 1320 } 1321 1322 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock, 1323 BasicBlock *OldPred, 1324 BasicBlock *NewPred) { 1325 for (PHINode &PHI : CurrBlock->phis()) { 1326 unsigned Num = PHI.getNumIncomingValues(); 1327 for (unsigned i = 0; i < Num; ++i) { 1328 if (PHI.getIncomingBlock(i) == OldPred) 1329 PHI.setIncomingBlock(i, NewPred); 1330 } 1331 } 1332 } 1333 1334 /// Update BI to jump to NewBB instead of OldBB. Records updates to 1335 /// the dominator tree in DTUpdates, if DT should be preserved. 1336 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1337 BasicBlock *NewBB, 1338 std::vector<DominatorTree::UpdateType> &DTUpdates) { 1339 assert(llvm::count_if(BI->successors(), 1340 [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 && 1341 "BI must jump to OldBB at most once."); 1342 for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) { 1343 if (BI->getSuccessor(i) == OldBB) { 1344 BI->setSuccessor(i, NewBB); 1345 1346 DTUpdates.push_back( 1347 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1348 DTUpdates.push_back( 1349 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1350 break; 1351 } 1352 } 1353 } 1354 1355 bool LoopInterchangeTransform::adjustLoopBranches() { 1356 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1357 std::vector<DominatorTree::UpdateType> DTUpdates; 1358 1359 // Adjust the loop preheader 1360 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1361 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1362 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1363 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1364 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1365 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1366 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1367 BasicBlock *InnerLoopLatchPredecessor = 1368 InnerLoopLatch->getUniquePredecessor(); 1369 BasicBlock *InnerLoopLatchSuccessor; 1370 BasicBlock *OuterLoopLatchSuccessor; 1371 1372 BranchInst *OuterLoopLatchBI = 1373 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1374 BranchInst *InnerLoopLatchBI = 1375 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1376 BranchInst *OuterLoopHeaderBI = 1377 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1378 BranchInst *InnerLoopHeaderBI = 1379 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1380 1381 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1382 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1383 !InnerLoopHeaderBI) 1384 return false; 1385 1386 BranchInst *InnerLoopLatchPredecessorBI = 1387 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1388 BranchInst *OuterLoopPredecessorBI = 1389 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1390 1391 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1392 return false; 1393 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1394 if (!InnerLoopHeaderSuccessor) 1395 return false; 1396 1397 // Adjust Loop Preheader and headers 1398 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1399 InnerLoopPreHeader, DTUpdates); 1400 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates); 1401 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1402 InnerLoopHeaderSuccessor, DTUpdates); 1403 1404 // Adjust reduction PHI's now that the incoming block has changed. 1405 updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader, 1406 OuterLoopHeader); 1407 1408 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1409 OuterLoopPreHeader, DTUpdates); 1410 1411 // -------------Adjust loop latches----------- 1412 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1413 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1414 else 1415 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1416 1417 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1418 InnerLoopLatchSuccessor, DTUpdates); 1419 1420 // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with 1421 // the value and remove this PHI node from inner loop. 1422 SmallVector<PHINode *, 8> LcssaVec; 1423 for (PHINode &P : InnerLoopLatchSuccessor->phis()) 1424 LcssaVec.push_back(&P); 1425 1426 for (PHINode *P : LcssaVec) { 1427 Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch); 1428 P->replaceAllUsesWith(Incoming); 1429 P->eraseFromParent(); 1430 } 1431 1432 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1433 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1434 else 1435 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1436 1437 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1438 OuterLoopLatchSuccessor, DTUpdates); 1439 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1440 DTUpdates); 1441 1442 updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch); 1443 1444 DT->applyUpdates(DTUpdates); 1445 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1446 OuterLoopPreHeader); 1447 1448 // Now update the reduction PHIs in the inner and outer loop headers. 1449 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1450 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1451 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1452 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1453 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1454 1455 for (PHINode *PHI : OuterLoopPHIs) 1456 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1457 1458 // Move the PHI nodes from the inner loop header to the outer loop header. 1459 // We have to deal with one kind of PHI nodes: 1460 // 1) PHI nodes that are part of inner loop-only reductions. 1461 // We only have to move the PHI node and update the incoming blocks. 1462 for (PHINode *PHI : InnerLoopPHIs) { 1463 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1464 for (BasicBlock *InBB : PHI->blocks()) { 1465 if (InnerLoop->contains(InBB)) 1466 continue; 1467 1468 assert(!isa<PHINode>(PHI->getIncomingValueForBlock(InBB)) && 1469 "Unexpected incoming PHI node, reductions in outer loop are not " 1470 "supported yet"); 1471 PHI->replaceAllUsesWith(PHI->getIncomingValueForBlock(InBB)); 1472 PHI->eraseFromParent(); 1473 break; 1474 } 1475 } 1476 1477 // Update the incoming blocks for moved PHI nodes. 1478 updateIncomingBlock(OuterLoopHeader, InnerLoopPreHeader, OuterLoopPreHeader); 1479 updateIncomingBlock(OuterLoopHeader, InnerLoopLatch, OuterLoopLatch); 1480 updateIncomingBlock(InnerLoopHeader, OuterLoopPreHeader, InnerLoopPreHeader); 1481 updateIncomingBlock(InnerLoopHeader, OuterLoopLatch, InnerLoopLatch); 1482 1483 return true; 1484 } 1485 1486 void LoopInterchangeTransform::adjustLoopPreheaders() { 1487 // We have interchanged the preheaders so we need to interchange the data in 1488 // the preheader as well. 1489 // This is because the content of inner preheader was previously executed 1490 // inside the outer loop. 1491 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1492 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1493 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1494 BranchInst *InnerTermBI = 1495 cast<BranchInst>(InnerLoopPreHeader->getTerminator()); 1496 1497 // These instructions should now be executed inside the loop. 1498 // Move instruction into a new block after outer header. 1499 moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); 1500 // These instructions were not executed previously in the loop so move them to 1501 // the older inner loop preheader. 1502 moveBBContents(OuterLoopPreHeader, InnerTermBI); 1503 } 1504 1505 bool LoopInterchangeTransform::adjustLoopLinks() { 1506 // Adjust all branches in the inner and outer loop. 1507 bool Changed = adjustLoopBranches(); 1508 if (Changed) 1509 adjustLoopPreheaders(); 1510 return Changed; 1511 } 1512 1513 char LoopInterchange::ID = 0; 1514 1515 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", 1516 "Interchanges loops for cache reuse", false, false) 1517 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1518 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1519 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1520 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1521 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 1522 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 1523 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1524 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1525 1526 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", 1527 "Interchanges loops for cache reuse", false, false) 1528 1529 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } 1530