1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 if (Src == Dst) 123 continue; 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 const SCEV *Distance = D->getDistance(II); 139 const SCEVConstant *SCEVConst = 140 dyn_cast_or_null<SCEVConstant>(Distance); 141 if (SCEVConst) { 142 const ConstantInt *CI = SCEVConst->getValue(); 143 if (CI->isNegative()) 144 Direction = '<'; 145 else if (CI->isZero()) 146 Direction = '='; 147 else 148 Direction = '>'; 149 Dep.push_back(Direction); 150 } else if (D->isScalar(II)) { 151 Direction = 'S'; 152 Dep.push_back(Direction); 153 } else { 154 unsigned Dir = D->getDirection(II); 155 if (Dir == Dependence::DVEntry::LT || 156 Dir == Dependence::DVEntry::LE) 157 Direction = '<'; 158 else if (Dir == Dependence::DVEntry::GT || 159 Dir == Dependence::DVEntry::GE) 160 Direction = '>'; 161 else if (Dir == Dependence::DVEntry::EQ) 162 Direction = '='; 163 else 164 Direction = '*'; 165 Dep.push_back(Direction); 166 } 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 DepMatrix.push_back(Dep); 173 if (DepMatrix.size() > MaxMemInstrCount) { 174 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 175 << " dependencies inside loop\n"); 176 return false; 177 } 178 } 179 } 180 } 181 182 return true; 183 } 184 185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 186 // matrix by exchanging the two columns. 187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 188 unsigned ToIndx) { 189 unsigned numRows = DepMatrix.size(); 190 for (unsigned i = 0; i < numRows; ++i) { 191 char TmpVal = DepMatrix[i][ToIndx]; 192 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 193 DepMatrix[i][FromIndx] = TmpVal; 194 } 195 } 196 197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 198 // '>' 199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 200 unsigned Column) { 201 for (unsigned i = 0; i <= Column; ++i) { 202 if (DepMatrix[Row][i] == '<') 203 return false; 204 if (DepMatrix[Row][i] == '>') 205 return true; 206 } 207 // All dependencies were '=','S' or 'I' 208 return false; 209 } 210 211 // Checks if no dependence exist in the dependency matrix in Row before Column. 212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 213 unsigned Column) { 214 for (unsigned i = 0; i < Column; ++i) { 215 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 216 DepMatrix[Row][i] != 'I') 217 return false; 218 } 219 return true; 220 } 221 222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 223 unsigned OuterLoopId, char InnerDep, 224 char OuterDep) { 225 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 226 return false; 227 228 if (InnerDep == OuterDep) 229 return true; 230 231 // It is legal to interchange if and only if after interchange no row has a 232 // '>' direction as the leftmost non-'='. 233 234 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 235 return true; 236 237 if (InnerDep == '<') 238 return true; 239 240 if (InnerDep == '>') { 241 // If OuterLoopId represents outermost loop then interchanging will make the 242 // 1st dependency as '>' 243 if (OuterLoopId == 0) 244 return false; 245 246 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 247 // interchanging will result in this row having an outermost non '=' 248 // dependency of '>' 249 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 250 return true; 251 } 252 253 return false; 254 } 255 256 // Checks if it is legal to interchange 2 loops. 257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 258 // if the direction matrix, after the same permutation is applied to its 259 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 260 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 261 unsigned InnerLoopId, 262 unsigned OuterLoopId) { 263 unsigned NumRows = DepMatrix.size(); 264 // For each row check if it is valid to interchange. 265 for (unsigned Row = 0; Row < NumRows; ++Row) { 266 char InnerDep = DepMatrix[Row][InnerLoopId]; 267 char OuterDep = DepMatrix[Row][OuterLoopId]; 268 if (InnerDep == '*' || OuterDep == '*') 269 return false; 270 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 271 return false; 272 } 273 return true; 274 } 275 276 static LoopVector populateWorklist(Loop &L) { 277 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 278 << L.getHeader()->getParent()->getName() << " Loop: %" 279 << L.getHeader()->getName() << '\n'); 280 LoopVector LoopList; 281 Loop *CurrentLoop = &L; 282 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 283 while (!Vec->empty()) { 284 // The current loop has multiple subloops in it hence it is not tightly 285 // nested. 286 // Discard all loops above it added into Worklist. 287 if (Vec->size() != 1) 288 return {}; 289 290 LoopList.push_back(CurrentLoop); 291 CurrentLoop = Vec->front(); 292 Vec = &CurrentLoop->getSubLoops(); 293 } 294 LoopList.push_back(CurrentLoop); 295 return LoopList; 296 } 297 298 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 299 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 300 if (InnerIndexVar) 301 return InnerIndexVar; 302 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 303 return nullptr; 304 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 305 PHINode *PhiVar = cast<PHINode>(I); 306 Type *PhiTy = PhiVar->getType(); 307 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 308 !PhiTy->isPointerTy()) 309 return nullptr; 310 const SCEVAddRecExpr *AddRec = 311 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 312 if (!AddRec || !AddRec->isAffine()) 313 continue; 314 const SCEV *Step = AddRec->getStepRecurrence(*SE); 315 if (!isa<SCEVConstant>(Step)) 316 continue; 317 // Found the induction variable. 318 // FIXME: Handle loops with more than one induction variable. Note that, 319 // currently, legality makes sure we have only one induction variable. 320 return PhiVar; 321 } 322 return nullptr; 323 } 324 325 namespace { 326 327 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 328 class LoopInterchangeLegality { 329 public: 330 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 331 OptimizationRemarkEmitter *ORE) 332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 333 334 /// Check if the loops can be interchanged. 335 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 336 CharMatrix &DepMatrix); 337 338 /// Check if the loop structure is understood. We do not handle triangular 339 /// loops for now. 340 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 341 342 bool currentLimitations(); 343 344 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 345 return OuterInnerReductions; 346 } 347 348 private: 349 bool tightlyNested(Loop *Outer, Loop *Inner); 350 bool containsUnsafeInstructions(BasicBlock *BB); 351 352 /// Discover induction and reduction PHIs in the header of \p L. Induction 353 /// PHIs are added to \p Inductions, reductions are added to 354 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 355 /// to be passed as \p InnerLoop. 356 bool findInductionAndReductions(Loop *L, 357 SmallVector<PHINode *, 8> &Inductions, 358 Loop *InnerLoop); 359 360 Loop *OuterLoop; 361 Loop *InnerLoop; 362 363 ScalarEvolution *SE; 364 365 /// Interface to emit optimization remarks. 366 OptimizationRemarkEmitter *ORE; 367 368 /// Set of reduction PHIs taking part of a reduction across the inner and 369 /// outer loop. 370 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 371 }; 372 373 /// LoopInterchangeProfitability checks if it is profitable to interchange the 374 /// loop. 375 class LoopInterchangeProfitability { 376 public: 377 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 378 OptimizationRemarkEmitter *ORE) 379 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 380 381 /// Check if the loop interchange is profitable. 382 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 383 CharMatrix &DepMatrix); 384 385 private: 386 int getInstrOrderCost(); 387 388 Loop *OuterLoop; 389 Loop *InnerLoop; 390 391 /// Scev analysis. 392 ScalarEvolution *SE; 393 394 /// Interface to emit optimization remarks. 395 OptimizationRemarkEmitter *ORE; 396 }; 397 398 /// LoopInterchangeTransform interchanges the loop. 399 class LoopInterchangeTransform { 400 public: 401 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 402 LoopInfo *LI, DominatorTree *DT, 403 BasicBlock *LoopNestExit, 404 const LoopInterchangeLegality &LIL) 405 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 406 LoopExit(LoopNestExit), LIL(LIL) {} 407 408 /// Interchange OuterLoop and InnerLoop. 409 bool transform(); 410 void restructureLoops(Loop *NewInner, Loop *NewOuter, 411 BasicBlock *OrigInnerPreHeader, 412 BasicBlock *OrigOuterPreHeader); 413 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 414 415 private: 416 bool adjustLoopLinks(); 417 bool adjustLoopBranches(); 418 419 Loop *OuterLoop; 420 Loop *InnerLoop; 421 422 /// Scev analysis. 423 ScalarEvolution *SE; 424 425 LoopInfo *LI; 426 DominatorTree *DT; 427 BasicBlock *LoopExit; 428 429 const LoopInterchangeLegality &LIL; 430 }; 431 432 struct LoopInterchange { 433 ScalarEvolution *SE = nullptr; 434 LoopInfo *LI = nullptr; 435 DependenceInfo *DI = nullptr; 436 DominatorTree *DT = nullptr; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 442 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 443 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 444 445 bool run(Loop *L) { 446 if (L->getParentLoop()) 447 return false; 448 449 return processLoopList(populateWorklist(*L)); 450 } 451 452 bool isComputableLoopNest(LoopVector LoopList) { 453 for (Loop *L : LoopList) { 454 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 455 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 456 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 457 return false; 458 } 459 if (L->getNumBackEdges() != 1) { 460 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 461 return false; 462 } 463 if (!L->getExitingBlock()) { 464 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 465 return false; 466 } 467 } 468 return true; 469 } 470 471 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 472 // TODO: Add a better heuristic to select the loop to be interchanged based 473 // on the dependence matrix. Currently we select the innermost loop. 474 return LoopList.size() - 1; 475 } 476 477 bool processLoopList(LoopVector LoopList) { 478 bool Changed = false; 479 unsigned LoopNestDepth = LoopList.size(); 480 if (LoopNestDepth < 2) { 481 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 482 return false; 483 } 484 if (LoopNestDepth > MaxLoopNestDepth) { 485 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 486 << MaxLoopNestDepth << "\n"); 487 return false; 488 } 489 if (!isComputableLoopNest(LoopList)) { 490 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 491 return false; 492 } 493 494 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 495 << "\n"); 496 497 CharMatrix DependencyMatrix; 498 Loop *OuterMostLoop = *(LoopList.begin()); 499 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 500 OuterMostLoop, DI)) { 501 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 502 return false; 503 } 504 #ifdef DUMP_DEP_MATRICIES 505 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 506 printDepMatrix(DependencyMatrix); 507 #endif 508 509 // Get the Outermost loop exit. 510 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 511 if (!LoopNestExit) { 512 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 513 return false; 514 } 515 516 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 517 // Move the selected loop outwards to the best possible position. 518 for (unsigned i = SelecLoopId; i > 0; i--) { 519 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 520 LoopNestExit, DependencyMatrix); 521 if (!Interchanged) 522 return Changed; 523 // Loops interchanged reflect the same in LoopList 524 std::swap(LoopList[i - 1], LoopList[i]); 525 526 // Update the DependencyMatrix 527 interChangeDependencies(DependencyMatrix, i, i - 1); 528 #ifdef DUMP_DEP_MATRICIES 529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 530 printDepMatrix(DependencyMatrix); 531 #endif 532 Changed |= Interchanged; 533 } 534 return Changed; 535 } 536 537 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 538 unsigned OuterLoopId, BasicBlock *LoopNestExit, 539 std::vector<std::vector<char>> &DependencyMatrix) { 540 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 541 << " and OuterLoopId = " << OuterLoopId << "\n"); 542 543 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 544 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 545 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 546 return false; 547 } 548 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 549 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 550 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 551 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 552 return false; 553 } 554 555 ORE->emit([&]() { 556 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 557 InnerLoop->getStartLoc(), 558 InnerLoop->getHeader()) 559 << "Loop interchanged with enclosing loop."; 560 }); 561 562 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 563 LIL); 564 LIT.transform(); 565 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 566 LoopsInterchanged++; 567 568 assert(InnerLoop->isLCSSAForm(*DT) && 569 "Inner loop not left in LCSSA form after loop interchange!"); 570 assert(OuterLoop->isLCSSAForm(*DT) && 571 "Outer loop not left in LCSSA form after loop interchange!"); 572 573 return true; 574 } 575 }; 576 577 } // end anonymous namespace 578 579 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 580 return any_of(*BB, [](const Instruction &I) { 581 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 582 }); 583 } 584 585 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 586 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 587 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 588 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 589 590 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 591 592 // A perfectly nested loop will not have any branch in between the outer and 593 // inner block i.e. outer header will branch to either inner preheader and 594 // outerloop latch. 595 BranchInst *OuterLoopHeaderBI = 596 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 597 if (!OuterLoopHeaderBI) 598 return false; 599 600 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 601 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 602 Succ != OuterLoopLatch) 603 return false; 604 605 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 606 // We do not have any basic block in between now make sure the outer header 607 // and outer loop latch doesn't contain any unsafe instructions. 608 if (containsUnsafeInstructions(OuterLoopHeader) || 609 containsUnsafeInstructions(OuterLoopLatch)) 610 return false; 611 612 // Also make sure the inner loop preheader does not contain any unsafe 613 // instructions. Note that all instructions in the preheader will be moved to 614 // the outer loop header when interchanging. 615 if (InnerLoopPreHeader != OuterLoopHeader && 616 containsUnsafeInstructions(InnerLoopPreHeader)) 617 return false; 618 619 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 620 // We have a perfect loop nest. 621 return true; 622 } 623 624 bool LoopInterchangeLegality::isLoopStructureUnderstood( 625 PHINode *InnerInduction) { 626 unsigned Num = InnerInduction->getNumOperands(); 627 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 628 for (unsigned i = 0; i < Num; ++i) { 629 Value *Val = InnerInduction->getOperand(i); 630 if (isa<Constant>(Val)) 631 continue; 632 Instruction *I = dyn_cast<Instruction>(Val); 633 if (!I) 634 return false; 635 // TODO: Handle triangular loops. 636 // e.g. for(int i=0;i<N;i++) 637 // for(int j=i;j<N;j++) 638 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 639 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 640 InnerLoopPreheader && 641 !OuterLoop->isLoopInvariant(I)) { 642 return false; 643 } 644 } 645 return true; 646 } 647 648 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 649 // value. 650 static Value *followLCSSA(Value *SV) { 651 PHINode *PHI = dyn_cast<PHINode>(SV); 652 if (!PHI) 653 return SV; 654 655 if (PHI->getNumIncomingValues() != 1) 656 return SV; 657 return followLCSSA(PHI->getIncomingValue(0)); 658 } 659 660 // Check V's users to see if it is involved in a reduction in L. 661 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 662 // Reduction variables cannot be constants. 663 if (isa<Constant>(V)) 664 return nullptr; 665 666 for (Value *User : V->users()) { 667 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 668 if (PHI->getNumIncomingValues() == 1) 669 continue; 670 RecurrenceDescriptor RD; 671 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 672 return PHI; 673 return nullptr; 674 } 675 } 676 677 return nullptr; 678 } 679 680 bool LoopInterchangeLegality::findInductionAndReductions( 681 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 682 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 683 return false; 684 for (PHINode &PHI : L->getHeader()->phis()) { 685 RecurrenceDescriptor RD; 686 InductionDescriptor ID; 687 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 688 Inductions.push_back(&PHI); 689 else { 690 // PHIs in inner loops need to be part of a reduction in the outer loop, 691 // discovered when checking the PHIs of the outer loop earlier. 692 if (!InnerLoop) { 693 if (!OuterInnerReductions.count(&PHI)) { 694 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 695 "across the outer loop.\n"); 696 return false; 697 } 698 } else { 699 assert(PHI.getNumIncomingValues() == 2 && 700 "Phis in loop header should have exactly 2 incoming values"); 701 // Check if we have a PHI node in the outer loop that has a reduction 702 // result from the inner loop as an incoming value. 703 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 704 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 705 if (!InnerRedPhi || 706 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 707 LLVM_DEBUG( 708 dbgs() 709 << "Failed to recognize PHI as an induction or reduction.\n"); 710 return false; 711 } 712 OuterInnerReductions.insert(&PHI); 713 OuterInnerReductions.insert(InnerRedPhi); 714 } 715 } 716 } 717 return true; 718 } 719 720 // This function indicates the current limitations in the transform as a result 721 // of which we do not proceed. 722 bool LoopInterchangeLegality::currentLimitations() { 723 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 724 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 725 726 // transform currently expects the loop latches to also be the exiting 727 // blocks. 728 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 729 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 730 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 731 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 732 LLVM_DEBUG( 733 dbgs() << "Loops where the latch is not the exiting block are not" 734 << " supported currently.\n"); 735 ORE->emit([&]() { 736 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 737 OuterLoop->getStartLoc(), 738 OuterLoop->getHeader()) 739 << "Loops where the latch is not the exiting block cannot be" 740 " interchange currently."; 741 }); 742 return true; 743 } 744 745 PHINode *InnerInductionVar; 746 SmallVector<PHINode *, 8> Inductions; 747 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 748 LLVM_DEBUG( 749 dbgs() << "Only outer loops with induction or reduction PHI nodes " 750 << "are supported currently.\n"); 751 ORE->emit([&]() { 752 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 753 OuterLoop->getStartLoc(), 754 OuterLoop->getHeader()) 755 << "Only outer loops with induction or reduction PHI nodes can be" 756 " interchanged currently."; 757 }); 758 return true; 759 } 760 761 // TODO: Currently we handle only loops with 1 induction variable. 762 if (Inductions.size() != 1) { 763 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 764 << "supported currently.\n"); 765 ORE->emit([&]() { 766 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 767 OuterLoop->getStartLoc(), 768 OuterLoop->getHeader()) 769 << "Only outer loops with 1 induction variable can be " 770 "interchanged currently."; 771 }); 772 return true; 773 } 774 775 Inductions.clear(); 776 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 777 LLVM_DEBUG( 778 dbgs() << "Only inner loops with induction or reduction PHI nodes " 779 << "are supported currently.\n"); 780 ORE->emit([&]() { 781 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 782 InnerLoop->getStartLoc(), 783 InnerLoop->getHeader()) 784 << "Only inner loops with induction or reduction PHI nodes can be" 785 " interchange currently."; 786 }); 787 return true; 788 } 789 790 // TODO: Currently we handle only loops with 1 induction variable. 791 if (Inductions.size() != 1) { 792 LLVM_DEBUG( 793 dbgs() << "We currently only support loops with 1 induction variable." 794 << "Failed to interchange due to current limitation\n"); 795 ORE->emit([&]() { 796 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 797 InnerLoop->getStartLoc(), 798 InnerLoop->getHeader()) 799 << "Only inner loops with 1 induction variable can be " 800 "interchanged currently."; 801 }); 802 return true; 803 } 804 InnerInductionVar = Inductions.pop_back_val(); 805 806 // TODO: Triangular loops are not handled for now. 807 if (!isLoopStructureUnderstood(InnerInductionVar)) { 808 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 809 ORE->emit([&]() { 810 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 811 InnerLoop->getStartLoc(), 812 InnerLoop->getHeader()) 813 << "Inner loop structure not understood currently."; 814 }); 815 return true; 816 } 817 818 // TODO: Current limitation: Since we split the inner loop latch at the point 819 // were induction variable is incremented (induction.next); We cannot have 820 // more than 1 user of induction.next since it would result in broken code 821 // after split. 822 // e.g. 823 // for(i=0;i<N;i++) { 824 // for(j = 0;j<M;j++) { 825 // A[j+1][i+2] = A[j][i]+k; 826 // } 827 // } 828 Instruction *InnerIndexVarInc = nullptr; 829 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 830 InnerIndexVarInc = 831 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 832 else 833 InnerIndexVarInc = 834 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 835 836 if (!InnerIndexVarInc) { 837 LLVM_DEBUG( 838 dbgs() << "Did not find an instruction to increment the induction " 839 << "variable.\n"); 840 ORE->emit([&]() { 841 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 842 InnerLoop->getStartLoc(), 843 InnerLoop->getHeader()) 844 << "The inner loop does not increment the induction variable."; 845 }); 846 return true; 847 } 848 849 // Since we split the inner loop latch on this induction variable. Make sure 850 // we do not have any instruction between the induction variable and branch 851 // instruction. 852 853 bool FoundInduction = false; 854 for (const Instruction &I : 855 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 856 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 857 isa<ZExtInst>(I)) 858 continue; 859 860 // We found an instruction. If this is not induction variable then it is not 861 // safe to split this loop latch. 862 if (!I.isIdenticalTo(InnerIndexVarInc)) { 863 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 864 << "variable increment and branch.\n"); 865 ORE->emit([&]() { 866 return OptimizationRemarkMissed( 867 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 868 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 869 << "Found unsupported instruction between induction variable " 870 "increment and branch."; 871 }); 872 return true; 873 } 874 875 FoundInduction = true; 876 break; 877 } 878 // The loop latch ended and we didn't find the induction variable return as 879 // current limitation. 880 if (!FoundInduction) { 881 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 882 ORE->emit([&]() { 883 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 884 InnerLoop->getStartLoc(), 885 InnerLoop->getHeader()) 886 << "Did not find the induction variable."; 887 }); 888 return true; 889 } 890 return false; 891 } 892 893 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 894 // users are either reduction PHIs or PHIs outside the outer loop (which means 895 // the we are only interested in the final value after the loop). 896 static bool 897 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 898 SmallPtrSetImpl<PHINode *> &Reductions) { 899 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 900 for (PHINode &PHI : InnerExit->phis()) { 901 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 902 if (PHI.getNumIncomingValues() > 1) 903 return false; 904 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 905 PHINode *PN = dyn_cast<PHINode>(U); 906 return !PN || 907 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 908 })) { 909 return false; 910 } 911 } 912 return true; 913 } 914 915 // We currently support LCSSA PHI nodes in the outer loop exit, if their 916 // incoming values do not come from the outer loop latch or if the 917 // outer loop latch has a single predecessor. In that case, the value will 918 // be available if both the inner and outer loop conditions are true, which 919 // will still be true after interchanging. If we have multiple predecessor, 920 // that may not be the case, e.g. because the outer loop latch may be executed 921 // if the inner loop is not executed. 922 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 923 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 924 for (PHINode &PHI : LoopNestExit->phis()) { 925 // FIXME: We currently are not able to detect floating point reductions 926 // and have to use floating point PHIs as a proxy to prevent 927 // interchanging in the presence of floating point reductions. 928 if (PHI.getType()->isFloatingPointTy()) 929 return false; 930 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 931 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 932 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 933 continue; 934 935 // The incoming value is defined in the outer loop latch. Currently we 936 // only support that in case the outer loop latch has a single predecessor. 937 // This guarantees that the outer loop latch is executed if and only if 938 // the inner loop is executed (because tightlyNested() guarantees that the 939 // outer loop header only branches to the inner loop or the outer loop 940 // latch). 941 // FIXME: We could weaken this logic and allow multiple predecessors, 942 // if the values are produced outside the loop latch. We would need 943 // additional logic to update the PHI nodes in the exit block as 944 // well. 945 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 946 return false; 947 } 948 } 949 return true; 950 } 951 952 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 953 unsigned OuterLoopId, 954 CharMatrix &DepMatrix) { 955 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 956 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 957 << " and OuterLoopId = " << OuterLoopId 958 << " due to dependence\n"); 959 ORE->emit([&]() { 960 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 961 InnerLoop->getStartLoc(), 962 InnerLoop->getHeader()) 963 << "Cannot interchange loops due to dependences."; 964 }); 965 return false; 966 } 967 // Check if outer and inner loop contain legal instructions only. 968 for (auto *BB : OuterLoop->blocks()) 969 for (Instruction &I : BB->instructionsWithoutDebug()) 970 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 971 // readnone functions do not prevent interchanging. 972 if (CI->doesNotReadMemory()) 973 continue; 974 LLVM_DEBUG( 975 dbgs() << "Loops with call instructions cannot be interchanged " 976 << "safely."); 977 ORE->emit([&]() { 978 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 979 CI->getDebugLoc(), 980 CI->getParent()) 981 << "Cannot interchange loops due to call instruction."; 982 }); 983 984 return false; 985 } 986 987 // TODO: The loops could not be interchanged due to current limitations in the 988 // transform module. 989 if (currentLimitations()) { 990 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 991 return false; 992 } 993 994 // Check if the loops are tightly nested. 995 if (!tightlyNested(OuterLoop, InnerLoop)) { 996 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 997 ORE->emit([&]() { 998 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 999 InnerLoop->getStartLoc(), 1000 InnerLoop->getHeader()) 1001 << "Cannot interchange loops because they are not tightly " 1002 "nested."; 1003 }); 1004 return false; 1005 } 1006 1007 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1008 OuterInnerReductions)) { 1009 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1010 ORE->emit([&]() { 1011 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1012 InnerLoop->getStartLoc(), 1013 InnerLoop->getHeader()) 1014 << "Found unsupported PHI node in loop exit."; 1015 }); 1016 return false; 1017 } 1018 1019 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1020 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1021 ORE->emit([&]() { 1022 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1023 OuterLoop->getStartLoc(), 1024 OuterLoop->getHeader()) 1025 << "Found unsupported PHI node in loop exit."; 1026 }); 1027 return false; 1028 } 1029 1030 return true; 1031 } 1032 1033 int LoopInterchangeProfitability::getInstrOrderCost() { 1034 unsigned GoodOrder, BadOrder; 1035 BadOrder = GoodOrder = 0; 1036 for (BasicBlock *BB : InnerLoop->blocks()) { 1037 for (Instruction &Ins : *BB) { 1038 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1039 unsigned NumOp = GEP->getNumOperands(); 1040 bool FoundInnerInduction = false; 1041 bool FoundOuterInduction = false; 1042 for (unsigned i = 0; i < NumOp; ++i) { 1043 // Skip operands that are not SCEV-able. 1044 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1045 continue; 1046 1047 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1048 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1049 if (!AR) 1050 continue; 1051 1052 // If we find the inner induction after an outer induction e.g. 1053 // for(int i=0;i<N;i++) 1054 // for(int j=0;j<N;j++) 1055 // A[i][j] = A[i-1][j-1]+k; 1056 // then it is a good order. 1057 if (AR->getLoop() == InnerLoop) { 1058 // We found an InnerLoop induction after OuterLoop induction. It is 1059 // a good order. 1060 FoundInnerInduction = true; 1061 if (FoundOuterInduction) { 1062 GoodOrder++; 1063 break; 1064 } 1065 } 1066 // If we find the outer induction after an inner induction e.g. 1067 // for(int i=0;i<N;i++) 1068 // for(int j=0;j<N;j++) 1069 // A[j][i] = A[j-1][i-1]+k; 1070 // then it is a bad order. 1071 if (AR->getLoop() == OuterLoop) { 1072 // We found an OuterLoop induction after InnerLoop induction. It is 1073 // a bad order. 1074 FoundOuterInduction = true; 1075 if (FoundInnerInduction) { 1076 BadOrder++; 1077 break; 1078 } 1079 } 1080 } 1081 } 1082 } 1083 } 1084 return GoodOrder - BadOrder; 1085 } 1086 1087 static bool isProfitableForVectorization(unsigned InnerLoopId, 1088 unsigned OuterLoopId, 1089 CharMatrix &DepMatrix) { 1090 // TODO: Improve this heuristic to catch more cases. 1091 // If the inner loop is loop independent or doesn't carry any dependency it is 1092 // profitable to move this to outer position. 1093 for (auto &Row : DepMatrix) { 1094 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1095 return false; 1096 // TODO: We need to improve this heuristic. 1097 if (Row[OuterLoopId] != '=') 1098 return false; 1099 } 1100 // If outer loop has dependence and inner loop is loop independent then it is 1101 // profitable to interchange to enable parallelism. 1102 // If there are no dependences, interchanging will not improve anything. 1103 return !DepMatrix.empty(); 1104 } 1105 1106 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1107 unsigned OuterLoopId, 1108 CharMatrix &DepMatrix) { 1109 // TODO: Add better profitability checks. 1110 // e.g 1111 // 1) Construct dependency matrix and move the one with no loop carried dep 1112 // inside to enable vectorization. 1113 1114 // This is rough cost estimation algorithm. It counts the good and bad order 1115 // of induction variables in the instruction and allows reordering if number 1116 // of bad orders is more than good. 1117 int Cost = getInstrOrderCost(); 1118 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1119 if (Cost < -LoopInterchangeCostThreshold) 1120 return true; 1121 1122 // It is not profitable as per current cache profitability model. But check if 1123 // we can move this loop outside to improve parallelism. 1124 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1125 return true; 1126 1127 ORE->emit([&]() { 1128 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1129 InnerLoop->getStartLoc(), 1130 InnerLoop->getHeader()) 1131 << "Interchanging loops is too costly (cost=" 1132 << ore::NV("Cost", Cost) << ", threshold=" 1133 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1134 << ") and it does not improve parallelism."; 1135 }); 1136 return false; 1137 } 1138 1139 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1140 Loop *InnerLoop) { 1141 for (Loop *L : *OuterLoop) 1142 if (L == InnerLoop) { 1143 OuterLoop->removeChildLoop(L); 1144 return; 1145 } 1146 llvm_unreachable("Couldn't find loop"); 1147 } 1148 1149 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1150 /// new inner and outer loop after interchanging: NewInner is the original 1151 /// outer loop and NewOuter is the original inner loop. 1152 /// 1153 /// Before interchanging, we have the following structure 1154 /// Outer preheader 1155 // Outer header 1156 // Inner preheader 1157 // Inner header 1158 // Inner body 1159 // Inner latch 1160 // outer bbs 1161 // Outer latch 1162 // 1163 // After interchanging: 1164 // Inner preheader 1165 // Inner header 1166 // Outer preheader 1167 // Outer header 1168 // Inner body 1169 // outer bbs 1170 // Outer latch 1171 // Inner latch 1172 void LoopInterchangeTransform::restructureLoops( 1173 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1174 BasicBlock *OrigOuterPreHeader) { 1175 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1176 // The original inner loop preheader moves from the new inner loop to 1177 // the parent loop, if there is one. 1178 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1179 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1180 1181 // Switch the loop levels. 1182 if (OuterLoopParent) { 1183 // Remove the loop from its parent loop. 1184 removeChildLoop(OuterLoopParent, NewInner); 1185 removeChildLoop(NewInner, NewOuter); 1186 OuterLoopParent->addChildLoop(NewOuter); 1187 } else { 1188 removeChildLoop(NewInner, NewOuter); 1189 LI->changeTopLevelLoop(NewInner, NewOuter); 1190 } 1191 while (!NewOuter->isInnermost()) 1192 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1193 NewOuter->addChildLoop(NewInner); 1194 1195 // BBs from the original inner loop. 1196 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1197 1198 // Add BBs from the original outer loop to the original inner loop (excluding 1199 // BBs already in inner loop) 1200 for (BasicBlock *BB : NewInner->blocks()) 1201 if (LI->getLoopFor(BB) == NewInner) 1202 NewOuter->addBlockEntry(BB); 1203 1204 // Now remove inner loop header and latch from the new inner loop and move 1205 // other BBs (the loop body) to the new inner loop. 1206 BasicBlock *OuterHeader = NewOuter->getHeader(); 1207 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1208 for (BasicBlock *BB : OrigInnerBBs) { 1209 // Nothing will change for BBs in child loops. 1210 if (LI->getLoopFor(BB) != NewOuter) 1211 continue; 1212 // Remove the new outer loop header and latch from the new inner loop. 1213 if (BB == OuterHeader || BB == OuterLatch) 1214 NewInner->removeBlockFromLoop(BB); 1215 else 1216 LI->changeLoopFor(BB, NewInner); 1217 } 1218 1219 // The preheader of the original outer loop becomes part of the new 1220 // outer loop. 1221 NewOuter->addBlockEntry(OrigOuterPreHeader); 1222 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1223 1224 // Tell SE that we move the loops around. 1225 SE->forgetLoop(NewOuter); 1226 SE->forgetLoop(NewInner); 1227 } 1228 1229 bool LoopInterchangeTransform::transform() { 1230 bool Transformed = false; 1231 Instruction *InnerIndexVar; 1232 1233 if (InnerLoop->getSubLoops().empty()) { 1234 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1235 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1236 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1237 if (!InductionPHI) { 1238 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1239 return false; 1240 } 1241 1242 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1243 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1244 else 1245 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1246 1247 // Ensure that InductionPHI is the first Phi node. 1248 if (&InductionPHI->getParent()->front() != InductionPHI) 1249 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1250 1251 // Create a new latch block for the inner loop. We split at the 1252 // current latch's terminator and then move the condition and all 1253 // operands that are not either loop-invariant or the induction PHI into the 1254 // new latch block. 1255 BasicBlock *NewLatch = 1256 SplitBlock(InnerLoop->getLoopLatch(), 1257 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1258 1259 SmallSetVector<Instruction *, 4> WorkList; 1260 unsigned i = 0; 1261 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1262 for (; i < WorkList.size(); i++) { 1263 // Duplicate instruction and move it the new latch. Update uses that 1264 // have been moved. 1265 Instruction *NewI = WorkList[i]->clone(); 1266 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1267 assert(!NewI->mayHaveSideEffects() && 1268 "Moving instructions with side-effects may change behavior of " 1269 "the loop nest!"); 1270 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1271 UI != UE;) { 1272 Use &U = *UI++; 1273 Instruction *UserI = cast<Instruction>(U.getUser()); 1274 if (!InnerLoop->contains(UserI->getParent()) || 1275 UserI->getParent() == NewLatch || UserI == InductionPHI) 1276 U.set(NewI); 1277 } 1278 // Add operands of moved instruction to the worklist, except if they are 1279 // outside the inner loop or are the induction PHI. 1280 for (Value *Op : WorkList[i]->operands()) { 1281 Instruction *OpI = dyn_cast<Instruction>(Op); 1282 if (!OpI || 1283 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1284 OpI == InductionPHI) 1285 continue; 1286 WorkList.insert(OpI); 1287 } 1288 } 1289 }; 1290 1291 // FIXME: Should we interchange when we have a constant condition? 1292 Instruction *CondI = dyn_cast<Instruction>( 1293 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1294 ->getCondition()); 1295 if (CondI) 1296 WorkList.insert(CondI); 1297 MoveInstructions(); 1298 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1299 MoveInstructions(); 1300 1301 // Splits the inner loops phi nodes out into a separate basic block. 1302 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1303 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1304 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1305 } 1306 1307 // Instructions in the original inner loop preheader may depend on values 1308 // defined in the outer loop header. Move them there, because the original 1309 // inner loop preheader will become the entry into the interchanged loop nest. 1310 // Currently we move all instructions and rely on LICM to move invariant 1311 // instructions outside the loop nest. 1312 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1313 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1314 if (InnerLoopPreHeader != OuterLoopHeader) { 1315 SmallPtrSet<Instruction *, 4> NeedsMoving; 1316 for (Instruction &I : 1317 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1318 std::prev(InnerLoopPreHeader->end())))) 1319 I.moveBefore(OuterLoopHeader->getTerminator()); 1320 } 1321 1322 Transformed |= adjustLoopLinks(); 1323 if (!Transformed) { 1324 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1325 return false; 1326 } 1327 1328 return true; 1329 } 1330 1331 /// \brief Move all instructions except the terminator from FromBB right before 1332 /// InsertBefore 1333 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1334 auto &ToList = InsertBefore->getParent()->getInstList(); 1335 auto &FromList = FromBB->getInstList(); 1336 1337 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1338 FromBB->getTerminator()->getIterator()); 1339 } 1340 1341 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1342 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1343 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1344 // from BB1 afterwards. 1345 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1346 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1347 for (Instruction *I : TempInstrs) 1348 I->removeFromParent(); 1349 1350 // Move instructions from BB2 to BB1. 1351 moveBBContents(BB2, BB1->getTerminator()); 1352 1353 // Move instructions from TempInstrs to BB2. 1354 for (Instruction *I : TempInstrs) 1355 I->insertBefore(BB2->getTerminator()); 1356 } 1357 1358 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1359 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1360 // \p OldBB is exactly once in BI's successor list. 1361 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1362 BasicBlock *NewBB, 1363 std::vector<DominatorTree::UpdateType> &DTUpdates, 1364 bool MustUpdateOnce = true) { 1365 assert((!MustUpdateOnce || 1366 llvm::count_if(successors(BI), 1367 [OldBB](BasicBlock *BB) { 1368 return BB == OldBB; 1369 }) == 1) && "BI must jump to OldBB exactly once."); 1370 bool Changed = false; 1371 for (Use &Op : BI->operands()) 1372 if (Op == OldBB) { 1373 Op.set(NewBB); 1374 Changed = true; 1375 } 1376 1377 if (Changed) { 1378 DTUpdates.push_back( 1379 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1380 DTUpdates.push_back( 1381 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1382 } 1383 assert(Changed && "Expected a successor to be updated"); 1384 } 1385 1386 // Move Lcssa PHIs to the right place. 1387 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1388 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1389 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1390 Loop *InnerLoop, LoopInfo *LI) { 1391 1392 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1393 // defined either in the header or latch. Those blocks will become header and 1394 // latch of the new outer loop, and the only possible users can PHI nodes 1395 // in the exit block of the loop nest or the outer loop header (reduction 1396 // PHIs, in that case, the incoming value must be defined in the inner loop 1397 // header). We can just substitute the user with the incoming value and remove 1398 // the PHI. 1399 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1400 assert(P.getNumIncomingValues() == 1 && 1401 "Only loops with a single exit are supported!"); 1402 1403 // Incoming values are guaranteed be instructions currently. 1404 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1405 // Skip phis with incoming values from the inner loop body, excluding the 1406 // header and latch. 1407 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1408 continue; 1409 1410 assert(all_of(P.users(), 1411 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1412 return (cast<PHINode>(U)->getParent() == OuterHeader && 1413 IncI->getParent() == InnerHeader) || 1414 cast<PHINode>(U)->getParent() == OuterExit; 1415 }) && 1416 "Can only replace phis iff the uses are in the loop nest exit or " 1417 "the incoming value is defined in the inner header (it will " 1418 "dominate all loop blocks after interchanging)"); 1419 P.replaceAllUsesWith(IncI); 1420 P.eraseFromParent(); 1421 } 1422 1423 SmallVector<PHINode *, 8> LcssaInnerExit; 1424 for (PHINode &P : InnerExit->phis()) 1425 LcssaInnerExit.push_back(&P); 1426 1427 SmallVector<PHINode *, 8> LcssaInnerLatch; 1428 for (PHINode &P : InnerLatch->phis()) 1429 LcssaInnerLatch.push_back(&P); 1430 1431 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1432 // If a PHI node has users outside of InnerExit, it has a use outside the 1433 // interchanged loop and we have to preserve it. We move these to 1434 // InnerLatch, which will become the new exit block for the innermost 1435 // loop after interchanging. 1436 for (PHINode *P : LcssaInnerExit) 1437 P->moveBefore(InnerLatch->getFirstNonPHI()); 1438 1439 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1440 // and we have to move them to the new inner latch. 1441 for (PHINode *P : LcssaInnerLatch) 1442 P->moveBefore(InnerExit->getFirstNonPHI()); 1443 1444 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1445 // incoming values defined in the outer loop, we have to add a new PHI 1446 // in the inner loop latch, which became the exit block of the outer loop, 1447 // after interchanging. 1448 if (OuterExit) { 1449 for (PHINode &P : OuterExit->phis()) { 1450 if (P.getNumIncomingValues() != 1) 1451 continue; 1452 // Skip Phis with incoming values defined in the inner loop. Those should 1453 // already have been updated. 1454 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1455 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1456 continue; 1457 1458 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1459 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1460 NewPhi->setIncomingBlock(0, OuterLatch); 1461 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1462 P.setIncomingValue(0, NewPhi); 1463 } 1464 } 1465 1466 // Now adjust the incoming blocks for the LCSSA PHIs. 1467 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1468 // with the new latch. 1469 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1470 } 1471 1472 bool LoopInterchangeTransform::adjustLoopBranches() { 1473 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1474 std::vector<DominatorTree::UpdateType> DTUpdates; 1475 1476 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1477 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1478 1479 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1480 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1481 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1482 // Ensure that both preheaders do not contain PHI nodes and have single 1483 // predecessors. This allows us to move them easily. We use 1484 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1485 // preheaders do not satisfy those conditions. 1486 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1487 !OuterLoopPreHeader->getUniquePredecessor()) 1488 OuterLoopPreHeader = 1489 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1490 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1491 InnerLoopPreHeader = 1492 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1493 1494 // Adjust the loop preheader 1495 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1496 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1497 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1498 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1499 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1500 BasicBlock *InnerLoopLatchPredecessor = 1501 InnerLoopLatch->getUniquePredecessor(); 1502 BasicBlock *InnerLoopLatchSuccessor; 1503 BasicBlock *OuterLoopLatchSuccessor; 1504 1505 BranchInst *OuterLoopLatchBI = 1506 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1507 BranchInst *InnerLoopLatchBI = 1508 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1509 BranchInst *OuterLoopHeaderBI = 1510 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1511 BranchInst *InnerLoopHeaderBI = 1512 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1513 1514 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1515 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1516 !InnerLoopHeaderBI) 1517 return false; 1518 1519 BranchInst *InnerLoopLatchPredecessorBI = 1520 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1521 BranchInst *OuterLoopPredecessorBI = 1522 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1523 1524 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1525 return false; 1526 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1527 if (!InnerLoopHeaderSuccessor) 1528 return false; 1529 1530 // Adjust Loop Preheader and headers. 1531 // The branches in the outer loop predecessor and the outer loop header can 1532 // be unconditional branches or conditional branches with duplicates. Consider 1533 // this when updating the successors. 1534 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1535 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1536 // The outer loop header might or might not branch to the outer latch. 1537 // We are guaranteed to branch to the inner loop preheader. 1538 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1539 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1540 /*MustUpdateOnce=*/false); 1541 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1542 InnerLoopHeaderSuccessor, DTUpdates, 1543 /*MustUpdateOnce=*/false); 1544 1545 // Adjust reduction PHI's now that the incoming block has changed. 1546 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1547 OuterLoopHeader); 1548 1549 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1550 OuterLoopPreHeader, DTUpdates); 1551 1552 // -------------Adjust loop latches----------- 1553 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1554 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1555 else 1556 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1557 1558 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1559 InnerLoopLatchSuccessor, DTUpdates); 1560 1561 1562 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1563 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1564 else 1565 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1566 1567 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1568 OuterLoopLatchSuccessor, DTUpdates); 1569 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1570 DTUpdates); 1571 1572 DT->applyUpdates(DTUpdates); 1573 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1574 OuterLoopPreHeader); 1575 1576 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1577 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1578 InnerLoop, LI); 1579 // For PHIs in the exit block of the outer loop, outer's latch has been 1580 // replaced by Inners'. 1581 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1582 1583 // Now update the reduction PHIs in the inner and outer loop headers. 1584 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1585 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1586 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1587 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1588 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1589 1590 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1591 (void)OuterInnerReductions; 1592 1593 // Now move the remaining reduction PHIs from outer to inner loop header and 1594 // vice versa. The PHI nodes must be part of a reduction across the inner and 1595 // outer loop and all the remains to do is and updating the incoming blocks. 1596 for (PHINode *PHI : OuterLoopPHIs) { 1597 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1598 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1599 } 1600 for (PHINode *PHI : InnerLoopPHIs) { 1601 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1602 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1603 } 1604 1605 // Update the incoming blocks for moved PHI nodes. 1606 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1607 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1608 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1609 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1610 1611 // Values defined in the outer loop header could be used in the inner loop 1612 // latch. In that case, we need to create LCSSA phis for them, because after 1613 // interchanging they will be defined in the new inner loop and used in the 1614 // new outer loop. 1615 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1616 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1617 for (Instruction &I : 1618 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1619 MayNeedLCSSAPhis.push_back(&I); 1620 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1621 1622 return true; 1623 } 1624 1625 bool LoopInterchangeTransform::adjustLoopLinks() { 1626 // Adjust all branches in the inner and outer loop. 1627 bool Changed = adjustLoopBranches(); 1628 if (Changed) { 1629 // We have interchanged the preheaders so we need to interchange the data in 1630 // the preheaders as well. This is because the content of the inner 1631 // preheader was previously executed inside the outer loop. 1632 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1633 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1634 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1635 } 1636 return Changed; 1637 } 1638 1639 /// Main LoopInterchange Pass. 1640 struct LoopInterchangeLegacyPass : public LoopPass { 1641 static char ID; 1642 1643 LoopInterchangeLegacyPass() : LoopPass(ID) { 1644 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1645 } 1646 1647 void getAnalysisUsage(AnalysisUsage &AU) const override { 1648 AU.addRequired<DependenceAnalysisWrapperPass>(); 1649 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1650 1651 getLoopAnalysisUsage(AU); 1652 } 1653 1654 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1655 if (skipLoop(L)) 1656 return false; 1657 1658 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1659 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1660 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1661 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1662 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1663 1664 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1665 } 1666 }; 1667 1668 char LoopInterchangeLegacyPass::ID = 0; 1669 1670 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1671 "Interchanges loops for cache reuse", false, false) 1672 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1673 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1674 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1675 1676 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1677 "Interchanges loops for cache reuse", false, false) 1678 1679 Pass *llvm::createLoopInterchangePass() { 1680 return new LoopInterchangeLegacyPass(); 1681 } 1682 1683 PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM, 1684 LoopStandardAnalysisResults &AR, 1685 LPMUpdater &U) { 1686 Function &F = *L.getHeader()->getParent(); 1687 1688 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1689 OptimizationRemarkEmitter ORE(&F); 1690 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L)) 1691 return PreservedAnalyses::all(); 1692 return getLoopPassPreservedAnalyses(); 1693 } 1694