1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 if (Src == Dst) 123 continue; 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 const SCEV *Distance = D->getDistance(II); 139 const SCEVConstant *SCEVConst = 140 dyn_cast_or_null<SCEVConstant>(Distance); 141 if (SCEVConst) { 142 const ConstantInt *CI = SCEVConst->getValue(); 143 if (CI->isNegative()) 144 Direction = '<'; 145 else if (CI->isZero()) 146 Direction = '='; 147 else 148 Direction = '>'; 149 Dep.push_back(Direction); 150 } else if (D->isScalar(II)) { 151 Direction = 'S'; 152 Dep.push_back(Direction); 153 } else { 154 unsigned Dir = D->getDirection(II); 155 if (Dir == Dependence::DVEntry::LT || 156 Dir == Dependence::DVEntry::LE) 157 Direction = '<'; 158 else if (Dir == Dependence::DVEntry::GT || 159 Dir == Dependence::DVEntry::GE) 160 Direction = '>'; 161 else if (Dir == Dependence::DVEntry::EQ) 162 Direction = '='; 163 else 164 Direction = '*'; 165 Dep.push_back(Direction); 166 } 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 DepMatrix.push_back(Dep); 173 if (DepMatrix.size() > MaxMemInstrCount) { 174 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 175 << " dependencies inside loop\n"); 176 return false; 177 } 178 } 179 } 180 } 181 182 return true; 183 } 184 185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 186 // matrix by exchanging the two columns. 187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 188 unsigned ToIndx) { 189 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 190 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 191 } 192 193 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 194 // '>' 195 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 196 unsigned Column) { 197 for (unsigned i = 0; i <= Column; ++i) { 198 if (DepMatrix[Row][i] == '<') 199 return false; 200 if (DepMatrix[Row][i] == '>') 201 return true; 202 } 203 // All dependencies were '=','S' or 'I' 204 return false; 205 } 206 207 // Checks if no dependence exist in the dependency matrix in Row before Column. 208 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 209 unsigned Column) { 210 for (unsigned i = 0; i < Column; ++i) { 211 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 212 DepMatrix[Row][i] != 'I') 213 return false; 214 } 215 return true; 216 } 217 218 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 219 unsigned OuterLoopId, char InnerDep, 220 char OuterDep) { 221 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 222 return false; 223 224 if (InnerDep == OuterDep) 225 return true; 226 227 // It is legal to interchange if and only if after interchange no row has a 228 // '>' direction as the leftmost non-'='. 229 230 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 231 return true; 232 233 if (InnerDep == '<') 234 return true; 235 236 if (InnerDep == '>') { 237 // If OuterLoopId represents outermost loop then interchanging will make the 238 // 1st dependency as '>' 239 if (OuterLoopId == 0) 240 return false; 241 242 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 243 // interchanging will result in this row having an outermost non '=' 244 // dependency of '>' 245 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 246 return true; 247 } 248 249 return false; 250 } 251 252 // Checks if it is legal to interchange 2 loops. 253 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 254 // if the direction matrix, after the same permutation is applied to its 255 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 256 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 257 unsigned InnerLoopId, 258 unsigned OuterLoopId) { 259 unsigned NumRows = DepMatrix.size(); 260 // For each row check if it is valid to interchange. 261 for (unsigned Row = 0; Row < NumRows; ++Row) { 262 char InnerDep = DepMatrix[Row][InnerLoopId]; 263 char OuterDep = DepMatrix[Row][OuterLoopId]; 264 if (InnerDep == '*' || OuterDep == '*') 265 return false; 266 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 267 return false; 268 } 269 return true; 270 } 271 272 static LoopVector populateWorklist(Loop &L) { 273 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 274 << L.getHeader()->getParent()->getName() << " Loop: %" 275 << L.getHeader()->getName() << '\n'); 276 LoopVector LoopList; 277 Loop *CurrentLoop = &L; 278 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 279 while (!Vec->empty()) { 280 // The current loop has multiple subloops in it hence it is not tightly 281 // nested. 282 // Discard all loops above it added into Worklist. 283 if (Vec->size() != 1) 284 return {}; 285 286 LoopList.push_back(CurrentLoop); 287 CurrentLoop = Vec->front(); 288 Vec = &CurrentLoop->getSubLoops(); 289 } 290 LoopList.push_back(CurrentLoop); 291 return LoopList; 292 } 293 294 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 295 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 296 if (InnerIndexVar) 297 return InnerIndexVar; 298 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 299 return nullptr; 300 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 301 PHINode *PhiVar = cast<PHINode>(I); 302 Type *PhiTy = PhiVar->getType(); 303 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 304 !PhiTy->isPointerTy()) 305 return nullptr; 306 const SCEVAddRecExpr *AddRec = 307 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 308 if (!AddRec || !AddRec->isAffine()) 309 continue; 310 const SCEV *Step = AddRec->getStepRecurrence(*SE); 311 if (!isa<SCEVConstant>(Step)) 312 continue; 313 // Found the induction variable. 314 // FIXME: Handle loops with more than one induction variable. Note that, 315 // currently, legality makes sure we have only one induction variable. 316 return PhiVar; 317 } 318 return nullptr; 319 } 320 321 namespace { 322 323 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 324 class LoopInterchangeLegality { 325 public: 326 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 327 OptimizationRemarkEmitter *ORE) 328 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 329 330 /// Check if the loops can be interchanged. 331 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 332 CharMatrix &DepMatrix); 333 334 /// Check if the loop structure is understood. We do not handle triangular 335 /// loops for now. 336 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 337 338 bool currentLimitations(); 339 340 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 341 return OuterInnerReductions; 342 } 343 344 private: 345 bool tightlyNested(Loop *Outer, Loop *Inner); 346 bool containsUnsafeInstructions(BasicBlock *BB); 347 348 /// Discover induction and reduction PHIs in the header of \p L. Induction 349 /// PHIs are added to \p Inductions, reductions are added to 350 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 351 /// to be passed as \p InnerLoop. 352 bool findInductionAndReductions(Loop *L, 353 SmallVector<PHINode *, 8> &Inductions, 354 Loop *InnerLoop); 355 356 Loop *OuterLoop; 357 Loop *InnerLoop; 358 359 ScalarEvolution *SE; 360 361 /// Interface to emit optimization remarks. 362 OptimizationRemarkEmitter *ORE; 363 364 /// Set of reduction PHIs taking part of a reduction across the inner and 365 /// outer loop. 366 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 367 }; 368 369 /// LoopInterchangeProfitability checks if it is profitable to interchange the 370 /// loop. 371 class LoopInterchangeProfitability { 372 public: 373 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 374 OptimizationRemarkEmitter *ORE) 375 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 376 377 /// Check if the loop interchange is profitable. 378 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 379 CharMatrix &DepMatrix); 380 381 private: 382 int getInstrOrderCost(); 383 384 Loop *OuterLoop; 385 Loop *InnerLoop; 386 387 /// Scev analysis. 388 ScalarEvolution *SE; 389 390 /// Interface to emit optimization remarks. 391 OptimizationRemarkEmitter *ORE; 392 }; 393 394 /// LoopInterchangeTransform interchanges the loop. 395 class LoopInterchangeTransform { 396 public: 397 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 398 LoopInfo *LI, DominatorTree *DT, 399 BasicBlock *LoopNestExit, 400 const LoopInterchangeLegality &LIL) 401 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 402 LoopExit(LoopNestExit), LIL(LIL) {} 403 404 /// Interchange OuterLoop and InnerLoop. 405 bool transform(); 406 void restructureLoops(Loop *NewInner, Loop *NewOuter, 407 BasicBlock *OrigInnerPreHeader, 408 BasicBlock *OrigOuterPreHeader); 409 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 410 411 private: 412 bool adjustLoopLinks(); 413 bool adjustLoopBranches(); 414 415 Loop *OuterLoop; 416 Loop *InnerLoop; 417 418 /// Scev analysis. 419 ScalarEvolution *SE; 420 421 LoopInfo *LI; 422 DominatorTree *DT; 423 BasicBlock *LoopExit; 424 425 const LoopInterchangeLegality &LIL; 426 }; 427 428 struct LoopInterchange { 429 ScalarEvolution *SE = nullptr; 430 LoopInfo *LI = nullptr; 431 DependenceInfo *DI = nullptr; 432 DominatorTree *DT = nullptr; 433 434 /// Interface to emit optimization remarks. 435 OptimizationRemarkEmitter *ORE; 436 437 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 438 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 439 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 440 441 bool run(Loop *L) { 442 if (L->getParentLoop()) 443 return false; 444 445 return processLoopList(populateWorklist(*L)); 446 } 447 448 bool run(LoopNest &LN) { 449 const auto &LoopList = LN.getLoops(); 450 for (unsigned I = 1; I < LoopList.size(); ++I) 451 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 452 return false; 453 return processLoopList(LoopList); 454 } 455 456 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 457 for (Loop *L : LoopList) { 458 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 459 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 460 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 461 return false; 462 } 463 if (L->getNumBackEdges() != 1) { 464 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 465 return false; 466 } 467 if (!L->getExitingBlock()) { 468 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 469 return false; 470 } 471 } 472 return true; 473 } 474 475 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 476 // TODO: Add a better heuristic to select the loop to be interchanged based 477 // on the dependence matrix. Currently we select the innermost loop. 478 return LoopList.size() - 1; 479 } 480 481 bool processLoopList(ArrayRef<Loop *> LoopList) { 482 bool Changed = false; 483 unsigned LoopNestDepth = LoopList.size(); 484 if (LoopNestDepth < 2) { 485 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 486 return false; 487 } 488 if (LoopNestDepth > MaxLoopNestDepth) { 489 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 490 << MaxLoopNestDepth << "\n"); 491 return false; 492 } 493 if (!isComputableLoopNest(LoopList)) { 494 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 495 return false; 496 } 497 498 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 499 << "\n"); 500 501 CharMatrix DependencyMatrix; 502 Loop *OuterMostLoop = *(LoopList.begin()); 503 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 504 OuterMostLoop, DI)) { 505 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 506 return false; 507 } 508 #ifdef DUMP_DEP_MATRICIES 509 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 510 printDepMatrix(DependencyMatrix); 511 #endif 512 513 // Get the Outermost loop exit. 514 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 515 if (!LoopNestExit) { 516 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 517 return false; 518 } 519 520 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 521 // Move the selected loop outwards to the best possible position. 522 Loop *LoopToBeInterchanged = LoopList[SelecLoopId]; 523 for (unsigned i = SelecLoopId; i > 0; i--) { 524 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i, 525 i - 1, LoopNestExit, DependencyMatrix); 526 if (!Interchanged) 527 return Changed; 528 // Update the DependencyMatrix 529 interChangeDependencies(DependencyMatrix, i, i - 1); 530 #ifdef DUMP_DEP_MATRICIES 531 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 532 printDepMatrix(DependencyMatrix); 533 #endif 534 Changed |= Interchanged; 535 } 536 return Changed; 537 } 538 539 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 540 unsigned OuterLoopId, BasicBlock *LoopNestExit, 541 std::vector<std::vector<char>> &DependencyMatrix) { 542 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 543 << " and OuterLoopId = " << OuterLoopId << "\n"); 544 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 545 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 546 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 547 return false; 548 } 549 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 550 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 551 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 552 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 553 return false; 554 } 555 556 ORE->emit([&]() { 557 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 558 InnerLoop->getStartLoc(), 559 InnerLoop->getHeader()) 560 << "Loop interchanged with enclosing loop."; 561 }); 562 563 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 564 LIL); 565 LIT.transform(); 566 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 567 LoopsInterchanged++; 568 569 assert(InnerLoop->isLCSSAForm(*DT) && 570 "Inner loop not left in LCSSA form after loop interchange!"); 571 assert(OuterLoop->isLCSSAForm(*DT) && 572 "Outer loop not left in LCSSA form after loop interchange!"); 573 574 return true; 575 } 576 }; 577 578 } // end anonymous namespace 579 580 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 581 return any_of(*BB, [](const Instruction &I) { 582 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 583 }); 584 } 585 586 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 587 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 588 589 if (!LoopNest::checkLoopsStructure(*OuterLoop, *InnerLoop, *SE)) 590 return false; 591 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 592 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 593 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 594 595 // We do not have any basic block in between now make sure the outer header 596 // and outer loop latch doesn't contain any unsafe instructions. 597 if (containsUnsafeInstructions(OuterLoopHeader) || 598 containsUnsafeInstructions(OuterLoopLatch)) 599 return false; 600 601 // Also make sure the inner loop preheader does not contain any unsafe 602 // instructions. Note that all instructions in the preheader will be moved to 603 // the outer loop header when interchanging. 604 if (InnerLoopPreHeader != OuterLoopHeader && 605 containsUnsafeInstructions(InnerLoopPreHeader)) 606 return false; 607 608 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 609 // We have a perfect loop nest. 610 return true; 611 } 612 613 bool LoopInterchangeLegality::isLoopStructureUnderstood( 614 PHINode *InnerInduction) { 615 unsigned Num = InnerInduction->getNumOperands(); 616 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 617 for (unsigned i = 0; i < Num; ++i) { 618 Value *Val = InnerInduction->getOperand(i); 619 if (isa<Constant>(Val)) 620 continue; 621 Instruction *I = dyn_cast<Instruction>(Val); 622 if (!I) 623 return false; 624 // TODO: Handle triangular loops. 625 // e.g. for(int i=0;i<N;i++) 626 // for(int j=i;j<N;j++) 627 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 628 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 629 InnerLoopPreheader && 630 !OuterLoop->isLoopInvariant(I)) { 631 return false; 632 } 633 } 634 return true; 635 } 636 637 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 638 // value. 639 static Value *followLCSSA(Value *SV) { 640 PHINode *PHI = dyn_cast<PHINode>(SV); 641 if (!PHI) 642 return SV; 643 644 if (PHI->getNumIncomingValues() != 1) 645 return SV; 646 return followLCSSA(PHI->getIncomingValue(0)); 647 } 648 649 // Check V's users to see if it is involved in a reduction in L. 650 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 651 // Reduction variables cannot be constants. 652 if (isa<Constant>(V)) 653 return nullptr; 654 655 for (Value *User : V->users()) { 656 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 657 if (PHI->getNumIncomingValues() == 1) 658 continue; 659 RecurrenceDescriptor RD; 660 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 661 return PHI; 662 return nullptr; 663 } 664 } 665 666 return nullptr; 667 } 668 669 bool LoopInterchangeLegality::findInductionAndReductions( 670 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 671 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 672 return false; 673 for (PHINode &PHI : L->getHeader()->phis()) { 674 RecurrenceDescriptor RD; 675 InductionDescriptor ID; 676 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 677 Inductions.push_back(&PHI); 678 else { 679 // PHIs in inner loops need to be part of a reduction in the outer loop, 680 // discovered when checking the PHIs of the outer loop earlier. 681 if (!InnerLoop) { 682 if (!OuterInnerReductions.count(&PHI)) { 683 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 684 "across the outer loop.\n"); 685 return false; 686 } 687 } else { 688 assert(PHI.getNumIncomingValues() == 2 && 689 "Phis in loop header should have exactly 2 incoming values"); 690 // Check if we have a PHI node in the outer loop that has a reduction 691 // result from the inner loop as an incoming value. 692 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 693 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 694 if (!InnerRedPhi || 695 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 696 LLVM_DEBUG( 697 dbgs() 698 << "Failed to recognize PHI as an induction or reduction.\n"); 699 return false; 700 } 701 OuterInnerReductions.insert(&PHI); 702 OuterInnerReductions.insert(InnerRedPhi); 703 } 704 } 705 } 706 return true; 707 } 708 709 // This function indicates the current limitations in the transform as a result 710 // of which we do not proceed. 711 bool LoopInterchangeLegality::currentLimitations() { 712 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 713 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 714 715 // transform currently expects the loop latches to also be the exiting 716 // blocks. 717 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 718 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 719 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 720 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 721 LLVM_DEBUG( 722 dbgs() << "Loops where the latch is not the exiting block are not" 723 << " supported currently.\n"); 724 ORE->emit([&]() { 725 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 726 OuterLoop->getStartLoc(), 727 OuterLoop->getHeader()) 728 << "Loops where the latch is not the exiting block cannot be" 729 " interchange currently."; 730 }); 731 return true; 732 } 733 734 PHINode *InnerInductionVar; 735 SmallVector<PHINode *, 8> Inductions; 736 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 737 LLVM_DEBUG( 738 dbgs() << "Only outer loops with induction or reduction PHI nodes " 739 << "are supported currently.\n"); 740 ORE->emit([&]() { 741 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 742 OuterLoop->getStartLoc(), 743 OuterLoop->getHeader()) 744 << "Only outer loops with induction or reduction PHI nodes can be" 745 " interchanged currently."; 746 }); 747 return true; 748 } 749 750 // TODO: Currently we handle only loops with 1 induction variable. 751 if (Inductions.size() != 1) { 752 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 753 << "supported currently.\n"); 754 ORE->emit([&]() { 755 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 756 OuterLoop->getStartLoc(), 757 OuterLoop->getHeader()) 758 << "Only outer loops with 1 induction variable can be " 759 "interchanged currently."; 760 }); 761 return true; 762 } 763 764 Inductions.clear(); 765 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 766 LLVM_DEBUG( 767 dbgs() << "Only inner loops with induction or reduction PHI nodes " 768 << "are supported currently.\n"); 769 ORE->emit([&]() { 770 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 771 InnerLoop->getStartLoc(), 772 InnerLoop->getHeader()) 773 << "Only inner loops with induction or reduction PHI nodes can be" 774 " interchange currently."; 775 }); 776 return true; 777 } 778 779 // TODO: Currently we handle only loops with 1 induction variable. 780 if (Inductions.size() != 1) { 781 LLVM_DEBUG( 782 dbgs() << "We currently only support loops with 1 induction variable." 783 << "Failed to interchange due to current limitation\n"); 784 ORE->emit([&]() { 785 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 786 InnerLoop->getStartLoc(), 787 InnerLoop->getHeader()) 788 << "Only inner loops with 1 induction variable can be " 789 "interchanged currently."; 790 }); 791 return true; 792 } 793 InnerInductionVar = Inductions.pop_back_val(); 794 795 // TODO: Triangular loops are not handled for now. 796 if (!isLoopStructureUnderstood(InnerInductionVar)) { 797 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 798 ORE->emit([&]() { 799 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 800 InnerLoop->getStartLoc(), 801 InnerLoop->getHeader()) 802 << "Inner loop structure not understood currently."; 803 }); 804 return true; 805 } 806 807 // TODO: Current limitation: Since we split the inner loop latch at the point 808 // were induction variable is incremented (induction.next); We cannot have 809 // more than 1 user of induction.next since it would result in broken code 810 // after split. 811 // e.g. 812 // for(i=0;i<N;i++) { 813 // for(j = 0;j<M;j++) { 814 // A[j+1][i+2] = A[j][i]+k; 815 // } 816 // } 817 Instruction *InnerIndexVarInc = nullptr; 818 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 819 InnerIndexVarInc = 820 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 821 else 822 InnerIndexVarInc = 823 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 824 825 if (!InnerIndexVarInc) { 826 LLVM_DEBUG( 827 dbgs() << "Did not find an instruction to increment the induction " 828 << "variable.\n"); 829 ORE->emit([&]() { 830 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 831 InnerLoop->getStartLoc(), 832 InnerLoop->getHeader()) 833 << "The inner loop does not increment the induction variable."; 834 }); 835 return true; 836 } 837 838 // Since we split the inner loop latch on this induction variable. Make sure 839 // we do not have any instruction between the induction variable and branch 840 // instruction. 841 842 bool FoundInduction = false; 843 for (const Instruction &I : 844 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 845 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 846 isa<ZExtInst>(I)) 847 continue; 848 849 // We found an instruction. If this is not induction variable then it is not 850 // safe to split this loop latch. 851 if (!I.isIdenticalTo(InnerIndexVarInc)) { 852 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 853 << "variable increment and branch.\n"); 854 ORE->emit([&]() { 855 return OptimizationRemarkMissed( 856 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 857 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 858 << "Found unsupported instruction between induction variable " 859 "increment and branch."; 860 }); 861 return true; 862 } 863 864 FoundInduction = true; 865 break; 866 } 867 // The loop latch ended and we didn't find the induction variable return as 868 // current limitation. 869 if (!FoundInduction) { 870 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 871 ORE->emit([&]() { 872 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 873 InnerLoop->getStartLoc(), 874 InnerLoop->getHeader()) 875 << "Did not find the induction variable."; 876 }); 877 return true; 878 } 879 return false; 880 } 881 882 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 883 // users are either reduction PHIs or PHIs outside the outer loop (which means 884 // the we are only interested in the final value after the loop). 885 static bool 886 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 887 SmallPtrSetImpl<PHINode *> &Reductions) { 888 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 889 for (PHINode &PHI : InnerExit->phis()) { 890 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 891 if (PHI.getNumIncomingValues() > 1) 892 return false; 893 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 894 PHINode *PN = dyn_cast<PHINode>(U); 895 return !PN || 896 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 897 })) { 898 return false; 899 } 900 } 901 return true; 902 } 903 904 // We currently support LCSSA PHI nodes in the outer loop exit, if their 905 // incoming values do not come from the outer loop latch or if the 906 // outer loop latch has a single predecessor. In that case, the value will 907 // be available if both the inner and outer loop conditions are true, which 908 // will still be true after interchanging. If we have multiple predecessor, 909 // that may not be the case, e.g. because the outer loop latch may be executed 910 // if the inner loop is not executed. 911 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 912 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 913 for (PHINode &PHI : LoopNestExit->phis()) { 914 // FIXME: We currently are not able to detect floating point reductions 915 // and have to use floating point PHIs as a proxy to prevent 916 // interchanging in the presence of floating point reductions. 917 if (PHI.getType()->isFloatingPointTy()) 918 return false; 919 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 920 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 921 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 922 continue; 923 924 // The incoming value is defined in the outer loop latch. Currently we 925 // only support that in case the outer loop latch has a single predecessor. 926 // This guarantees that the outer loop latch is executed if and only if 927 // the inner loop is executed (because tightlyNested() guarantees that the 928 // outer loop header only branches to the inner loop or the outer loop 929 // latch). 930 // FIXME: We could weaken this logic and allow multiple predecessors, 931 // if the values are produced outside the loop latch. We would need 932 // additional logic to update the PHI nodes in the exit block as 933 // well. 934 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 935 return false; 936 } 937 } 938 return true; 939 } 940 941 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 942 unsigned OuterLoopId, 943 CharMatrix &DepMatrix) { 944 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 945 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 946 << " and OuterLoopId = " << OuterLoopId 947 << " due to dependence\n"); 948 ORE->emit([&]() { 949 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 950 InnerLoop->getStartLoc(), 951 InnerLoop->getHeader()) 952 << "Cannot interchange loops due to dependences."; 953 }); 954 return false; 955 } 956 // Check if outer and inner loop contain legal instructions only. 957 for (auto *BB : OuterLoop->blocks()) 958 for (Instruction &I : BB->instructionsWithoutDebug()) 959 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 960 // readnone functions do not prevent interchanging. 961 if (CI->doesNotReadMemory()) 962 continue; 963 LLVM_DEBUG( 964 dbgs() << "Loops with call instructions cannot be interchanged " 965 << "safely."); 966 ORE->emit([&]() { 967 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 968 CI->getDebugLoc(), 969 CI->getParent()) 970 << "Cannot interchange loops due to call instruction."; 971 }); 972 973 return false; 974 } 975 976 // TODO: The loops could not be interchanged due to current limitations in the 977 // transform module. 978 if (currentLimitations()) { 979 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 980 return false; 981 } 982 983 // Check if the loops are tightly nested. 984 if (!tightlyNested(OuterLoop, InnerLoop)) { 985 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 986 ORE->emit([&]() { 987 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 988 InnerLoop->getStartLoc(), 989 InnerLoop->getHeader()) 990 << "Cannot interchange loops because they are not tightly " 991 "nested."; 992 }); 993 return false; 994 } 995 996 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 997 OuterInnerReductions)) { 998 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 999 ORE->emit([&]() { 1000 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1001 InnerLoop->getStartLoc(), 1002 InnerLoop->getHeader()) 1003 << "Found unsupported PHI node in loop exit."; 1004 }); 1005 return false; 1006 } 1007 1008 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1009 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1010 ORE->emit([&]() { 1011 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1012 OuterLoop->getStartLoc(), 1013 OuterLoop->getHeader()) 1014 << "Found unsupported PHI node in loop exit."; 1015 }); 1016 return false; 1017 } 1018 1019 return true; 1020 } 1021 1022 int LoopInterchangeProfitability::getInstrOrderCost() { 1023 unsigned GoodOrder, BadOrder; 1024 BadOrder = GoodOrder = 0; 1025 for (BasicBlock *BB : InnerLoop->blocks()) { 1026 for (Instruction &Ins : *BB) { 1027 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1028 unsigned NumOp = GEP->getNumOperands(); 1029 bool FoundInnerInduction = false; 1030 bool FoundOuterInduction = false; 1031 for (unsigned i = 0; i < NumOp; ++i) { 1032 // Skip operands that are not SCEV-able. 1033 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1034 continue; 1035 1036 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1037 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1038 if (!AR) 1039 continue; 1040 1041 // If we find the inner induction after an outer induction e.g. 1042 // for(int i=0;i<N;i++) 1043 // for(int j=0;j<N;j++) 1044 // A[i][j] = A[i-1][j-1]+k; 1045 // then it is a good order. 1046 if (AR->getLoop() == InnerLoop) { 1047 // We found an InnerLoop induction after OuterLoop induction. It is 1048 // a good order. 1049 FoundInnerInduction = true; 1050 if (FoundOuterInduction) { 1051 GoodOrder++; 1052 break; 1053 } 1054 } 1055 // If we find the outer induction after an inner induction e.g. 1056 // for(int i=0;i<N;i++) 1057 // for(int j=0;j<N;j++) 1058 // A[j][i] = A[j-1][i-1]+k; 1059 // then it is a bad order. 1060 if (AR->getLoop() == OuterLoop) { 1061 // We found an OuterLoop induction after InnerLoop induction. It is 1062 // a bad order. 1063 FoundOuterInduction = true; 1064 if (FoundInnerInduction) { 1065 BadOrder++; 1066 break; 1067 } 1068 } 1069 } 1070 } 1071 } 1072 } 1073 return GoodOrder - BadOrder; 1074 } 1075 1076 static bool isProfitableForVectorization(unsigned InnerLoopId, 1077 unsigned OuterLoopId, 1078 CharMatrix &DepMatrix) { 1079 // TODO: Improve this heuristic to catch more cases. 1080 // If the inner loop is loop independent or doesn't carry any dependency it is 1081 // profitable to move this to outer position. 1082 for (auto &Row : DepMatrix) { 1083 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1084 return false; 1085 // TODO: We need to improve this heuristic. 1086 if (Row[OuterLoopId] != '=') 1087 return false; 1088 } 1089 // If outer loop has dependence and inner loop is loop independent then it is 1090 // profitable to interchange to enable parallelism. 1091 // If there are no dependences, interchanging will not improve anything. 1092 return !DepMatrix.empty(); 1093 } 1094 1095 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1096 unsigned OuterLoopId, 1097 CharMatrix &DepMatrix) { 1098 // TODO: Add better profitability checks. 1099 // e.g 1100 // 1) Construct dependency matrix and move the one with no loop carried dep 1101 // inside to enable vectorization. 1102 1103 // This is rough cost estimation algorithm. It counts the good and bad order 1104 // of induction variables in the instruction and allows reordering if number 1105 // of bad orders is more than good. 1106 int Cost = getInstrOrderCost(); 1107 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1108 if (Cost < -LoopInterchangeCostThreshold) 1109 return true; 1110 1111 // It is not profitable as per current cache profitability model. But check if 1112 // we can move this loop outside to improve parallelism. 1113 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1114 return true; 1115 1116 ORE->emit([&]() { 1117 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1118 InnerLoop->getStartLoc(), 1119 InnerLoop->getHeader()) 1120 << "Interchanging loops is too costly (cost=" 1121 << ore::NV("Cost", Cost) << ", threshold=" 1122 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1123 << ") and it does not improve parallelism."; 1124 }); 1125 return false; 1126 } 1127 1128 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1129 Loop *InnerLoop) { 1130 for (Loop *L : *OuterLoop) 1131 if (L == InnerLoop) { 1132 OuterLoop->removeChildLoop(L); 1133 return; 1134 } 1135 llvm_unreachable("Couldn't find loop"); 1136 } 1137 1138 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1139 /// new inner and outer loop after interchanging: NewInner is the original 1140 /// outer loop and NewOuter is the original inner loop. 1141 /// 1142 /// Before interchanging, we have the following structure 1143 /// Outer preheader 1144 // Outer header 1145 // Inner preheader 1146 // Inner header 1147 // Inner body 1148 // Inner latch 1149 // outer bbs 1150 // Outer latch 1151 // 1152 // After interchanging: 1153 // Inner preheader 1154 // Inner header 1155 // Outer preheader 1156 // Outer header 1157 // Inner body 1158 // outer bbs 1159 // Outer latch 1160 // Inner latch 1161 void LoopInterchangeTransform::restructureLoops( 1162 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1163 BasicBlock *OrigOuterPreHeader) { 1164 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1165 // The original inner loop preheader moves from the new inner loop to 1166 // the parent loop, if there is one. 1167 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1168 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1169 1170 // Switch the loop levels. 1171 if (OuterLoopParent) { 1172 // Remove the loop from its parent loop. 1173 removeChildLoop(OuterLoopParent, NewInner); 1174 removeChildLoop(NewInner, NewOuter); 1175 OuterLoopParent->addChildLoop(NewOuter); 1176 } else { 1177 removeChildLoop(NewInner, NewOuter); 1178 LI->changeTopLevelLoop(NewInner, NewOuter); 1179 } 1180 while (!NewOuter->isInnermost()) 1181 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1182 NewOuter->addChildLoop(NewInner); 1183 1184 // BBs from the original inner loop. 1185 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1186 1187 // Add BBs from the original outer loop to the original inner loop (excluding 1188 // BBs already in inner loop) 1189 for (BasicBlock *BB : NewInner->blocks()) 1190 if (LI->getLoopFor(BB) == NewInner) 1191 NewOuter->addBlockEntry(BB); 1192 1193 // Now remove inner loop header and latch from the new inner loop and move 1194 // other BBs (the loop body) to the new inner loop. 1195 BasicBlock *OuterHeader = NewOuter->getHeader(); 1196 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1197 for (BasicBlock *BB : OrigInnerBBs) { 1198 // Nothing will change for BBs in child loops. 1199 if (LI->getLoopFor(BB) != NewOuter) 1200 continue; 1201 // Remove the new outer loop header and latch from the new inner loop. 1202 if (BB == OuterHeader || BB == OuterLatch) 1203 NewInner->removeBlockFromLoop(BB); 1204 else 1205 LI->changeLoopFor(BB, NewInner); 1206 } 1207 1208 // The preheader of the original outer loop becomes part of the new 1209 // outer loop. 1210 NewOuter->addBlockEntry(OrigOuterPreHeader); 1211 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1212 1213 // Tell SE that we move the loops around. 1214 SE->forgetLoop(NewOuter); 1215 SE->forgetLoop(NewInner); 1216 } 1217 1218 bool LoopInterchangeTransform::transform() { 1219 bool Transformed = false; 1220 Instruction *InnerIndexVar; 1221 1222 if (InnerLoop->getSubLoops().empty()) { 1223 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1224 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1225 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1226 if (!InductionPHI) { 1227 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1228 return false; 1229 } 1230 1231 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1232 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1233 else 1234 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1235 1236 // Ensure that InductionPHI is the first Phi node. 1237 if (&InductionPHI->getParent()->front() != InductionPHI) 1238 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1239 1240 // Create a new latch block for the inner loop. We split at the 1241 // current latch's terminator and then move the condition and all 1242 // operands that are not either loop-invariant or the induction PHI into the 1243 // new latch block. 1244 BasicBlock *NewLatch = 1245 SplitBlock(InnerLoop->getLoopLatch(), 1246 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1247 1248 SmallSetVector<Instruction *, 4> WorkList; 1249 unsigned i = 0; 1250 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1251 for (; i < WorkList.size(); i++) { 1252 // Duplicate instruction and move it the new latch. Update uses that 1253 // have been moved. 1254 Instruction *NewI = WorkList[i]->clone(); 1255 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1256 assert(!NewI->mayHaveSideEffects() && 1257 "Moving instructions with side-effects may change behavior of " 1258 "the loop nest!"); 1259 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1260 Instruction *UserI = cast<Instruction>(U.getUser()); 1261 if (!InnerLoop->contains(UserI->getParent()) || 1262 UserI->getParent() == NewLatch || UserI == InductionPHI) 1263 U.set(NewI); 1264 } 1265 // Add operands of moved instruction to the worklist, except if they are 1266 // outside the inner loop or are the induction PHI. 1267 for (Value *Op : WorkList[i]->operands()) { 1268 Instruction *OpI = dyn_cast<Instruction>(Op); 1269 if (!OpI || 1270 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1271 OpI == InductionPHI) 1272 continue; 1273 WorkList.insert(OpI); 1274 } 1275 } 1276 }; 1277 1278 // FIXME: Should we interchange when we have a constant condition? 1279 Instruction *CondI = dyn_cast<Instruction>( 1280 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1281 ->getCondition()); 1282 if (CondI) 1283 WorkList.insert(CondI); 1284 MoveInstructions(); 1285 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1286 MoveInstructions(); 1287 1288 // Splits the inner loops phi nodes out into a separate basic block. 1289 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1290 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1291 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1292 } 1293 1294 // Instructions in the original inner loop preheader may depend on values 1295 // defined in the outer loop header. Move them there, because the original 1296 // inner loop preheader will become the entry into the interchanged loop nest. 1297 // Currently we move all instructions and rely on LICM to move invariant 1298 // instructions outside the loop nest. 1299 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1300 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1301 if (InnerLoopPreHeader != OuterLoopHeader) { 1302 SmallPtrSet<Instruction *, 4> NeedsMoving; 1303 for (Instruction &I : 1304 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1305 std::prev(InnerLoopPreHeader->end())))) 1306 I.moveBefore(OuterLoopHeader->getTerminator()); 1307 } 1308 1309 Transformed |= adjustLoopLinks(); 1310 if (!Transformed) { 1311 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1312 return false; 1313 } 1314 1315 return true; 1316 } 1317 1318 /// \brief Move all instructions except the terminator from FromBB right before 1319 /// InsertBefore 1320 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1321 auto &ToList = InsertBefore->getParent()->getInstList(); 1322 auto &FromList = FromBB->getInstList(); 1323 1324 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1325 FromBB->getTerminator()->getIterator()); 1326 } 1327 1328 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1329 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1330 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1331 // from BB1 afterwards. 1332 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1333 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1334 for (Instruction *I : TempInstrs) 1335 I->removeFromParent(); 1336 1337 // Move instructions from BB2 to BB1. 1338 moveBBContents(BB2, BB1->getTerminator()); 1339 1340 // Move instructions from TempInstrs to BB2. 1341 for (Instruction *I : TempInstrs) 1342 I->insertBefore(BB2->getTerminator()); 1343 } 1344 1345 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1346 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1347 // \p OldBB is exactly once in BI's successor list. 1348 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1349 BasicBlock *NewBB, 1350 std::vector<DominatorTree::UpdateType> &DTUpdates, 1351 bool MustUpdateOnce = true) { 1352 assert((!MustUpdateOnce || 1353 llvm::count_if(successors(BI), 1354 [OldBB](BasicBlock *BB) { 1355 return BB == OldBB; 1356 }) == 1) && "BI must jump to OldBB exactly once."); 1357 bool Changed = false; 1358 for (Use &Op : BI->operands()) 1359 if (Op == OldBB) { 1360 Op.set(NewBB); 1361 Changed = true; 1362 } 1363 1364 if (Changed) { 1365 DTUpdates.push_back( 1366 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1367 DTUpdates.push_back( 1368 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1369 } 1370 assert(Changed && "Expected a successor to be updated"); 1371 } 1372 1373 // Move Lcssa PHIs to the right place. 1374 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1375 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1376 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1377 Loop *InnerLoop, LoopInfo *LI) { 1378 1379 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1380 // defined either in the header or latch. Those blocks will become header and 1381 // latch of the new outer loop, and the only possible users can PHI nodes 1382 // in the exit block of the loop nest or the outer loop header (reduction 1383 // PHIs, in that case, the incoming value must be defined in the inner loop 1384 // header). We can just substitute the user with the incoming value and remove 1385 // the PHI. 1386 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1387 assert(P.getNumIncomingValues() == 1 && 1388 "Only loops with a single exit are supported!"); 1389 1390 // Incoming values are guaranteed be instructions currently. 1391 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1392 // Skip phis with incoming values from the inner loop body, excluding the 1393 // header and latch. 1394 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1395 continue; 1396 1397 assert(all_of(P.users(), 1398 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1399 return (cast<PHINode>(U)->getParent() == OuterHeader && 1400 IncI->getParent() == InnerHeader) || 1401 cast<PHINode>(U)->getParent() == OuterExit; 1402 }) && 1403 "Can only replace phis iff the uses are in the loop nest exit or " 1404 "the incoming value is defined in the inner header (it will " 1405 "dominate all loop blocks after interchanging)"); 1406 P.replaceAllUsesWith(IncI); 1407 P.eraseFromParent(); 1408 } 1409 1410 SmallVector<PHINode *, 8> LcssaInnerExit; 1411 for (PHINode &P : InnerExit->phis()) 1412 LcssaInnerExit.push_back(&P); 1413 1414 SmallVector<PHINode *, 8> LcssaInnerLatch; 1415 for (PHINode &P : InnerLatch->phis()) 1416 LcssaInnerLatch.push_back(&P); 1417 1418 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1419 // If a PHI node has users outside of InnerExit, it has a use outside the 1420 // interchanged loop and we have to preserve it. We move these to 1421 // InnerLatch, which will become the new exit block for the innermost 1422 // loop after interchanging. 1423 for (PHINode *P : LcssaInnerExit) 1424 P->moveBefore(InnerLatch->getFirstNonPHI()); 1425 1426 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1427 // and we have to move them to the new inner latch. 1428 for (PHINode *P : LcssaInnerLatch) 1429 P->moveBefore(InnerExit->getFirstNonPHI()); 1430 1431 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1432 // incoming values defined in the outer loop, we have to add a new PHI 1433 // in the inner loop latch, which became the exit block of the outer loop, 1434 // after interchanging. 1435 if (OuterExit) { 1436 for (PHINode &P : OuterExit->phis()) { 1437 if (P.getNumIncomingValues() != 1) 1438 continue; 1439 // Skip Phis with incoming values defined in the inner loop. Those should 1440 // already have been updated. 1441 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1442 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1443 continue; 1444 1445 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1446 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1447 NewPhi->setIncomingBlock(0, OuterLatch); 1448 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1449 P.setIncomingValue(0, NewPhi); 1450 } 1451 } 1452 1453 // Now adjust the incoming blocks for the LCSSA PHIs. 1454 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1455 // with the new latch. 1456 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1457 } 1458 1459 bool LoopInterchangeTransform::adjustLoopBranches() { 1460 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1461 std::vector<DominatorTree::UpdateType> DTUpdates; 1462 1463 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1464 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1465 1466 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1467 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1468 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1469 // Ensure that both preheaders do not contain PHI nodes and have single 1470 // predecessors. This allows us to move them easily. We use 1471 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1472 // preheaders do not satisfy those conditions. 1473 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1474 !OuterLoopPreHeader->getUniquePredecessor()) 1475 OuterLoopPreHeader = 1476 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1477 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1478 InnerLoopPreHeader = 1479 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1480 1481 // Adjust the loop preheader 1482 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1483 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1484 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1485 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1486 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1487 BasicBlock *InnerLoopLatchPredecessor = 1488 InnerLoopLatch->getUniquePredecessor(); 1489 BasicBlock *InnerLoopLatchSuccessor; 1490 BasicBlock *OuterLoopLatchSuccessor; 1491 1492 BranchInst *OuterLoopLatchBI = 1493 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1494 BranchInst *InnerLoopLatchBI = 1495 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1496 BranchInst *OuterLoopHeaderBI = 1497 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1498 BranchInst *InnerLoopHeaderBI = 1499 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1500 1501 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1502 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1503 !InnerLoopHeaderBI) 1504 return false; 1505 1506 BranchInst *InnerLoopLatchPredecessorBI = 1507 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1508 BranchInst *OuterLoopPredecessorBI = 1509 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1510 1511 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1512 return false; 1513 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1514 if (!InnerLoopHeaderSuccessor) 1515 return false; 1516 1517 // Adjust Loop Preheader and headers. 1518 // The branches in the outer loop predecessor and the outer loop header can 1519 // be unconditional branches or conditional branches with duplicates. Consider 1520 // this when updating the successors. 1521 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1522 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1523 // The outer loop header might or might not branch to the outer latch. 1524 // We are guaranteed to branch to the inner loop preheader. 1525 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1526 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1527 /*MustUpdateOnce=*/false); 1528 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1529 InnerLoopHeaderSuccessor, DTUpdates, 1530 /*MustUpdateOnce=*/false); 1531 1532 // Adjust reduction PHI's now that the incoming block has changed. 1533 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1534 OuterLoopHeader); 1535 1536 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1537 OuterLoopPreHeader, DTUpdates); 1538 1539 // -------------Adjust loop latches----------- 1540 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1541 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1542 else 1543 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1544 1545 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1546 InnerLoopLatchSuccessor, DTUpdates); 1547 1548 1549 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1550 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1551 else 1552 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1553 1554 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1555 OuterLoopLatchSuccessor, DTUpdates); 1556 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1557 DTUpdates); 1558 1559 DT->applyUpdates(DTUpdates); 1560 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1561 OuterLoopPreHeader); 1562 1563 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1564 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1565 InnerLoop, LI); 1566 // For PHIs in the exit block of the outer loop, outer's latch has been 1567 // replaced by Inners'. 1568 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1569 1570 // Now update the reduction PHIs in the inner and outer loop headers. 1571 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1572 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1573 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1574 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1575 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1576 1577 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1578 (void)OuterInnerReductions; 1579 1580 // Now move the remaining reduction PHIs from outer to inner loop header and 1581 // vice versa. The PHI nodes must be part of a reduction across the inner and 1582 // outer loop and all the remains to do is and updating the incoming blocks. 1583 for (PHINode *PHI : OuterLoopPHIs) { 1584 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1585 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1586 } 1587 for (PHINode *PHI : InnerLoopPHIs) { 1588 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1589 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1590 } 1591 1592 // Update the incoming blocks for moved PHI nodes. 1593 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1594 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1595 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1596 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1597 1598 // Values defined in the outer loop header could be used in the inner loop 1599 // latch. In that case, we need to create LCSSA phis for them, because after 1600 // interchanging they will be defined in the new inner loop and used in the 1601 // new outer loop. 1602 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1603 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1604 for (Instruction &I : 1605 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1606 MayNeedLCSSAPhis.push_back(&I); 1607 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1608 1609 return true; 1610 } 1611 1612 bool LoopInterchangeTransform::adjustLoopLinks() { 1613 // Adjust all branches in the inner and outer loop. 1614 bool Changed = adjustLoopBranches(); 1615 if (Changed) { 1616 // We have interchanged the preheaders so we need to interchange the data in 1617 // the preheaders as well. This is because the content of the inner 1618 // preheader was previously executed inside the outer loop. 1619 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1620 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1621 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1622 } 1623 return Changed; 1624 } 1625 1626 /// Main LoopInterchange Pass. 1627 struct LoopInterchangeLegacyPass : public LoopPass { 1628 static char ID; 1629 1630 LoopInterchangeLegacyPass() : LoopPass(ID) { 1631 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1632 } 1633 1634 void getAnalysisUsage(AnalysisUsage &AU) const override { 1635 AU.addRequired<DependenceAnalysisWrapperPass>(); 1636 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1637 1638 getLoopAnalysisUsage(AU); 1639 } 1640 1641 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1642 if (skipLoop(L)) 1643 return false; 1644 1645 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1646 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1647 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1648 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1649 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1650 1651 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1652 } 1653 }; 1654 1655 char LoopInterchangeLegacyPass::ID = 0; 1656 1657 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1658 "Interchanges loops for cache reuse", false, false) 1659 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1660 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1661 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1662 1663 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1664 "Interchanges loops for cache reuse", false, false) 1665 1666 Pass *llvm::createLoopInterchangePass() { 1667 return new LoopInterchangeLegacyPass(); 1668 } 1669 1670 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1671 LoopAnalysisManager &AM, 1672 LoopStandardAnalysisResults &AR, 1673 LPMUpdater &U) { 1674 Function &F = *LN.getParent(); 1675 1676 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1677 OptimizationRemarkEmitter ORE(&F); 1678 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN)) 1679 return PreservedAnalyses::all(); 1680 return getLoopPassPreservedAnalyses(); 1681 } 1682