1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/DependenceAnalysis.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Scalar.h" 45 #include "llvm/Transforms/Utils.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/LoopUtils.h" 48 #include <cassert> 49 #include <utility> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "loop-interchange" 55 56 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 57 58 static cl::opt<int> LoopInterchangeCostThreshold( 59 "loop-interchange-threshold", cl::init(0), cl::Hidden, 60 cl::desc("Interchange if you gain more than this number")); 61 62 namespace { 63 64 using LoopVector = SmallVector<Loop *, 8>; 65 66 // TODO: Check if we can use a sparse matrix here. 67 using CharMatrix = std::vector<std::vector<char>>; 68 69 } // end anonymous namespace 70 71 // Maximum number of dependencies that can be handled in the dependency matrix. 72 static const unsigned MaxMemInstrCount = 100; 73 74 // Maximum loop depth supported. 75 static const unsigned MaxLoopNestDepth = 10; 76 77 #ifdef DUMP_DEP_MATRICIES 78 static void printDepMatrix(CharMatrix &DepMatrix) { 79 for (auto &Row : DepMatrix) { 80 for (auto D : Row) 81 LLVM_DEBUG(dbgs() << D << " "); 82 LLVM_DEBUG(dbgs() << "\n"); 83 } 84 } 85 #endif 86 87 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 88 Loop *L, DependenceInfo *DI) { 89 using ValueVector = SmallVector<Value *, 16>; 90 91 ValueVector MemInstr; 92 93 // For each block. 94 for (BasicBlock *BB : L->blocks()) { 95 // Scan the BB and collect legal loads and stores. 96 for (Instruction &I : *BB) { 97 if (!isa<Instruction>(I)) 98 return false; 99 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 100 if (!Ld->isSimple()) 101 return false; 102 MemInstr.push_back(&I); 103 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 104 if (!St->isSimple()) 105 return false; 106 MemInstr.push_back(&I); 107 } 108 } 109 } 110 111 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 112 << " Loads and Stores to analyze\n"); 113 114 ValueVector::iterator I, IE, J, JE; 115 116 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 117 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 118 std::vector<char> Dep; 119 Instruction *Src = cast<Instruction>(*I); 120 Instruction *Dst = cast<Instruction>(*J); 121 if (Src == Dst) 122 continue; 123 // Ignore Input dependencies. 124 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 125 continue; 126 // Track Output, Flow, and Anti dependencies. 127 if (auto D = DI->depends(Src, Dst, true)) { 128 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 129 LLVM_DEBUG(StringRef DepType = 130 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 131 dbgs() << "Found " << DepType 132 << " dependency between Src and Dst\n" 133 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 134 unsigned Levels = D->getLevels(); 135 char Direction; 136 for (unsigned II = 1; II <= Levels; ++II) { 137 const SCEV *Distance = D->getDistance(II); 138 const SCEVConstant *SCEVConst = 139 dyn_cast_or_null<SCEVConstant>(Distance); 140 if (SCEVConst) { 141 const ConstantInt *CI = SCEVConst->getValue(); 142 if (CI->isNegative()) 143 Direction = '<'; 144 else if (CI->isZero()) 145 Direction = '='; 146 else 147 Direction = '>'; 148 Dep.push_back(Direction); 149 } else if (D->isScalar(II)) { 150 Direction = 'S'; 151 Dep.push_back(Direction); 152 } else { 153 unsigned Dir = D->getDirection(II); 154 if (Dir == Dependence::DVEntry::LT || 155 Dir == Dependence::DVEntry::LE) 156 Direction = '<'; 157 else if (Dir == Dependence::DVEntry::GT || 158 Dir == Dependence::DVEntry::GE) 159 Direction = '>'; 160 else if (Dir == Dependence::DVEntry::EQ) 161 Direction = '='; 162 else 163 Direction = '*'; 164 Dep.push_back(Direction); 165 } 166 } 167 while (Dep.size() != Level) { 168 Dep.push_back('I'); 169 } 170 171 DepMatrix.push_back(Dep); 172 if (DepMatrix.size() > MaxMemInstrCount) { 173 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 174 << " dependencies inside loop\n"); 175 return false; 176 } 177 } 178 } 179 } 180 181 return true; 182 } 183 184 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 185 // matrix by exchanging the two columns. 186 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 187 unsigned ToIndx) { 188 unsigned numRows = DepMatrix.size(); 189 for (unsigned i = 0; i < numRows; ++i) { 190 char TmpVal = DepMatrix[i][ToIndx]; 191 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 192 DepMatrix[i][FromIndx] = TmpVal; 193 } 194 } 195 196 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 197 // '>' 198 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 199 unsigned Column) { 200 for (unsigned i = 0; i <= Column; ++i) { 201 if (DepMatrix[Row][i] == '<') 202 return false; 203 if (DepMatrix[Row][i] == '>') 204 return true; 205 } 206 // All dependencies were '=','S' or 'I' 207 return false; 208 } 209 210 // Checks if no dependence exist in the dependency matrix in Row before Column. 211 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 212 unsigned Column) { 213 for (unsigned i = 0; i < Column; ++i) { 214 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 215 DepMatrix[Row][i] != 'I') 216 return false; 217 } 218 return true; 219 } 220 221 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 222 unsigned OuterLoopId, char InnerDep, 223 char OuterDep) { 224 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 225 return false; 226 227 if (InnerDep == OuterDep) 228 return true; 229 230 // It is legal to interchange if and only if after interchange no row has a 231 // '>' direction as the leftmost non-'='. 232 233 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 234 return true; 235 236 if (InnerDep == '<') 237 return true; 238 239 if (InnerDep == '>') { 240 // If OuterLoopId represents outermost loop then interchanging will make the 241 // 1st dependency as '>' 242 if (OuterLoopId == 0) 243 return false; 244 245 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 246 // interchanging will result in this row having an outermost non '=' 247 // dependency of '>' 248 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 249 return true; 250 } 251 252 return false; 253 } 254 255 // Checks if it is legal to interchange 2 loops. 256 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 257 // if the direction matrix, after the same permutation is applied to its 258 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 259 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 260 unsigned InnerLoopId, 261 unsigned OuterLoopId) { 262 unsigned NumRows = DepMatrix.size(); 263 // For each row check if it is valid to interchange. 264 for (unsigned Row = 0; Row < NumRows; ++Row) { 265 char InnerDep = DepMatrix[Row][InnerLoopId]; 266 char OuterDep = DepMatrix[Row][OuterLoopId]; 267 if (InnerDep == '*' || OuterDep == '*') 268 return false; 269 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 270 return false; 271 } 272 return true; 273 } 274 275 static LoopVector populateWorklist(Loop &L) { 276 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 277 << L.getHeader()->getParent()->getName() << " Loop: %" 278 << L.getHeader()->getName() << '\n'); 279 LoopVector LoopList; 280 Loop *CurrentLoop = &L; 281 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 282 while (!Vec->empty()) { 283 // The current loop has multiple subloops in it hence it is not tightly 284 // nested. 285 // Discard all loops above it added into Worklist. 286 if (Vec->size() != 1) 287 return {}; 288 289 LoopList.push_back(CurrentLoop); 290 CurrentLoop = Vec->front(); 291 Vec = &CurrentLoop->getSubLoops(); 292 } 293 LoopList.push_back(CurrentLoop); 294 return LoopList; 295 } 296 297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 298 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 299 if (InnerIndexVar) 300 return InnerIndexVar; 301 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 302 return nullptr; 303 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 304 PHINode *PhiVar = cast<PHINode>(I); 305 Type *PhiTy = PhiVar->getType(); 306 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 307 !PhiTy->isPointerTy()) 308 return nullptr; 309 const SCEVAddRecExpr *AddRec = 310 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 311 if (!AddRec || !AddRec->isAffine()) 312 continue; 313 const SCEV *Step = AddRec->getStepRecurrence(*SE); 314 if (!isa<SCEVConstant>(Step)) 315 continue; 316 // Found the induction variable. 317 // FIXME: Handle loops with more than one induction variable. Note that, 318 // currently, legality makes sure we have only one induction variable. 319 return PhiVar; 320 } 321 return nullptr; 322 } 323 324 namespace { 325 326 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 327 class LoopInterchangeLegality { 328 public: 329 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 330 OptimizationRemarkEmitter *ORE) 331 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 332 333 /// Check if the loops can be interchanged. 334 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 335 CharMatrix &DepMatrix); 336 337 /// Check if the loop structure is understood. We do not handle triangular 338 /// loops for now. 339 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 340 341 bool currentLimitations(); 342 343 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 344 return OuterInnerReductions; 345 } 346 347 private: 348 bool tightlyNested(Loop *Outer, Loop *Inner); 349 bool containsUnsafeInstructions(BasicBlock *BB); 350 351 /// Discover induction and reduction PHIs in the header of \p L. Induction 352 /// PHIs are added to \p Inductions, reductions are added to 353 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 354 /// to be passed as \p InnerLoop. 355 bool findInductionAndReductions(Loop *L, 356 SmallVector<PHINode *, 8> &Inductions, 357 Loop *InnerLoop); 358 359 Loop *OuterLoop; 360 Loop *InnerLoop; 361 362 ScalarEvolution *SE; 363 364 /// Interface to emit optimization remarks. 365 OptimizationRemarkEmitter *ORE; 366 367 /// Set of reduction PHIs taking part of a reduction across the inner and 368 /// outer loop. 369 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 370 }; 371 372 /// LoopInterchangeProfitability checks if it is profitable to interchange the 373 /// loop. 374 class LoopInterchangeProfitability { 375 public: 376 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 377 OptimizationRemarkEmitter *ORE) 378 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 379 380 /// Check if the loop interchange is profitable. 381 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 382 CharMatrix &DepMatrix); 383 384 private: 385 int getInstrOrderCost(); 386 387 Loop *OuterLoop; 388 Loop *InnerLoop; 389 390 /// Scev analysis. 391 ScalarEvolution *SE; 392 393 /// Interface to emit optimization remarks. 394 OptimizationRemarkEmitter *ORE; 395 }; 396 397 /// LoopInterchangeTransform interchanges the loop. 398 class LoopInterchangeTransform { 399 public: 400 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 401 LoopInfo *LI, DominatorTree *DT, 402 BasicBlock *LoopNestExit, 403 const LoopInterchangeLegality &LIL) 404 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 405 LoopExit(LoopNestExit), LIL(LIL) {} 406 407 /// Interchange OuterLoop and InnerLoop. 408 bool transform(); 409 void restructureLoops(Loop *NewInner, Loop *NewOuter, 410 BasicBlock *OrigInnerPreHeader, 411 BasicBlock *OrigOuterPreHeader); 412 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 413 414 private: 415 bool adjustLoopLinks(); 416 bool adjustLoopBranches(); 417 418 Loop *OuterLoop; 419 Loop *InnerLoop; 420 421 /// Scev analysis. 422 ScalarEvolution *SE; 423 424 LoopInfo *LI; 425 DominatorTree *DT; 426 BasicBlock *LoopExit; 427 428 const LoopInterchangeLegality &LIL; 429 }; 430 431 // Main LoopInterchange Pass. 432 struct LoopInterchange : public LoopPass { 433 static char ID; 434 ScalarEvolution *SE = nullptr; 435 LoopInfo *LI = nullptr; 436 DependenceInfo *DI = nullptr; 437 DominatorTree *DT = nullptr; 438 439 /// Interface to emit optimization remarks. 440 OptimizationRemarkEmitter *ORE; 441 442 LoopInterchange() : LoopPass(ID) { 443 initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); 444 } 445 446 void getAnalysisUsage(AnalysisUsage &AU) const override { 447 AU.addRequired<DependenceAnalysisWrapperPass>(); 448 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 449 450 getLoopAnalysisUsage(AU); 451 } 452 453 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 454 if (skipLoop(L) || L->getParentLoop()) 455 return false; 456 457 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 458 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 459 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 460 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 461 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 462 463 return processLoopList(populateWorklist(*L)); 464 } 465 466 bool isComputableLoopNest(LoopVector LoopList) { 467 for (Loop *L : LoopList) { 468 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 469 if (ExitCountOuter == SE->getCouldNotCompute()) { 470 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 471 return false; 472 } 473 if (L->getNumBackEdges() != 1) { 474 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 475 return false; 476 } 477 if (!L->getExitingBlock()) { 478 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 479 return false; 480 } 481 } 482 return true; 483 } 484 485 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 486 // TODO: Add a better heuristic to select the loop to be interchanged based 487 // on the dependence matrix. Currently we select the innermost loop. 488 return LoopList.size() - 1; 489 } 490 491 bool processLoopList(LoopVector LoopList) { 492 bool Changed = false; 493 unsigned LoopNestDepth = LoopList.size(); 494 if (LoopNestDepth < 2) { 495 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 496 return false; 497 } 498 if (LoopNestDepth > MaxLoopNestDepth) { 499 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 500 << MaxLoopNestDepth << "\n"); 501 return false; 502 } 503 if (!isComputableLoopNest(LoopList)) { 504 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 505 return false; 506 } 507 508 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 509 << "\n"); 510 511 CharMatrix DependencyMatrix; 512 Loop *OuterMostLoop = *(LoopList.begin()); 513 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 514 OuterMostLoop, DI)) { 515 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 516 return false; 517 } 518 #ifdef DUMP_DEP_MATRICIES 519 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 520 printDepMatrix(DependencyMatrix); 521 #endif 522 523 // Get the Outermost loop exit. 524 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 525 if (!LoopNestExit) { 526 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 527 return false; 528 } 529 530 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 531 // Move the selected loop outwards to the best possible position. 532 for (unsigned i = SelecLoopId; i > 0; i--) { 533 bool Interchanged = 534 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 535 if (!Interchanged) 536 return Changed; 537 // Loops interchanged reflect the same in LoopList 538 std::swap(LoopList[i - 1], LoopList[i]); 539 540 // Update the DependencyMatrix 541 interChangeDependencies(DependencyMatrix, i, i - 1); 542 #ifdef DUMP_DEP_MATRICIES 543 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 544 printDepMatrix(DependencyMatrix); 545 #endif 546 Changed |= Interchanged; 547 } 548 return Changed; 549 } 550 551 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 552 unsigned OuterLoopId, BasicBlock *LoopNestExit, 553 std::vector<std::vector<char>> &DependencyMatrix) { 554 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 555 << " and OuterLoopId = " << OuterLoopId << "\n"); 556 Loop *InnerLoop = LoopList[InnerLoopId]; 557 Loop *OuterLoop = LoopList[OuterLoopId]; 558 559 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 560 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 561 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 562 return false; 563 } 564 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 565 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 566 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 567 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 568 return false; 569 } 570 571 ORE->emit([&]() { 572 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 573 InnerLoop->getStartLoc(), 574 InnerLoop->getHeader()) 575 << "Loop interchanged with enclosing loop."; 576 }); 577 578 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 579 LIL); 580 LIT.transform(); 581 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 582 LoopsInterchanged++; 583 584 assert(InnerLoop->isLCSSAForm(*DT) && 585 "Inner loop not left in LCSSA form after loop interchange!"); 586 assert(OuterLoop->isLCSSAForm(*DT) && 587 "Outer loop not left in LCSSA form after loop interchange!"); 588 589 return true; 590 } 591 }; 592 593 } // end anonymous namespace 594 595 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 596 return any_of(*BB, [](const Instruction &I) { 597 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 598 }); 599 } 600 601 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 602 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 603 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 604 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 605 606 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 607 608 // A perfectly nested loop will not have any branch in between the outer and 609 // inner block i.e. outer header will branch to either inner preheader and 610 // outerloop latch. 611 BranchInst *OuterLoopHeaderBI = 612 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 613 if (!OuterLoopHeaderBI) 614 return false; 615 616 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 617 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 618 Succ != OuterLoopLatch) 619 return false; 620 621 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 622 // We do not have any basic block in between now make sure the outer header 623 // and outer loop latch doesn't contain any unsafe instructions. 624 if (containsUnsafeInstructions(OuterLoopHeader) || 625 containsUnsafeInstructions(OuterLoopLatch)) 626 return false; 627 628 // Also make sure the inner loop preheader does not contain any unsafe 629 // instructions. Note that all instructions in the preheader will be moved to 630 // the outer loop header when interchanging. 631 if (InnerLoopPreHeader != OuterLoopHeader && 632 containsUnsafeInstructions(InnerLoopPreHeader)) 633 return false; 634 635 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 636 // We have a perfect loop nest. 637 return true; 638 } 639 640 bool LoopInterchangeLegality::isLoopStructureUnderstood( 641 PHINode *InnerInduction) { 642 unsigned Num = InnerInduction->getNumOperands(); 643 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 644 for (unsigned i = 0; i < Num; ++i) { 645 Value *Val = InnerInduction->getOperand(i); 646 if (isa<Constant>(Val)) 647 continue; 648 Instruction *I = dyn_cast<Instruction>(Val); 649 if (!I) 650 return false; 651 // TODO: Handle triangular loops. 652 // e.g. for(int i=0;i<N;i++) 653 // for(int j=i;j<N;j++) 654 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 655 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 656 InnerLoopPreheader && 657 !OuterLoop->isLoopInvariant(I)) { 658 return false; 659 } 660 } 661 return true; 662 } 663 664 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 665 // value. 666 static Value *followLCSSA(Value *SV) { 667 PHINode *PHI = dyn_cast<PHINode>(SV); 668 if (!PHI) 669 return SV; 670 671 if (PHI->getNumIncomingValues() != 1) 672 return SV; 673 return followLCSSA(PHI->getIncomingValue(0)); 674 } 675 676 // Check V's users to see if it is involved in a reduction in L. 677 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 678 for (Value *User : V->users()) { 679 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 680 if (PHI->getNumIncomingValues() == 1) 681 continue; 682 RecurrenceDescriptor RD; 683 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 684 return PHI; 685 return nullptr; 686 } 687 } 688 689 return nullptr; 690 } 691 692 bool LoopInterchangeLegality::findInductionAndReductions( 693 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 694 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 695 return false; 696 for (PHINode &PHI : L->getHeader()->phis()) { 697 RecurrenceDescriptor RD; 698 InductionDescriptor ID; 699 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 700 Inductions.push_back(&PHI); 701 else { 702 // PHIs in inner loops need to be part of a reduction in the outer loop, 703 // discovered when checking the PHIs of the outer loop earlier. 704 if (!InnerLoop) { 705 if (!OuterInnerReductions.count(&PHI)) { 706 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 707 "across the outer loop.\n"); 708 return false; 709 } 710 } else { 711 assert(PHI.getNumIncomingValues() == 2 && 712 "Phis in loop header should have exactly 2 incoming values"); 713 // Check if we have a PHI node in the outer loop that has a reduction 714 // result from the inner loop as an incoming value. 715 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 716 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 717 if (!InnerRedPhi || 718 !llvm::any_of(InnerRedPhi->incoming_values(), 719 [&PHI](Value *V) { return V == &PHI; })) { 720 LLVM_DEBUG( 721 dbgs() 722 << "Failed to recognize PHI as an induction or reduction.\n"); 723 return false; 724 } 725 OuterInnerReductions.insert(&PHI); 726 OuterInnerReductions.insert(InnerRedPhi); 727 } 728 } 729 } 730 return true; 731 } 732 733 // This function indicates the current limitations in the transform as a result 734 // of which we do not proceed. 735 bool LoopInterchangeLegality::currentLimitations() { 736 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 737 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 738 739 // transform currently expects the loop latches to also be the exiting 740 // blocks. 741 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 742 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 743 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 744 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 745 LLVM_DEBUG( 746 dbgs() << "Loops where the latch is not the exiting block are not" 747 << " supported currently.\n"); 748 ORE->emit([&]() { 749 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 750 OuterLoop->getStartLoc(), 751 OuterLoop->getHeader()) 752 << "Loops where the latch is not the exiting block cannot be" 753 " interchange currently."; 754 }); 755 return true; 756 } 757 758 PHINode *InnerInductionVar; 759 SmallVector<PHINode *, 8> Inductions; 760 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 761 LLVM_DEBUG( 762 dbgs() << "Only outer loops with induction or reduction PHI nodes " 763 << "are supported currently.\n"); 764 ORE->emit([&]() { 765 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 766 OuterLoop->getStartLoc(), 767 OuterLoop->getHeader()) 768 << "Only outer loops with induction or reduction PHI nodes can be" 769 " interchanged currently."; 770 }); 771 return true; 772 } 773 774 // TODO: Currently we handle only loops with 1 induction variable. 775 if (Inductions.size() != 1) { 776 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 777 << "supported currently.\n"); 778 ORE->emit([&]() { 779 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 780 OuterLoop->getStartLoc(), 781 OuterLoop->getHeader()) 782 << "Only outer loops with 1 induction variable can be " 783 "interchanged currently."; 784 }); 785 return true; 786 } 787 788 Inductions.clear(); 789 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 790 LLVM_DEBUG( 791 dbgs() << "Only inner loops with induction or reduction PHI nodes " 792 << "are supported currently.\n"); 793 ORE->emit([&]() { 794 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 795 InnerLoop->getStartLoc(), 796 InnerLoop->getHeader()) 797 << "Only inner loops with induction or reduction PHI nodes can be" 798 " interchange currently."; 799 }); 800 return true; 801 } 802 803 // TODO: Currently we handle only loops with 1 induction variable. 804 if (Inductions.size() != 1) { 805 LLVM_DEBUG( 806 dbgs() << "We currently only support loops with 1 induction variable." 807 << "Failed to interchange due to current limitation\n"); 808 ORE->emit([&]() { 809 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 810 InnerLoop->getStartLoc(), 811 InnerLoop->getHeader()) 812 << "Only inner loops with 1 induction variable can be " 813 "interchanged currently."; 814 }); 815 return true; 816 } 817 InnerInductionVar = Inductions.pop_back_val(); 818 819 // TODO: Triangular loops are not handled for now. 820 if (!isLoopStructureUnderstood(InnerInductionVar)) { 821 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 822 ORE->emit([&]() { 823 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 824 InnerLoop->getStartLoc(), 825 InnerLoop->getHeader()) 826 << "Inner loop structure not understood currently."; 827 }); 828 return true; 829 } 830 831 // TODO: Current limitation: Since we split the inner loop latch at the point 832 // were induction variable is incremented (induction.next); We cannot have 833 // more than 1 user of induction.next since it would result in broken code 834 // after split. 835 // e.g. 836 // for(i=0;i<N;i++) { 837 // for(j = 0;j<M;j++) { 838 // A[j+1][i+2] = A[j][i]+k; 839 // } 840 // } 841 Instruction *InnerIndexVarInc = nullptr; 842 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 843 InnerIndexVarInc = 844 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 845 else 846 InnerIndexVarInc = 847 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 848 849 if (!InnerIndexVarInc) { 850 LLVM_DEBUG( 851 dbgs() << "Did not find an instruction to increment the induction " 852 << "variable.\n"); 853 ORE->emit([&]() { 854 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 855 InnerLoop->getStartLoc(), 856 InnerLoop->getHeader()) 857 << "The inner loop does not increment the induction variable."; 858 }); 859 return true; 860 } 861 862 // Since we split the inner loop latch on this induction variable. Make sure 863 // we do not have any instruction between the induction variable and branch 864 // instruction. 865 866 bool FoundInduction = false; 867 for (const Instruction &I : 868 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 869 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 870 isa<ZExtInst>(I)) 871 continue; 872 873 // We found an instruction. If this is not induction variable then it is not 874 // safe to split this loop latch. 875 if (!I.isIdenticalTo(InnerIndexVarInc)) { 876 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 877 << "variable increment and branch.\n"); 878 ORE->emit([&]() { 879 return OptimizationRemarkMissed( 880 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 881 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 882 << "Found unsupported instruction between induction variable " 883 "increment and branch."; 884 }); 885 return true; 886 } 887 888 FoundInduction = true; 889 break; 890 } 891 // The loop latch ended and we didn't find the induction variable return as 892 // current limitation. 893 if (!FoundInduction) { 894 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 895 ORE->emit([&]() { 896 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 897 InnerLoop->getStartLoc(), 898 InnerLoop->getHeader()) 899 << "Did not find the induction variable."; 900 }); 901 return true; 902 } 903 return false; 904 } 905 906 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 907 // users are either reduction PHIs or PHIs outside the outer loop (which means 908 // the we are only interested in the final value after the loop). 909 static bool 910 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 911 SmallPtrSetImpl<PHINode *> &Reductions) { 912 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 913 for (PHINode &PHI : InnerExit->phis()) { 914 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 915 if (PHI.getNumIncomingValues() > 1) 916 return false; 917 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 918 PHINode *PN = dyn_cast<PHINode>(U); 919 return !PN || 920 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 921 })) { 922 return false; 923 } 924 } 925 return true; 926 } 927 928 // We currently support LCSSA PHI nodes in the outer loop exit, if their 929 // incoming values do not come from the outer loop latch or if the 930 // outer loop latch has a single predecessor. In that case, the value will 931 // be available if both the inner and outer loop conditions are true, which 932 // will still be true after interchanging. If we have multiple predecessor, 933 // that may not be the case, e.g. because the outer loop latch may be executed 934 // if the inner loop is not executed. 935 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 936 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 937 for (PHINode &PHI : LoopNestExit->phis()) { 938 // FIXME: We currently are not able to detect floating point reductions 939 // and have to use floating point PHIs as a proxy to prevent 940 // interchanging in the presence of floating point reductions. 941 if (PHI.getType()->isFloatingPointTy()) 942 return false; 943 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 944 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 945 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 946 continue; 947 948 // The incoming value is defined in the outer loop latch. Currently we 949 // only support that in case the outer loop latch has a single predecessor. 950 // This guarantees that the outer loop latch is executed if and only if 951 // the inner loop is executed (because tightlyNested() guarantees that the 952 // outer loop header only branches to the inner loop or the outer loop 953 // latch). 954 // FIXME: We could weaken this logic and allow multiple predecessors, 955 // if the values are produced outside the loop latch. We would need 956 // additional logic to update the PHI nodes in the exit block as 957 // well. 958 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 959 return false; 960 } 961 } 962 return true; 963 } 964 965 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 966 unsigned OuterLoopId, 967 CharMatrix &DepMatrix) { 968 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 969 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 970 << " and OuterLoopId = " << OuterLoopId 971 << " due to dependence\n"); 972 ORE->emit([&]() { 973 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 974 InnerLoop->getStartLoc(), 975 InnerLoop->getHeader()) 976 << "Cannot interchange loops due to dependences."; 977 }); 978 return false; 979 } 980 // Check if outer and inner loop contain legal instructions only. 981 for (auto *BB : OuterLoop->blocks()) 982 for (Instruction &I : BB->instructionsWithoutDebug()) 983 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 984 // readnone functions do not prevent interchanging. 985 if (CI->doesNotReadMemory()) 986 continue; 987 LLVM_DEBUG( 988 dbgs() << "Loops with call instructions cannot be interchanged " 989 << "safely."); 990 ORE->emit([&]() { 991 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 992 CI->getDebugLoc(), 993 CI->getParent()) 994 << "Cannot interchange loops due to call instruction."; 995 }); 996 997 return false; 998 } 999 1000 // TODO: The loops could not be interchanged due to current limitations in the 1001 // transform module. 1002 if (currentLimitations()) { 1003 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1004 return false; 1005 } 1006 1007 // Check if the loops are tightly nested. 1008 if (!tightlyNested(OuterLoop, InnerLoop)) { 1009 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1010 ORE->emit([&]() { 1011 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1012 InnerLoop->getStartLoc(), 1013 InnerLoop->getHeader()) 1014 << "Cannot interchange loops because they are not tightly " 1015 "nested."; 1016 }); 1017 return false; 1018 } 1019 1020 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1021 OuterInnerReductions)) { 1022 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1023 ORE->emit([&]() { 1024 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1025 InnerLoop->getStartLoc(), 1026 InnerLoop->getHeader()) 1027 << "Found unsupported PHI node in loop exit."; 1028 }); 1029 return false; 1030 } 1031 1032 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1033 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1034 ORE->emit([&]() { 1035 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1036 OuterLoop->getStartLoc(), 1037 OuterLoop->getHeader()) 1038 << "Found unsupported PHI node in loop exit."; 1039 }); 1040 return false; 1041 } 1042 1043 return true; 1044 } 1045 1046 int LoopInterchangeProfitability::getInstrOrderCost() { 1047 unsigned GoodOrder, BadOrder; 1048 BadOrder = GoodOrder = 0; 1049 for (BasicBlock *BB : InnerLoop->blocks()) { 1050 for (Instruction &Ins : *BB) { 1051 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1052 unsigned NumOp = GEP->getNumOperands(); 1053 bool FoundInnerInduction = false; 1054 bool FoundOuterInduction = false; 1055 for (unsigned i = 0; i < NumOp; ++i) { 1056 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1057 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1058 if (!AR) 1059 continue; 1060 1061 // If we find the inner induction after an outer induction e.g. 1062 // for(int i=0;i<N;i++) 1063 // for(int j=0;j<N;j++) 1064 // A[i][j] = A[i-1][j-1]+k; 1065 // then it is a good order. 1066 if (AR->getLoop() == InnerLoop) { 1067 // We found an InnerLoop induction after OuterLoop induction. It is 1068 // a good order. 1069 FoundInnerInduction = true; 1070 if (FoundOuterInduction) { 1071 GoodOrder++; 1072 break; 1073 } 1074 } 1075 // If we find the outer induction after an inner induction e.g. 1076 // for(int i=0;i<N;i++) 1077 // for(int j=0;j<N;j++) 1078 // A[j][i] = A[j-1][i-1]+k; 1079 // then it is a bad order. 1080 if (AR->getLoop() == OuterLoop) { 1081 // We found an OuterLoop induction after InnerLoop induction. It is 1082 // a bad order. 1083 FoundOuterInduction = true; 1084 if (FoundInnerInduction) { 1085 BadOrder++; 1086 break; 1087 } 1088 } 1089 } 1090 } 1091 } 1092 } 1093 return GoodOrder - BadOrder; 1094 } 1095 1096 static bool isProfitableForVectorization(unsigned InnerLoopId, 1097 unsigned OuterLoopId, 1098 CharMatrix &DepMatrix) { 1099 // TODO: Improve this heuristic to catch more cases. 1100 // If the inner loop is loop independent or doesn't carry any dependency it is 1101 // profitable to move this to outer position. 1102 for (auto &Row : DepMatrix) { 1103 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1104 return false; 1105 // TODO: We need to improve this heuristic. 1106 if (Row[OuterLoopId] != '=') 1107 return false; 1108 } 1109 // If outer loop has dependence and inner loop is loop independent then it is 1110 // profitable to interchange to enable parallelism. 1111 // If there are no dependences, interchanging will not improve anything. 1112 return !DepMatrix.empty(); 1113 } 1114 1115 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1116 unsigned OuterLoopId, 1117 CharMatrix &DepMatrix) { 1118 // TODO: Add better profitability checks. 1119 // e.g 1120 // 1) Construct dependency matrix and move the one with no loop carried dep 1121 // inside to enable vectorization. 1122 1123 // This is rough cost estimation algorithm. It counts the good and bad order 1124 // of induction variables in the instruction and allows reordering if number 1125 // of bad orders is more than good. 1126 int Cost = getInstrOrderCost(); 1127 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1128 if (Cost < -LoopInterchangeCostThreshold) 1129 return true; 1130 1131 // It is not profitable as per current cache profitability model. But check if 1132 // we can move this loop outside to improve parallelism. 1133 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1134 return true; 1135 1136 ORE->emit([&]() { 1137 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1138 InnerLoop->getStartLoc(), 1139 InnerLoop->getHeader()) 1140 << "Interchanging loops is too costly (cost=" 1141 << ore::NV("Cost", Cost) << ", threshold=" 1142 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1143 << ") and it does not improve parallelism."; 1144 }); 1145 return false; 1146 } 1147 1148 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1149 Loop *InnerLoop) { 1150 for (Loop *L : *OuterLoop) 1151 if (L == InnerLoop) { 1152 OuterLoop->removeChildLoop(L); 1153 return; 1154 } 1155 llvm_unreachable("Couldn't find loop"); 1156 } 1157 1158 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1159 /// new inner and outer loop after interchanging: NewInner is the original 1160 /// outer loop and NewOuter is the original inner loop. 1161 /// 1162 /// Before interchanging, we have the following structure 1163 /// Outer preheader 1164 // Outer header 1165 // Inner preheader 1166 // Inner header 1167 // Inner body 1168 // Inner latch 1169 // outer bbs 1170 // Outer latch 1171 // 1172 // After interchanging: 1173 // Inner preheader 1174 // Inner header 1175 // Outer preheader 1176 // Outer header 1177 // Inner body 1178 // outer bbs 1179 // Outer latch 1180 // Inner latch 1181 void LoopInterchangeTransform::restructureLoops( 1182 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1183 BasicBlock *OrigOuterPreHeader) { 1184 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1185 // The original inner loop preheader moves from the new inner loop to 1186 // the parent loop, if there is one. 1187 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1188 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1189 1190 // Switch the loop levels. 1191 if (OuterLoopParent) { 1192 // Remove the loop from its parent loop. 1193 removeChildLoop(OuterLoopParent, NewInner); 1194 removeChildLoop(NewInner, NewOuter); 1195 OuterLoopParent->addChildLoop(NewOuter); 1196 } else { 1197 removeChildLoop(NewInner, NewOuter); 1198 LI->changeTopLevelLoop(NewInner, NewOuter); 1199 } 1200 while (!NewOuter->empty()) 1201 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1202 NewOuter->addChildLoop(NewInner); 1203 1204 // BBs from the original inner loop. 1205 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1206 1207 // Add BBs from the original outer loop to the original inner loop (excluding 1208 // BBs already in inner loop) 1209 for (BasicBlock *BB : NewInner->blocks()) 1210 if (LI->getLoopFor(BB) == NewInner) 1211 NewOuter->addBlockEntry(BB); 1212 1213 // Now remove inner loop header and latch from the new inner loop and move 1214 // other BBs (the loop body) to the new inner loop. 1215 BasicBlock *OuterHeader = NewOuter->getHeader(); 1216 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1217 for (BasicBlock *BB : OrigInnerBBs) { 1218 // Nothing will change for BBs in child loops. 1219 if (LI->getLoopFor(BB) != NewOuter) 1220 continue; 1221 // Remove the new outer loop header and latch from the new inner loop. 1222 if (BB == OuterHeader || BB == OuterLatch) 1223 NewInner->removeBlockFromLoop(BB); 1224 else 1225 LI->changeLoopFor(BB, NewInner); 1226 } 1227 1228 // The preheader of the original outer loop becomes part of the new 1229 // outer loop. 1230 NewOuter->addBlockEntry(OrigOuterPreHeader); 1231 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1232 1233 // Tell SE that we move the loops around. 1234 SE->forgetLoop(NewOuter); 1235 SE->forgetLoop(NewInner); 1236 } 1237 1238 bool LoopInterchangeTransform::transform() { 1239 bool Transformed = false; 1240 Instruction *InnerIndexVar; 1241 1242 if (InnerLoop->getSubLoops().empty()) { 1243 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1244 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1245 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1246 if (!InductionPHI) { 1247 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1248 return false; 1249 } 1250 1251 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1252 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1253 else 1254 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1255 1256 // Ensure that InductionPHI is the first Phi node. 1257 if (&InductionPHI->getParent()->front() != InductionPHI) 1258 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1259 1260 // Create a new latch block for the inner loop. We split at the 1261 // current latch's terminator and then move the condition and all 1262 // operands that are not either loop-invariant or the induction PHI into the 1263 // new latch block. 1264 BasicBlock *NewLatch = 1265 SplitBlock(InnerLoop->getLoopLatch(), 1266 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1267 1268 SmallSetVector<Instruction *, 4> WorkList; 1269 unsigned i = 0; 1270 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1271 for (; i < WorkList.size(); i++) { 1272 // Duplicate instruction and move it the new latch. Update uses that 1273 // have been moved. 1274 Instruction *NewI = WorkList[i]->clone(); 1275 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1276 assert(!NewI->mayHaveSideEffects() && 1277 "Moving instructions with side-effects may change behavior of " 1278 "the loop nest!"); 1279 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1280 UI != UE;) { 1281 Use &U = *UI++; 1282 Instruction *UserI = cast<Instruction>(U.getUser()); 1283 if (!InnerLoop->contains(UserI->getParent()) || 1284 UserI->getParent() == NewLatch || UserI == InductionPHI) 1285 U.set(NewI); 1286 } 1287 // Add operands of moved instruction to the worklist, except if they are 1288 // outside the inner loop or are the induction PHI. 1289 for (Value *Op : WorkList[i]->operands()) { 1290 Instruction *OpI = dyn_cast<Instruction>(Op); 1291 if (!OpI || 1292 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1293 OpI == InductionPHI) 1294 continue; 1295 WorkList.insert(OpI); 1296 } 1297 } 1298 }; 1299 1300 // FIXME: Should we interchange when we have a constant condition? 1301 Instruction *CondI = dyn_cast<Instruction>( 1302 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1303 ->getCondition()); 1304 if (CondI) 1305 WorkList.insert(CondI); 1306 MoveInstructions(); 1307 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1308 MoveInstructions(); 1309 1310 // Splits the inner loops phi nodes out into a separate basic block. 1311 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1312 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1313 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1314 } 1315 1316 // Instructions in the original inner loop preheader may depend on values 1317 // defined in the outer loop header. Move them there, because the original 1318 // inner loop preheader will become the entry into the interchanged loop nest. 1319 // Currently we move all instructions and rely on LICM to move invariant 1320 // instructions outside the loop nest. 1321 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1322 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1323 if (InnerLoopPreHeader != OuterLoopHeader) { 1324 SmallPtrSet<Instruction *, 4> NeedsMoving; 1325 for (Instruction &I : 1326 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1327 std::prev(InnerLoopPreHeader->end())))) 1328 I.moveBefore(OuterLoopHeader->getTerminator()); 1329 } 1330 1331 Transformed |= adjustLoopLinks(); 1332 if (!Transformed) { 1333 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1334 return false; 1335 } 1336 1337 return true; 1338 } 1339 1340 /// \brief Move all instructions except the terminator from FromBB right before 1341 /// InsertBefore 1342 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1343 auto &ToList = InsertBefore->getParent()->getInstList(); 1344 auto &FromList = FromBB->getInstList(); 1345 1346 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1347 FromBB->getTerminator()->getIterator()); 1348 } 1349 1350 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1351 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1352 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1353 // from BB1 afterwards. 1354 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1355 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1356 for (Instruction *I : TempInstrs) 1357 I->removeFromParent(); 1358 1359 // Move instructions from BB2 to BB1. 1360 moveBBContents(BB2, BB1->getTerminator()); 1361 1362 // Move instructions from TempInstrs to BB2. 1363 for (Instruction *I : TempInstrs) 1364 I->insertBefore(BB2->getTerminator()); 1365 } 1366 1367 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1368 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1369 // \p OldBB is exactly once in BI's successor list. 1370 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1371 BasicBlock *NewBB, 1372 std::vector<DominatorTree::UpdateType> &DTUpdates, 1373 bool MustUpdateOnce = true) { 1374 assert((!MustUpdateOnce || 1375 llvm::count_if(successors(BI), 1376 [OldBB](BasicBlock *BB) { 1377 return BB == OldBB; 1378 }) == 1) && "BI must jump to OldBB exactly once."); 1379 bool Changed = false; 1380 for (Use &Op : BI->operands()) 1381 if (Op == OldBB) { 1382 Op.set(NewBB); 1383 Changed = true; 1384 } 1385 1386 if (Changed) { 1387 DTUpdates.push_back( 1388 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1389 DTUpdates.push_back( 1390 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1391 } 1392 assert(Changed && "Expected a successor to be updated"); 1393 } 1394 1395 // Move Lcssa PHIs to the right place. 1396 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1397 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1398 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1399 Loop *InnerLoop, LoopInfo *LI) { 1400 1401 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1402 // defined either in the header or latch. Those blocks will become header and 1403 // latch of the new outer loop, and the only possible users can PHI nodes 1404 // in the exit block of the loop nest or the outer loop header (reduction 1405 // PHIs, in that case, the incoming value must be defined in the inner loop 1406 // header). We can just substitute the user with the incoming value and remove 1407 // the PHI. 1408 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1409 assert(P.getNumIncomingValues() == 1 && 1410 "Only loops with a single exit are supported!"); 1411 1412 // Incoming values are guaranteed be instructions currently. 1413 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1414 // Skip phis with incoming values from the inner loop body, excluding the 1415 // header and latch. 1416 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1417 continue; 1418 1419 assert(all_of(P.users(), 1420 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1421 return (cast<PHINode>(U)->getParent() == OuterHeader && 1422 IncI->getParent() == InnerHeader) || 1423 cast<PHINode>(U)->getParent() == OuterExit; 1424 }) && 1425 "Can only replace phis iff the uses are in the loop nest exit or " 1426 "the incoming value is defined in the inner header (it will " 1427 "dominate all loop blocks after interchanging)"); 1428 P.replaceAllUsesWith(IncI); 1429 P.eraseFromParent(); 1430 } 1431 1432 SmallVector<PHINode *, 8> LcssaInnerExit; 1433 for (PHINode &P : InnerExit->phis()) 1434 LcssaInnerExit.push_back(&P); 1435 1436 SmallVector<PHINode *, 8> LcssaInnerLatch; 1437 for (PHINode &P : InnerLatch->phis()) 1438 LcssaInnerLatch.push_back(&P); 1439 1440 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1441 // If a PHI node has users outside of InnerExit, it has a use outside the 1442 // interchanged loop and we have to preserve it. We move these to 1443 // InnerLatch, which will become the new exit block for the innermost 1444 // loop after interchanging. 1445 for (PHINode *P : LcssaInnerExit) 1446 P->moveBefore(InnerLatch->getFirstNonPHI()); 1447 1448 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1449 // and we have to move them to the new inner latch. 1450 for (PHINode *P : LcssaInnerLatch) 1451 P->moveBefore(InnerExit->getFirstNonPHI()); 1452 1453 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1454 // incoming values defined in the outer loop, we have to add a new PHI 1455 // in the inner loop latch, which became the exit block of the outer loop, 1456 // after interchanging. 1457 if (OuterExit) { 1458 for (PHINode &P : OuterExit->phis()) { 1459 if (P.getNumIncomingValues() != 1) 1460 continue; 1461 // Skip Phis with incoming values defined in the inner loop. Those should 1462 // already have been updated. 1463 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1464 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1465 continue; 1466 1467 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1468 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1469 NewPhi->setIncomingBlock(0, OuterLatch); 1470 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1471 P.setIncomingValue(0, NewPhi); 1472 } 1473 } 1474 1475 // Now adjust the incoming blocks for the LCSSA PHIs. 1476 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1477 // with the new latch. 1478 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1479 } 1480 1481 bool LoopInterchangeTransform::adjustLoopBranches() { 1482 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1483 std::vector<DominatorTree::UpdateType> DTUpdates; 1484 1485 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1486 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1487 1488 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1489 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1490 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1491 // Ensure that both preheaders do not contain PHI nodes and have single 1492 // predecessors. This allows us to move them easily. We use 1493 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1494 // preheaders do not satisfy those conditions. 1495 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1496 !OuterLoopPreHeader->getUniquePredecessor()) 1497 OuterLoopPreHeader = 1498 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1499 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1500 InnerLoopPreHeader = 1501 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1502 1503 // Adjust the loop preheader 1504 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1505 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1506 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1507 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1508 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1509 BasicBlock *InnerLoopLatchPredecessor = 1510 InnerLoopLatch->getUniquePredecessor(); 1511 BasicBlock *InnerLoopLatchSuccessor; 1512 BasicBlock *OuterLoopLatchSuccessor; 1513 1514 BranchInst *OuterLoopLatchBI = 1515 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1516 BranchInst *InnerLoopLatchBI = 1517 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1518 BranchInst *OuterLoopHeaderBI = 1519 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1520 BranchInst *InnerLoopHeaderBI = 1521 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1522 1523 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1524 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1525 !InnerLoopHeaderBI) 1526 return false; 1527 1528 BranchInst *InnerLoopLatchPredecessorBI = 1529 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1530 BranchInst *OuterLoopPredecessorBI = 1531 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1532 1533 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1534 return false; 1535 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1536 if (!InnerLoopHeaderSuccessor) 1537 return false; 1538 1539 // Adjust Loop Preheader and headers. 1540 // The branches in the outer loop predecessor and the outer loop header can 1541 // be unconditional branches or conditional branches with duplicates. Consider 1542 // this when updating the successors. 1543 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1544 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1545 // The outer loop header might or might not branch to the outer latch. 1546 // We are guaranteed to branch to the inner loop preheader. 1547 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1548 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1549 /*MustUpdateOnce=*/false); 1550 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1551 InnerLoopHeaderSuccessor, DTUpdates, 1552 /*MustUpdateOnce=*/false); 1553 1554 // Adjust reduction PHI's now that the incoming block has changed. 1555 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1556 OuterLoopHeader); 1557 1558 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1559 OuterLoopPreHeader, DTUpdates); 1560 1561 // -------------Adjust loop latches----------- 1562 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1563 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1564 else 1565 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1566 1567 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1568 InnerLoopLatchSuccessor, DTUpdates); 1569 1570 1571 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1572 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1573 else 1574 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1575 1576 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1577 OuterLoopLatchSuccessor, DTUpdates); 1578 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1579 DTUpdates); 1580 1581 DT->applyUpdates(DTUpdates); 1582 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1583 OuterLoopPreHeader); 1584 1585 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1586 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1587 InnerLoop, LI); 1588 // For PHIs in the exit block of the outer loop, outer's latch has been 1589 // replaced by Inners'. 1590 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1591 1592 // Now update the reduction PHIs in the inner and outer loop headers. 1593 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1594 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1595 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1596 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1597 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1598 1599 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1600 (void)OuterInnerReductions; 1601 1602 // Now move the remaining reduction PHIs from outer to inner loop header and 1603 // vice versa. The PHI nodes must be part of a reduction across the inner and 1604 // outer loop and all the remains to do is and updating the incoming blocks. 1605 for (PHINode *PHI : OuterLoopPHIs) { 1606 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1607 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1608 } 1609 for (PHINode *PHI : InnerLoopPHIs) { 1610 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1611 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1612 } 1613 1614 // Update the incoming blocks for moved PHI nodes. 1615 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1616 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1617 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1618 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1619 1620 // Values defined in the outer loop header could be used in the inner loop 1621 // latch. In that case, we need to create LCSSA phis for them, because after 1622 // interchanging they will be defined in the new inner loop and used in the 1623 // new outer loop. 1624 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1625 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1626 for (Instruction &I : 1627 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1628 MayNeedLCSSAPhis.push_back(&I); 1629 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1630 1631 return true; 1632 } 1633 1634 bool LoopInterchangeTransform::adjustLoopLinks() { 1635 // Adjust all branches in the inner and outer loop. 1636 bool Changed = adjustLoopBranches(); 1637 if (Changed) { 1638 // We have interchanged the preheaders so we need to interchange the data in 1639 // the preheaders as well. This is because the content of the inner 1640 // preheader was previously executed inside the outer loop. 1641 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1642 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1643 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1644 } 1645 return Changed; 1646 } 1647 1648 char LoopInterchange::ID = 0; 1649 1650 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", 1651 "Interchanges loops for cache reuse", false, false) 1652 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1653 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1654 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1655 1656 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", 1657 "Interchanges loops for cache reuse", false, false) 1658 1659 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } 1660