1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/LoopUtils.h"
48 #include <cassert>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "loop-interchange"
55 
56 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
57 
58 static cl::opt<int> LoopInterchangeCostThreshold(
59     "loop-interchange-threshold", cl::init(0), cl::Hidden,
60     cl::desc("Interchange if you gain more than this number"));
61 
62 namespace {
63 
64 using LoopVector = SmallVector<Loop *, 8>;
65 
66 // TODO: Check if we can use a sparse matrix here.
67 using CharMatrix = std::vector<std::vector<char>>;
68 
69 } // end anonymous namespace
70 
71 // Maximum number of dependencies that can be handled in the dependency matrix.
72 static const unsigned MaxMemInstrCount = 100;
73 
74 // Maximum loop depth supported.
75 static const unsigned MaxLoopNestDepth = 10;
76 
77 #ifdef DUMP_DEP_MATRICIES
78 static void printDepMatrix(CharMatrix &DepMatrix) {
79   for (auto &Row : DepMatrix) {
80     for (auto D : Row)
81       LLVM_DEBUG(dbgs() << D << " ");
82     LLVM_DEBUG(dbgs() << "\n");
83   }
84 }
85 #endif
86 
87 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
88                                      Loop *L, DependenceInfo *DI) {
89   using ValueVector = SmallVector<Value *, 16>;
90 
91   ValueVector MemInstr;
92 
93   // For each block.
94   for (BasicBlock *BB : L->blocks()) {
95     // Scan the BB and collect legal loads and stores.
96     for (Instruction &I : *BB) {
97       if (!isa<Instruction>(I))
98         return false;
99       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
100         if (!Ld->isSimple())
101           return false;
102         MemInstr.push_back(&I);
103       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
104         if (!St->isSimple())
105           return false;
106         MemInstr.push_back(&I);
107       }
108     }
109   }
110 
111   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
112                     << " Loads and Stores to analyze\n");
113 
114   ValueVector::iterator I, IE, J, JE;
115 
116   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
117     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
118       std::vector<char> Dep;
119       Instruction *Src = cast<Instruction>(*I);
120       Instruction *Dst = cast<Instruction>(*J);
121       if (Src == Dst)
122         continue;
123       // Ignore Input dependencies.
124       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
125         continue;
126       // Track Output, Flow, and Anti dependencies.
127       if (auto D = DI->depends(Src, Dst, true)) {
128         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
129         LLVM_DEBUG(StringRef DepType =
130                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
131                    dbgs() << "Found " << DepType
132                           << " dependency between Src and Dst\n"
133                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
134         unsigned Levels = D->getLevels();
135         char Direction;
136         for (unsigned II = 1; II <= Levels; ++II) {
137           const SCEV *Distance = D->getDistance(II);
138           const SCEVConstant *SCEVConst =
139               dyn_cast_or_null<SCEVConstant>(Distance);
140           if (SCEVConst) {
141             const ConstantInt *CI = SCEVConst->getValue();
142             if (CI->isNegative())
143               Direction = '<';
144             else if (CI->isZero())
145               Direction = '=';
146             else
147               Direction = '>';
148             Dep.push_back(Direction);
149           } else if (D->isScalar(II)) {
150             Direction = 'S';
151             Dep.push_back(Direction);
152           } else {
153             unsigned Dir = D->getDirection(II);
154             if (Dir == Dependence::DVEntry::LT ||
155                 Dir == Dependence::DVEntry::LE)
156               Direction = '<';
157             else if (Dir == Dependence::DVEntry::GT ||
158                      Dir == Dependence::DVEntry::GE)
159               Direction = '>';
160             else if (Dir == Dependence::DVEntry::EQ)
161               Direction = '=';
162             else
163               Direction = '*';
164             Dep.push_back(Direction);
165           }
166         }
167         while (Dep.size() != Level) {
168           Dep.push_back('I');
169         }
170 
171         DepMatrix.push_back(Dep);
172         if (DepMatrix.size() > MaxMemInstrCount) {
173           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
174                             << " dependencies inside loop\n");
175           return false;
176         }
177       }
178     }
179   }
180 
181   return true;
182 }
183 
184 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
185 // matrix by exchanging the two columns.
186 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
187                                     unsigned ToIndx) {
188   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
189     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
190 }
191 
192 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
193 // '>'
194 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
195                                    unsigned Column) {
196   for (unsigned i = 0; i <= Column; ++i) {
197     if (DepMatrix[Row][i] == '<')
198       return false;
199     if (DepMatrix[Row][i] == '>')
200       return true;
201   }
202   // All dependencies were '=','S' or 'I'
203   return false;
204 }
205 
206 // Checks if no dependence exist in the dependency matrix in Row before Column.
207 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
208                                  unsigned Column) {
209   for (unsigned i = 0; i < Column; ++i) {
210     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
211         DepMatrix[Row][i] != 'I')
212       return false;
213   }
214   return true;
215 }
216 
217 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
218                                 unsigned OuterLoopId, char InnerDep,
219                                 char OuterDep) {
220   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
221     return false;
222 
223   if (InnerDep == OuterDep)
224     return true;
225 
226   // It is legal to interchange if and only if after interchange no row has a
227   // '>' direction as the leftmost non-'='.
228 
229   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
230     return true;
231 
232   if (InnerDep == '<')
233     return true;
234 
235   if (InnerDep == '>') {
236     // If OuterLoopId represents outermost loop then interchanging will make the
237     // 1st dependency as '>'
238     if (OuterLoopId == 0)
239       return false;
240 
241     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
242     // interchanging will result in this row having an outermost non '='
243     // dependency of '>'
244     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
245       return true;
246   }
247 
248   return false;
249 }
250 
251 // Checks if it is legal to interchange 2 loops.
252 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
253 // if the direction matrix, after the same permutation is applied to its
254 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
255 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
256                                       unsigned InnerLoopId,
257                                       unsigned OuterLoopId) {
258   unsigned NumRows = DepMatrix.size();
259   // For each row check if it is valid to interchange.
260   for (unsigned Row = 0; Row < NumRows; ++Row) {
261     char InnerDep = DepMatrix[Row][InnerLoopId];
262     char OuterDep = DepMatrix[Row][OuterLoopId];
263     if (InnerDep == '*' || OuterDep == '*')
264       return false;
265     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
266       return false;
267   }
268   return true;
269 }
270 
271 static LoopVector populateWorklist(Loop &L) {
272   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
273                     << L.getHeader()->getParent()->getName() << " Loop: %"
274                     << L.getHeader()->getName() << '\n');
275   LoopVector LoopList;
276   Loop *CurrentLoop = &L;
277   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
278   while (!Vec->empty()) {
279     // The current loop has multiple subloops in it hence it is not tightly
280     // nested.
281     // Discard all loops above it added into Worklist.
282     if (Vec->size() != 1)
283       return {};
284 
285     LoopList.push_back(CurrentLoop);
286     CurrentLoop = Vec->front();
287     Vec = &CurrentLoop->getSubLoops();
288   }
289   LoopList.push_back(CurrentLoop);
290   return LoopList;
291 }
292 
293 namespace {
294 
295 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
296 class LoopInterchangeLegality {
297 public:
298   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
299                           OptimizationRemarkEmitter *ORE)
300       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
301 
302   /// Check if the loops can be interchanged.
303   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
304                            CharMatrix &DepMatrix);
305 
306   /// Discover induction PHIs in the header of \p L. Induction
307   /// PHIs are added to \p Inductions.
308   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
309 
310   /// Check if the loop structure is understood. We do not handle triangular
311   /// loops for now.
312   bool isLoopStructureUnderstood();
313 
314   bool currentLimitations();
315 
316   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
317     return OuterInnerReductions;
318   }
319 
320   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
321     return InnerLoopInductions;
322   }
323 
324 private:
325   bool tightlyNested(Loop *Outer, Loop *Inner);
326   bool containsUnsafeInstructions(BasicBlock *BB);
327 
328   /// Discover induction and reduction PHIs in the header of \p L. Induction
329   /// PHIs are added to \p Inductions, reductions are added to
330   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
331   /// to be passed as \p InnerLoop.
332   bool findInductionAndReductions(Loop *L,
333                                   SmallVector<PHINode *, 8> &Inductions,
334                                   Loop *InnerLoop);
335 
336   Loop *OuterLoop;
337   Loop *InnerLoop;
338 
339   ScalarEvolution *SE;
340 
341   /// Interface to emit optimization remarks.
342   OptimizationRemarkEmitter *ORE;
343 
344   /// Set of reduction PHIs taking part of a reduction across the inner and
345   /// outer loop.
346   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
347 
348   /// Set of inner loop induction PHIs
349   SmallVector<PHINode *, 8> InnerLoopInductions;
350 };
351 
352 /// LoopInterchangeProfitability checks if it is profitable to interchange the
353 /// loop.
354 class LoopInterchangeProfitability {
355 public:
356   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
357                                OptimizationRemarkEmitter *ORE)
358       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
359 
360   /// Check if the loop interchange is profitable.
361   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
362                     CharMatrix &DepMatrix);
363 
364 private:
365   int getInstrOrderCost();
366 
367   Loop *OuterLoop;
368   Loop *InnerLoop;
369 
370   /// Scev analysis.
371   ScalarEvolution *SE;
372 
373   /// Interface to emit optimization remarks.
374   OptimizationRemarkEmitter *ORE;
375 };
376 
377 /// LoopInterchangeTransform interchanges the loop.
378 class LoopInterchangeTransform {
379 public:
380   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
381                            LoopInfo *LI, DominatorTree *DT,
382                            const LoopInterchangeLegality &LIL)
383       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
384 
385   /// Interchange OuterLoop and InnerLoop.
386   bool transform();
387   void restructureLoops(Loop *NewInner, Loop *NewOuter,
388                         BasicBlock *OrigInnerPreHeader,
389                         BasicBlock *OrigOuterPreHeader);
390   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
391 
392 private:
393   bool adjustLoopLinks();
394   bool adjustLoopBranches();
395 
396   Loop *OuterLoop;
397   Loop *InnerLoop;
398 
399   /// Scev analysis.
400   ScalarEvolution *SE;
401 
402   LoopInfo *LI;
403   DominatorTree *DT;
404 
405   const LoopInterchangeLegality &LIL;
406 };
407 
408 struct LoopInterchange {
409   ScalarEvolution *SE = nullptr;
410   LoopInfo *LI = nullptr;
411   DependenceInfo *DI = nullptr;
412   DominatorTree *DT = nullptr;
413 
414   /// Interface to emit optimization remarks.
415   OptimizationRemarkEmitter *ORE;
416 
417   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
418                   DominatorTree *DT, OptimizationRemarkEmitter *ORE)
419       : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
420 
421   bool run(Loop *L) {
422     if (L->getParentLoop())
423       return false;
424 
425     return processLoopList(populateWorklist(*L));
426   }
427 
428   bool run(LoopNest &LN) {
429     const auto &LoopList = LN.getLoops();
430     for (unsigned I = 1; I < LoopList.size(); ++I)
431       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
432         return false;
433     return processLoopList(LoopList);
434   }
435 
436   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
437     for (Loop *L : LoopList) {
438       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
439       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
440         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
441         return false;
442       }
443       if (L->getNumBackEdges() != 1) {
444         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
445         return false;
446       }
447       if (!L->getExitingBlock()) {
448         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
449         return false;
450       }
451     }
452     return true;
453   }
454 
455   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
456     // TODO: Add a better heuristic to select the loop to be interchanged based
457     // on the dependence matrix. Currently we select the innermost loop.
458     return LoopList.size() - 1;
459   }
460 
461   bool processLoopList(ArrayRef<Loop *> LoopList) {
462     bool Changed = false;
463     unsigned LoopNestDepth = LoopList.size();
464     if (LoopNestDepth < 2) {
465       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
466       return false;
467     }
468     if (LoopNestDepth > MaxLoopNestDepth) {
469       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
470                         << MaxLoopNestDepth << "\n");
471       return false;
472     }
473     if (!isComputableLoopNest(LoopList)) {
474       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
475       return false;
476     }
477 
478     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
479                       << "\n");
480 
481     CharMatrix DependencyMatrix;
482     Loop *OuterMostLoop = *(LoopList.begin());
483     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
484                                   OuterMostLoop, DI)) {
485       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
486       return false;
487     }
488 #ifdef DUMP_DEP_MATRICIES
489     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
490     printDepMatrix(DependencyMatrix);
491 #endif
492 
493     // Get the Outermost loop exit.
494     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
495     if (!LoopNestExit) {
496       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
497       return false;
498     }
499 
500     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
501     // Move the selected loop outwards to the best possible position.
502     Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
503     for (unsigned i = SelecLoopId; i > 0; i--) {
504       bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
505                                       i - 1, DependencyMatrix);
506       if (!Interchanged)
507         return Changed;
508       // Update the DependencyMatrix
509       interChangeDependencies(DependencyMatrix, i, i - 1);
510 #ifdef DUMP_DEP_MATRICIES
511       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
512       printDepMatrix(DependencyMatrix);
513 #endif
514       Changed |= Interchanged;
515     }
516     return Changed;
517   }
518 
519   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
520                    unsigned OuterLoopId,
521                    std::vector<std::vector<char>> &DependencyMatrix) {
522     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
523                       << " and OuterLoopId = " << OuterLoopId << "\n");
524     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
525     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
526       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
527       return false;
528     }
529     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
530     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
531     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
532       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
533       return false;
534     }
535 
536     ORE->emit([&]() {
537       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
538                                 InnerLoop->getStartLoc(),
539                                 InnerLoop->getHeader())
540              << "Loop interchanged with enclosing loop.";
541     });
542 
543     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
544     LIT.transform();
545     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
546     LoopsInterchanged++;
547 
548     assert(InnerLoop->isLCSSAForm(*DT) &&
549            "Inner loop not left in LCSSA form after loop interchange!");
550     assert(OuterLoop->isLCSSAForm(*DT) &&
551            "Outer loop not left in LCSSA form after loop interchange!");
552 
553     return true;
554   }
555 };
556 
557 } // end anonymous namespace
558 
559 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
560   return any_of(*BB, [](const Instruction &I) {
561     return I.mayHaveSideEffects() || I.mayReadFromMemory();
562   });
563 }
564 
565 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
566   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
567   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
568   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
569 
570   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
571 
572   // A perfectly nested loop will not have any branch in between the outer and
573   // inner block i.e. outer header will branch to either inner preheader and
574   // outerloop latch.
575   BranchInst *OuterLoopHeaderBI =
576       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
577   if (!OuterLoopHeaderBI)
578     return false;
579 
580   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
581     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
582         Succ != OuterLoopLatch)
583       return false;
584 
585   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
586   // We do not have any basic block in between now make sure the outer header
587   // and outer loop latch doesn't contain any unsafe instructions.
588   if (containsUnsafeInstructions(OuterLoopHeader) ||
589       containsUnsafeInstructions(OuterLoopLatch))
590     return false;
591 
592   // Also make sure the inner loop preheader does not contain any unsafe
593   // instructions. Note that all instructions in the preheader will be moved to
594   // the outer loop header when interchanging.
595   if (InnerLoopPreHeader != OuterLoopHeader &&
596       containsUnsafeInstructions(InnerLoopPreHeader))
597     return false;
598 
599   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
600   // Ensure the inner loop exit block flows to the outer loop latch possibly
601   // through empty blocks.
602   const BasicBlock &SuccInner =
603       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
604   if (&SuccInner != OuterLoopLatch) {
605     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
606                       << " does not lead to the outer loop latch.\n";);
607     return false;
608   }
609   // The inner loop exit block does flow to the outer loop latch and not some
610   // other BBs, now make sure it contains safe instructions, since it will be
611   // moved into the (new) inner loop after interchange.
612   if (containsUnsafeInstructions(InnerLoopExit))
613     return false;
614 
615   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
616   // We have a perfect loop nest.
617   return true;
618 }
619 
620 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
621   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
622   for (PHINode *InnerInduction : InnerLoopInductions) {
623     unsigned Num = InnerInduction->getNumOperands();
624     for (unsigned i = 0; i < Num; ++i) {
625       Value *Val = InnerInduction->getOperand(i);
626       if (isa<Constant>(Val))
627         continue;
628       Instruction *I = dyn_cast<Instruction>(Val);
629       if (!I)
630         return false;
631       // TODO: Handle triangular loops.
632       // e.g. for(int i=0;i<N;i++)
633       //        for(int j=i;j<N;j++)
634       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
635       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
636               InnerLoopPreheader &&
637           !OuterLoop->isLoopInvariant(I)) {
638         return false;
639       }
640     }
641   }
642 
643   // TODO: Handle triangular loops of another form.
644   // e.g. for(int i=0;i<N;i++)
645   //        for(int j=0;j<i;j++)
646   // or,
647   //      for(int i=0;i<N;i++)
648   //        for(int j=0;j*i<N;j++)
649   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
650   BranchInst *InnerLoopLatchBI =
651       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
652   if (!InnerLoopLatchBI->isConditional())
653     return false;
654   if (CmpInst *InnerLoopCmp =
655           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
656     Value *Op0 = InnerLoopCmp->getOperand(0);
657     Value *Op1 = InnerLoopCmp->getOperand(1);
658 
659     // LHS and RHS of the inner loop exit condition, e.g.,
660     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
661     Value *Left = nullptr;
662     Value *Right = nullptr;
663 
664     // Check if V only involves inner loop induction variable.
665     // Return true if V is InnerInduction, or a cast from
666     // InnerInduction, or a binary operator that involves
667     // InnerInduction and a constant.
668     std::function<bool(Value *)> IsPathToInnerIndVar;
669     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
670       if (llvm::is_contained(InnerLoopInductions, V))
671         return true;
672       if (isa<Constant>(V))
673         return true;
674       const Instruction *I = dyn_cast<Instruction>(V);
675       if (!I)
676         return false;
677       if (isa<CastInst>(I))
678         return IsPathToInnerIndVar(I->getOperand(0));
679       if (isa<BinaryOperator>(I))
680         return IsPathToInnerIndVar(I->getOperand(0)) &&
681                IsPathToInnerIndVar(I->getOperand(1));
682       return false;
683     };
684 
685     // In case of multiple inner loop indvars, it is okay if LHS and RHS
686     // are both inner indvar related variables.
687     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
688       return true;
689 
690     // Otherwise we check if the cmp instruction compares an inner indvar
691     // related variable (Left) with a outer loop invariant (Right).
692     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
693       Left = Op0;
694       Right = Op1;
695     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
696       Left = Op1;
697       Right = Op0;
698     }
699 
700     if (Left == nullptr)
701       return false;
702 
703     const SCEV *S = SE->getSCEV(Right);
704     if (!SE->isLoopInvariant(S, OuterLoop))
705       return false;
706   }
707 
708   return true;
709 }
710 
711 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
712 // value.
713 static Value *followLCSSA(Value *SV) {
714   PHINode *PHI = dyn_cast<PHINode>(SV);
715   if (!PHI)
716     return SV;
717 
718   if (PHI->getNumIncomingValues() != 1)
719     return SV;
720   return followLCSSA(PHI->getIncomingValue(0));
721 }
722 
723 // Check V's users to see if it is involved in a reduction in L.
724 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
725   // Reduction variables cannot be constants.
726   if (isa<Constant>(V))
727     return nullptr;
728 
729   for (Value *User : V->users()) {
730     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
731       if (PHI->getNumIncomingValues() == 1)
732         continue;
733       RecurrenceDescriptor RD;
734       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
735         // Detect floating point reduction only when it can be reordered.
736         if (RD.getExactFPMathInst() != nullptr)
737           return nullptr;
738         return PHI;
739       }
740       return nullptr;
741     }
742   }
743 
744   return nullptr;
745 }
746 
747 bool LoopInterchangeLegality::findInductionAndReductions(
748     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
749   if (!L->getLoopLatch() || !L->getLoopPredecessor())
750     return false;
751   for (PHINode &PHI : L->getHeader()->phis()) {
752     RecurrenceDescriptor RD;
753     InductionDescriptor ID;
754     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
755       Inductions.push_back(&PHI);
756     else {
757       // PHIs in inner loops need to be part of a reduction in the outer loop,
758       // discovered when checking the PHIs of the outer loop earlier.
759       if (!InnerLoop) {
760         if (!OuterInnerReductions.count(&PHI)) {
761           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
762                                "across the outer loop.\n");
763           return false;
764         }
765       } else {
766         assert(PHI.getNumIncomingValues() == 2 &&
767                "Phis in loop header should have exactly 2 incoming values");
768         // Check if we have a PHI node in the outer loop that has a reduction
769         // result from the inner loop as an incoming value.
770         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
771         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
772         if (!InnerRedPhi ||
773             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
774           LLVM_DEBUG(
775               dbgs()
776               << "Failed to recognize PHI as an induction or reduction.\n");
777           return false;
778         }
779         OuterInnerReductions.insert(&PHI);
780         OuterInnerReductions.insert(InnerRedPhi);
781       }
782     }
783   }
784   return true;
785 }
786 
787 // This function indicates the current limitations in the transform as a result
788 // of which we do not proceed.
789 bool LoopInterchangeLegality::currentLimitations() {
790   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
791 
792   // transform currently expects the loop latches to also be the exiting
793   // blocks.
794   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
795       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
796       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
797       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
798     LLVM_DEBUG(
799         dbgs() << "Loops where the latch is not the exiting block are not"
800                << " supported currently.\n");
801     ORE->emit([&]() {
802       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
803                                       OuterLoop->getStartLoc(),
804                                       OuterLoop->getHeader())
805              << "Loops where the latch is not the exiting block cannot be"
806                 " interchange currently.";
807     });
808     return true;
809   }
810 
811   SmallVector<PHINode *, 8> Inductions;
812   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
813     LLVM_DEBUG(
814         dbgs() << "Only outer loops with induction or reduction PHI nodes "
815                << "are supported currently.\n");
816     ORE->emit([&]() {
817       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
818                                       OuterLoop->getStartLoc(),
819                                       OuterLoop->getHeader())
820              << "Only outer loops with induction or reduction PHI nodes can be"
821                 " interchanged currently.";
822     });
823     return true;
824   }
825 
826   Inductions.clear();
827   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
828     LLVM_DEBUG(
829         dbgs() << "Only inner loops with induction or reduction PHI nodes "
830                << "are supported currently.\n");
831     ORE->emit([&]() {
832       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
833                                       InnerLoop->getStartLoc(),
834                                       InnerLoop->getHeader())
835              << "Only inner loops with induction or reduction PHI nodes can be"
836                 " interchange currently.";
837     });
838     return true;
839   }
840 
841   // TODO: Triangular loops are not handled for now.
842   if (!isLoopStructureUnderstood()) {
843     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
844     ORE->emit([&]() {
845       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
846                                       InnerLoop->getStartLoc(),
847                                       InnerLoop->getHeader())
848              << "Inner loop structure not understood currently.";
849     });
850     return true;
851   }
852 
853   return false;
854 }
855 
856 bool LoopInterchangeLegality::findInductions(
857     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
858   for (PHINode &PHI : L->getHeader()->phis()) {
859     InductionDescriptor ID;
860     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
861       Inductions.push_back(&PHI);
862   }
863   return !Inductions.empty();
864 }
865 
866 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
867 // users are either reduction PHIs or PHIs outside the outer loop (which means
868 // the we are only interested in the final value after the loop).
869 static bool
870 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
871                               SmallPtrSetImpl<PHINode *> &Reductions) {
872   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
873   for (PHINode &PHI : InnerExit->phis()) {
874     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
875     if (PHI.getNumIncomingValues() > 1)
876       return false;
877     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
878           PHINode *PN = dyn_cast<PHINode>(U);
879           return !PN ||
880                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
881         })) {
882       return false;
883     }
884   }
885   return true;
886 }
887 
888 // We currently support LCSSA PHI nodes in the outer loop exit, if their
889 // incoming values do not come from the outer loop latch or if the
890 // outer loop latch has a single predecessor. In that case, the value will
891 // be available if both the inner and outer loop conditions are true, which
892 // will still be true after interchanging. If we have multiple predecessor,
893 // that may not be the case, e.g. because the outer loop latch may be executed
894 // if the inner loop is not executed.
895 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
896   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
897   for (PHINode &PHI : LoopNestExit->phis()) {
898     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
899       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
900       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
901         continue;
902 
903       // The incoming value is defined in the outer loop latch. Currently we
904       // only support that in case the outer loop latch has a single predecessor.
905       // This guarantees that the outer loop latch is executed if and only if
906       // the inner loop is executed (because tightlyNested() guarantees that the
907       // outer loop header only branches to the inner loop or the outer loop
908       // latch).
909       // FIXME: We could weaken this logic and allow multiple predecessors,
910       //        if the values are produced outside the loop latch. We would need
911       //        additional logic to update the PHI nodes in the exit block as
912       //        well.
913       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
914         return false;
915     }
916   }
917   return true;
918 }
919 
920 // In case of multi-level nested loops, it may occur that lcssa phis exist in
921 // the latch of InnerLoop, i.e., when defs of the incoming values are further
922 // inside the loopnest. Sometimes those incoming values are not available
923 // after interchange, since the original inner latch will become the new outer
924 // latch which may have predecessor paths that do not include those incoming
925 // values.
926 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
927 // multi-level loop nests.
928 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
929   if (InnerLoop->getSubLoops().empty())
930     return true;
931   // If the original outer latch has only one predecessor, then values defined
932   // further inside the looploop, e.g., in the innermost loop, will be available
933   // at the new outer latch after interchange.
934   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
935     return true;
936 
937   // The outer latch has more than one predecessors, i.e., the inner
938   // exit and the inner header.
939   // PHI nodes in the inner latch are lcssa phis where the incoming values
940   // are defined further inside the loopnest. Check if those phis are used
941   // in the original inner latch. If that is the case then bail out since
942   // those incoming values may not be available at the new outer latch.
943   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
944   for (PHINode &PHI : InnerLoopLatch->phis()) {
945     for (auto *U : PHI.users()) {
946       Instruction *UI = cast<Instruction>(U);
947       if (InnerLoopLatch == UI->getParent())
948         return false;
949     }
950   }
951   return true;
952 }
953 
954 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
955                                                   unsigned OuterLoopId,
956                                                   CharMatrix &DepMatrix) {
957   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
958     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
959                       << " and OuterLoopId = " << OuterLoopId
960                       << " due to dependence\n");
961     ORE->emit([&]() {
962       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
963                                       InnerLoop->getStartLoc(),
964                                       InnerLoop->getHeader())
965              << "Cannot interchange loops due to dependences.";
966     });
967     return false;
968   }
969   // Check if outer and inner loop contain legal instructions only.
970   for (auto *BB : OuterLoop->blocks())
971     for (Instruction &I : BB->instructionsWithoutDebug())
972       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
973         // readnone functions do not prevent interchanging.
974         if (CI->onlyWritesMemory())
975           continue;
976         LLVM_DEBUG(
977             dbgs() << "Loops with call instructions cannot be interchanged "
978                    << "safely.");
979         ORE->emit([&]() {
980           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
981                                           CI->getDebugLoc(),
982                                           CI->getParent())
983                  << "Cannot interchange loops due to call instruction.";
984         });
985 
986         return false;
987       }
988 
989   if (!findInductions(InnerLoop, InnerLoopInductions)) {
990     LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
991     return false;
992   }
993 
994   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
995     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
996     ORE->emit([&]() {
997       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
998                                       InnerLoop->getStartLoc(),
999                                       InnerLoop->getHeader())
1000              << "Cannot interchange loops because unsupported PHI nodes found "
1001                 "in inner loop latch.";
1002     });
1003     return false;
1004   }
1005 
1006   // TODO: The loops could not be interchanged due to current limitations in the
1007   // transform module.
1008   if (currentLimitations()) {
1009     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1010     return false;
1011   }
1012 
1013   // Check if the loops are tightly nested.
1014   if (!tightlyNested(OuterLoop, InnerLoop)) {
1015     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1016     ORE->emit([&]() {
1017       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1018                                       InnerLoop->getStartLoc(),
1019                                       InnerLoop->getHeader())
1020              << "Cannot interchange loops because they are not tightly "
1021                 "nested.";
1022     });
1023     return false;
1024   }
1025 
1026   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1027                                      OuterInnerReductions)) {
1028     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1029     ORE->emit([&]() {
1030       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1031                                       InnerLoop->getStartLoc(),
1032                                       InnerLoop->getHeader())
1033              << "Found unsupported PHI node in loop exit.";
1034     });
1035     return false;
1036   }
1037 
1038   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1039     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1040     ORE->emit([&]() {
1041       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1042                                       OuterLoop->getStartLoc(),
1043                                       OuterLoop->getHeader())
1044              << "Found unsupported PHI node in loop exit.";
1045     });
1046     return false;
1047   }
1048 
1049   return true;
1050 }
1051 
1052 int LoopInterchangeProfitability::getInstrOrderCost() {
1053   unsigned GoodOrder, BadOrder;
1054   BadOrder = GoodOrder = 0;
1055   for (BasicBlock *BB : InnerLoop->blocks()) {
1056     for (Instruction &Ins : *BB) {
1057       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1058         unsigned NumOp = GEP->getNumOperands();
1059         bool FoundInnerInduction = false;
1060         bool FoundOuterInduction = false;
1061         for (unsigned i = 0; i < NumOp; ++i) {
1062           // Skip operands that are not SCEV-able.
1063           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1064             continue;
1065 
1066           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1067           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1068           if (!AR)
1069             continue;
1070 
1071           // If we find the inner induction after an outer induction e.g.
1072           // for(int i=0;i<N;i++)
1073           //   for(int j=0;j<N;j++)
1074           //     A[i][j] = A[i-1][j-1]+k;
1075           // then it is a good order.
1076           if (AR->getLoop() == InnerLoop) {
1077             // We found an InnerLoop induction after OuterLoop induction. It is
1078             // a good order.
1079             FoundInnerInduction = true;
1080             if (FoundOuterInduction) {
1081               GoodOrder++;
1082               break;
1083             }
1084           }
1085           // If we find the outer induction after an inner induction e.g.
1086           // for(int i=0;i<N;i++)
1087           //   for(int j=0;j<N;j++)
1088           //     A[j][i] = A[j-1][i-1]+k;
1089           // then it is a bad order.
1090           if (AR->getLoop() == OuterLoop) {
1091             // We found an OuterLoop induction after InnerLoop induction. It is
1092             // a bad order.
1093             FoundOuterInduction = true;
1094             if (FoundInnerInduction) {
1095               BadOrder++;
1096               break;
1097             }
1098           }
1099         }
1100       }
1101     }
1102   }
1103   return GoodOrder - BadOrder;
1104 }
1105 
1106 static bool isProfitableForVectorization(unsigned InnerLoopId,
1107                                          unsigned OuterLoopId,
1108                                          CharMatrix &DepMatrix) {
1109   // TODO: Improve this heuristic to catch more cases.
1110   // If the inner loop is loop independent or doesn't carry any dependency it is
1111   // profitable to move this to outer position.
1112   for (auto &Row : DepMatrix) {
1113     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1114       return false;
1115     // TODO: We need to improve this heuristic.
1116     if (Row[OuterLoopId] != '=')
1117       return false;
1118   }
1119   // If outer loop has dependence and inner loop is loop independent then it is
1120   // profitable to interchange to enable parallelism.
1121   // If there are no dependences, interchanging will not improve anything.
1122   return !DepMatrix.empty();
1123 }
1124 
1125 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1126                                                 unsigned OuterLoopId,
1127                                                 CharMatrix &DepMatrix) {
1128   // TODO: Add better profitability checks.
1129   // e.g
1130   // 1) Construct dependency matrix and move the one with no loop carried dep
1131   //    inside to enable vectorization.
1132 
1133   // This is rough cost estimation algorithm. It counts the good and bad order
1134   // of induction variables in the instruction and allows reordering if number
1135   // of bad orders is more than good.
1136   int Cost = getInstrOrderCost();
1137   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1138   if (Cost < -LoopInterchangeCostThreshold)
1139     return true;
1140 
1141   // It is not profitable as per current cache profitability model. But check if
1142   // we can move this loop outside to improve parallelism.
1143   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1144     return true;
1145 
1146   ORE->emit([&]() {
1147     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1148                                     InnerLoop->getStartLoc(),
1149                                     InnerLoop->getHeader())
1150            << "Interchanging loops is too costly (cost="
1151            << ore::NV("Cost", Cost) << ", threshold="
1152            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1153            << ") and it does not improve parallelism.";
1154   });
1155   return false;
1156 }
1157 
1158 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1159                                                Loop *InnerLoop) {
1160   for (Loop *L : *OuterLoop)
1161     if (L == InnerLoop) {
1162       OuterLoop->removeChildLoop(L);
1163       return;
1164     }
1165   llvm_unreachable("Couldn't find loop");
1166 }
1167 
1168 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1169 /// new inner and outer loop after interchanging: NewInner is the original
1170 /// outer loop and NewOuter is the original inner loop.
1171 ///
1172 /// Before interchanging, we have the following structure
1173 /// Outer preheader
1174 //  Outer header
1175 //    Inner preheader
1176 //    Inner header
1177 //      Inner body
1178 //      Inner latch
1179 //   outer bbs
1180 //   Outer latch
1181 //
1182 // After interchanging:
1183 // Inner preheader
1184 // Inner header
1185 //   Outer preheader
1186 //   Outer header
1187 //     Inner body
1188 //     outer bbs
1189 //     Outer latch
1190 //   Inner latch
1191 void LoopInterchangeTransform::restructureLoops(
1192     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1193     BasicBlock *OrigOuterPreHeader) {
1194   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1195   // The original inner loop preheader moves from the new inner loop to
1196   // the parent loop, if there is one.
1197   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1198   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1199 
1200   // Switch the loop levels.
1201   if (OuterLoopParent) {
1202     // Remove the loop from its parent loop.
1203     removeChildLoop(OuterLoopParent, NewInner);
1204     removeChildLoop(NewInner, NewOuter);
1205     OuterLoopParent->addChildLoop(NewOuter);
1206   } else {
1207     removeChildLoop(NewInner, NewOuter);
1208     LI->changeTopLevelLoop(NewInner, NewOuter);
1209   }
1210   while (!NewOuter->isInnermost())
1211     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1212   NewOuter->addChildLoop(NewInner);
1213 
1214   // BBs from the original inner loop.
1215   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1216 
1217   // Add BBs from the original outer loop to the original inner loop (excluding
1218   // BBs already in inner loop)
1219   for (BasicBlock *BB : NewInner->blocks())
1220     if (LI->getLoopFor(BB) == NewInner)
1221       NewOuter->addBlockEntry(BB);
1222 
1223   // Now remove inner loop header and latch from the new inner loop and move
1224   // other BBs (the loop body) to the new inner loop.
1225   BasicBlock *OuterHeader = NewOuter->getHeader();
1226   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1227   for (BasicBlock *BB : OrigInnerBBs) {
1228     // Nothing will change for BBs in child loops.
1229     if (LI->getLoopFor(BB) != NewOuter)
1230       continue;
1231     // Remove the new outer loop header and latch from the new inner loop.
1232     if (BB == OuterHeader || BB == OuterLatch)
1233       NewInner->removeBlockFromLoop(BB);
1234     else
1235       LI->changeLoopFor(BB, NewInner);
1236   }
1237 
1238   // The preheader of the original outer loop becomes part of the new
1239   // outer loop.
1240   NewOuter->addBlockEntry(OrigOuterPreHeader);
1241   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1242 
1243   // Tell SE that we move the loops around.
1244   SE->forgetLoop(NewOuter);
1245   SE->forgetLoop(NewInner);
1246 }
1247 
1248 bool LoopInterchangeTransform::transform() {
1249   bool Transformed = false;
1250 
1251   if (InnerLoop->getSubLoops().empty()) {
1252     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1253     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1254     auto &InductionPHIs = LIL.getInnerLoopInductions();
1255     if (InductionPHIs.empty()) {
1256       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1257       return false;
1258     }
1259 
1260     SmallVector<Instruction *, 8> InnerIndexVarList;
1261     for (PHINode *CurInductionPHI : InductionPHIs) {
1262       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1263         InnerIndexVarList.push_back(
1264             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1265       else
1266         InnerIndexVarList.push_back(
1267             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1268     }
1269 
1270     // Create a new latch block for the inner loop. We split at the
1271     // current latch's terminator and then move the condition and all
1272     // operands that are not either loop-invariant or the induction PHI into the
1273     // new latch block.
1274     BasicBlock *NewLatch =
1275         SplitBlock(InnerLoop->getLoopLatch(),
1276                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1277 
1278     SmallSetVector<Instruction *, 4> WorkList;
1279     unsigned i = 0;
1280     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1281       for (; i < WorkList.size(); i++) {
1282         // Duplicate instruction and move it the new latch. Update uses that
1283         // have been moved.
1284         Instruction *NewI = WorkList[i]->clone();
1285         NewI->insertBefore(NewLatch->getFirstNonPHI());
1286         assert(!NewI->mayHaveSideEffects() &&
1287                "Moving instructions with side-effects may change behavior of "
1288                "the loop nest!");
1289         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1290           Instruction *UserI = cast<Instruction>(U.getUser());
1291           if (!InnerLoop->contains(UserI->getParent()) ||
1292               UserI->getParent() == NewLatch ||
1293               llvm::is_contained(InductionPHIs, UserI))
1294             U.set(NewI);
1295         }
1296         // Add operands of moved instruction to the worklist, except if they are
1297         // outside the inner loop or are the induction PHI.
1298         for (Value *Op : WorkList[i]->operands()) {
1299           Instruction *OpI = dyn_cast<Instruction>(Op);
1300           if (!OpI ||
1301               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1302               llvm::is_contained(InductionPHIs, OpI))
1303             continue;
1304           WorkList.insert(OpI);
1305         }
1306       }
1307     };
1308 
1309     // FIXME: Should we interchange when we have a constant condition?
1310     Instruction *CondI = dyn_cast<Instruction>(
1311         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1312             ->getCondition());
1313     if (CondI)
1314       WorkList.insert(CondI);
1315     MoveInstructions();
1316     for (Instruction *InnerIndexVar : InnerIndexVarList)
1317       WorkList.insert(cast<Instruction>(InnerIndexVar));
1318     MoveInstructions();
1319 
1320     // Splits the inner loops phi nodes out into a separate basic block.
1321     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1322     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1323     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1324   }
1325 
1326   // Instructions in the original inner loop preheader may depend on values
1327   // defined in the outer loop header. Move them there, because the original
1328   // inner loop preheader will become the entry into the interchanged loop nest.
1329   // Currently we move all instructions and rely on LICM to move invariant
1330   // instructions outside the loop nest.
1331   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1332   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1333   if (InnerLoopPreHeader != OuterLoopHeader) {
1334     SmallPtrSet<Instruction *, 4> NeedsMoving;
1335     for (Instruction &I :
1336          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1337                                          std::prev(InnerLoopPreHeader->end()))))
1338       I.moveBefore(OuterLoopHeader->getTerminator());
1339   }
1340 
1341   Transformed |= adjustLoopLinks();
1342   if (!Transformed) {
1343     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1344     return false;
1345   }
1346 
1347   return true;
1348 }
1349 
1350 /// \brief Move all instructions except the terminator from FromBB right before
1351 /// InsertBefore
1352 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1353   auto &ToList = InsertBefore->getParent()->getInstList();
1354   auto &FromList = FromBB->getInstList();
1355 
1356   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1357                 FromBB->getTerminator()->getIterator());
1358 }
1359 
1360 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1361 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1362   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1363   // from BB1 afterwards.
1364   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1365   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1366   for (Instruction *I : TempInstrs)
1367     I->removeFromParent();
1368 
1369   // Move instructions from BB2 to BB1.
1370   moveBBContents(BB2, BB1->getTerminator());
1371 
1372   // Move instructions from TempInstrs to BB2.
1373   for (Instruction *I : TempInstrs)
1374     I->insertBefore(BB2->getTerminator());
1375 }
1376 
1377 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1378 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1379 // \p OldBB  is exactly once in BI's successor list.
1380 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1381                             BasicBlock *NewBB,
1382                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1383                             bool MustUpdateOnce = true) {
1384   assert((!MustUpdateOnce ||
1385           llvm::count_if(successors(BI),
1386                          [OldBB](BasicBlock *BB) {
1387                            return BB == OldBB;
1388                          }) == 1) && "BI must jump to OldBB exactly once.");
1389   bool Changed = false;
1390   for (Use &Op : BI->operands())
1391     if (Op == OldBB) {
1392       Op.set(NewBB);
1393       Changed = true;
1394     }
1395 
1396   if (Changed) {
1397     DTUpdates.push_back(
1398         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1399     DTUpdates.push_back(
1400         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1401   }
1402   assert(Changed && "Expected a successor to be updated");
1403 }
1404 
1405 // Move Lcssa PHIs to the right place.
1406 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1407                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1408                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1409                           Loop *InnerLoop, LoopInfo *LI) {
1410 
1411   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1412   // defined either in the header or latch. Those blocks will become header and
1413   // latch of the new outer loop, and the only possible users can PHI nodes
1414   // in the exit block of the loop nest or the outer loop header (reduction
1415   // PHIs, in that case, the incoming value must be defined in the inner loop
1416   // header). We can just substitute the user with the incoming value and remove
1417   // the PHI.
1418   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1419     assert(P.getNumIncomingValues() == 1 &&
1420            "Only loops with a single exit are supported!");
1421 
1422     // Incoming values are guaranteed be instructions currently.
1423     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1424     // Skip phis with incoming values from the inner loop body, excluding the
1425     // header and latch.
1426     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1427       continue;
1428 
1429     assert(all_of(P.users(),
1430                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1431                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1432                             IncI->getParent() == InnerHeader) ||
1433                            cast<PHINode>(U)->getParent() == OuterExit;
1434                   }) &&
1435            "Can only replace phis iff the uses are in the loop nest exit or "
1436            "the incoming value is defined in the inner header (it will "
1437            "dominate all loop blocks after interchanging)");
1438     P.replaceAllUsesWith(IncI);
1439     P.eraseFromParent();
1440   }
1441 
1442   SmallVector<PHINode *, 8> LcssaInnerExit;
1443   for (PHINode &P : InnerExit->phis())
1444     LcssaInnerExit.push_back(&P);
1445 
1446   SmallVector<PHINode *, 8> LcssaInnerLatch;
1447   for (PHINode &P : InnerLatch->phis())
1448     LcssaInnerLatch.push_back(&P);
1449 
1450   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1451   // If a PHI node has users outside of InnerExit, it has a use outside the
1452   // interchanged loop and we have to preserve it. We move these to
1453   // InnerLatch, which will become the new exit block for the innermost
1454   // loop after interchanging.
1455   for (PHINode *P : LcssaInnerExit)
1456     P->moveBefore(InnerLatch->getFirstNonPHI());
1457 
1458   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1459   // and we have to move them to the new inner latch.
1460   for (PHINode *P : LcssaInnerLatch)
1461     P->moveBefore(InnerExit->getFirstNonPHI());
1462 
1463   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1464   // incoming values defined in the outer loop, we have to add a new PHI
1465   // in the inner loop latch, which became the exit block of the outer loop,
1466   // after interchanging.
1467   if (OuterExit) {
1468     for (PHINode &P : OuterExit->phis()) {
1469       if (P.getNumIncomingValues() != 1)
1470         continue;
1471       // Skip Phis with incoming values defined in the inner loop. Those should
1472       // already have been updated.
1473       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1474       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1475         continue;
1476 
1477       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1478       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1479       NewPhi->setIncomingBlock(0, OuterLatch);
1480       // We might have incoming edges from other BBs, i.e., the original outer
1481       // header.
1482       for (auto *Pred : predecessors(InnerLatch)) {
1483         if (Pred == OuterLatch)
1484           continue;
1485         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1486       }
1487       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1488       P.setIncomingValue(0, NewPhi);
1489     }
1490   }
1491 
1492   // Now adjust the incoming blocks for the LCSSA PHIs.
1493   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1494   // with the new latch.
1495   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1496 }
1497 
1498 bool LoopInterchangeTransform::adjustLoopBranches() {
1499   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1500   std::vector<DominatorTree::UpdateType> DTUpdates;
1501 
1502   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1503   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1504 
1505   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1506          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1507          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1508   // Ensure that both preheaders do not contain PHI nodes and have single
1509   // predecessors. This allows us to move them easily. We use
1510   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1511   // preheaders do not satisfy those conditions.
1512   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1513       !OuterLoopPreHeader->getUniquePredecessor())
1514     OuterLoopPreHeader =
1515         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1516   if (InnerLoopPreHeader == OuterLoop->getHeader())
1517     InnerLoopPreHeader =
1518         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1519 
1520   // Adjust the loop preheader
1521   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1522   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1523   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1524   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1525   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1526   BasicBlock *InnerLoopLatchPredecessor =
1527       InnerLoopLatch->getUniquePredecessor();
1528   BasicBlock *InnerLoopLatchSuccessor;
1529   BasicBlock *OuterLoopLatchSuccessor;
1530 
1531   BranchInst *OuterLoopLatchBI =
1532       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1533   BranchInst *InnerLoopLatchBI =
1534       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1535   BranchInst *OuterLoopHeaderBI =
1536       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1537   BranchInst *InnerLoopHeaderBI =
1538       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1539 
1540   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1541       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1542       !InnerLoopHeaderBI)
1543     return false;
1544 
1545   BranchInst *InnerLoopLatchPredecessorBI =
1546       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1547   BranchInst *OuterLoopPredecessorBI =
1548       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1549 
1550   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1551     return false;
1552   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1553   if (!InnerLoopHeaderSuccessor)
1554     return false;
1555 
1556   // Adjust Loop Preheader and headers.
1557   // The branches in the outer loop predecessor and the outer loop header can
1558   // be unconditional branches or conditional branches with duplicates. Consider
1559   // this when updating the successors.
1560   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1561                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1562   // The outer loop header might or might not branch to the outer latch.
1563   // We are guaranteed to branch to the inner loop preheader.
1564   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1565     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1566     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1567                     DTUpdates,
1568                     /*MustUpdateOnce=*/false);
1569   }
1570   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1571                   InnerLoopHeaderSuccessor, DTUpdates,
1572                   /*MustUpdateOnce=*/false);
1573 
1574   // Adjust reduction PHI's now that the incoming block has changed.
1575   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1576                                                OuterLoopHeader);
1577 
1578   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1579                   OuterLoopPreHeader, DTUpdates);
1580 
1581   // -------------Adjust loop latches-----------
1582   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1583     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1584   else
1585     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1586 
1587   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1588                   InnerLoopLatchSuccessor, DTUpdates);
1589 
1590   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1591     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1592   else
1593     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1594 
1595   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1596                   OuterLoopLatchSuccessor, DTUpdates);
1597   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1598                   DTUpdates);
1599 
1600   DT->applyUpdates(DTUpdates);
1601   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1602                    OuterLoopPreHeader);
1603 
1604   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1605                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1606                 InnerLoop, LI);
1607   // For PHIs in the exit block of the outer loop, outer's latch has been
1608   // replaced by Inners'.
1609   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1610 
1611   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1612   // Now update the reduction PHIs in the inner and outer loop headers.
1613   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1614   for (PHINode &PHI : InnerLoopHeader->phis())
1615     if (OuterInnerReductions.contains(&PHI))
1616       InnerLoopPHIs.push_back(&PHI);
1617 
1618   for (PHINode &PHI : OuterLoopHeader->phis())
1619     if (OuterInnerReductions.contains(&PHI))
1620       OuterLoopPHIs.push_back(&PHI);
1621 
1622   // Now move the remaining reduction PHIs from outer to inner loop header and
1623   // vice versa. The PHI nodes must be part of a reduction across the inner and
1624   // outer loop and all the remains to do is and updating the incoming blocks.
1625   for (PHINode *PHI : OuterLoopPHIs) {
1626     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1627     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1628     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1629   }
1630   for (PHINode *PHI : InnerLoopPHIs) {
1631     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1632     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1633     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1634   }
1635 
1636   // Update the incoming blocks for moved PHI nodes.
1637   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1638   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1639   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1640   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1641 
1642   // Values defined in the outer loop header could be used in the inner loop
1643   // latch. In that case, we need to create LCSSA phis for them, because after
1644   // interchanging they will be defined in the new inner loop and used in the
1645   // new outer loop.
1646   IRBuilder<> Builder(OuterLoopHeader->getContext());
1647   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1648   for (Instruction &I :
1649        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1650     MayNeedLCSSAPhis.push_back(&I);
1651   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1652 
1653   return true;
1654 }
1655 
1656 bool LoopInterchangeTransform::adjustLoopLinks() {
1657   // Adjust all branches in the inner and outer loop.
1658   bool Changed = adjustLoopBranches();
1659   if (Changed) {
1660     // We have interchanged the preheaders so we need to interchange the data in
1661     // the preheaders as well. This is because the content of the inner
1662     // preheader was previously executed inside the outer loop.
1663     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1664     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1665     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1666   }
1667   return Changed;
1668 }
1669 
1670 namespace {
1671 /// Main LoopInterchange Pass.
1672 struct LoopInterchangeLegacyPass : public LoopPass {
1673   static char ID;
1674 
1675   LoopInterchangeLegacyPass() : LoopPass(ID) {
1676     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1677   }
1678 
1679   void getAnalysisUsage(AnalysisUsage &AU) const override {
1680     AU.addRequired<DependenceAnalysisWrapperPass>();
1681     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1682 
1683     getLoopAnalysisUsage(AU);
1684   }
1685 
1686   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1687     if (skipLoop(L))
1688       return false;
1689 
1690     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1691     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1692     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1693     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1694     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1695 
1696     return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1697   }
1698 };
1699 } // namespace
1700 
1701 char LoopInterchangeLegacyPass::ID = 0;
1702 
1703 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1704                       "Interchanges loops for cache reuse", false, false)
1705 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1706 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1707 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1708 
1709 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1710                     "Interchanges loops for cache reuse", false, false)
1711 
1712 Pass *llvm::createLoopInterchangePass() {
1713   return new LoopInterchangeLegacyPass();
1714 }
1715 
1716 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1717                                            LoopAnalysisManager &AM,
1718                                            LoopStandardAnalysisResults &AR,
1719                                            LPMUpdater &U) {
1720   Function &F = *LN.getParent();
1721 
1722   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1723   OptimizationRemarkEmitter ORE(&F);
1724   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1725     return PreservedAnalyses::all();
1726   return getLoopPassPreservedAnalyses();
1727 }
1728