1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopNestAnalysis.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include <cassert> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "loop-interchange" 57 58 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 59 60 static cl::opt<int> LoopInterchangeCostThreshold( 61 "loop-interchange-threshold", cl::init(0), cl::Hidden, 62 cl::desc("Interchange if you gain more than this number")); 63 64 namespace { 65 66 using LoopVector = SmallVector<Loop *, 8>; 67 68 // TODO: Check if we can use a sparse matrix here. 69 using CharMatrix = std::vector<std::vector<char>>; 70 71 } // end anonymous namespace 72 73 // Maximum number of dependencies that can be handled in the dependency matrix. 74 static const unsigned MaxMemInstrCount = 100; 75 76 // Maximum loop depth supported. 77 static const unsigned MaxLoopNestDepth = 10; 78 79 #ifdef DUMP_DEP_MATRICIES 80 static void printDepMatrix(CharMatrix &DepMatrix) { 81 for (auto &Row : DepMatrix) { 82 for (auto D : Row) 83 LLVM_DEBUG(dbgs() << D << " "); 84 LLVM_DEBUG(dbgs() << "\n"); 85 } 86 } 87 #endif 88 89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 90 Loop *L, DependenceInfo *DI) { 91 using ValueVector = SmallVector<Value *, 16>; 92 93 ValueVector MemInstr; 94 95 // For each block. 96 for (BasicBlock *BB : L->blocks()) { 97 // Scan the BB and collect legal loads and stores. 98 for (Instruction &I : *BB) { 99 if (!isa<Instruction>(I)) 100 return false; 101 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 102 if (!Ld->isSimple()) 103 return false; 104 MemInstr.push_back(&I); 105 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 106 if (!St->isSimple()) 107 return false; 108 MemInstr.push_back(&I); 109 } 110 } 111 } 112 113 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 114 << " Loads and Stores to analyze\n"); 115 116 ValueVector::iterator I, IE, J, JE; 117 118 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 119 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 120 std::vector<char> Dep; 121 Instruction *Src = cast<Instruction>(*I); 122 Instruction *Dst = cast<Instruction>(*J); 123 if (Src == Dst) 124 continue; 125 // Ignore Input dependencies. 126 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 127 continue; 128 // Track Output, Flow, and Anti dependencies. 129 if (auto D = DI->depends(Src, Dst, true)) { 130 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 131 LLVM_DEBUG(StringRef DepType = 132 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 133 dbgs() << "Found " << DepType 134 << " dependency between Src and Dst\n" 135 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 136 unsigned Levels = D->getLevels(); 137 char Direction; 138 for (unsigned II = 1; II <= Levels; ++II) { 139 const SCEV *Distance = D->getDistance(II); 140 const SCEVConstant *SCEVConst = 141 dyn_cast_or_null<SCEVConstant>(Distance); 142 if (SCEVConst) { 143 const ConstantInt *CI = SCEVConst->getValue(); 144 if (CI->isNegative()) 145 Direction = '<'; 146 else if (CI->isZero()) 147 Direction = '='; 148 else 149 Direction = '>'; 150 Dep.push_back(Direction); 151 } else if (D->isScalar(II)) { 152 Direction = 'S'; 153 Dep.push_back(Direction); 154 } else { 155 unsigned Dir = D->getDirection(II); 156 if (Dir == Dependence::DVEntry::LT || 157 Dir == Dependence::DVEntry::LE) 158 Direction = '<'; 159 else if (Dir == Dependence::DVEntry::GT || 160 Dir == Dependence::DVEntry::GE) 161 Direction = '>'; 162 else if (Dir == Dependence::DVEntry::EQ) 163 Direction = '='; 164 else 165 Direction = '*'; 166 Dep.push_back(Direction); 167 } 168 } 169 while (Dep.size() != Level) { 170 Dep.push_back('I'); 171 } 172 173 DepMatrix.push_back(Dep); 174 if (DepMatrix.size() > MaxMemInstrCount) { 175 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 176 << " dependencies inside loop\n"); 177 return false; 178 } 179 } 180 } 181 } 182 183 return true; 184 } 185 186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 187 // matrix by exchanging the two columns. 188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 189 unsigned ToIndx) { 190 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 191 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 192 } 193 194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 195 // '>' 196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 197 unsigned Column) { 198 for (unsigned i = 0; i <= Column; ++i) { 199 if (DepMatrix[Row][i] == '<') 200 return false; 201 if (DepMatrix[Row][i] == '>') 202 return true; 203 } 204 // All dependencies were '=','S' or 'I' 205 return false; 206 } 207 208 // Checks if no dependence exist in the dependency matrix in Row before Column. 209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 210 unsigned Column) { 211 for (unsigned i = 0; i < Column; ++i) { 212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 213 DepMatrix[Row][i] != 'I') 214 return false; 215 } 216 return true; 217 } 218 219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 220 unsigned OuterLoopId, char InnerDep, 221 char OuterDep) { 222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 223 return false; 224 225 if (InnerDep == OuterDep) 226 return true; 227 228 // It is legal to interchange if and only if after interchange no row has a 229 // '>' direction as the leftmost non-'='. 230 231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 232 return true; 233 234 if (InnerDep == '<') 235 return true; 236 237 if (InnerDep == '>') { 238 // If OuterLoopId represents outermost loop then interchanging will make the 239 // 1st dependency as '>' 240 if (OuterLoopId == 0) 241 return false; 242 243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 244 // interchanging will result in this row having an outermost non '=' 245 // dependency of '>' 246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 247 return true; 248 } 249 250 return false; 251 } 252 253 // Checks if it is legal to interchange 2 loops. 254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 255 // if the direction matrix, after the same permutation is applied to its 256 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 258 unsigned InnerLoopId, 259 unsigned OuterLoopId) { 260 unsigned NumRows = DepMatrix.size(); 261 // For each row check if it is valid to interchange. 262 for (unsigned Row = 0; Row < NumRows; ++Row) { 263 char InnerDep = DepMatrix[Row][InnerLoopId]; 264 char OuterDep = DepMatrix[Row][OuterLoopId]; 265 if (InnerDep == '*' || OuterDep == '*') 266 return false; 267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 268 return false; 269 } 270 return true; 271 } 272 273 static LoopVector populateWorklist(Loop &L) { 274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 275 << L.getHeader()->getParent()->getName() << " Loop: %" 276 << L.getHeader()->getName() << '\n'); 277 LoopVector LoopList; 278 Loop *CurrentLoop = &L; 279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 280 while (!Vec->empty()) { 281 // The current loop has multiple subloops in it hence it is not tightly 282 // nested. 283 // Discard all loops above it added into Worklist. 284 if (Vec->size() != 1) 285 return {}; 286 287 LoopList.push_back(CurrentLoop); 288 CurrentLoop = Vec->front(); 289 Vec = &CurrentLoop->getSubLoops(); 290 } 291 LoopList.push_back(CurrentLoop); 292 return LoopList; 293 } 294 295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 297 if (InnerIndexVar) 298 return InnerIndexVar; 299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 300 return nullptr; 301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 302 PHINode *PhiVar = cast<PHINode>(I); 303 Type *PhiTy = PhiVar->getType(); 304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 305 !PhiTy->isPointerTy()) 306 return nullptr; 307 const SCEVAddRecExpr *AddRec = 308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 309 if (!AddRec || !AddRec->isAffine()) 310 continue; 311 const SCEV *Step = AddRec->getStepRecurrence(*SE); 312 if (!isa<SCEVConstant>(Step)) 313 continue; 314 // Found the induction variable. 315 // FIXME: Handle loops with more than one induction variable. Note that, 316 // currently, legality makes sure we have only one induction variable. 317 return PhiVar; 318 } 319 return nullptr; 320 } 321 322 namespace { 323 324 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 325 class LoopInterchangeLegality { 326 public: 327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 328 OptimizationRemarkEmitter *ORE) 329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 330 331 /// Check if the loops can be interchanged. 332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 333 CharMatrix &DepMatrix); 334 335 /// Check if the loop structure is understood. We do not handle triangular 336 /// loops for now. 337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 338 339 bool currentLimitations(); 340 341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 342 return OuterInnerReductions; 343 } 344 345 private: 346 bool tightlyNested(Loop *Outer, Loop *Inner); 347 bool containsUnsafeInstructions(BasicBlock *BB); 348 349 /// Discover induction and reduction PHIs in the header of \p L. Induction 350 /// PHIs are added to \p Inductions, reductions are added to 351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 352 /// to be passed as \p InnerLoop. 353 bool findInductionAndReductions(Loop *L, 354 SmallVector<PHINode *, 8> &Inductions, 355 Loop *InnerLoop); 356 357 Loop *OuterLoop; 358 Loop *InnerLoop; 359 360 ScalarEvolution *SE; 361 362 /// Interface to emit optimization remarks. 363 OptimizationRemarkEmitter *ORE; 364 365 /// Set of reduction PHIs taking part of a reduction across the inner and 366 /// outer loop. 367 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 368 }; 369 370 /// LoopInterchangeProfitability checks if it is profitable to interchange the 371 /// loop. 372 class LoopInterchangeProfitability { 373 public: 374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 375 OptimizationRemarkEmitter *ORE) 376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 377 378 /// Check if the loop interchange is profitable. 379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 380 CharMatrix &DepMatrix); 381 382 private: 383 int getInstrOrderCost(); 384 385 Loop *OuterLoop; 386 Loop *InnerLoop; 387 388 /// Scev analysis. 389 ScalarEvolution *SE; 390 391 /// Interface to emit optimization remarks. 392 OptimizationRemarkEmitter *ORE; 393 }; 394 395 /// LoopInterchangeTransform interchanges the loop. 396 class LoopInterchangeTransform { 397 public: 398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 399 LoopInfo *LI, DominatorTree *DT, 400 BasicBlock *LoopNestExit, 401 const LoopInterchangeLegality &LIL) 402 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 403 LoopExit(LoopNestExit), LIL(LIL) {} 404 405 /// Interchange OuterLoop and InnerLoop. 406 bool transform(); 407 void restructureLoops(Loop *NewInner, Loop *NewOuter, 408 BasicBlock *OrigInnerPreHeader, 409 BasicBlock *OrigOuterPreHeader); 410 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 411 412 private: 413 bool adjustLoopLinks(); 414 bool adjustLoopBranches(); 415 416 Loop *OuterLoop; 417 Loop *InnerLoop; 418 419 /// Scev analysis. 420 ScalarEvolution *SE; 421 422 LoopInfo *LI; 423 DominatorTree *DT; 424 BasicBlock *LoopExit; 425 426 const LoopInterchangeLegality &LIL; 427 }; 428 429 struct LoopInterchange { 430 ScalarEvolution *SE = nullptr; 431 LoopInfo *LI = nullptr; 432 DependenceInfo *DI = nullptr; 433 DominatorTree *DT = nullptr; 434 435 /// Interface to emit optimization remarks. 436 OptimizationRemarkEmitter *ORE; 437 438 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 439 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 440 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 441 442 bool run(Loop *L) { 443 if (L->getParentLoop()) 444 return false; 445 446 return processLoopList(populateWorklist(*L)); 447 } 448 449 bool run(LoopNest &LN) { 450 const auto &LoopList = LN.getLoops(); 451 for (unsigned I = 1; I < LoopList.size(); ++I) 452 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 453 return false; 454 return processLoopList(LoopList); 455 } 456 457 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 458 for (Loop *L : LoopList) { 459 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 460 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 461 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 462 return false; 463 } 464 if (L->getNumBackEdges() != 1) { 465 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 466 return false; 467 } 468 if (!L->getExitingBlock()) { 469 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 470 return false; 471 } 472 } 473 return true; 474 } 475 476 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 477 // TODO: Add a better heuristic to select the loop to be interchanged based 478 // on the dependence matrix. Currently we select the innermost loop. 479 return LoopList.size() - 1; 480 } 481 482 bool processLoopList(ArrayRef<Loop *> LoopList) { 483 bool Changed = false; 484 unsigned LoopNestDepth = LoopList.size(); 485 if (LoopNestDepth < 2) { 486 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 487 return false; 488 } 489 if (LoopNestDepth > MaxLoopNestDepth) { 490 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 491 << MaxLoopNestDepth << "\n"); 492 return false; 493 } 494 if (!isComputableLoopNest(LoopList)) { 495 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 496 return false; 497 } 498 499 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 500 << "\n"); 501 502 CharMatrix DependencyMatrix; 503 Loop *OuterMostLoop = *(LoopList.begin()); 504 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 505 OuterMostLoop, DI)) { 506 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 507 return false; 508 } 509 #ifdef DUMP_DEP_MATRICIES 510 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 511 printDepMatrix(DependencyMatrix); 512 #endif 513 514 // Get the Outermost loop exit. 515 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 516 if (!LoopNestExit) { 517 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 518 return false; 519 } 520 521 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 522 // Move the selected loop outwards to the best possible position. 523 Loop *LoopToBeInterchanged = LoopList[SelecLoopId]; 524 for (unsigned i = SelecLoopId; i > 0; i--) { 525 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i, 526 i - 1, LoopNestExit, DependencyMatrix); 527 if (!Interchanged) 528 return Changed; 529 // Update the DependencyMatrix 530 interChangeDependencies(DependencyMatrix, i, i - 1); 531 #ifdef DUMP_DEP_MATRICIES 532 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 533 printDepMatrix(DependencyMatrix); 534 #endif 535 Changed |= Interchanged; 536 } 537 return Changed; 538 } 539 540 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 541 unsigned OuterLoopId, BasicBlock *LoopNestExit, 542 std::vector<std::vector<char>> &DependencyMatrix) { 543 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 544 << " and OuterLoopId = " << OuterLoopId << "\n"); 545 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 546 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 547 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 548 return false; 549 } 550 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 551 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 552 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 553 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 554 return false; 555 } 556 557 ORE->emit([&]() { 558 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 559 InnerLoop->getStartLoc(), 560 InnerLoop->getHeader()) 561 << "Loop interchanged with enclosing loop."; 562 }); 563 564 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 565 LIL); 566 LIT.transform(); 567 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 568 LoopsInterchanged++; 569 570 assert(InnerLoop->isLCSSAForm(*DT) && 571 "Inner loop not left in LCSSA form after loop interchange!"); 572 assert(OuterLoop->isLCSSAForm(*DT) && 573 "Outer loop not left in LCSSA form after loop interchange!"); 574 575 return true; 576 } 577 }; 578 579 } // end anonymous namespace 580 581 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 582 return any_of(*BB, [](const Instruction &I) { 583 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 584 }); 585 } 586 587 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 588 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 589 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 590 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 591 592 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 593 594 // A perfectly nested loop will not have any branch in between the outer and 595 // inner block i.e. outer header will branch to either inner preheader and 596 // outerloop latch. 597 BranchInst *OuterLoopHeaderBI = 598 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 599 if (!OuterLoopHeaderBI) 600 return false; 601 602 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 603 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 604 Succ != OuterLoopLatch) 605 return false; 606 607 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 608 // We do not have any basic block in between now make sure the outer header 609 // and outer loop latch doesn't contain any unsafe instructions. 610 if (containsUnsafeInstructions(OuterLoopHeader) || 611 containsUnsafeInstructions(OuterLoopLatch)) 612 return false; 613 614 // Also make sure the inner loop preheader does not contain any unsafe 615 // instructions. Note that all instructions in the preheader will be moved to 616 // the outer loop header when interchanging. 617 if (InnerLoopPreHeader != OuterLoopHeader && 618 containsUnsafeInstructions(InnerLoopPreHeader)) 619 return false; 620 621 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 622 // Ensure the inner loop exit block flows to the outer loop latch possibly 623 // through empty blocks. 624 const BasicBlock &SuccInner = 625 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 626 if (&SuccInner != OuterLoopLatch) { 627 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 628 << " does not lead to the outer loop latch.\n";); 629 return false; 630 } 631 // The inner loop exit block does flow to the outer loop latch and not some 632 // other BBs, now make sure it contains safe instructions, since it will be 633 // moved into the (new) inner loop after interchange. 634 if (containsUnsafeInstructions(InnerLoopExit)) 635 return false; 636 637 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 638 // We have a perfect loop nest. 639 return true; 640 } 641 642 bool LoopInterchangeLegality::isLoopStructureUnderstood( 643 PHINode *InnerInduction) { 644 unsigned Num = InnerInduction->getNumOperands(); 645 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 646 for (unsigned i = 0; i < Num; ++i) { 647 Value *Val = InnerInduction->getOperand(i); 648 if (isa<Constant>(Val)) 649 continue; 650 Instruction *I = dyn_cast<Instruction>(Val); 651 if (!I) 652 return false; 653 // TODO: Handle triangular loops. 654 // e.g. for(int i=0;i<N;i++) 655 // for(int j=i;j<N;j++) 656 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 657 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 658 InnerLoopPreheader && 659 !OuterLoop->isLoopInvariant(I)) { 660 return false; 661 } 662 } 663 return true; 664 } 665 666 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 667 // value. 668 static Value *followLCSSA(Value *SV) { 669 PHINode *PHI = dyn_cast<PHINode>(SV); 670 if (!PHI) 671 return SV; 672 673 if (PHI->getNumIncomingValues() != 1) 674 return SV; 675 return followLCSSA(PHI->getIncomingValue(0)); 676 } 677 678 // Check V's users to see if it is involved in a reduction in L. 679 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 680 // Reduction variables cannot be constants. 681 if (isa<Constant>(V)) 682 return nullptr; 683 684 for (Value *User : V->users()) { 685 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 686 if (PHI->getNumIncomingValues() == 1) 687 continue; 688 RecurrenceDescriptor RD; 689 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 690 return PHI; 691 return nullptr; 692 } 693 } 694 695 return nullptr; 696 } 697 698 bool LoopInterchangeLegality::findInductionAndReductions( 699 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 700 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 701 return false; 702 for (PHINode &PHI : L->getHeader()->phis()) { 703 RecurrenceDescriptor RD; 704 InductionDescriptor ID; 705 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 706 Inductions.push_back(&PHI); 707 else { 708 // PHIs in inner loops need to be part of a reduction in the outer loop, 709 // discovered when checking the PHIs of the outer loop earlier. 710 if (!InnerLoop) { 711 if (!OuterInnerReductions.count(&PHI)) { 712 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 713 "across the outer loop.\n"); 714 return false; 715 } 716 } else { 717 assert(PHI.getNumIncomingValues() == 2 && 718 "Phis in loop header should have exactly 2 incoming values"); 719 // Check if we have a PHI node in the outer loop that has a reduction 720 // result from the inner loop as an incoming value. 721 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 722 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 723 if (!InnerRedPhi || 724 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 725 LLVM_DEBUG( 726 dbgs() 727 << "Failed to recognize PHI as an induction or reduction.\n"); 728 return false; 729 } 730 OuterInnerReductions.insert(&PHI); 731 OuterInnerReductions.insert(InnerRedPhi); 732 } 733 } 734 } 735 return true; 736 } 737 738 // This function indicates the current limitations in the transform as a result 739 // of which we do not proceed. 740 bool LoopInterchangeLegality::currentLimitations() { 741 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 742 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 743 744 // transform currently expects the loop latches to also be the exiting 745 // blocks. 746 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 747 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 748 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 749 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 750 LLVM_DEBUG( 751 dbgs() << "Loops where the latch is not the exiting block are not" 752 << " supported currently.\n"); 753 ORE->emit([&]() { 754 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 755 OuterLoop->getStartLoc(), 756 OuterLoop->getHeader()) 757 << "Loops where the latch is not the exiting block cannot be" 758 " interchange currently."; 759 }); 760 return true; 761 } 762 763 PHINode *InnerInductionVar; 764 SmallVector<PHINode *, 8> Inductions; 765 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 766 LLVM_DEBUG( 767 dbgs() << "Only outer loops with induction or reduction PHI nodes " 768 << "are supported currently.\n"); 769 ORE->emit([&]() { 770 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 771 OuterLoop->getStartLoc(), 772 OuterLoop->getHeader()) 773 << "Only outer loops with induction or reduction PHI nodes can be" 774 " interchanged currently."; 775 }); 776 return true; 777 } 778 779 // TODO: Currently we handle only loops with 1 induction variable. 780 if (Inductions.size() != 1) { 781 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 782 << "supported currently.\n"); 783 ORE->emit([&]() { 784 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 785 OuterLoop->getStartLoc(), 786 OuterLoop->getHeader()) 787 << "Only outer loops with 1 induction variable can be " 788 "interchanged currently."; 789 }); 790 return true; 791 } 792 793 Inductions.clear(); 794 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 795 LLVM_DEBUG( 796 dbgs() << "Only inner loops with induction or reduction PHI nodes " 797 << "are supported currently.\n"); 798 ORE->emit([&]() { 799 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 800 InnerLoop->getStartLoc(), 801 InnerLoop->getHeader()) 802 << "Only inner loops with induction or reduction PHI nodes can be" 803 " interchange currently."; 804 }); 805 return true; 806 } 807 808 // TODO: Currently we handle only loops with 1 induction variable. 809 if (Inductions.size() != 1) { 810 LLVM_DEBUG( 811 dbgs() << "We currently only support loops with 1 induction variable." 812 << "Failed to interchange due to current limitation\n"); 813 ORE->emit([&]() { 814 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 815 InnerLoop->getStartLoc(), 816 InnerLoop->getHeader()) 817 << "Only inner loops with 1 induction variable can be " 818 "interchanged currently."; 819 }); 820 return true; 821 } 822 InnerInductionVar = Inductions.pop_back_val(); 823 824 // TODO: Triangular loops are not handled for now. 825 if (!isLoopStructureUnderstood(InnerInductionVar)) { 826 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 827 ORE->emit([&]() { 828 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 829 InnerLoop->getStartLoc(), 830 InnerLoop->getHeader()) 831 << "Inner loop structure not understood currently."; 832 }); 833 return true; 834 } 835 836 // TODO: Current limitation: Since we split the inner loop latch at the point 837 // were induction variable is incremented (induction.next); We cannot have 838 // more than 1 user of induction.next since it would result in broken code 839 // after split. 840 // e.g. 841 // for(i=0;i<N;i++) { 842 // for(j = 0;j<M;j++) { 843 // A[j+1][i+2] = A[j][i]+k; 844 // } 845 // } 846 Instruction *InnerIndexVarInc = nullptr; 847 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 848 InnerIndexVarInc = 849 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 850 else 851 InnerIndexVarInc = 852 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 853 854 if (!InnerIndexVarInc) { 855 LLVM_DEBUG( 856 dbgs() << "Did not find an instruction to increment the induction " 857 << "variable.\n"); 858 ORE->emit([&]() { 859 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 860 InnerLoop->getStartLoc(), 861 InnerLoop->getHeader()) 862 << "The inner loop does not increment the induction variable."; 863 }); 864 return true; 865 } 866 867 // Since we split the inner loop latch on this induction variable. Make sure 868 // we do not have any instruction between the induction variable and branch 869 // instruction. 870 871 bool FoundInduction = false; 872 for (const Instruction &I : 873 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 874 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 875 isa<ZExtInst>(I)) 876 continue; 877 878 // We found an instruction. If this is not induction variable then it is not 879 // safe to split this loop latch. 880 if (!I.isIdenticalTo(InnerIndexVarInc)) { 881 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 882 << "variable increment and branch.\n"); 883 ORE->emit([&]() { 884 return OptimizationRemarkMissed( 885 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 886 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 887 << "Found unsupported instruction between induction variable " 888 "increment and branch."; 889 }); 890 return true; 891 } 892 893 FoundInduction = true; 894 break; 895 } 896 // The loop latch ended and we didn't find the induction variable return as 897 // current limitation. 898 if (!FoundInduction) { 899 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 900 ORE->emit([&]() { 901 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 902 InnerLoop->getStartLoc(), 903 InnerLoop->getHeader()) 904 << "Did not find the induction variable."; 905 }); 906 return true; 907 } 908 return false; 909 } 910 911 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 912 // users are either reduction PHIs or PHIs outside the outer loop (which means 913 // the we are only interested in the final value after the loop). 914 static bool 915 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 916 SmallPtrSetImpl<PHINode *> &Reductions) { 917 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 918 for (PHINode &PHI : InnerExit->phis()) { 919 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 920 if (PHI.getNumIncomingValues() > 1) 921 return false; 922 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 923 PHINode *PN = dyn_cast<PHINode>(U); 924 return !PN || 925 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 926 })) { 927 return false; 928 } 929 } 930 return true; 931 } 932 933 // We currently support LCSSA PHI nodes in the outer loop exit, if their 934 // incoming values do not come from the outer loop latch or if the 935 // outer loop latch has a single predecessor. In that case, the value will 936 // be available if both the inner and outer loop conditions are true, which 937 // will still be true after interchanging. If we have multiple predecessor, 938 // that may not be the case, e.g. because the outer loop latch may be executed 939 // if the inner loop is not executed. 940 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 941 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 942 for (PHINode &PHI : LoopNestExit->phis()) { 943 // FIXME: We currently are not able to detect floating point reductions 944 // and have to use floating point PHIs as a proxy to prevent 945 // interchanging in the presence of floating point reductions. 946 if (PHI.getType()->isFloatingPointTy()) 947 return false; 948 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 949 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 950 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 951 continue; 952 953 // The incoming value is defined in the outer loop latch. Currently we 954 // only support that in case the outer loop latch has a single predecessor. 955 // This guarantees that the outer loop latch is executed if and only if 956 // the inner loop is executed (because tightlyNested() guarantees that the 957 // outer loop header only branches to the inner loop or the outer loop 958 // latch). 959 // FIXME: We could weaken this logic and allow multiple predecessors, 960 // if the values are produced outside the loop latch. We would need 961 // additional logic to update the PHI nodes in the exit block as 962 // well. 963 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 964 return false; 965 } 966 } 967 return true; 968 } 969 970 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 971 unsigned OuterLoopId, 972 CharMatrix &DepMatrix) { 973 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 974 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 975 << " and OuterLoopId = " << OuterLoopId 976 << " due to dependence\n"); 977 ORE->emit([&]() { 978 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 979 InnerLoop->getStartLoc(), 980 InnerLoop->getHeader()) 981 << "Cannot interchange loops due to dependences."; 982 }); 983 return false; 984 } 985 // Check if outer and inner loop contain legal instructions only. 986 for (auto *BB : OuterLoop->blocks()) 987 for (Instruction &I : BB->instructionsWithoutDebug()) 988 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 989 // readnone functions do not prevent interchanging. 990 if (CI->doesNotReadMemory()) 991 continue; 992 LLVM_DEBUG( 993 dbgs() << "Loops with call instructions cannot be interchanged " 994 << "safely."); 995 ORE->emit([&]() { 996 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 997 CI->getDebugLoc(), 998 CI->getParent()) 999 << "Cannot interchange loops due to call instruction."; 1000 }); 1001 1002 return false; 1003 } 1004 1005 // TODO: The loops could not be interchanged due to current limitations in the 1006 // transform module. 1007 if (currentLimitations()) { 1008 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1009 return false; 1010 } 1011 1012 // Check if the loops are tightly nested. 1013 if (!tightlyNested(OuterLoop, InnerLoop)) { 1014 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1015 ORE->emit([&]() { 1016 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1017 InnerLoop->getStartLoc(), 1018 InnerLoop->getHeader()) 1019 << "Cannot interchange loops because they are not tightly " 1020 "nested."; 1021 }); 1022 return false; 1023 } 1024 1025 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1026 OuterInnerReductions)) { 1027 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1028 ORE->emit([&]() { 1029 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1030 InnerLoop->getStartLoc(), 1031 InnerLoop->getHeader()) 1032 << "Found unsupported PHI node in loop exit."; 1033 }); 1034 return false; 1035 } 1036 1037 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1038 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1039 ORE->emit([&]() { 1040 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1041 OuterLoop->getStartLoc(), 1042 OuterLoop->getHeader()) 1043 << "Found unsupported PHI node in loop exit."; 1044 }); 1045 return false; 1046 } 1047 1048 return true; 1049 } 1050 1051 int LoopInterchangeProfitability::getInstrOrderCost() { 1052 unsigned GoodOrder, BadOrder; 1053 BadOrder = GoodOrder = 0; 1054 for (BasicBlock *BB : InnerLoop->blocks()) { 1055 for (Instruction &Ins : *BB) { 1056 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1057 unsigned NumOp = GEP->getNumOperands(); 1058 bool FoundInnerInduction = false; 1059 bool FoundOuterInduction = false; 1060 for (unsigned i = 0; i < NumOp; ++i) { 1061 // Skip operands that are not SCEV-able. 1062 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1063 continue; 1064 1065 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1066 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1067 if (!AR) 1068 continue; 1069 1070 // If we find the inner induction after an outer induction e.g. 1071 // for(int i=0;i<N;i++) 1072 // for(int j=0;j<N;j++) 1073 // A[i][j] = A[i-1][j-1]+k; 1074 // then it is a good order. 1075 if (AR->getLoop() == InnerLoop) { 1076 // We found an InnerLoop induction after OuterLoop induction. It is 1077 // a good order. 1078 FoundInnerInduction = true; 1079 if (FoundOuterInduction) { 1080 GoodOrder++; 1081 break; 1082 } 1083 } 1084 // If we find the outer induction after an inner induction e.g. 1085 // for(int i=0;i<N;i++) 1086 // for(int j=0;j<N;j++) 1087 // A[j][i] = A[j-1][i-1]+k; 1088 // then it is a bad order. 1089 if (AR->getLoop() == OuterLoop) { 1090 // We found an OuterLoop induction after InnerLoop induction. It is 1091 // a bad order. 1092 FoundOuterInduction = true; 1093 if (FoundInnerInduction) { 1094 BadOrder++; 1095 break; 1096 } 1097 } 1098 } 1099 } 1100 } 1101 } 1102 return GoodOrder - BadOrder; 1103 } 1104 1105 static bool isProfitableForVectorization(unsigned InnerLoopId, 1106 unsigned OuterLoopId, 1107 CharMatrix &DepMatrix) { 1108 // TODO: Improve this heuristic to catch more cases. 1109 // If the inner loop is loop independent or doesn't carry any dependency it is 1110 // profitable to move this to outer position. 1111 for (auto &Row : DepMatrix) { 1112 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1113 return false; 1114 // TODO: We need to improve this heuristic. 1115 if (Row[OuterLoopId] != '=') 1116 return false; 1117 } 1118 // If outer loop has dependence and inner loop is loop independent then it is 1119 // profitable to interchange to enable parallelism. 1120 // If there are no dependences, interchanging will not improve anything. 1121 return !DepMatrix.empty(); 1122 } 1123 1124 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1125 unsigned OuterLoopId, 1126 CharMatrix &DepMatrix) { 1127 // TODO: Add better profitability checks. 1128 // e.g 1129 // 1) Construct dependency matrix and move the one with no loop carried dep 1130 // inside to enable vectorization. 1131 1132 // This is rough cost estimation algorithm. It counts the good and bad order 1133 // of induction variables in the instruction and allows reordering if number 1134 // of bad orders is more than good. 1135 int Cost = getInstrOrderCost(); 1136 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1137 if (Cost < -LoopInterchangeCostThreshold) 1138 return true; 1139 1140 // It is not profitable as per current cache profitability model. But check if 1141 // we can move this loop outside to improve parallelism. 1142 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1143 return true; 1144 1145 ORE->emit([&]() { 1146 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1147 InnerLoop->getStartLoc(), 1148 InnerLoop->getHeader()) 1149 << "Interchanging loops is too costly (cost=" 1150 << ore::NV("Cost", Cost) << ", threshold=" 1151 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1152 << ") and it does not improve parallelism."; 1153 }); 1154 return false; 1155 } 1156 1157 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1158 Loop *InnerLoop) { 1159 for (Loop *L : *OuterLoop) 1160 if (L == InnerLoop) { 1161 OuterLoop->removeChildLoop(L); 1162 return; 1163 } 1164 llvm_unreachable("Couldn't find loop"); 1165 } 1166 1167 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1168 /// new inner and outer loop after interchanging: NewInner is the original 1169 /// outer loop and NewOuter is the original inner loop. 1170 /// 1171 /// Before interchanging, we have the following structure 1172 /// Outer preheader 1173 // Outer header 1174 // Inner preheader 1175 // Inner header 1176 // Inner body 1177 // Inner latch 1178 // outer bbs 1179 // Outer latch 1180 // 1181 // After interchanging: 1182 // Inner preheader 1183 // Inner header 1184 // Outer preheader 1185 // Outer header 1186 // Inner body 1187 // outer bbs 1188 // Outer latch 1189 // Inner latch 1190 void LoopInterchangeTransform::restructureLoops( 1191 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1192 BasicBlock *OrigOuterPreHeader) { 1193 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1194 // The original inner loop preheader moves from the new inner loop to 1195 // the parent loop, if there is one. 1196 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1197 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1198 1199 // Switch the loop levels. 1200 if (OuterLoopParent) { 1201 // Remove the loop from its parent loop. 1202 removeChildLoop(OuterLoopParent, NewInner); 1203 removeChildLoop(NewInner, NewOuter); 1204 OuterLoopParent->addChildLoop(NewOuter); 1205 } else { 1206 removeChildLoop(NewInner, NewOuter); 1207 LI->changeTopLevelLoop(NewInner, NewOuter); 1208 } 1209 while (!NewOuter->isInnermost()) 1210 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1211 NewOuter->addChildLoop(NewInner); 1212 1213 // BBs from the original inner loop. 1214 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1215 1216 // Add BBs from the original outer loop to the original inner loop (excluding 1217 // BBs already in inner loop) 1218 for (BasicBlock *BB : NewInner->blocks()) 1219 if (LI->getLoopFor(BB) == NewInner) 1220 NewOuter->addBlockEntry(BB); 1221 1222 // Now remove inner loop header and latch from the new inner loop and move 1223 // other BBs (the loop body) to the new inner loop. 1224 BasicBlock *OuterHeader = NewOuter->getHeader(); 1225 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1226 for (BasicBlock *BB : OrigInnerBBs) { 1227 // Nothing will change for BBs in child loops. 1228 if (LI->getLoopFor(BB) != NewOuter) 1229 continue; 1230 // Remove the new outer loop header and latch from the new inner loop. 1231 if (BB == OuterHeader || BB == OuterLatch) 1232 NewInner->removeBlockFromLoop(BB); 1233 else 1234 LI->changeLoopFor(BB, NewInner); 1235 } 1236 1237 // The preheader of the original outer loop becomes part of the new 1238 // outer loop. 1239 NewOuter->addBlockEntry(OrigOuterPreHeader); 1240 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1241 1242 // Tell SE that we move the loops around. 1243 SE->forgetLoop(NewOuter); 1244 SE->forgetLoop(NewInner); 1245 } 1246 1247 bool LoopInterchangeTransform::transform() { 1248 bool Transformed = false; 1249 Instruction *InnerIndexVar; 1250 1251 if (InnerLoop->getSubLoops().empty()) { 1252 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1253 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1254 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1255 if (!InductionPHI) { 1256 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1257 return false; 1258 } 1259 1260 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1261 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1262 else 1263 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1264 1265 // Ensure that InductionPHI is the first Phi node. 1266 if (&InductionPHI->getParent()->front() != InductionPHI) 1267 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1268 1269 // Create a new latch block for the inner loop. We split at the 1270 // current latch's terminator and then move the condition and all 1271 // operands that are not either loop-invariant or the induction PHI into the 1272 // new latch block. 1273 BasicBlock *NewLatch = 1274 SplitBlock(InnerLoop->getLoopLatch(), 1275 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1276 1277 SmallSetVector<Instruction *, 4> WorkList; 1278 unsigned i = 0; 1279 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1280 for (; i < WorkList.size(); i++) { 1281 // Duplicate instruction and move it the new latch. Update uses that 1282 // have been moved. 1283 Instruction *NewI = WorkList[i]->clone(); 1284 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1285 assert(!NewI->mayHaveSideEffects() && 1286 "Moving instructions with side-effects may change behavior of " 1287 "the loop nest!"); 1288 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1289 Instruction *UserI = cast<Instruction>(U.getUser()); 1290 if (!InnerLoop->contains(UserI->getParent()) || 1291 UserI->getParent() == NewLatch || UserI == InductionPHI) 1292 U.set(NewI); 1293 } 1294 // Add operands of moved instruction to the worklist, except if they are 1295 // outside the inner loop or are the induction PHI. 1296 for (Value *Op : WorkList[i]->operands()) { 1297 Instruction *OpI = dyn_cast<Instruction>(Op); 1298 if (!OpI || 1299 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1300 OpI == InductionPHI) 1301 continue; 1302 WorkList.insert(OpI); 1303 } 1304 } 1305 }; 1306 1307 // FIXME: Should we interchange when we have a constant condition? 1308 Instruction *CondI = dyn_cast<Instruction>( 1309 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1310 ->getCondition()); 1311 if (CondI) 1312 WorkList.insert(CondI); 1313 MoveInstructions(); 1314 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1315 MoveInstructions(); 1316 1317 // Splits the inner loops phi nodes out into a separate basic block. 1318 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1319 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1320 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1321 } 1322 1323 // Instructions in the original inner loop preheader may depend on values 1324 // defined in the outer loop header. Move them there, because the original 1325 // inner loop preheader will become the entry into the interchanged loop nest. 1326 // Currently we move all instructions and rely on LICM to move invariant 1327 // instructions outside the loop nest. 1328 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1329 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1330 if (InnerLoopPreHeader != OuterLoopHeader) { 1331 SmallPtrSet<Instruction *, 4> NeedsMoving; 1332 for (Instruction &I : 1333 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1334 std::prev(InnerLoopPreHeader->end())))) 1335 I.moveBefore(OuterLoopHeader->getTerminator()); 1336 } 1337 1338 Transformed |= adjustLoopLinks(); 1339 if (!Transformed) { 1340 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1341 return false; 1342 } 1343 1344 return true; 1345 } 1346 1347 /// \brief Move all instructions except the terminator from FromBB right before 1348 /// InsertBefore 1349 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1350 auto &ToList = InsertBefore->getParent()->getInstList(); 1351 auto &FromList = FromBB->getInstList(); 1352 1353 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1354 FromBB->getTerminator()->getIterator()); 1355 } 1356 1357 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1358 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1359 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1360 // from BB1 afterwards. 1361 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1362 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1363 for (Instruction *I : TempInstrs) 1364 I->removeFromParent(); 1365 1366 // Move instructions from BB2 to BB1. 1367 moveBBContents(BB2, BB1->getTerminator()); 1368 1369 // Move instructions from TempInstrs to BB2. 1370 for (Instruction *I : TempInstrs) 1371 I->insertBefore(BB2->getTerminator()); 1372 } 1373 1374 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1375 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1376 // \p OldBB is exactly once in BI's successor list. 1377 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1378 BasicBlock *NewBB, 1379 std::vector<DominatorTree::UpdateType> &DTUpdates, 1380 bool MustUpdateOnce = true) { 1381 assert((!MustUpdateOnce || 1382 llvm::count_if(successors(BI), 1383 [OldBB](BasicBlock *BB) { 1384 return BB == OldBB; 1385 }) == 1) && "BI must jump to OldBB exactly once."); 1386 bool Changed = false; 1387 for (Use &Op : BI->operands()) 1388 if (Op == OldBB) { 1389 Op.set(NewBB); 1390 Changed = true; 1391 } 1392 1393 if (Changed) { 1394 DTUpdates.push_back( 1395 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1396 DTUpdates.push_back( 1397 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1398 } 1399 assert(Changed && "Expected a successor to be updated"); 1400 } 1401 1402 // Move Lcssa PHIs to the right place. 1403 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1404 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1405 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1406 Loop *InnerLoop, LoopInfo *LI) { 1407 1408 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1409 // defined either in the header or latch. Those blocks will become header and 1410 // latch of the new outer loop, and the only possible users can PHI nodes 1411 // in the exit block of the loop nest or the outer loop header (reduction 1412 // PHIs, in that case, the incoming value must be defined in the inner loop 1413 // header). We can just substitute the user with the incoming value and remove 1414 // the PHI. 1415 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1416 assert(P.getNumIncomingValues() == 1 && 1417 "Only loops with a single exit are supported!"); 1418 1419 // Incoming values are guaranteed be instructions currently. 1420 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1421 // Skip phis with incoming values from the inner loop body, excluding the 1422 // header and latch. 1423 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1424 continue; 1425 1426 assert(all_of(P.users(), 1427 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1428 return (cast<PHINode>(U)->getParent() == OuterHeader && 1429 IncI->getParent() == InnerHeader) || 1430 cast<PHINode>(U)->getParent() == OuterExit; 1431 }) && 1432 "Can only replace phis iff the uses are in the loop nest exit or " 1433 "the incoming value is defined in the inner header (it will " 1434 "dominate all loop blocks after interchanging)"); 1435 P.replaceAllUsesWith(IncI); 1436 P.eraseFromParent(); 1437 } 1438 1439 SmallVector<PHINode *, 8> LcssaInnerExit; 1440 for (PHINode &P : InnerExit->phis()) 1441 LcssaInnerExit.push_back(&P); 1442 1443 SmallVector<PHINode *, 8> LcssaInnerLatch; 1444 for (PHINode &P : InnerLatch->phis()) 1445 LcssaInnerLatch.push_back(&P); 1446 1447 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1448 // If a PHI node has users outside of InnerExit, it has a use outside the 1449 // interchanged loop and we have to preserve it. We move these to 1450 // InnerLatch, which will become the new exit block for the innermost 1451 // loop after interchanging. 1452 for (PHINode *P : LcssaInnerExit) 1453 P->moveBefore(InnerLatch->getFirstNonPHI()); 1454 1455 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1456 // and we have to move them to the new inner latch. 1457 for (PHINode *P : LcssaInnerLatch) 1458 P->moveBefore(InnerExit->getFirstNonPHI()); 1459 1460 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1461 // incoming values defined in the outer loop, we have to add a new PHI 1462 // in the inner loop latch, which became the exit block of the outer loop, 1463 // after interchanging. 1464 if (OuterExit) { 1465 for (PHINode &P : OuterExit->phis()) { 1466 if (P.getNumIncomingValues() != 1) 1467 continue; 1468 // Skip Phis with incoming values defined in the inner loop. Those should 1469 // already have been updated. 1470 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1471 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1472 continue; 1473 1474 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1475 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1476 NewPhi->setIncomingBlock(0, OuterLatch); 1477 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1478 P.setIncomingValue(0, NewPhi); 1479 } 1480 } 1481 1482 // Now adjust the incoming blocks for the LCSSA PHIs. 1483 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1484 // with the new latch. 1485 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1486 } 1487 1488 bool LoopInterchangeTransform::adjustLoopBranches() { 1489 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1490 std::vector<DominatorTree::UpdateType> DTUpdates; 1491 1492 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1493 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1494 1495 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1496 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1497 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1498 // Ensure that both preheaders do not contain PHI nodes and have single 1499 // predecessors. This allows us to move them easily. We use 1500 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1501 // preheaders do not satisfy those conditions. 1502 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1503 !OuterLoopPreHeader->getUniquePredecessor()) 1504 OuterLoopPreHeader = 1505 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1506 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1507 InnerLoopPreHeader = 1508 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1509 1510 // Adjust the loop preheader 1511 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1512 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1513 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1514 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1515 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1516 BasicBlock *InnerLoopLatchPredecessor = 1517 InnerLoopLatch->getUniquePredecessor(); 1518 BasicBlock *InnerLoopLatchSuccessor; 1519 BasicBlock *OuterLoopLatchSuccessor; 1520 1521 BranchInst *OuterLoopLatchBI = 1522 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1523 BranchInst *InnerLoopLatchBI = 1524 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1525 BranchInst *OuterLoopHeaderBI = 1526 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1527 BranchInst *InnerLoopHeaderBI = 1528 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1529 1530 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1531 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1532 !InnerLoopHeaderBI) 1533 return false; 1534 1535 BranchInst *InnerLoopLatchPredecessorBI = 1536 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1537 BranchInst *OuterLoopPredecessorBI = 1538 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1539 1540 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1541 return false; 1542 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1543 if (!InnerLoopHeaderSuccessor) 1544 return false; 1545 1546 // Adjust Loop Preheader and headers. 1547 // The branches in the outer loop predecessor and the outer loop header can 1548 // be unconditional branches or conditional branches with duplicates. Consider 1549 // this when updating the successors. 1550 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1551 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1552 // The outer loop header might or might not branch to the outer latch. 1553 // We are guaranteed to branch to the inner loop preheader. 1554 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1555 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1556 /*MustUpdateOnce=*/false); 1557 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1558 InnerLoopHeaderSuccessor, DTUpdates, 1559 /*MustUpdateOnce=*/false); 1560 1561 // Adjust reduction PHI's now that the incoming block has changed. 1562 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1563 OuterLoopHeader); 1564 1565 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1566 OuterLoopPreHeader, DTUpdates); 1567 1568 // -------------Adjust loop latches----------- 1569 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1570 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1571 else 1572 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1573 1574 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1575 InnerLoopLatchSuccessor, DTUpdates); 1576 1577 1578 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1579 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1580 else 1581 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1582 1583 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1584 OuterLoopLatchSuccessor, DTUpdates); 1585 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1586 DTUpdates); 1587 1588 DT->applyUpdates(DTUpdates); 1589 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1590 OuterLoopPreHeader); 1591 1592 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1593 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1594 InnerLoop, LI); 1595 // For PHIs in the exit block of the outer loop, outer's latch has been 1596 // replaced by Inners'. 1597 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1598 1599 // Now update the reduction PHIs in the inner and outer loop headers. 1600 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1601 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1602 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1603 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1604 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1605 1606 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1607 (void)OuterInnerReductions; 1608 1609 // Now move the remaining reduction PHIs from outer to inner loop header and 1610 // vice versa. The PHI nodes must be part of a reduction across the inner and 1611 // outer loop and all the remains to do is and updating the incoming blocks. 1612 for (PHINode *PHI : OuterLoopPHIs) { 1613 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1614 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1615 } 1616 for (PHINode *PHI : InnerLoopPHIs) { 1617 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1618 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1619 } 1620 1621 // Update the incoming blocks for moved PHI nodes. 1622 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1623 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1624 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1625 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1626 1627 // Values defined in the outer loop header could be used in the inner loop 1628 // latch. In that case, we need to create LCSSA phis for them, because after 1629 // interchanging they will be defined in the new inner loop and used in the 1630 // new outer loop. 1631 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1632 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1633 for (Instruction &I : 1634 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1635 MayNeedLCSSAPhis.push_back(&I); 1636 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1637 1638 return true; 1639 } 1640 1641 bool LoopInterchangeTransform::adjustLoopLinks() { 1642 // Adjust all branches in the inner and outer loop. 1643 bool Changed = adjustLoopBranches(); 1644 if (Changed) { 1645 // We have interchanged the preheaders so we need to interchange the data in 1646 // the preheaders as well. This is because the content of the inner 1647 // preheader was previously executed inside the outer loop. 1648 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1649 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1650 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1651 } 1652 return Changed; 1653 } 1654 1655 /// Main LoopInterchange Pass. 1656 struct LoopInterchangeLegacyPass : public LoopPass { 1657 static char ID; 1658 1659 LoopInterchangeLegacyPass() : LoopPass(ID) { 1660 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1661 } 1662 1663 void getAnalysisUsage(AnalysisUsage &AU) const override { 1664 AU.addRequired<DependenceAnalysisWrapperPass>(); 1665 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1666 1667 getLoopAnalysisUsage(AU); 1668 } 1669 1670 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1671 if (skipLoop(L)) 1672 return false; 1673 1674 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1675 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1676 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1677 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1678 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1679 1680 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1681 } 1682 }; 1683 1684 char LoopInterchangeLegacyPass::ID = 0; 1685 1686 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1687 "Interchanges loops for cache reuse", false, false) 1688 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1689 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1690 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1691 1692 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1693 "Interchanges loops for cache reuse", false, false) 1694 1695 Pass *llvm::createLoopInterchangePass() { 1696 return new LoopInterchangeLegacyPass(); 1697 } 1698 1699 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1700 LoopAnalysisManager &AM, 1701 LoopStandardAnalysisResults &AR, 1702 LPMUpdater &U) { 1703 Function &F = *LN.getParent(); 1704 1705 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1706 OptimizationRemarkEmitter ORE(&F); 1707 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN)) 1708 return PreservedAnalyses::all(); 1709 return getLoopPassPreservedAnalyses(); 1710 } 1711