1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "loop-interchange"
57 
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
59 
60 static cl::opt<int> LoopInterchangeCostThreshold(
61     "loop-interchange-threshold", cl::init(0), cl::Hidden,
62     cl::desc("Interchange if you gain more than this number"));
63 
64 namespace {
65 
66 using LoopVector = SmallVector<Loop *, 8>;
67 
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
70 
71 } // end anonymous namespace
72 
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
75 
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
78 
79 #ifdef DUMP_DEP_MATRICIES
80 static void printDepMatrix(CharMatrix &DepMatrix) {
81   for (auto &Row : DepMatrix) {
82     for (auto D : Row)
83       LLVM_DEBUG(dbgs() << D << " ");
84     LLVM_DEBUG(dbgs() << "\n");
85   }
86 }
87 #endif
88 
89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90                                      Loop *L, DependenceInfo *DI) {
91   using ValueVector = SmallVector<Value *, 16>;
92 
93   ValueVector MemInstr;
94 
95   // For each block.
96   for (BasicBlock *BB : L->blocks()) {
97     // Scan the BB and collect legal loads and stores.
98     for (Instruction &I : *BB) {
99       if (!isa<Instruction>(I))
100         return false;
101       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
102         if (!Ld->isSimple())
103           return false;
104         MemInstr.push_back(&I);
105       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
106         if (!St->isSimple())
107           return false;
108         MemInstr.push_back(&I);
109       }
110     }
111   }
112 
113   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
114                     << " Loads and Stores to analyze\n");
115 
116   ValueVector::iterator I, IE, J, JE;
117 
118   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
119     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
120       std::vector<char> Dep;
121       Instruction *Src = cast<Instruction>(*I);
122       Instruction *Dst = cast<Instruction>(*J);
123       if (Src == Dst)
124         continue;
125       // Ignore Input dependencies.
126       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
127         continue;
128       // Track Output, Flow, and Anti dependencies.
129       if (auto D = DI->depends(Src, Dst, true)) {
130         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
131         LLVM_DEBUG(StringRef DepType =
132                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
133                    dbgs() << "Found " << DepType
134                           << " dependency between Src and Dst\n"
135                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
136         unsigned Levels = D->getLevels();
137         char Direction;
138         for (unsigned II = 1; II <= Levels; ++II) {
139           const SCEV *Distance = D->getDistance(II);
140           const SCEVConstant *SCEVConst =
141               dyn_cast_or_null<SCEVConstant>(Distance);
142           if (SCEVConst) {
143             const ConstantInt *CI = SCEVConst->getValue();
144             if (CI->isNegative())
145               Direction = '<';
146             else if (CI->isZero())
147               Direction = '=';
148             else
149               Direction = '>';
150             Dep.push_back(Direction);
151           } else if (D->isScalar(II)) {
152             Direction = 'S';
153             Dep.push_back(Direction);
154           } else {
155             unsigned Dir = D->getDirection(II);
156             if (Dir == Dependence::DVEntry::LT ||
157                 Dir == Dependence::DVEntry::LE)
158               Direction = '<';
159             else if (Dir == Dependence::DVEntry::GT ||
160                      Dir == Dependence::DVEntry::GE)
161               Direction = '>';
162             else if (Dir == Dependence::DVEntry::EQ)
163               Direction = '=';
164             else
165               Direction = '*';
166             Dep.push_back(Direction);
167           }
168         }
169         while (Dep.size() != Level) {
170           Dep.push_back('I');
171         }
172 
173         DepMatrix.push_back(Dep);
174         if (DepMatrix.size() > MaxMemInstrCount) {
175           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
176                             << " dependencies inside loop\n");
177           return false;
178         }
179       }
180     }
181   }
182 
183   return true;
184 }
185 
186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
187 // matrix by exchanging the two columns.
188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
189                                     unsigned ToIndx) {
190   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
191     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
192 }
193 
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197                                    unsigned Column) {
198   for (unsigned i = 0; i <= Column; ++i) {
199     if (DepMatrix[Row][i] == '<')
200       return false;
201     if (DepMatrix[Row][i] == '>')
202       return true;
203   }
204   // All dependencies were '=','S' or 'I'
205   return false;
206 }
207 
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210                                  unsigned Column) {
211   for (unsigned i = 0; i < Column; ++i) {
212     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213         DepMatrix[Row][i] != 'I')
214       return false;
215   }
216   return true;
217 }
218 
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220                                 unsigned OuterLoopId, char InnerDep,
221                                 char OuterDep) {
222   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223     return false;
224 
225   if (InnerDep == OuterDep)
226     return true;
227 
228   // It is legal to interchange if and only if after interchange no row has a
229   // '>' direction as the leftmost non-'='.
230 
231   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232     return true;
233 
234   if (InnerDep == '<')
235     return true;
236 
237   if (InnerDep == '>') {
238     // If OuterLoopId represents outermost loop then interchanging will make the
239     // 1st dependency as '>'
240     if (OuterLoopId == 0)
241       return false;
242 
243     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244     // interchanging will result in this row having an outermost non '='
245     // dependency of '>'
246     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247       return true;
248   }
249 
250   return false;
251 }
252 
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258                                       unsigned InnerLoopId,
259                                       unsigned OuterLoopId) {
260   unsigned NumRows = DepMatrix.size();
261   // For each row check if it is valid to interchange.
262   for (unsigned Row = 0; Row < NumRows; ++Row) {
263     char InnerDep = DepMatrix[Row][InnerLoopId];
264     char OuterDep = DepMatrix[Row][OuterLoopId];
265     if (InnerDep == '*' || OuterDep == '*')
266       return false;
267     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268       return false;
269   }
270   return true;
271 }
272 
273 static LoopVector populateWorklist(Loop &L) {
274   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275                     << L.getHeader()->getParent()->getName() << " Loop: %"
276                     << L.getHeader()->getName() << '\n');
277   LoopVector LoopList;
278   Loop *CurrentLoop = &L;
279   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280   while (!Vec->empty()) {
281     // The current loop has multiple subloops in it hence it is not tightly
282     // nested.
283     // Discard all loops above it added into Worklist.
284     if (Vec->size() != 1)
285       return {};
286 
287     LoopList.push_back(CurrentLoop);
288     CurrentLoop = Vec->front();
289     Vec = &CurrentLoop->getSubLoops();
290   }
291   LoopList.push_back(CurrentLoop);
292   return LoopList;
293 }
294 
295 namespace {
296 
297 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
298 class LoopInterchangeLegality {
299 public:
300   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
301                           OptimizationRemarkEmitter *ORE)
302       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
303 
304   /// Check if the loops can be interchanged.
305   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
306                            CharMatrix &DepMatrix);
307 
308   /// Discover induction PHIs in the header of \p L. Induction
309   /// PHIs are added to \p Inductions.
310   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
311 
312   /// Check if the loop structure is understood. We do not handle triangular
313   /// loops for now.
314   bool isLoopStructureUnderstood();
315 
316   bool currentLimitations();
317 
318   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
319     return OuterInnerReductions;
320   }
321 
322   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
323     return InnerLoopInductions;
324   }
325 
326 private:
327   bool tightlyNested(Loop *Outer, Loop *Inner);
328   bool containsUnsafeInstructions(BasicBlock *BB);
329 
330   /// Discover induction and reduction PHIs in the header of \p L. Induction
331   /// PHIs are added to \p Inductions, reductions are added to
332   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
333   /// to be passed as \p InnerLoop.
334   bool findInductionAndReductions(Loop *L,
335                                   SmallVector<PHINode *, 8> &Inductions,
336                                   Loop *InnerLoop);
337 
338   Loop *OuterLoop;
339   Loop *InnerLoop;
340 
341   ScalarEvolution *SE;
342 
343   /// Interface to emit optimization remarks.
344   OptimizationRemarkEmitter *ORE;
345 
346   /// Set of reduction PHIs taking part of a reduction across the inner and
347   /// outer loop.
348   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
349 
350   /// Set of inner loop induction PHIs
351   SmallVector<PHINode *, 8> InnerLoopInductions;
352 };
353 
354 /// LoopInterchangeProfitability checks if it is profitable to interchange the
355 /// loop.
356 class LoopInterchangeProfitability {
357 public:
358   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
359                                OptimizationRemarkEmitter *ORE)
360       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
361 
362   /// Check if the loop interchange is profitable.
363   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
364                     CharMatrix &DepMatrix);
365 
366 private:
367   int getInstrOrderCost();
368 
369   Loop *OuterLoop;
370   Loop *InnerLoop;
371 
372   /// Scev analysis.
373   ScalarEvolution *SE;
374 
375   /// Interface to emit optimization remarks.
376   OptimizationRemarkEmitter *ORE;
377 };
378 
379 /// LoopInterchangeTransform interchanges the loop.
380 class LoopInterchangeTransform {
381 public:
382   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
383                            LoopInfo *LI, DominatorTree *DT,
384                            const LoopInterchangeLegality &LIL)
385       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
386 
387   /// Interchange OuterLoop and InnerLoop.
388   bool transform();
389   void restructureLoops(Loop *NewInner, Loop *NewOuter,
390                         BasicBlock *OrigInnerPreHeader,
391                         BasicBlock *OrigOuterPreHeader);
392   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
393 
394 private:
395   bool adjustLoopLinks();
396   bool adjustLoopBranches();
397 
398   Loop *OuterLoop;
399   Loop *InnerLoop;
400 
401   /// Scev analysis.
402   ScalarEvolution *SE;
403 
404   LoopInfo *LI;
405   DominatorTree *DT;
406 
407   const LoopInterchangeLegality &LIL;
408 };
409 
410 struct LoopInterchange {
411   ScalarEvolution *SE = nullptr;
412   LoopInfo *LI = nullptr;
413   DependenceInfo *DI = nullptr;
414   DominatorTree *DT = nullptr;
415 
416   /// Interface to emit optimization remarks.
417   OptimizationRemarkEmitter *ORE;
418 
419   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
420                   DominatorTree *DT, OptimizationRemarkEmitter *ORE)
421       : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
422 
423   bool run(Loop *L) {
424     if (L->getParentLoop())
425       return false;
426 
427     return processLoopList(populateWorklist(*L));
428   }
429 
430   bool run(LoopNest &LN) {
431     const auto &LoopList = LN.getLoops();
432     for (unsigned I = 1; I < LoopList.size(); ++I)
433       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
434         return false;
435     return processLoopList(LoopList);
436   }
437 
438   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
439     for (Loop *L : LoopList) {
440       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
441       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
442         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
443         return false;
444       }
445       if (L->getNumBackEdges() != 1) {
446         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
447         return false;
448       }
449       if (!L->getExitingBlock()) {
450         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
451         return false;
452       }
453     }
454     return true;
455   }
456 
457   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
458     // TODO: Add a better heuristic to select the loop to be interchanged based
459     // on the dependence matrix. Currently we select the innermost loop.
460     return LoopList.size() - 1;
461   }
462 
463   bool processLoopList(ArrayRef<Loop *> LoopList) {
464     bool Changed = false;
465     unsigned LoopNestDepth = LoopList.size();
466     if (LoopNestDepth < 2) {
467       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
468       return false;
469     }
470     if (LoopNestDepth > MaxLoopNestDepth) {
471       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
472                         << MaxLoopNestDepth << "\n");
473       return false;
474     }
475     if (!isComputableLoopNest(LoopList)) {
476       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
477       return false;
478     }
479 
480     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
481                       << "\n");
482 
483     CharMatrix DependencyMatrix;
484     Loop *OuterMostLoop = *(LoopList.begin());
485     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
486                                   OuterMostLoop, DI)) {
487       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
488       return false;
489     }
490 #ifdef DUMP_DEP_MATRICIES
491     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
492     printDepMatrix(DependencyMatrix);
493 #endif
494 
495     // Get the Outermost loop exit.
496     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
497     if (!LoopNestExit) {
498       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
499       return false;
500     }
501 
502     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
503     // Move the selected loop outwards to the best possible position.
504     Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
505     for (unsigned i = SelecLoopId; i > 0; i--) {
506       bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
507                                       i - 1, DependencyMatrix);
508       if (!Interchanged)
509         return Changed;
510       // Update the DependencyMatrix
511       interChangeDependencies(DependencyMatrix, i, i - 1);
512 #ifdef DUMP_DEP_MATRICIES
513       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
514       printDepMatrix(DependencyMatrix);
515 #endif
516       Changed |= Interchanged;
517     }
518     return Changed;
519   }
520 
521   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
522                    unsigned OuterLoopId,
523                    std::vector<std::vector<char>> &DependencyMatrix) {
524     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
525                       << " and OuterLoopId = " << OuterLoopId << "\n");
526     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
527     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
528       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
529       return false;
530     }
531     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
532     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
533     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
534       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
535       return false;
536     }
537 
538     ORE->emit([&]() {
539       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
540                                 InnerLoop->getStartLoc(),
541                                 InnerLoop->getHeader())
542              << "Loop interchanged with enclosing loop.";
543     });
544 
545     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
546     LIT.transform();
547     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
548     LoopsInterchanged++;
549 
550     assert(InnerLoop->isLCSSAForm(*DT) &&
551            "Inner loop not left in LCSSA form after loop interchange!");
552     assert(OuterLoop->isLCSSAForm(*DT) &&
553            "Outer loop not left in LCSSA form after loop interchange!");
554 
555     return true;
556   }
557 };
558 
559 } // end anonymous namespace
560 
561 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
562   return any_of(*BB, [](const Instruction &I) {
563     return I.mayHaveSideEffects() || I.mayReadFromMemory();
564   });
565 }
566 
567 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
568   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
569   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
570   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
571 
572   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
573 
574   // A perfectly nested loop will not have any branch in between the outer and
575   // inner block i.e. outer header will branch to either inner preheader and
576   // outerloop latch.
577   BranchInst *OuterLoopHeaderBI =
578       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
579   if (!OuterLoopHeaderBI)
580     return false;
581 
582   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
583     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
584         Succ != OuterLoopLatch)
585       return false;
586 
587   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
588   // We do not have any basic block in between now make sure the outer header
589   // and outer loop latch doesn't contain any unsafe instructions.
590   if (containsUnsafeInstructions(OuterLoopHeader) ||
591       containsUnsafeInstructions(OuterLoopLatch))
592     return false;
593 
594   // Also make sure the inner loop preheader does not contain any unsafe
595   // instructions. Note that all instructions in the preheader will be moved to
596   // the outer loop header when interchanging.
597   if (InnerLoopPreHeader != OuterLoopHeader &&
598       containsUnsafeInstructions(InnerLoopPreHeader))
599     return false;
600 
601   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
602   // Ensure the inner loop exit block flows to the outer loop latch possibly
603   // through empty blocks.
604   const BasicBlock &SuccInner =
605       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
606   if (&SuccInner != OuterLoopLatch) {
607     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
608                       << " does not lead to the outer loop latch.\n";);
609     return false;
610   }
611   // The inner loop exit block does flow to the outer loop latch and not some
612   // other BBs, now make sure it contains safe instructions, since it will be
613   // moved into the (new) inner loop after interchange.
614   if (containsUnsafeInstructions(InnerLoopExit))
615     return false;
616 
617   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
618   // We have a perfect loop nest.
619   return true;
620 }
621 
622 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
623   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
624   for (PHINode *InnerInduction : InnerLoopInductions) {
625     unsigned Num = InnerInduction->getNumOperands();
626     for (unsigned i = 0; i < Num; ++i) {
627       Value *Val = InnerInduction->getOperand(i);
628       if (isa<Constant>(Val))
629         continue;
630       Instruction *I = dyn_cast<Instruction>(Val);
631       if (!I)
632         return false;
633       // TODO: Handle triangular loops.
634       // e.g. for(int i=0;i<N;i++)
635       //        for(int j=i;j<N;j++)
636       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
637       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
638               InnerLoopPreheader &&
639           !OuterLoop->isLoopInvariant(I)) {
640         return false;
641       }
642     }
643   }
644 
645   // TODO: Handle triangular loops of another form.
646   // e.g. for(int i=0;i<N;i++)
647   //        for(int j=0;j<i;j++)
648   // or,
649   //      for(int i=0;i<N;i++)
650   //        for(int j=0;j*i<N;j++)
651   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
652   BranchInst *InnerLoopLatchBI =
653       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
654   if (!InnerLoopLatchBI->isConditional())
655     return false;
656   if (CmpInst *InnerLoopCmp =
657           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
658     Value *Op0 = InnerLoopCmp->getOperand(0);
659     Value *Op1 = InnerLoopCmp->getOperand(1);
660 
661     // LHS and RHS of the inner loop exit condition, e.g.,
662     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
663     Value *Left = nullptr;
664     Value *Right = nullptr;
665 
666     // Check if V only involves inner loop induction variable.
667     // Return true if V is InnerInduction, or a cast from
668     // InnerInduction, or a binary operator that involves
669     // InnerInduction and a constant.
670     std::function<bool(Value *)> IsPathToInnerIndVar;
671     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
672       if (llvm::is_contained(InnerLoopInductions, V))
673         return true;
674       if (isa<Constant>(V))
675         return true;
676       const Instruction *I = dyn_cast<Instruction>(V);
677       if (!I)
678         return false;
679       if (isa<CastInst>(I))
680         return IsPathToInnerIndVar(I->getOperand(0));
681       if (isa<BinaryOperator>(I))
682         return IsPathToInnerIndVar(I->getOperand(0)) &&
683                IsPathToInnerIndVar(I->getOperand(1));
684       return false;
685     };
686 
687     // In case of multiple inner loop indvars, it is okay if LHS and RHS
688     // are both inner indvar related variables.
689     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
690       return true;
691 
692     // Otherwise we check if the cmp instruction compares an inner indvar
693     // related variable (Left) with a outer loop invariant (Right).
694     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
695       Left = Op0;
696       Right = Op1;
697     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
698       Left = Op1;
699       Right = Op0;
700     }
701 
702     if (Left == nullptr)
703       return false;
704 
705     const SCEV *S = SE->getSCEV(Right);
706     if (!SE->isLoopInvariant(S, OuterLoop))
707       return false;
708   }
709 
710   return true;
711 }
712 
713 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
714 // value.
715 static Value *followLCSSA(Value *SV) {
716   PHINode *PHI = dyn_cast<PHINode>(SV);
717   if (!PHI)
718     return SV;
719 
720   if (PHI->getNumIncomingValues() != 1)
721     return SV;
722   return followLCSSA(PHI->getIncomingValue(0));
723 }
724 
725 // Check V's users to see if it is involved in a reduction in L.
726 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
727   // Reduction variables cannot be constants.
728   if (isa<Constant>(V))
729     return nullptr;
730 
731   for (Value *User : V->users()) {
732     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
733       if (PHI->getNumIncomingValues() == 1)
734         continue;
735       RecurrenceDescriptor RD;
736       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
737         // Detect floating point reduction only when it can be reordered.
738         if (RD.getExactFPMathInst() != nullptr)
739           return nullptr;
740         return PHI;
741       }
742       return nullptr;
743     }
744   }
745 
746   return nullptr;
747 }
748 
749 bool LoopInterchangeLegality::findInductionAndReductions(
750     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
751   if (!L->getLoopLatch() || !L->getLoopPredecessor())
752     return false;
753   for (PHINode &PHI : L->getHeader()->phis()) {
754     RecurrenceDescriptor RD;
755     InductionDescriptor ID;
756     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
757       Inductions.push_back(&PHI);
758     else {
759       // PHIs in inner loops need to be part of a reduction in the outer loop,
760       // discovered when checking the PHIs of the outer loop earlier.
761       if (!InnerLoop) {
762         if (!OuterInnerReductions.count(&PHI)) {
763           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
764                                "across the outer loop.\n");
765           return false;
766         }
767       } else {
768         assert(PHI.getNumIncomingValues() == 2 &&
769                "Phis in loop header should have exactly 2 incoming values");
770         // Check if we have a PHI node in the outer loop that has a reduction
771         // result from the inner loop as an incoming value.
772         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
773         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
774         if (!InnerRedPhi ||
775             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
776           LLVM_DEBUG(
777               dbgs()
778               << "Failed to recognize PHI as an induction or reduction.\n");
779           return false;
780         }
781         OuterInnerReductions.insert(&PHI);
782         OuterInnerReductions.insert(InnerRedPhi);
783       }
784     }
785   }
786   return true;
787 }
788 
789 // This function indicates the current limitations in the transform as a result
790 // of which we do not proceed.
791 bool LoopInterchangeLegality::currentLimitations() {
792   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
793 
794   // transform currently expects the loop latches to also be the exiting
795   // blocks.
796   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
797       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
798       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
799       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
800     LLVM_DEBUG(
801         dbgs() << "Loops where the latch is not the exiting block are not"
802                << " supported currently.\n");
803     ORE->emit([&]() {
804       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
805                                       OuterLoop->getStartLoc(),
806                                       OuterLoop->getHeader())
807              << "Loops where the latch is not the exiting block cannot be"
808                 " interchange currently.";
809     });
810     return true;
811   }
812 
813   SmallVector<PHINode *, 8> Inductions;
814   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
815     LLVM_DEBUG(
816         dbgs() << "Only outer loops with induction or reduction PHI nodes "
817                << "are supported currently.\n");
818     ORE->emit([&]() {
819       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
820                                       OuterLoop->getStartLoc(),
821                                       OuterLoop->getHeader())
822              << "Only outer loops with induction or reduction PHI nodes can be"
823                 " interchanged currently.";
824     });
825     return true;
826   }
827 
828   Inductions.clear();
829   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
830     LLVM_DEBUG(
831         dbgs() << "Only inner loops with induction or reduction PHI nodes "
832                << "are supported currently.\n");
833     ORE->emit([&]() {
834       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
835                                       InnerLoop->getStartLoc(),
836                                       InnerLoop->getHeader())
837              << "Only inner loops with induction or reduction PHI nodes can be"
838                 " interchange currently.";
839     });
840     return true;
841   }
842 
843   // TODO: Triangular loops are not handled for now.
844   if (!isLoopStructureUnderstood()) {
845     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
846     ORE->emit([&]() {
847       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
848                                       InnerLoop->getStartLoc(),
849                                       InnerLoop->getHeader())
850              << "Inner loop structure not understood currently.";
851     });
852     return true;
853   }
854 
855   return false;
856 }
857 
858 bool LoopInterchangeLegality::findInductions(
859     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
860   for (PHINode &PHI : L->getHeader()->phis()) {
861     InductionDescriptor ID;
862     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
863       Inductions.push_back(&PHI);
864   }
865   return !Inductions.empty();
866 }
867 
868 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
869 // users are either reduction PHIs or PHIs outside the outer loop (which means
870 // the we are only interested in the final value after the loop).
871 static bool
872 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
873                               SmallPtrSetImpl<PHINode *> &Reductions) {
874   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
875   for (PHINode &PHI : InnerExit->phis()) {
876     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
877     if (PHI.getNumIncomingValues() > 1)
878       return false;
879     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
880           PHINode *PN = dyn_cast<PHINode>(U);
881           return !PN ||
882                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
883         })) {
884       return false;
885     }
886   }
887   return true;
888 }
889 
890 // We currently support LCSSA PHI nodes in the outer loop exit, if their
891 // incoming values do not come from the outer loop latch or if the
892 // outer loop latch has a single predecessor. In that case, the value will
893 // be available if both the inner and outer loop conditions are true, which
894 // will still be true after interchanging. If we have multiple predecessor,
895 // that may not be the case, e.g. because the outer loop latch may be executed
896 // if the inner loop is not executed.
897 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
898   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
899   for (PHINode &PHI : LoopNestExit->phis()) {
900     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
901       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
902       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
903         continue;
904 
905       // The incoming value is defined in the outer loop latch. Currently we
906       // only support that in case the outer loop latch has a single predecessor.
907       // This guarantees that the outer loop latch is executed if and only if
908       // the inner loop is executed (because tightlyNested() guarantees that the
909       // outer loop header only branches to the inner loop or the outer loop
910       // latch).
911       // FIXME: We could weaken this logic and allow multiple predecessors,
912       //        if the values are produced outside the loop latch. We would need
913       //        additional logic to update the PHI nodes in the exit block as
914       //        well.
915       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
916         return false;
917     }
918   }
919   return true;
920 }
921 
922 // In case of multi-level nested loops, it may occur that lcssa phis exist in
923 // the latch of InnerLoop, i.e., when defs of the incoming values are further
924 // inside the loopnest. Sometimes those incoming values are not available
925 // after interchange, since the original inner latch will become the new outer
926 // latch which may have predecessor paths that do not include those incoming
927 // values.
928 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
929 // multi-level loop nests.
930 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
931   if (InnerLoop->getSubLoops().empty())
932     return true;
933   // If the original outer latch has only one predecessor, then values defined
934   // further inside the looploop, e.g., in the innermost loop, will be available
935   // at the new outer latch after interchange.
936   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
937     return true;
938 
939   // The outer latch has more than one predecessors, i.e., the inner
940   // exit and the inner header.
941   // PHI nodes in the inner latch are lcssa phis where the incoming values
942   // are defined further inside the loopnest. Check if those phis are used
943   // in the original inner latch. If that is the case then bail out since
944   // those incoming values may not be available at the new outer latch.
945   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
946   for (PHINode &PHI : InnerLoopLatch->phis()) {
947     for (auto *U : PHI.users()) {
948       Instruction *UI = cast<Instruction>(U);
949       if (InnerLoopLatch == UI->getParent())
950         return false;
951     }
952   }
953   return true;
954 }
955 
956 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
957                                                   unsigned OuterLoopId,
958                                                   CharMatrix &DepMatrix) {
959   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
960     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
961                       << " and OuterLoopId = " << OuterLoopId
962                       << " due to dependence\n");
963     ORE->emit([&]() {
964       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
965                                       InnerLoop->getStartLoc(),
966                                       InnerLoop->getHeader())
967              << "Cannot interchange loops due to dependences.";
968     });
969     return false;
970   }
971   // Check if outer and inner loop contain legal instructions only.
972   for (auto *BB : OuterLoop->blocks())
973     for (Instruction &I : BB->instructionsWithoutDebug())
974       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
975         // readnone functions do not prevent interchanging.
976         if (CI->onlyWritesMemory())
977           continue;
978         LLVM_DEBUG(
979             dbgs() << "Loops with call instructions cannot be interchanged "
980                    << "safely.");
981         ORE->emit([&]() {
982           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
983                                           CI->getDebugLoc(),
984                                           CI->getParent())
985                  << "Cannot interchange loops due to call instruction.";
986         });
987 
988         return false;
989       }
990 
991   if (!findInductions(InnerLoop, InnerLoopInductions)) {
992     LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
993     return false;
994   }
995 
996   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
997     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
998     ORE->emit([&]() {
999       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1000                                       InnerLoop->getStartLoc(),
1001                                       InnerLoop->getHeader())
1002              << "Cannot interchange loops because unsupported PHI nodes found "
1003                 "in inner loop latch.";
1004     });
1005     return false;
1006   }
1007 
1008   // TODO: The loops could not be interchanged due to current limitations in the
1009   // transform module.
1010   if (currentLimitations()) {
1011     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1012     return false;
1013   }
1014 
1015   // Check if the loops are tightly nested.
1016   if (!tightlyNested(OuterLoop, InnerLoop)) {
1017     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1018     ORE->emit([&]() {
1019       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1020                                       InnerLoop->getStartLoc(),
1021                                       InnerLoop->getHeader())
1022              << "Cannot interchange loops because they are not tightly "
1023                 "nested.";
1024     });
1025     return false;
1026   }
1027 
1028   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1029                                      OuterInnerReductions)) {
1030     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1031     ORE->emit([&]() {
1032       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1033                                       InnerLoop->getStartLoc(),
1034                                       InnerLoop->getHeader())
1035              << "Found unsupported PHI node in loop exit.";
1036     });
1037     return false;
1038   }
1039 
1040   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1041     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1042     ORE->emit([&]() {
1043       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1044                                       OuterLoop->getStartLoc(),
1045                                       OuterLoop->getHeader())
1046              << "Found unsupported PHI node in loop exit.";
1047     });
1048     return false;
1049   }
1050 
1051   return true;
1052 }
1053 
1054 int LoopInterchangeProfitability::getInstrOrderCost() {
1055   unsigned GoodOrder, BadOrder;
1056   BadOrder = GoodOrder = 0;
1057   for (BasicBlock *BB : InnerLoop->blocks()) {
1058     for (Instruction &Ins : *BB) {
1059       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1060         unsigned NumOp = GEP->getNumOperands();
1061         bool FoundInnerInduction = false;
1062         bool FoundOuterInduction = false;
1063         for (unsigned i = 0; i < NumOp; ++i) {
1064           // Skip operands that are not SCEV-able.
1065           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1066             continue;
1067 
1068           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1069           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1070           if (!AR)
1071             continue;
1072 
1073           // If we find the inner induction after an outer induction e.g.
1074           // for(int i=0;i<N;i++)
1075           //   for(int j=0;j<N;j++)
1076           //     A[i][j] = A[i-1][j-1]+k;
1077           // then it is a good order.
1078           if (AR->getLoop() == InnerLoop) {
1079             // We found an InnerLoop induction after OuterLoop induction. It is
1080             // a good order.
1081             FoundInnerInduction = true;
1082             if (FoundOuterInduction) {
1083               GoodOrder++;
1084               break;
1085             }
1086           }
1087           // If we find the outer induction after an inner induction e.g.
1088           // for(int i=0;i<N;i++)
1089           //   for(int j=0;j<N;j++)
1090           //     A[j][i] = A[j-1][i-1]+k;
1091           // then it is a bad order.
1092           if (AR->getLoop() == OuterLoop) {
1093             // We found an OuterLoop induction after InnerLoop induction. It is
1094             // a bad order.
1095             FoundOuterInduction = true;
1096             if (FoundInnerInduction) {
1097               BadOrder++;
1098               break;
1099             }
1100           }
1101         }
1102       }
1103     }
1104   }
1105   return GoodOrder - BadOrder;
1106 }
1107 
1108 static bool isProfitableForVectorization(unsigned InnerLoopId,
1109                                          unsigned OuterLoopId,
1110                                          CharMatrix &DepMatrix) {
1111   // TODO: Improve this heuristic to catch more cases.
1112   // If the inner loop is loop independent or doesn't carry any dependency it is
1113   // profitable to move this to outer position.
1114   for (auto &Row : DepMatrix) {
1115     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1116       return false;
1117     // TODO: We need to improve this heuristic.
1118     if (Row[OuterLoopId] != '=')
1119       return false;
1120   }
1121   // If outer loop has dependence and inner loop is loop independent then it is
1122   // profitable to interchange to enable parallelism.
1123   // If there are no dependences, interchanging will not improve anything.
1124   return !DepMatrix.empty();
1125 }
1126 
1127 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1128                                                 unsigned OuterLoopId,
1129                                                 CharMatrix &DepMatrix) {
1130   // TODO: Add better profitability checks.
1131   // e.g
1132   // 1) Construct dependency matrix and move the one with no loop carried dep
1133   //    inside to enable vectorization.
1134 
1135   // This is rough cost estimation algorithm. It counts the good and bad order
1136   // of induction variables in the instruction and allows reordering if number
1137   // of bad orders is more than good.
1138   int Cost = getInstrOrderCost();
1139   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1140   if (Cost < -LoopInterchangeCostThreshold)
1141     return true;
1142 
1143   // It is not profitable as per current cache profitability model. But check if
1144   // we can move this loop outside to improve parallelism.
1145   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1146     return true;
1147 
1148   ORE->emit([&]() {
1149     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1150                                     InnerLoop->getStartLoc(),
1151                                     InnerLoop->getHeader())
1152            << "Interchanging loops is too costly (cost="
1153            << ore::NV("Cost", Cost) << ", threshold="
1154            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1155            << ") and it does not improve parallelism.";
1156   });
1157   return false;
1158 }
1159 
1160 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1161                                                Loop *InnerLoop) {
1162   for (Loop *L : *OuterLoop)
1163     if (L == InnerLoop) {
1164       OuterLoop->removeChildLoop(L);
1165       return;
1166     }
1167   llvm_unreachable("Couldn't find loop");
1168 }
1169 
1170 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1171 /// new inner and outer loop after interchanging: NewInner is the original
1172 /// outer loop and NewOuter is the original inner loop.
1173 ///
1174 /// Before interchanging, we have the following structure
1175 /// Outer preheader
1176 //  Outer header
1177 //    Inner preheader
1178 //    Inner header
1179 //      Inner body
1180 //      Inner latch
1181 //   outer bbs
1182 //   Outer latch
1183 //
1184 // After interchanging:
1185 // Inner preheader
1186 // Inner header
1187 //   Outer preheader
1188 //   Outer header
1189 //     Inner body
1190 //     outer bbs
1191 //     Outer latch
1192 //   Inner latch
1193 void LoopInterchangeTransform::restructureLoops(
1194     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1195     BasicBlock *OrigOuterPreHeader) {
1196   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1197   // The original inner loop preheader moves from the new inner loop to
1198   // the parent loop, if there is one.
1199   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1200   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1201 
1202   // Switch the loop levels.
1203   if (OuterLoopParent) {
1204     // Remove the loop from its parent loop.
1205     removeChildLoop(OuterLoopParent, NewInner);
1206     removeChildLoop(NewInner, NewOuter);
1207     OuterLoopParent->addChildLoop(NewOuter);
1208   } else {
1209     removeChildLoop(NewInner, NewOuter);
1210     LI->changeTopLevelLoop(NewInner, NewOuter);
1211   }
1212   while (!NewOuter->isInnermost())
1213     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1214   NewOuter->addChildLoop(NewInner);
1215 
1216   // BBs from the original inner loop.
1217   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1218 
1219   // Add BBs from the original outer loop to the original inner loop (excluding
1220   // BBs already in inner loop)
1221   for (BasicBlock *BB : NewInner->blocks())
1222     if (LI->getLoopFor(BB) == NewInner)
1223       NewOuter->addBlockEntry(BB);
1224 
1225   // Now remove inner loop header and latch from the new inner loop and move
1226   // other BBs (the loop body) to the new inner loop.
1227   BasicBlock *OuterHeader = NewOuter->getHeader();
1228   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1229   for (BasicBlock *BB : OrigInnerBBs) {
1230     // Nothing will change for BBs in child loops.
1231     if (LI->getLoopFor(BB) != NewOuter)
1232       continue;
1233     // Remove the new outer loop header and latch from the new inner loop.
1234     if (BB == OuterHeader || BB == OuterLatch)
1235       NewInner->removeBlockFromLoop(BB);
1236     else
1237       LI->changeLoopFor(BB, NewInner);
1238   }
1239 
1240   // The preheader of the original outer loop becomes part of the new
1241   // outer loop.
1242   NewOuter->addBlockEntry(OrigOuterPreHeader);
1243   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1244 
1245   // Tell SE that we move the loops around.
1246   SE->forgetLoop(NewOuter);
1247   SE->forgetLoop(NewInner);
1248 }
1249 
1250 bool LoopInterchangeTransform::transform() {
1251   bool Transformed = false;
1252 
1253   if (InnerLoop->getSubLoops().empty()) {
1254     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1255     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1256     auto &InductionPHIs = LIL.getInnerLoopInductions();
1257     if (InductionPHIs.empty()) {
1258       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1259       return false;
1260     }
1261 
1262     SmallVector<Instruction *, 8> InnerIndexVarList;
1263     for (PHINode *CurInductionPHI : InductionPHIs) {
1264       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1265         InnerIndexVarList.push_back(
1266             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1267       else
1268         InnerIndexVarList.push_back(
1269             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1270     }
1271 
1272     // Create a new latch block for the inner loop. We split at the
1273     // current latch's terminator and then move the condition and all
1274     // operands that are not either loop-invariant or the induction PHI into the
1275     // new latch block.
1276     BasicBlock *NewLatch =
1277         SplitBlock(InnerLoop->getLoopLatch(),
1278                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1279 
1280     SmallSetVector<Instruction *, 4> WorkList;
1281     unsigned i = 0;
1282     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1283       for (; i < WorkList.size(); i++) {
1284         // Duplicate instruction and move it the new latch. Update uses that
1285         // have been moved.
1286         Instruction *NewI = WorkList[i]->clone();
1287         NewI->insertBefore(NewLatch->getFirstNonPHI());
1288         assert(!NewI->mayHaveSideEffects() &&
1289                "Moving instructions with side-effects may change behavior of "
1290                "the loop nest!");
1291         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1292           Instruction *UserI = cast<Instruction>(U.getUser());
1293           if (!InnerLoop->contains(UserI->getParent()) ||
1294               UserI->getParent() == NewLatch ||
1295               llvm::is_contained(InductionPHIs, UserI))
1296             U.set(NewI);
1297         }
1298         // Add operands of moved instruction to the worklist, except if they are
1299         // outside the inner loop or are the induction PHI.
1300         for (Value *Op : WorkList[i]->operands()) {
1301           Instruction *OpI = dyn_cast<Instruction>(Op);
1302           if (!OpI ||
1303               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1304               llvm::is_contained(InductionPHIs, OpI))
1305             continue;
1306           WorkList.insert(OpI);
1307         }
1308       }
1309     };
1310 
1311     // FIXME: Should we interchange when we have a constant condition?
1312     Instruction *CondI = dyn_cast<Instruction>(
1313         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1314             ->getCondition());
1315     if (CondI)
1316       WorkList.insert(CondI);
1317     MoveInstructions();
1318     for (Instruction *InnerIndexVar : InnerIndexVarList)
1319       WorkList.insert(cast<Instruction>(InnerIndexVar));
1320     MoveInstructions();
1321 
1322     // Splits the inner loops phi nodes out into a separate basic block.
1323     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1324     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1325     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1326   }
1327 
1328   // Instructions in the original inner loop preheader may depend on values
1329   // defined in the outer loop header. Move them there, because the original
1330   // inner loop preheader will become the entry into the interchanged loop nest.
1331   // Currently we move all instructions and rely on LICM to move invariant
1332   // instructions outside the loop nest.
1333   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1334   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1335   if (InnerLoopPreHeader != OuterLoopHeader) {
1336     SmallPtrSet<Instruction *, 4> NeedsMoving;
1337     for (Instruction &I :
1338          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1339                                          std::prev(InnerLoopPreHeader->end()))))
1340       I.moveBefore(OuterLoopHeader->getTerminator());
1341   }
1342 
1343   Transformed |= adjustLoopLinks();
1344   if (!Transformed) {
1345     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1346     return false;
1347   }
1348 
1349   return true;
1350 }
1351 
1352 /// \brief Move all instructions except the terminator from FromBB right before
1353 /// InsertBefore
1354 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1355   auto &ToList = InsertBefore->getParent()->getInstList();
1356   auto &FromList = FromBB->getInstList();
1357 
1358   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1359                 FromBB->getTerminator()->getIterator());
1360 }
1361 
1362 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1363 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1364   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1365   // from BB1 afterwards.
1366   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1367   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1368   for (Instruction *I : TempInstrs)
1369     I->removeFromParent();
1370 
1371   // Move instructions from BB2 to BB1.
1372   moveBBContents(BB2, BB1->getTerminator());
1373 
1374   // Move instructions from TempInstrs to BB2.
1375   for (Instruction *I : TempInstrs)
1376     I->insertBefore(BB2->getTerminator());
1377 }
1378 
1379 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1380 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1381 // \p OldBB  is exactly once in BI's successor list.
1382 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1383                             BasicBlock *NewBB,
1384                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1385                             bool MustUpdateOnce = true) {
1386   assert((!MustUpdateOnce ||
1387           llvm::count_if(successors(BI),
1388                          [OldBB](BasicBlock *BB) {
1389                            return BB == OldBB;
1390                          }) == 1) && "BI must jump to OldBB exactly once.");
1391   bool Changed = false;
1392   for (Use &Op : BI->operands())
1393     if (Op == OldBB) {
1394       Op.set(NewBB);
1395       Changed = true;
1396     }
1397 
1398   if (Changed) {
1399     DTUpdates.push_back(
1400         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1401     DTUpdates.push_back(
1402         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1403   }
1404   assert(Changed && "Expected a successor to be updated");
1405 }
1406 
1407 // Move Lcssa PHIs to the right place.
1408 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1409                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1410                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1411                           Loop *InnerLoop, LoopInfo *LI) {
1412 
1413   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1414   // defined either in the header or latch. Those blocks will become header and
1415   // latch of the new outer loop, and the only possible users can PHI nodes
1416   // in the exit block of the loop nest or the outer loop header (reduction
1417   // PHIs, in that case, the incoming value must be defined in the inner loop
1418   // header). We can just substitute the user with the incoming value and remove
1419   // the PHI.
1420   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1421     assert(P.getNumIncomingValues() == 1 &&
1422            "Only loops with a single exit are supported!");
1423 
1424     // Incoming values are guaranteed be instructions currently.
1425     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1426     // Skip phis with incoming values from the inner loop body, excluding the
1427     // header and latch.
1428     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1429       continue;
1430 
1431     assert(all_of(P.users(),
1432                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1433                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1434                             IncI->getParent() == InnerHeader) ||
1435                            cast<PHINode>(U)->getParent() == OuterExit;
1436                   }) &&
1437            "Can only replace phis iff the uses are in the loop nest exit or "
1438            "the incoming value is defined in the inner header (it will "
1439            "dominate all loop blocks after interchanging)");
1440     P.replaceAllUsesWith(IncI);
1441     P.eraseFromParent();
1442   }
1443 
1444   SmallVector<PHINode *, 8> LcssaInnerExit;
1445   for (PHINode &P : InnerExit->phis())
1446     LcssaInnerExit.push_back(&P);
1447 
1448   SmallVector<PHINode *, 8> LcssaInnerLatch;
1449   for (PHINode &P : InnerLatch->phis())
1450     LcssaInnerLatch.push_back(&P);
1451 
1452   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1453   // If a PHI node has users outside of InnerExit, it has a use outside the
1454   // interchanged loop and we have to preserve it. We move these to
1455   // InnerLatch, which will become the new exit block for the innermost
1456   // loop after interchanging.
1457   for (PHINode *P : LcssaInnerExit)
1458     P->moveBefore(InnerLatch->getFirstNonPHI());
1459 
1460   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1461   // and we have to move them to the new inner latch.
1462   for (PHINode *P : LcssaInnerLatch)
1463     P->moveBefore(InnerExit->getFirstNonPHI());
1464 
1465   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1466   // incoming values defined in the outer loop, we have to add a new PHI
1467   // in the inner loop latch, which became the exit block of the outer loop,
1468   // after interchanging.
1469   if (OuterExit) {
1470     for (PHINode &P : OuterExit->phis()) {
1471       if (P.getNumIncomingValues() != 1)
1472         continue;
1473       // Skip Phis with incoming values defined in the inner loop. Those should
1474       // already have been updated.
1475       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1476       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1477         continue;
1478 
1479       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1480       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1481       NewPhi->setIncomingBlock(0, OuterLatch);
1482       // We might have incoming edges from other BBs, i.e., the original outer
1483       // header.
1484       for (auto *Pred : predecessors(InnerLatch)) {
1485         if (Pred == OuterLatch)
1486           continue;
1487         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1488       }
1489       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1490       P.setIncomingValue(0, NewPhi);
1491     }
1492   }
1493 
1494   // Now adjust the incoming blocks for the LCSSA PHIs.
1495   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1496   // with the new latch.
1497   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1498 }
1499 
1500 bool LoopInterchangeTransform::adjustLoopBranches() {
1501   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1502   std::vector<DominatorTree::UpdateType> DTUpdates;
1503 
1504   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1505   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1506 
1507   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1508          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1509          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1510   // Ensure that both preheaders do not contain PHI nodes and have single
1511   // predecessors. This allows us to move them easily. We use
1512   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1513   // preheaders do not satisfy those conditions.
1514   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1515       !OuterLoopPreHeader->getUniquePredecessor())
1516     OuterLoopPreHeader =
1517         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1518   if (InnerLoopPreHeader == OuterLoop->getHeader())
1519     InnerLoopPreHeader =
1520         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1521 
1522   // Adjust the loop preheader
1523   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1524   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1525   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1526   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1527   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1528   BasicBlock *InnerLoopLatchPredecessor =
1529       InnerLoopLatch->getUniquePredecessor();
1530   BasicBlock *InnerLoopLatchSuccessor;
1531   BasicBlock *OuterLoopLatchSuccessor;
1532 
1533   BranchInst *OuterLoopLatchBI =
1534       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1535   BranchInst *InnerLoopLatchBI =
1536       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1537   BranchInst *OuterLoopHeaderBI =
1538       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1539   BranchInst *InnerLoopHeaderBI =
1540       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1541 
1542   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1543       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1544       !InnerLoopHeaderBI)
1545     return false;
1546 
1547   BranchInst *InnerLoopLatchPredecessorBI =
1548       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1549   BranchInst *OuterLoopPredecessorBI =
1550       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1551 
1552   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1553     return false;
1554   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1555   if (!InnerLoopHeaderSuccessor)
1556     return false;
1557 
1558   // Adjust Loop Preheader and headers.
1559   // The branches in the outer loop predecessor and the outer loop header can
1560   // be unconditional branches or conditional branches with duplicates. Consider
1561   // this when updating the successors.
1562   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1563                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1564   // The outer loop header might or might not branch to the outer latch.
1565   // We are guaranteed to branch to the inner loop preheader.
1566   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1567     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1568     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1569                     DTUpdates,
1570                     /*MustUpdateOnce=*/false);
1571   }
1572   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1573                   InnerLoopHeaderSuccessor, DTUpdates,
1574                   /*MustUpdateOnce=*/false);
1575 
1576   // Adjust reduction PHI's now that the incoming block has changed.
1577   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1578                                                OuterLoopHeader);
1579 
1580   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1581                   OuterLoopPreHeader, DTUpdates);
1582 
1583   // -------------Adjust loop latches-----------
1584   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1585     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1586   else
1587     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1588 
1589   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1590                   InnerLoopLatchSuccessor, DTUpdates);
1591 
1592   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1593     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1594   else
1595     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1596 
1597   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1598                   OuterLoopLatchSuccessor, DTUpdates);
1599   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1600                   DTUpdates);
1601 
1602   DT->applyUpdates(DTUpdates);
1603   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1604                    OuterLoopPreHeader);
1605 
1606   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1607                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1608                 InnerLoop, LI);
1609   // For PHIs in the exit block of the outer loop, outer's latch has been
1610   // replaced by Inners'.
1611   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1612 
1613   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1614   // Now update the reduction PHIs in the inner and outer loop headers.
1615   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1616   for (PHINode &PHI : InnerLoopHeader->phis())
1617     if (OuterInnerReductions.contains(&PHI))
1618       InnerLoopPHIs.push_back(&PHI);
1619 
1620   for (PHINode &PHI : OuterLoopHeader->phis())
1621     if (OuterInnerReductions.contains(&PHI))
1622       OuterLoopPHIs.push_back(&PHI);
1623 
1624   // Now move the remaining reduction PHIs from outer to inner loop header and
1625   // vice versa. The PHI nodes must be part of a reduction across the inner and
1626   // outer loop and all the remains to do is and updating the incoming blocks.
1627   for (PHINode *PHI : OuterLoopPHIs) {
1628     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1629     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1630     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1631   }
1632   for (PHINode *PHI : InnerLoopPHIs) {
1633     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1634     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1635     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1636   }
1637 
1638   // Update the incoming blocks for moved PHI nodes.
1639   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1640   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1641   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1642   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1643 
1644   // Values defined in the outer loop header could be used in the inner loop
1645   // latch. In that case, we need to create LCSSA phis for them, because after
1646   // interchanging they will be defined in the new inner loop and used in the
1647   // new outer loop.
1648   IRBuilder<> Builder(OuterLoopHeader->getContext());
1649   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1650   for (Instruction &I :
1651        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1652     MayNeedLCSSAPhis.push_back(&I);
1653   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1654 
1655   return true;
1656 }
1657 
1658 bool LoopInterchangeTransform::adjustLoopLinks() {
1659   // Adjust all branches in the inner and outer loop.
1660   bool Changed = adjustLoopBranches();
1661   if (Changed) {
1662     // We have interchanged the preheaders so we need to interchange the data in
1663     // the preheaders as well. This is because the content of the inner
1664     // preheader was previously executed inside the outer loop.
1665     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1666     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1667     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1668   }
1669   return Changed;
1670 }
1671 
1672 namespace {
1673 /// Main LoopInterchange Pass.
1674 struct LoopInterchangeLegacyPass : public LoopPass {
1675   static char ID;
1676 
1677   LoopInterchangeLegacyPass() : LoopPass(ID) {
1678     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1679   }
1680 
1681   void getAnalysisUsage(AnalysisUsage &AU) const override {
1682     AU.addRequired<DependenceAnalysisWrapperPass>();
1683     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1684 
1685     getLoopAnalysisUsage(AU);
1686   }
1687 
1688   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1689     if (skipLoop(L))
1690       return false;
1691 
1692     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1693     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1694     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1695     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1696     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1697 
1698     return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1699   }
1700 };
1701 } // namespace
1702 
1703 char LoopInterchangeLegacyPass::ID = 0;
1704 
1705 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1706                       "Interchanges loops for cache reuse", false, false)
1707 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1708 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1709 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1710 
1711 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1712                     "Interchanges loops for cache reuse", false, false)
1713 
1714 Pass *llvm::createLoopInterchangePass() {
1715   return new LoopInterchangeLegacyPass();
1716 }
1717 
1718 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1719                                            LoopAnalysisManager &AM,
1720                                            LoopStandardAnalysisResults &AR,
1721                                            LPMUpdater &U) {
1722   Function &F = *LN.getParent();
1723 
1724   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1725   OptimizationRemarkEmitter ORE(&F);
1726   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1727     return PreservedAnalyses::all();
1728   return getLoopPassPreservedAnalyses();
1729 }
1730