1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "loop-interchange"
54 
55 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56 
57 static cl::opt<int> LoopInterchangeCostThreshold(
58     "loop-interchange-threshold", cl::init(0), cl::Hidden,
59     cl::desc("Interchange if you gain more than this number"));
60 
61 namespace {
62 
63 using LoopVector = SmallVector<Loop *, 8>;
64 
65 // TODO: Check if we can use a sparse matrix here.
66 using CharMatrix = std::vector<std::vector<char>>;
67 
68 } // end anonymous namespace
69 
70 // Maximum number of dependencies that can be handled in the dependency matrix.
71 static const unsigned MaxMemInstrCount = 100;
72 
73 // Maximum loop depth supported.
74 static const unsigned MaxLoopNestDepth = 10;
75 
76 #ifdef DUMP_DEP_MATRICIES
77 static void printDepMatrix(CharMatrix &DepMatrix) {
78   for (auto &Row : DepMatrix) {
79     for (auto D : Row)
80       DEBUG(dbgs() << D << " ");
81     DEBUG(dbgs() << "\n");
82   }
83 }
84 #endif
85 
86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
87                                      Loop *L, DependenceInfo *DI) {
88   using ValueVector = SmallVector<Value *, 16>;
89 
90   ValueVector MemInstr;
91 
92   // For each block.
93   for (BasicBlock *BB : L->blocks()) {
94     // Scan the BB and collect legal loads and stores.
95     for (Instruction &I : *BB) {
96       if (!isa<Instruction>(I))
97         return false;
98       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99         if (!Ld->isSimple())
100           return false;
101         MemInstr.push_back(&I);
102       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103         if (!St->isSimple())
104           return false;
105         MemInstr.push_back(&I);
106       }
107     }
108   }
109 
110   DEBUG(dbgs() << "Found " << MemInstr.size()
111                << " Loads and Stores to analyze\n");
112 
113   ValueVector::iterator I, IE, J, JE;
114 
115   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117       std::vector<char> Dep;
118       Instruction *Src = cast<Instruction>(*I);
119       Instruction *Dst = cast<Instruction>(*J);
120       if (Src == Dst)
121         continue;
122       // Ignore Input dependencies.
123       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124         continue;
125       // Track Output, Flow, and Anti dependencies.
126       if (auto D = DI->depends(Src, Dst, true)) {
127         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128         DEBUG(StringRef DepType =
129                   D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130               dbgs() << "Found " << DepType
131                      << " dependency between Src and Dst\n"
132                      << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133         unsigned Levels = D->getLevels();
134         char Direction;
135         for (unsigned II = 1; II <= Levels; ++II) {
136           const SCEV *Distance = D->getDistance(II);
137           const SCEVConstant *SCEVConst =
138               dyn_cast_or_null<SCEVConstant>(Distance);
139           if (SCEVConst) {
140             const ConstantInt *CI = SCEVConst->getValue();
141             if (CI->isNegative())
142               Direction = '<';
143             else if (CI->isZero())
144               Direction = '=';
145             else
146               Direction = '>';
147             Dep.push_back(Direction);
148           } else if (D->isScalar(II)) {
149             Direction = 'S';
150             Dep.push_back(Direction);
151           } else {
152             unsigned Dir = D->getDirection(II);
153             if (Dir == Dependence::DVEntry::LT ||
154                 Dir == Dependence::DVEntry::LE)
155               Direction = '<';
156             else if (Dir == Dependence::DVEntry::GT ||
157                      Dir == Dependence::DVEntry::GE)
158               Direction = '>';
159             else if (Dir == Dependence::DVEntry::EQ)
160               Direction = '=';
161             else
162               Direction = '*';
163             Dep.push_back(Direction);
164           }
165         }
166         while (Dep.size() != Level) {
167           Dep.push_back('I');
168         }
169 
170         DepMatrix.push_back(Dep);
171         if (DepMatrix.size() > MaxMemInstrCount) {
172           DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173                        << " dependencies inside loop\n");
174           return false;
175         }
176       }
177     }
178   }
179 
180   return true;
181 }
182 
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186                                     unsigned ToIndx) {
187   unsigned numRows = DepMatrix.size();
188   for (unsigned i = 0; i < numRows; ++i) {
189     char TmpVal = DepMatrix[i][ToIndx];
190     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
191     DepMatrix[i][FromIndx] = TmpVal;
192   }
193 }
194 
195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 // '>'
197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
198                                    unsigned Column) {
199   for (unsigned i = 0; i <= Column; ++i) {
200     if (DepMatrix[Row][i] == '<')
201       return false;
202     if (DepMatrix[Row][i] == '>')
203       return true;
204   }
205   // All dependencies were '=','S' or 'I'
206   return false;
207 }
208 
209 // Checks if no dependence exist in the dependency matrix in Row before Column.
210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
211                                  unsigned Column) {
212   for (unsigned i = 0; i < Column; ++i) {
213     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
214         DepMatrix[Row][i] != 'I')
215       return false;
216   }
217   return true;
218 }
219 
220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
221                                 unsigned OuterLoopId, char InnerDep,
222                                 char OuterDep) {
223   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
224     return false;
225 
226   if (InnerDep == OuterDep)
227     return true;
228 
229   // It is legal to interchange if and only if after interchange no row has a
230   // '>' direction as the leftmost non-'='.
231 
232   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
233     return true;
234 
235   if (InnerDep == '<')
236     return true;
237 
238   if (InnerDep == '>') {
239     // If OuterLoopId represents outermost loop then interchanging will make the
240     // 1st dependency as '>'
241     if (OuterLoopId == 0)
242       return false;
243 
244     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
245     // interchanging will result in this row having an outermost non '='
246     // dependency of '>'
247     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
248       return true;
249   }
250 
251   return false;
252 }
253 
254 // Checks if it is legal to interchange 2 loops.
255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
256 // if the direction matrix, after the same permutation is applied to its
257 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
259                                       unsigned InnerLoopId,
260                                       unsigned OuterLoopId) {
261   unsigned NumRows = DepMatrix.size();
262   // For each row check if it is valid to interchange.
263   for (unsigned Row = 0; Row < NumRows; ++Row) {
264     char InnerDep = DepMatrix[Row][InnerLoopId];
265     char OuterDep = DepMatrix[Row][OuterLoopId];
266     if (InnerDep == '*' || OuterDep == '*')
267       return false;
268     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
269       return false;
270   }
271   return true;
272 }
273 
274 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
275   DEBUG(dbgs() << "Calling populateWorklist on Func: "
276                << L.getHeader()->getParent()->getName() << " Loop: %"
277                << L.getHeader()->getName() << '\n');
278   LoopVector LoopList;
279   Loop *CurrentLoop = &L;
280   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
281   while (!Vec->empty()) {
282     // The current loop has multiple subloops in it hence it is not tightly
283     // nested.
284     // Discard all loops above it added into Worklist.
285     if (Vec->size() != 1) {
286       LoopList.clear();
287       return;
288     }
289     LoopList.push_back(CurrentLoop);
290     CurrentLoop = Vec->front();
291     Vec = &CurrentLoop->getSubLoops();
292   }
293   LoopList.push_back(CurrentLoop);
294   V.push_back(std::move(LoopList));
295 }
296 
297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
298   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
299   if (InnerIndexVar)
300     return InnerIndexVar;
301   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
302     return nullptr;
303   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
304     PHINode *PhiVar = cast<PHINode>(I);
305     Type *PhiTy = PhiVar->getType();
306     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
307         !PhiTy->isPointerTy())
308       return nullptr;
309     const SCEVAddRecExpr *AddRec =
310         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
311     if (!AddRec || !AddRec->isAffine())
312       continue;
313     const SCEV *Step = AddRec->getStepRecurrence(*SE);
314     if (!isa<SCEVConstant>(Step))
315       continue;
316     // Found the induction variable.
317     // FIXME: Handle loops with more than one induction variable. Note that,
318     // currently, legality makes sure we have only one induction variable.
319     return PhiVar;
320   }
321   return nullptr;
322 }
323 
324 namespace {
325 
326 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
327 class LoopInterchangeLegality {
328 public:
329   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
330                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA,
331                           OptimizationRemarkEmitter *ORE)
332       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
333         PreserveLCSSA(PreserveLCSSA), ORE(ORE) {}
334 
335   /// Check if the loops can be interchanged.
336   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
337                            CharMatrix &DepMatrix);
338 
339   /// Check if the loop structure is understood. We do not handle triangular
340   /// loops for now.
341   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
342 
343   bool currentLimitations();
344 
345   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
346 
347 private:
348   bool tightlyNested(Loop *Outer, Loop *Inner);
349   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
350   bool areAllUsesReductions(Instruction *Ins, Loop *L);
351   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
352   bool findInductionAndReductions(Loop *L,
353                                   SmallVector<PHINode *, 8> &Inductions,
354                                   SmallVector<PHINode *, 8> &Reductions);
355 
356   Loop *OuterLoop;
357   Loop *InnerLoop;
358 
359   ScalarEvolution *SE;
360   LoopInfo *LI;
361   DominatorTree *DT;
362   bool PreserveLCSSA;
363 
364   /// Interface to emit optimization remarks.
365   OptimizationRemarkEmitter *ORE;
366 
367   bool InnerLoopHasReduction = false;
368 };
369 
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375                                OptimizationRemarkEmitter *ORE)
376       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377 
378   /// Check if the loop interchange is profitable.
379   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380                     CharMatrix &DepMatrix);
381 
382 private:
383   int getInstrOrderCost();
384 
385   Loop *OuterLoop;
386   Loop *InnerLoop;
387 
388   /// Scev analysis.
389   ScalarEvolution *SE;
390 
391   /// Interface to emit optimization remarks.
392   OptimizationRemarkEmitter *ORE;
393 };
394 
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399                            LoopInfo *LI, DominatorTree *DT,
400                            BasicBlock *LoopNestExit,
401                            bool InnerLoopContainsReductions)
402       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
403         LoopExit(LoopNestExit),
404         InnerLoopHasReduction(InnerLoopContainsReductions) {}
405 
406   /// Interchange OuterLoop and InnerLoop.
407   bool transform();
408   void restructureLoops(Loop *NewInner, Loop *NewOuter,
409                         BasicBlock *OrigInnerPreHeader,
410                         BasicBlock *OrigOuterPreHeader);
411   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
412 
413 private:
414   void splitInnerLoopLatch(Instruction *);
415   void splitInnerLoopHeader();
416   bool adjustLoopLinks();
417   void adjustLoopPreheaders();
418   bool adjustLoopBranches();
419   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
420                            BasicBlock *NewPred);
421 
422   Loop *OuterLoop;
423   Loop *InnerLoop;
424 
425   /// Scev analysis.
426   ScalarEvolution *SE;
427 
428   LoopInfo *LI;
429   DominatorTree *DT;
430   BasicBlock *LoopExit;
431   bool InnerLoopHasReduction;
432 };
433 
434 // Main LoopInterchange Pass.
435 struct LoopInterchange : public FunctionPass {
436   static char ID;
437   ScalarEvolution *SE = nullptr;
438   LoopInfo *LI = nullptr;
439   DependenceInfo *DI = nullptr;
440   DominatorTree *DT = nullptr;
441   bool PreserveLCSSA;
442 
443   /// Interface to emit optimization remarks.
444   OptimizationRemarkEmitter *ORE;
445 
446   LoopInterchange() : FunctionPass(ID) {
447     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
448   }
449 
450   void getAnalysisUsage(AnalysisUsage &AU) const override {
451     AU.addRequired<ScalarEvolutionWrapperPass>();
452     AU.addRequired<AAResultsWrapperPass>();
453     AU.addRequired<DominatorTreeWrapperPass>();
454     AU.addRequired<LoopInfoWrapperPass>();
455     AU.addRequired<DependenceAnalysisWrapperPass>();
456     AU.addRequiredID(LoopSimplifyID);
457     AU.addRequiredID(LCSSAID);
458     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
459 
460     AU.addPreserved<DominatorTreeWrapperPass>();
461     AU.addPreserved<LoopInfoWrapperPass>();
462   }
463 
464   bool runOnFunction(Function &F) override {
465     if (skipFunction(F))
466       return false;
467 
468     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
469     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
471     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
472     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
473     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
474 
475     // Build up a worklist of loop pairs to analyze.
476     SmallVector<LoopVector, 8> Worklist;
477 
478     for (Loop *L : *LI)
479       populateWorklist(*L, Worklist);
480 
481     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
482     bool Changed = true;
483     while (!Worklist.empty()) {
484       LoopVector LoopList = Worklist.pop_back_val();
485       Changed = processLoopList(LoopList, F);
486     }
487     return Changed;
488   }
489 
490   bool isComputableLoopNest(LoopVector LoopList) {
491     for (Loop *L : LoopList) {
492       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
493       if (ExitCountOuter == SE->getCouldNotCompute()) {
494         DEBUG(dbgs() << "Couldn't compute backedge count\n");
495         return false;
496       }
497       if (L->getNumBackEdges() != 1) {
498         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
499         return false;
500       }
501       if (!L->getExitingBlock()) {
502         DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
503         return false;
504       }
505     }
506     return true;
507   }
508 
509   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
510     // TODO: Add a better heuristic to select the loop to be interchanged based
511     // on the dependence matrix. Currently we select the innermost loop.
512     return LoopList.size() - 1;
513   }
514 
515   bool processLoopList(LoopVector LoopList, Function &F) {
516     bool Changed = false;
517     unsigned LoopNestDepth = LoopList.size();
518     if (LoopNestDepth < 2) {
519       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
520       return false;
521     }
522     if (LoopNestDepth > MaxLoopNestDepth) {
523       DEBUG(dbgs() << "Cannot handle loops of depth greater than "
524                    << MaxLoopNestDepth << "\n");
525       return false;
526     }
527     if (!isComputableLoopNest(LoopList)) {
528       DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
529       return false;
530     }
531 
532     DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n");
533 
534     CharMatrix DependencyMatrix;
535     Loop *OuterMostLoop = *(LoopList.begin());
536     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
537                                   OuterMostLoop, DI)) {
538       DEBUG(dbgs() << "Populating dependency matrix failed\n");
539       return false;
540     }
541 #ifdef DUMP_DEP_MATRICIES
542     DEBUG(dbgs() << "Dependence before interchange\n");
543     printDepMatrix(DependencyMatrix);
544 #endif
545 
546     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
547     BranchInst *OuterMostLoopLatchBI =
548         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
549     if (!OuterMostLoopLatchBI || OuterMostLoopLatchBI->getNumSuccessors() != 2)
550       return false;
551 
552     // Since we currently do not handle LCSSA PHI's any failure in loop
553     // condition will now branch to LoopNestExit.
554     // TODO: This should be removed once we handle LCSSA PHI nodes.
555 
556     // Get the Outermost loop exit.
557     BasicBlock *LoopNestExit;
558     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
559       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
560     else
561       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
562 
563     if (isa<PHINode>(LoopNestExit->begin())) {
564       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
565                       "since on failure all loops branch to loop nest exit.\n");
566       return false;
567     }
568 
569     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
570     // Move the selected loop outwards to the best possible position.
571     for (unsigned i = SelecLoopId; i > 0; i--) {
572       bool Interchanged =
573           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
574       if (!Interchanged)
575         return Changed;
576       // Loops interchanged reflect the same in LoopList
577       std::swap(LoopList[i - 1], LoopList[i]);
578 
579       // Update the DependencyMatrix
580       interChangeDependencies(DependencyMatrix, i, i - 1);
581 #ifdef DUMP_DEP_MATRICIES
582       DEBUG(dbgs() << "Dependence after interchange\n");
583       printDepMatrix(DependencyMatrix);
584 #endif
585       Changed |= Interchanged;
586     }
587     return Changed;
588   }
589 
590   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
591                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
592                    std::vector<std::vector<char>> &DependencyMatrix) {
593     DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
594                  << " and OuterLoopId = " << OuterLoopId << "\n");
595     Loop *InnerLoop = LoopList[InnerLoopId];
596     Loop *OuterLoop = LoopList[OuterLoopId];
597 
598     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
599                                 PreserveLCSSA, ORE);
600     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
601       DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
602       return false;
603     }
604     DEBUG(dbgs() << "Loops are legal to interchange\n");
605     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
606     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
607       DEBUG(dbgs() << "Interchanging loops not profitable.\n");
608       return false;
609     }
610 
611     ORE->emit([&]() {
612       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
613                                 InnerLoop->getStartLoc(),
614                                 InnerLoop->getHeader())
615              << "Loop interchanged with enclosing loop.";
616     });
617 
618     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
619                                  LoopNestExit, LIL.hasInnerLoopReduction());
620     LIT.transform();
621     DEBUG(dbgs() << "Loops interchanged.\n");
622     LoopsInterchanged++;
623     return true;
624   }
625 };
626 
627 } // end anonymous namespace
628 
629 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
630   return llvm::none_of(Ins->users(), [=](User *U) -> bool {
631     auto *UserIns = dyn_cast<PHINode>(U);
632     RecurrenceDescriptor RD;
633     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
634   });
635 }
636 
637 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
638     BasicBlock *BB) {
639   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
640     // Load corresponding to reduction PHI's are safe while concluding if
641     // tightly nested.
642     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
643       if (!areAllUsesReductions(L, InnerLoop))
644         return true;
645     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
646       return true;
647   }
648   return false;
649 }
650 
651 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
652     BasicBlock *BB) {
653   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
654     // Stores corresponding to reductions are safe while concluding if tightly
655     // nested.
656     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
657       if (!isa<PHINode>(L->getOperand(0)))
658         return true;
659     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
660       return true;
661   }
662   return false;
663 }
664 
665 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
666   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
667   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
668   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
669 
670   DEBUG(dbgs() << "Checking if loops are tightly nested\n");
671 
672   // A perfectly nested loop will not have any branch in between the outer and
673   // inner block i.e. outer header will branch to either inner preheader and
674   // outerloop latch.
675   BranchInst *OuterLoopHeaderBI =
676       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
677   if (!OuterLoopHeaderBI)
678     return false;
679 
680   for (BasicBlock *Succ : OuterLoopHeaderBI->successors())
681     if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch)
682       return false;
683 
684   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
685   // We do not have any basic block in between now make sure the outer header
686   // and outer loop latch doesn't contain any unsafe instructions.
687   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
688       containsUnsafeInstructionsInLatch(OuterLoopLatch))
689     return false;
690 
691   DEBUG(dbgs() << "Loops are perfectly nested\n");
692   // We have a perfect loop nest.
693   return true;
694 }
695 
696 bool LoopInterchangeLegality::isLoopStructureUnderstood(
697     PHINode *InnerInduction) {
698   unsigned Num = InnerInduction->getNumOperands();
699   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
700   for (unsigned i = 0; i < Num; ++i) {
701     Value *Val = InnerInduction->getOperand(i);
702     if (isa<Constant>(Val))
703       continue;
704     Instruction *I = dyn_cast<Instruction>(Val);
705     if (!I)
706       return false;
707     // TODO: Handle triangular loops.
708     // e.g. for(int i=0;i<N;i++)
709     //        for(int j=i;j<N;j++)
710     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
711     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
712             InnerLoopPreheader &&
713         !OuterLoop->isLoopInvariant(I)) {
714       return false;
715     }
716   }
717   return true;
718 }
719 
720 bool LoopInterchangeLegality::findInductionAndReductions(
721     Loop *L, SmallVector<PHINode *, 8> &Inductions,
722     SmallVector<PHINode *, 8> &Reductions) {
723   if (!L->getLoopLatch() || !L->getLoopPredecessor())
724     return false;
725   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
726     RecurrenceDescriptor RD;
727     InductionDescriptor ID;
728     PHINode *PHI = cast<PHINode>(I);
729     if (InductionDescriptor::isInductionPHI(PHI, L, SE, ID))
730       Inductions.push_back(PHI);
731     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
732       Reductions.push_back(PHI);
733     else {
734       DEBUG(
735           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
736       return false;
737     }
738   }
739   return true;
740 }
741 
742 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
743   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
744     PHINode *PHI = cast<PHINode>(I);
745     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
746     if (PHI->getNumIncomingValues() > 1)
747       return false;
748     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
749     if (!Ins)
750       return false;
751     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
752     // exits lcssa phi else it would not be tightly nested.
753     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
754       return false;
755   }
756   return true;
757 }
758 
759 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
760                                          BasicBlock *LoopHeader) {
761   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
762     assert(BI->getNumSuccessors() == 2 &&
763            "Branch leaving loop latch must have 2 successors");
764     for (BasicBlock *Succ : BI->successors()) {
765       if (Succ == LoopHeader)
766         continue;
767       return Succ;
768     }
769   }
770   return nullptr;
771 }
772 
773 // This function indicates the current limitations in the transform as a result
774 // of which we do not proceed.
775 bool LoopInterchangeLegality::currentLimitations() {
776   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
777   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
778   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
779   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
780   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
781 
782   PHINode *InnerInductionVar;
783   SmallVector<PHINode *, 8> Inductions;
784   SmallVector<PHINode *, 8> Reductions;
785   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
786     DEBUG(dbgs() << "Only inner loops with induction or reduction PHI nodes "
787                  << "are supported currently.\n");
788     ORE->emit([&]() {
789       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
790                                       InnerLoop->getStartLoc(),
791                                       InnerLoop->getHeader())
792              << "Only inner loops with induction or reduction PHI nodes can be"
793                 " interchange currently.";
794     });
795     return true;
796   }
797 
798   // TODO: Currently we handle only loops with 1 induction variable.
799   if (Inductions.size() != 1) {
800     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
801                  << "Failed to interchange due to current limitation\n");
802     ORE->emit([&]() {
803       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
804                                       InnerLoop->getStartLoc(),
805                                       InnerLoop->getHeader())
806              << "Only inner loops with 1 induction variable can be "
807                 "interchanged currently.";
808     });
809     return true;
810   }
811   if (Reductions.size() > 0)
812     InnerLoopHasReduction = true;
813 
814   InnerInductionVar = Inductions.pop_back_val();
815   Reductions.clear();
816   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
817     DEBUG(dbgs() << "Only outer loops with induction or reduction PHI nodes "
818                  << "are supported currently.\n");
819     ORE->emit([&]() {
820       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
821                                       OuterLoop->getStartLoc(),
822                                       OuterLoop->getHeader())
823              << "Only outer loops with induction or reduction PHI nodes can be"
824                 " interchanged currently.";
825     });
826     return true;
827   }
828 
829   // Outer loop cannot have reduction because then loops will not be tightly
830   // nested.
831   if (!Reductions.empty()) {
832     DEBUG(dbgs() << "Outer loops with reductions are not supported "
833                  << "currently.\n");
834     ORE->emit([&]() {
835       return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter",
836                                       OuterLoop->getStartLoc(),
837                                       OuterLoop->getHeader())
838              << "Outer loops with reductions cannot be interchangeed "
839                 "currently.";
840     });
841     return true;
842   }
843   // TODO: Currently we handle only loops with 1 induction variable.
844   if (Inductions.size() != 1) {
845     DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
846                  << "supported currently.\n");
847     ORE->emit([&]() {
848       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
849                                       OuterLoop->getStartLoc(),
850                                       OuterLoop->getHeader())
851              << "Only outer loops with 1 induction variable can be "
852                 "interchanged currently.";
853     });
854     return true;
855   }
856 
857   // TODO: Triangular loops are not handled for now.
858   if (!isLoopStructureUnderstood(InnerInductionVar)) {
859     DEBUG(dbgs() << "Loop structure not understood by pass\n");
860     ORE->emit([&]() {
861       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
862                                       InnerLoop->getStartLoc(),
863                                       InnerLoop->getHeader())
864              << "Inner loop structure not understood currently.";
865     });
866     return true;
867   }
868 
869   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
870   BasicBlock *LoopExitBlock =
871       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
872   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true)) {
873     DEBUG(dbgs() << "Can only handle LCSSA PHIs in outer loops currently.\n");
874     ORE->emit([&]() {
875       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuter",
876                                       OuterLoop->getStartLoc(),
877                                       OuterLoop->getHeader())
878              << "Only outer loops with LCSSA PHIs can be interchange "
879                 "currently.";
880     });
881     return true;
882   }
883 
884   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
885   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false)) {
886     DEBUG(dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
887     ORE->emit([&]() {
888       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
889                                       InnerLoop->getStartLoc(),
890                                       InnerLoop->getHeader())
891              << "Only inner loops with LCSSA PHIs can be interchange "
892                 "currently.";
893     });
894     return true;
895   }
896 
897   // TODO: Current limitation: Since we split the inner loop latch at the point
898   // were induction variable is incremented (induction.next); We cannot have
899   // more than 1 user of induction.next since it would result in broken code
900   // after split.
901   // e.g.
902   // for(i=0;i<N;i++) {
903   //    for(j = 0;j<M;j++) {
904   //      A[j+1][i+2] = A[j][i]+k;
905   //  }
906   // }
907   Instruction *InnerIndexVarInc = nullptr;
908   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
909     InnerIndexVarInc =
910         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
911   else
912     InnerIndexVarInc =
913         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
914 
915   if (!InnerIndexVarInc) {
916     DEBUG(dbgs() << "Did not find an instruction to increment the induction "
917                  << "variable.\n");
918     ORE->emit([&]() {
919       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
920                                       InnerLoop->getStartLoc(),
921                                       InnerLoop->getHeader())
922              << "The inner loop does not increment the induction variable.";
923     });
924     return true;
925   }
926 
927   // Since we split the inner loop latch on this induction variable. Make sure
928   // we do not have any instruction between the induction variable and branch
929   // instruction.
930 
931   bool FoundInduction = false;
932   for (const Instruction &I : llvm::reverse(*InnerLoopLatch)) {
933     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
934         isa<ZExtInst>(I))
935       continue;
936 
937     // We found an instruction. If this is not induction variable then it is not
938     // safe to split this loop latch.
939     if (!I.isIdenticalTo(InnerIndexVarInc)) {
940       DEBUG(dbgs() << "Found unsupported instructions between induction "
941                    << "variable increment and branch.\n");
942       ORE->emit([&]() {
943         return OptimizationRemarkMissed(
944                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
945                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
946                << "Found unsupported instruction between induction variable "
947                   "increment and branch.";
948       });
949       return true;
950     }
951 
952     FoundInduction = true;
953     break;
954   }
955   // The loop latch ended and we didn't find the induction variable return as
956   // current limitation.
957   if (!FoundInduction) {
958     DEBUG(dbgs() << "Did not find the induction variable.\n");
959     ORE->emit([&]() {
960       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
961                                       InnerLoop->getStartLoc(),
962                                       InnerLoop->getHeader())
963              << "Did not find the induction variable.";
964     });
965     return true;
966   }
967   return false;
968 }
969 
970 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
971                                                   unsigned OuterLoopId,
972                                                   CharMatrix &DepMatrix) {
973   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
974     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
975                  << " and OuterLoopId = " << OuterLoopId
976                  << " due to dependence\n");
977     ORE->emit([&]() {
978       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
979                                       InnerLoop->getStartLoc(),
980                                       InnerLoop->getHeader())
981              << "Cannot interchange loops due to dependences.";
982     });
983     return false;
984   }
985 
986   // Check if outer and inner loop contain legal instructions only.
987   for (auto *BB : OuterLoop->blocks())
988     for (Instruction &I : *BB)
989       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
990         // readnone functions do not prevent interchanging.
991         if (CI->doesNotReadMemory())
992           continue;
993         DEBUG(dbgs() << "Loops with call instructions cannot be interchanged "
994                      << "safely.");
995         ORE->emit([&]() {
996           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
997                                           CI->getDebugLoc(),
998                                           CI->getParent())
999                  << "Cannot interchange loops due to call instruction.";
1000         });
1001 
1002         return false;
1003       }
1004 
1005   // Create unique Preheaders if we already do not have one.
1006   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1007   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1008 
1009   // Create  a unique outer preheader -
1010   // 1) If OuterLoop preheader is not present.
1011   // 2) If OuterLoop Preheader is same as OuterLoop Header
1012   // 3) If OuterLoop Preheader is same as Header of the previous loop.
1013   // 4) If OuterLoop Preheader is Entry node.
1014   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
1015       isa<PHINode>(OuterLoopPreHeader->begin()) ||
1016       !OuterLoopPreHeader->getUniquePredecessor()) {
1017     OuterLoopPreHeader =
1018         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
1019   }
1020 
1021   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
1022       InnerLoopPreHeader == OuterLoop->getHeader()) {
1023     InnerLoopPreHeader =
1024         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
1025   }
1026 
1027   // TODO: The loops could not be interchanged due to current limitations in the
1028   // transform module.
1029   if (currentLimitations()) {
1030     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1031     return false;
1032   }
1033 
1034   // Check if the loops are tightly nested.
1035   if (!tightlyNested(OuterLoop, InnerLoop)) {
1036     DEBUG(dbgs() << "Loops not tightly nested\n");
1037     ORE->emit([&]() {
1038       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1039                                       InnerLoop->getStartLoc(),
1040                                       InnerLoop->getHeader())
1041              << "Cannot interchange loops because they are not tightly "
1042                 "nested.";
1043     });
1044     return false;
1045   }
1046 
1047   return true;
1048 }
1049 
1050 int LoopInterchangeProfitability::getInstrOrderCost() {
1051   unsigned GoodOrder, BadOrder;
1052   BadOrder = GoodOrder = 0;
1053   for (BasicBlock *BB : InnerLoop->blocks()) {
1054     for (Instruction &Ins : *BB) {
1055       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1056         unsigned NumOp = GEP->getNumOperands();
1057         bool FoundInnerInduction = false;
1058         bool FoundOuterInduction = false;
1059         for (unsigned i = 0; i < NumOp; ++i) {
1060           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1061           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1062           if (!AR)
1063             continue;
1064 
1065           // If we find the inner induction after an outer induction e.g.
1066           // for(int i=0;i<N;i++)
1067           //   for(int j=0;j<N;j++)
1068           //     A[i][j] = A[i-1][j-1]+k;
1069           // then it is a good order.
1070           if (AR->getLoop() == InnerLoop) {
1071             // We found an InnerLoop induction after OuterLoop induction. It is
1072             // a good order.
1073             FoundInnerInduction = true;
1074             if (FoundOuterInduction) {
1075               GoodOrder++;
1076               break;
1077             }
1078           }
1079           // If we find the outer induction after an inner induction e.g.
1080           // for(int i=0;i<N;i++)
1081           //   for(int j=0;j<N;j++)
1082           //     A[j][i] = A[j-1][i-1]+k;
1083           // then it is a bad order.
1084           if (AR->getLoop() == OuterLoop) {
1085             // We found an OuterLoop induction after InnerLoop induction. It is
1086             // a bad order.
1087             FoundOuterInduction = true;
1088             if (FoundInnerInduction) {
1089               BadOrder++;
1090               break;
1091             }
1092           }
1093         }
1094       }
1095     }
1096   }
1097   return GoodOrder - BadOrder;
1098 }
1099 
1100 static bool isProfitableForVectorization(unsigned InnerLoopId,
1101                                          unsigned OuterLoopId,
1102                                          CharMatrix &DepMatrix) {
1103   // TODO: Improve this heuristic to catch more cases.
1104   // If the inner loop is loop independent or doesn't carry any dependency it is
1105   // profitable to move this to outer position.
1106   for (auto &Row : DepMatrix) {
1107     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1108       return false;
1109     // TODO: We need to improve this heuristic.
1110     if (Row[OuterLoopId] != '=')
1111       return false;
1112   }
1113   // If outer loop has dependence and inner loop is loop independent then it is
1114   // profitable to interchange to enable parallelism.
1115   return true;
1116 }
1117 
1118 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1119                                                 unsigned OuterLoopId,
1120                                                 CharMatrix &DepMatrix) {
1121   // TODO: Add better profitability checks.
1122   // e.g
1123   // 1) Construct dependency matrix and move the one with no loop carried dep
1124   //    inside to enable vectorization.
1125 
1126   // This is rough cost estimation algorithm. It counts the good and bad order
1127   // of induction variables in the instruction and allows reordering if number
1128   // of bad orders is more than good.
1129   int Cost = getInstrOrderCost();
1130   DEBUG(dbgs() << "Cost = " << Cost << "\n");
1131   if (Cost < -LoopInterchangeCostThreshold)
1132     return true;
1133 
1134   // It is not profitable as per current cache profitability model. But check if
1135   // we can move this loop outside to improve parallelism.
1136   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1137     return true;
1138 
1139   ORE->emit([&]() {
1140     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1141                                     InnerLoop->getStartLoc(),
1142                                     InnerLoop->getHeader())
1143            << "Interchanging loops is too costly (cost="
1144            << ore::NV("Cost", Cost) << ", threshold="
1145            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1146            << ") and it does not improve parallelism.";
1147   });
1148   return false;
1149 }
1150 
1151 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1152                                                Loop *InnerLoop) {
1153   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
1154        ++I) {
1155     if (*I == InnerLoop) {
1156       OuterLoop->removeChildLoop(I);
1157       return;
1158     }
1159   }
1160   llvm_unreachable("Couldn't find loop");
1161 }
1162 
1163 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1164 /// new inner and outer loop after interchanging: NewInner is the original
1165 /// outer loop and NewOuter is the original inner loop.
1166 ///
1167 /// Before interchanging, we have the following structure
1168 /// Outer preheader
1169 //  Outer header
1170 //    Inner preheader
1171 //    Inner header
1172 //      Inner body
1173 //      Inner latch
1174 //   outer bbs
1175 //   Outer latch
1176 //
1177 // After interchanging:
1178 // Inner preheader
1179 // Inner header
1180 //   Outer preheader
1181 //   Outer header
1182 //     Inner body
1183 //     outer bbs
1184 //     Outer latch
1185 //   Inner latch
1186 void LoopInterchangeTransform::restructureLoops(
1187     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1188     BasicBlock *OrigOuterPreHeader) {
1189   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1190   // The original inner loop preheader moves from the new inner loop to
1191   // the parent loop, if there is one.
1192   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1193   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1194 
1195   // Switch the loop levels.
1196   if (OuterLoopParent) {
1197     // Remove the loop from its parent loop.
1198     removeChildLoop(OuterLoopParent, NewInner);
1199     removeChildLoop(NewInner, NewOuter);
1200     OuterLoopParent->addChildLoop(NewOuter);
1201   } else {
1202     removeChildLoop(NewInner, NewOuter);
1203     LI->changeTopLevelLoop(NewInner, NewOuter);
1204   }
1205   while (!NewOuter->empty())
1206     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1207   NewOuter->addChildLoop(NewInner);
1208 
1209   // BBs from the original inner loop.
1210   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1211 
1212   // Add BBs from the original outer loop to the original inner loop (excluding
1213   // BBs already in inner loop)
1214   for (BasicBlock *BB : NewInner->blocks())
1215     if (LI->getLoopFor(BB) == NewInner)
1216       NewOuter->addBlockEntry(BB);
1217 
1218   // Now remove inner loop header and latch from the new inner loop and move
1219   // other BBs (the loop body) to the new inner loop.
1220   BasicBlock *OuterHeader = NewOuter->getHeader();
1221   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1222   for (BasicBlock *BB : OrigInnerBBs) {
1223     // Remove the new outer loop header and latch from the new inner loop.
1224     if (BB == OuterHeader || BB == OuterLatch)
1225       NewInner->removeBlockFromLoop(BB);
1226     else
1227       LI->changeLoopFor(BB, NewInner);
1228   }
1229 
1230   // The preheader of the original outer loop becomes part of the new
1231   // outer loop.
1232   NewOuter->addBlockEntry(OrigOuterPreHeader);
1233   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1234 }
1235 
1236 bool LoopInterchangeTransform::transform() {
1237   bool Transformed = false;
1238   Instruction *InnerIndexVar;
1239 
1240   if (InnerLoop->getSubLoops().empty()) {
1241     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1242     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1243     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1244     if (!InductionPHI) {
1245       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1246       return false;
1247     }
1248 
1249     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1250       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1251     else
1252       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1253 
1254     // Ensure that InductionPHI is the first Phi node as required by
1255     // splitInnerLoopHeader
1256     if (&InductionPHI->getParent()->front() != InductionPHI)
1257       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1258 
1259     // Split at the place were the induction variable is
1260     // incremented/decremented.
1261     // TODO: This splitting logic may not work always. Fix this.
1262     splitInnerLoopLatch(InnerIndexVar);
1263     DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1264 
1265     // Splits the inner loops phi nodes out into a separate basic block.
1266     splitInnerLoopHeader();
1267     DEBUG(dbgs() << "splitInnerLoopHeader done\n");
1268   }
1269 
1270   Transformed |= adjustLoopLinks();
1271   if (!Transformed) {
1272     DEBUG(dbgs() << "adjustLoopLinks failed\n");
1273     return false;
1274   }
1275 
1276   return true;
1277 }
1278 
1279 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1280   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1281   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1282   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1283 }
1284 
1285 void LoopInterchangeTransform::splitInnerLoopHeader() {
1286   // Split the inner loop header out. Here make sure that the reduction PHI's
1287   // stay in the innerloop body.
1288   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1289   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1290   SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1291   if (InnerLoopHasReduction) {
1292     // Adjust Reduction PHI's in the block. The induction PHI must be the first
1293     // PHI in InnerLoopHeader for this to work.
1294     SmallVector<PHINode *, 8> PHIVec;
1295     for (auto I = std::next(InnerLoopHeader->begin()); isa<PHINode>(I); ++I) {
1296       PHINode *PHI = dyn_cast<PHINode>(I);
1297       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1298       PHI->replaceAllUsesWith(V);
1299       PHIVec.push_back((PHI));
1300     }
1301     for (PHINode *P : PHIVec) {
1302       P->eraseFromParent();
1303     }
1304   }
1305 
1306   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1307                   "InnerLoopHeader\n");
1308 }
1309 
1310 /// \brief Move all instructions except the terminator from FromBB right before
1311 /// InsertBefore
1312 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1313   auto &ToList = InsertBefore->getParent()->getInstList();
1314   auto &FromList = FromBB->getInstList();
1315 
1316   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1317                 FromBB->getTerminator()->getIterator());
1318 }
1319 
1320 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1321                                                    BasicBlock *OldPred,
1322                                                    BasicBlock *NewPred) {
1323   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1324     PHINode *PHI = cast<PHINode>(I);
1325     unsigned Num = PHI->getNumIncomingValues();
1326     for (unsigned i = 0; i < Num; ++i) {
1327       if (PHI->getIncomingBlock(i) == OldPred)
1328         PHI->setIncomingBlock(i, NewPred);
1329     }
1330   }
1331 }
1332 
1333 /// \brief Update BI to jump to NewBB instead of OldBB. Records updates to
1334 /// the dominator tree in DTUpdates, if DT should be preserved.
1335 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1336                             BasicBlock *NewBB,
1337                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1338   assert(llvm::count_if(BI->successors(),
1339                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1340          "BI must jump to OldBB at most once.");
1341   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1342     if (BI->getSuccessor(i) == OldBB) {
1343       BI->setSuccessor(i, NewBB);
1344 
1345       DTUpdates.push_back(
1346           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1347       DTUpdates.push_back(
1348           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1349       break;
1350     }
1351   }
1352 }
1353 
1354 bool LoopInterchangeTransform::adjustLoopBranches() {
1355   DEBUG(dbgs() << "adjustLoopBranches called\n");
1356   std::vector<DominatorTree::UpdateType> DTUpdates;
1357 
1358   // Adjust the loop preheader
1359   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1360   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1361   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1362   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1363   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1364   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1365   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1366   BasicBlock *InnerLoopLatchPredecessor =
1367       InnerLoopLatch->getUniquePredecessor();
1368   BasicBlock *InnerLoopLatchSuccessor;
1369   BasicBlock *OuterLoopLatchSuccessor;
1370 
1371   BranchInst *OuterLoopLatchBI =
1372       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1373   BranchInst *InnerLoopLatchBI =
1374       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1375   BranchInst *OuterLoopHeaderBI =
1376       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1377   BranchInst *InnerLoopHeaderBI =
1378       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1379 
1380   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1381       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1382       !InnerLoopHeaderBI)
1383     return false;
1384 
1385   BranchInst *InnerLoopLatchPredecessorBI =
1386       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1387   BranchInst *OuterLoopPredecessorBI =
1388       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1389 
1390   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1391     return false;
1392   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1393   if (!InnerLoopHeaderSuccessor)
1394     return false;
1395 
1396   // Adjust Loop Preheader and headers
1397   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1398                   InnerLoopPreHeader, DTUpdates);
1399   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1400   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1401                   InnerLoopHeaderSuccessor, DTUpdates);
1402 
1403   // Adjust reduction PHI's now that the incoming block has changed.
1404   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1405                       OuterLoopHeader);
1406 
1407   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1408                   OuterLoopPreHeader, DTUpdates);
1409 
1410   // -------------Adjust loop latches-----------
1411   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1412     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1413   else
1414     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1415 
1416   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1417                   InnerLoopLatchSuccessor, DTUpdates);
1418 
1419   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1420   // the value and remove this PHI node from inner loop.
1421   SmallVector<PHINode *, 8> LcssaVec;
1422   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1423     PHINode *LcssaPhi = cast<PHINode>(I);
1424     LcssaVec.push_back(LcssaPhi);
1425   }
1426   for (PHINode *P : LcssaVec) {
1427     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1428     P->replaceAllUsesWith(Incoming);
1429     P->eraseFromParent();
1430   }
1431 
1432   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1433     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1434   else
1435     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1436 
1437   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1438                   OuterLoopLatchSuccessor, DTUpdates);
1439   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1440                   DTUpdates);
1441 
1442   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1443 
1444   DT->applyUpdates(DTUpdates);
1445   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1446                    OuterLoopPreHeader);
1447 
1448   return true;
1449 }
1450 
1451 void LoopInterchangeTransform::adjustLoopPreheaders() {
1452   // We have interchanged the preheaders so we need to interchange the data in
1453   // the preheader as well.
1454   // This is because the content of inner preheader was previously executed
1455   // inside the outer loop.
1456   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1457   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1458   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1459   BranchInst *InnerTermBI =
1460       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1461 
1462   // These instructions should now be executed inside the loop.
1463   // Move instruction into a new block after outer header.
1464   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1465   // These instructions were not executed previously in the loop so move them to
1466   // the older inner loop preheader.
1467   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1468 }
1469 
1470 bool LoopInterchangeTransform::adjustLoopLinks() {
1471   // Adjust all branches in the inner and outer loop.
1472   bool Changed = adjustLoopBranches();
1473   if (Changed)
1474     adjustLoopPreheaders();
1475   return Changed;
1476 }
1477 
1478 char LoopInterchange::ID = 0;
1479 
1480 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1481                       "Interchanges loops for cache reuse", false, false)
1482 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1483 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1484 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1485 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1486 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1487 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1488 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1489 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1490 
1491 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1492                     "Interchanges loops for cache reuse", false, false)
1493 
1494 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1495