1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "loop-interchange"
54 
55 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56 
57 static cl::opt<int> LoopInterchangeCostThreshold(
58     "loop-interchange-threshold", cl::init(0), cl::Hidden,
59     cl::desc("Interchange if you gain more than this number"));
60 
61 namespace {
62 
63 using LoopVector = SmallVector<Loop *, 8>;
64 
65 // TODO: Check if we can use a sparse matrix here.
66 using CharMatrix = std::vector<std::vector<char>>;
67 
68 } // end anonymous namespace
69 
70 // Maximum number of dependencies that can be handled in the dependency matrix.
71 static const unsigned MaxMemInstrCount = 100;
72 
73 // Maximum loop depth supported.
74 static const unsigned MaxLoopNestDepth = 10;
75 
76 #ifdef DUMP_DEP_MATRICIES
77 static void printDepMatrix(CharMatrix &DepMatrix) {
78   for (auto &Row : DepMatrix) {
79     for (auto D : Row)
80       DEBUG(dbgs() << D << " ");
81     DEBUG(dbgs() << "\n");
82   }
83 }
84 #endif
85 
86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
87                                      Loop *L, DependenceInfo *DI) {
88   using ValueVector = SmallVector<Value *, 16>;
89 
90   ValueVector MemInstr;
91 
92   // For each block.
93   for (BasicBlock *BB : L->blocks()) {
94     // Scan the BB and collect legal loads and stores.
95     for (Instruction &I : *BB) {
96       if (!isa<Instruction>(I))
97         return false;
98       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99         if (!Ld->isSimple())
100           return false;
101         MemInstr.push_back(&I);
102       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103         if (!St->isSimple())
104           return false;
105         MemInstr.push_back(&I);
106       }
107     }
108   }
109 
110   DEBUG(dbgs() << "Found " << MemInstr.size()
111                << " Loads and Stores to analyze\n");
112 
113   ValueVector::iterator I, IE, J, JE;
114 
115   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117       std::vector<char> Dep;
118       Instruction *Src = cast<Instruction>(*I);
119       Instruction *Dst = cast<Instruction>(*J);
120       if (Src == Dst)
121         continue;
122       // Ignore Input dependencies.
123       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124         continue;
125       // Track Output, Flow, and Anti dependencies.
126       if (auto D = DI->depends(Src, Dst, true)) {
127         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128         DEBUG(StringRef DepType =
129                   D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130               dbgs() << "Found " << DepType
131                      << " dependency between Src and Dst\n"
132                      << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133         unsigned Levels = D->getLevels();
134         char Direction;
135         for (unsigned II = 1; II <= Levels; ++II) {
136           const SCEV *Distance = D->getDistance(II);
137           const SCEVConstant *SCEVConst =
138               dyn_cast_or_null<SCEVConstant>(Distance);
139           if (SCEVConst) {
140             const ConstantInt *CI = SCEVConst->getValue();
141             if (CI->isNegative())
142               Direction = '<';
143             else if (CI->isZero())
144               Direction = '=';
145             else
146               Direction = '>';
147             Dep.push_back(Direction);
148           } else if (D->isScalar(II)) {
149             Direction = 'S';
150             Dep.push_back(Direction);
151           } else {
152             unsigned Dir = D->getDirection(II);
153             if (Dir == Dependence::DVEntry::LT ||
154                 Dir == Dependence::DVEntry::LE)
155               Direction = '<';
156             else if (Dir == Dependence::DVEntry::GT ||
157                      Dir == Dependence::DVEntry::GE)
158               Direction = '>';
159             else if (Dir == Dependence::DVEntry::EQ)
160               Direction = '=';
161             else
162               Direction = '*';
163             Dep.push_back(Direction);
164           }
165         }
166         while (Dep.size() != Level) {
167           Dep.push_back('I');
168         }
169 
170         DepMatrix.push_back(Dep);
171         if (DepMatrix.size() > MaxMemInstrCount) {
172           DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173                        << " dependencies inside loop\n");
174           return false;
175         }
176       }
177     }
178   }
179 
180   return true;
181 }
182 
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186                                     unsigned ToIndx) {
187   unsigned numRows = DepMatrix.size();
188   for (unsigned i = 0; i < numRows; ++i) {
189     char TmpVal = DepMatrix[i][ToIndx];
190     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
191     DepMatrix[i][FromIndx] = TmpVal;
192   }
193 }
194 
195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 // '>'
197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
198                                    unsigned Column) {
199   for (unsigned i = 0; i <= Column; ++i) {
200     if (DepMatrix[Row][i] == '<')
201       return false;
202     if (DepMatrix[Row][i] == '>')
203       return true;
204   }
205   // All dependencies were '=','S' or 'I'
206   return false;
207 }
208 
209 // Checks if no dependence exist in the dependency matrix in Row before Column.
210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
211                                  unsigned Column) {
212   for (unsigned i = 0; i < Column; ++i) {
213     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
214         DepMatrix[Row][i] != 'I')
215       return false;
216   }
217   return true;
218 }
219 
220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
221                                 unsigned OuterLoopId, char InnerDep,
222                                 char OuterDep) {
223   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
224     return false;
225 
226   if (InnerDep == OuterDep)
227     return true;
228 
229   // It is legal to interchange if and only if after interchange no row has a
230   // '>' direction as the leftmost non-'='.
231 
232   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
233     return true;
234 
235   if (InnerDep == '<')
236     return true;
237 
238   if (InnerDep == '>') {
239     // If OuterLoopId represents outermost loop then interchanging will make the
240     // 1st dependency as '>'
241     if (OuterLoopId == 0)
242       return false;
243 
244     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
245     // interchanging will result in this row having an outermost non '='
246     // dependency of '>'
247     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
248       return true;
249   }
250 
251   return false;
252 }
253 
254 // Checks if it is legal to interchange 2 loops.
255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
256 // if the direction matrix, after the same permutation is applied to its
257 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
259                                       unsigned InnerLoopId,
260                                       unsigned OuterLoopId) {
261   unsigned NumRows = DepMatrix.size();
262   // For each row check if it is valid to interchange.
263   for (unsigned Row = 0; Row < NumRows; ++Row) {
264     char InnerDep = DepMatrix[Row][InnerLoopId];
265     char OuterDep = DepMatrix[Row][OuterLoopId];
266     if (InnerDep == '*' || OuterDep == '*')
267       return false;
268     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
269       return false;
270   }
271   return true;
272 }
273 
274 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
275   DEBUG(dbgs() << "Calling populateWorklist on Func: "
276                << L.getHeader()->getParent()->getName() << " Loop: %"
277                << L.getHeader()->getName() << '\n');
278   LoopVector LoopList;
279   Loop *CurrentLoop = &L;
280   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
281   while (!Vec->empty()) {
282     // The current loop has multiple subloops in it hence it is not tightly
283     // nested.
284     // Discard all loops above it added into Worklist.
285     if (Vec->size() != 1) {
286       LoopList.clear();
287       return;
288     }
289     LoopList.push_back(CurrentLoop);
290     CurrentLoop = Vec->front();
291     Vec = &CurrentLoop->getSubLoops();
292   }
293   LoopList.push_back(CurrentLoop);
294   V.push_back(std::move(LoopList));
295 }
296 
297 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
298   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
299   if (InnerIndexVar)
300     return InnerIndexVar;
301   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
302     return nullptr;
303   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
304     PHINode *PhiVar = cast<PHINode>(I);
305     Type *PhiTy = PhiVar->getType();
306     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
307         !PhiTy->isPointerTy())
308       return nullptr;
309     const SCEVAddRecExpr *AddRec =
310         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
311     if (!AddRec || !AddRec->isAffine())
312       continue;
313     const SCEV *Step = AddRec->getStepRecurrence(*SE);
314     if (!isa<SCEVConstant>(Step))
315       continue;
316     // Found the induction variable.
317     // FIXME: Handle loops with more than one induction variable. Note that,
318     // currently, legality makes sure we have only one induction variable.
319     return PhiVar;
320   }
321   return nullptr;
322 }
323 
324 namespace {
325 
326 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
327 class LoopInterchangeLegality {
328 public:
329   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
330                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA,
331                           OptimizationRemarkEmitter *ORE)
332       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
333         PreserveLCSSA(PreserveLCSSA), ORE(ORE) {}
334 
335   /// Check if the loops can be interchanged.
336   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
337                            CharMatrix &DepMatrix);
338 
339   /// Check if the loop structure is understood. We do not handle triangular
340   /// loops for now.
341   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
342 
343   bool currentLimitations();
344 
345   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
346 
347 private:
348   bool tightlyNested(Loop *Outer, Loop *Inner);
349   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
350   bool areAllUsesReductions(Instruction *Ins, Loop *L);
351   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
352   bool findInductionAndReductions(Loop *L,
353                                   SmallVector<PHINode *, 8> &Inductions,
354                                   SmallVector<PHINode *, 8> &Reductions);
355 
356   Loop *OuterLoop;
357   Loop *InnerLoop;
358 
359   ScalarEvolution *SE;
360   LoopInfo *LI;
361   DominatorTree *DT;
362   bool PreserveLCSSA;
363 
364   /// Interface to emit optimization remarks.
365   OptimizationRemarkEmitter *ORE;
366 
367   bool InnerLoopHasReduction = false;
368 };
369 
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375                                OptimizationRemarkEmitter *ORE)
376       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377 
378   /// Check if the loop interchange is profitable.
379   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380                     CharMatrix &DepMatrix);
381 
382 private:
383   int getInstrOrderCost();
384 
385   Loop *OuterLoop;
386   Loop *InnerLoop;
387 
388   /// Scev analysis.
389   ScalarEvolution *SE;
390 
391   /// Interface to emit optimization remarks.
392   OptimizationRemarkEmitter *ORE;
393 };
394 
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399                            LoopInfo *LI, DominatorTree *DT,
400                            BasicBlock *LoopNestExit,
401                            bool InnerLoopContainsReductions)
402       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
403         LoopExit(LoopNestExit),
404         InnerLoopHasReduction(InnerLoopContainsReductions) {}
405 
406   /// Interchange OuterLoop and InnerLoop.
407   bool transform();
408   void restructureLoops(Loop *NewInner, Loop *NewOuter,
409                         BasicBlock *OrigInnerPreHeader,
410                         BasicBlock *OrigOuterPreHeader);
411   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
412 
413 private:
414   void splitInnerLoopLatch(Instruction *);
415   void splitInnerLoopHeader();
416   bool adjustLoopLinks();
417   void adjustLoopPreheaders();
418   bool adjustLoopBranches();
419   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
420                            BasicBlock *NewPred);
421 
422   Loop *OuterLoop;
423   Loop *InnerLoop;
424 
425   /// Scev analysis.
426   ScalarEvolution *SE;
427 
428   LoopInfo *LI;
429   DominatorTree *DT;
430   BasicBlock *LoopExit;
431   bool InnerLoopHasReduction;
432 };
433 
434 // Main LoopInterchange Pass.
435 struct LoopInterchange : public FunctionPass {
436   static char ID;
437   ScalarEvolution *SE = nullptr;
438   LoopInfo *LI = nullptr;
439   DependenceInfo *DI = nullptr;
440   DominatorTree *DT = nullptr;
441   bool PreserveLCSSA;
442 
443   /// Interface to emit optimization remarks.
444   OptimizationRemarkEmitter *ORE;
445 
446   LoopInterchange() : FunctionPass(ID) {
447     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
448   }
449 
450   void getAnalysisUsage(AnalysisUsage &AU) const override {
451     AU.addRequired<ScalarEvolutionWrapperPass>();
452     AU.addRequired<AAResultsWrapperPass>();
453     AU.addRequired<DominatorTreeWrapperPass>();
454     AU.addRequired<LoopInfoWrapperPass>();
455     AU.addRequired<DependenceAnalysisWrapperPass>();
456     AU.addRequiredID(LoopSimplifyID);
457     AU.addRequiredID(LCSSAID);
458     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
459 
460     AU.addPreserved<DominatorTreeWrapperPass>();
461     AU.addPreserved<LoopInfoWrapperPass>();
462   }
463 
464   bool runOnFunction(Function &F) override {
465     if (skipFunction(F))
466       return false;
467 
468     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
469     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
471     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
472     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
473     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
474 
475     // Build up a worklist of loop pairs to analyze.
476     SmallVector<LoopVector, 8> Worklist;
477 
478     for (Loop *L : *LI)
479       populateWorklist(*L, Worklist);
480 
481     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
482     bool Changed = true;
483     while (!Worklist.empty()) {
484       LoopVector LoopList = Worklist.pop_back_val();
485       Changed = processLoopList(LoopList, F);
486     }
487     return Changed;
488   }
489 
490   bool isComputableLoopNest(LoopVector LoopList) {
491     for (Loop *L : LoopList) {
492       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
493       if (ExitCountOuter == SE->getCouldNotCompute()) {
494         DEBUG(dbgs() << "Couldn't compute backedge count\n");
495         return false;
496       }
497       if (L->getNumBackEdges() != 1) {
498         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
499         return false;
500       }
501       if (!L->getExitingBlock()) {
502         DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
503         return false;
504       }
505     }
506     return true;
507   }
508 
509   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
510     // TODO: Add a better heuristic to select the loop to be interchanged based
511     // on the dependence matrix. Currently we select the innermost loop.
512     return LoopList.size() - 1;
513   }
514 
515   bool processLoopList(LoopVector LoopList, Function &F) {
516     bool Changed = false;
517     unsigned LoopNestDepth = LoopList.size();
518     if (LoopNestDepth < 2) {
519       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
520       return false;
521     }
522     if (LoopNestDepth > MaxLoopNestDepth) {
523       DEBUG(dbgs() << "Cannot handle loops of depth greater than "
524                    << MaxLoopNestDepth << "\n");
525       return false;
526     }
527     if (!isComputableLoopNest(LoopList)) {
528       DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
529       return false;
530     }
531 
532     DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n");
533 
534     CharMatrix DependencyMatrix;
535     Loop *OuterMostLoop = *(LoopList.begin());
536     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
537                                   OuterMostLoop, DI)) {
538       DEBUG(dbgs() << "Populating dependency matrix failed\n");
539       return false;
540     }
541 #ifdef DUMP_DEP_MATRICIES
542     DEBUG(dbgs() << "Dependence before interchange\n");
543     printDepMatrix(DependencyMatrix);
544 #endif
545 
546     // Get the Outermost loop exit.
547     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
548     if (!LoopNestExit) {
549       DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
550       return false;
551     }
552 
553     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
554     // Move the selected loop outwards to the best possible position.
555     for (unsigned i = SelecLoopId; i > 0; i--) {
556       bool Interchanged =
557           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
558       if (!Interchanged)
559         return Changed;
560       // Loops interchanged reflect the same in LoopList
561       std::swap(LoopList[i - 1], LoopList[i]);
562 
563       // Update the DependencyMatrix
564       interChangeDependencies(DependencyMatrix, i, i - 1);
565 #ifdef DUMP_DEP_MATRICIES
566       DEBUG(dbgs() << "Dependence after interchange\n");
567       printDepMatrix(DependencyMatrix);
568 #endif
569       Changed |= Interchanged;
570     }
571     return Changed;
572   }
573 
574   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
575                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
576                    std::vector<std::vector<char>> &DependencyMatrix) {
577     DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
578                  << " and OuterLoopId = " << OuterLoopId << "\n");
579     Loop *InnerLoop = LoopList[InnerLoopId];
580     Loop *OuterLoop = LoopList[OuterLoopId];
581 
582     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
583                                 PreserveLCSSA, ORE);
584     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
585       DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
586       return false;
587     }
588     DEBUG(dbgs() << "Loops are legal to interchange\n");
589     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
590     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
591       DEBUG(dbgs() << "Interchanging loops not profitable.\n");
592       return false;
593     }
594 
595     ORE->emit([&]() {
596       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
597                                 InnerLoop->getStartLoc(),
598                                 InnerLoop->getHeader())
599              << "Loop interchanged with enclosing loop.";
600     });
601 
602     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
603                                  LoopNestExit, LIL.hasInnerLoopReduction());
604     LIT.transform();
605     DEBUG(dbgs() << "Loops interchanged.\n");
606     LoopsInterchanged++;
607     return true;
608   }
609 };
610 
611 } // end anonymous namespace
612 
613 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
614   return llvm::none_of(Ins->users(), [=](User *U) -> bool {
615     auto *UserIns = dyn_cast<PHINode>(U);
616     RecurrenceDescriptor RD;
617     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
618   });
619 }
620 
621 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
622     BasicBlock *BB) {
623   for (Instruction &I : *BB) {
624     // Load corresponding to reduction PHI's are safe while concluding if
625     // tightly nested.
626     if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
627       if (!areAllUsesReductions(L, InnerLoop))
628         return true;
629     } else if (I.mayHaveSideEffects() || I.mayReadFromMemory())
630       return true;
631   }
632   return false;
633 }
634 
635 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
636     BasicBlock *BB) {
637   for (Instruction &I : *BB) {
638     // Stores corresponding to reductions are safe while concluding if tightly
639     // nested.
640     if (StoreInst *L = dyn_cast<StoreInst>(&I)) {
641       if (!isa<PHINode>(L->getOperand(0)))
642         return true;
643     } else if (I.mayHaveSideEffects() || I.mayReadFromMemory())
644       return true;
645   }
646   return false;
647 }
648 
649 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
650   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
651   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
652   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
653 
654   DEBUG(dbgs() << "Checking if loops are tightly nested\n");
655 
656   // A perfectly nested loop will not have any branch in between the outer and
657   // inner block i.e. outer header will branch to either inner preheader and
658   // outerloop latch.
659   BranchInst *OuterLoopHeaderBI =
660       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
661   if (!OuterLoopHeaderBI)
662     return false;
663 
664   for (BasicBlock *Succ : OuterLoopHeaderBI->successors())
665     if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch)
666       return false;
667 
668   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
669   // We do not have any basic block in between now make sure the outer header
670   // and outer loop latch doesn't contain any unsafe instructions.
671   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
672       containsUnsafeInstructionsInLatch(OuterLoopLatch))
673     return false;
674 
675   DEBUG(dbgs() << "Loops are perfectly nested\n");
676   // We have a perfect loop nest.
677   return true;
678 }
679 
680 bool LoopInterchangeLegality::isLoopStructureUnderstood(
681     PHINode *InnerInduction) {
682   unsigned Num = InnerInduction->getNumOperands();
683   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
684   for (unsigned i = 0; i < Num; ++i) {
685     Value *Val = InnerInduction->getOperand(i);
686     if (isa<Constant>(Val))
687       continue;
688     Instruction *I = dyn_cast<Instruction>(Val);
689     if (!I)
690       return false;
691     // TODO: Handle triangular loops.
692     // e.g. for(int i=0;i<N;i++)
693     //        for(int j=i;j<N;j++)
694     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
695     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
696             InnerLoopPreheader &&
697         !OuterLoop->isLoopInvariant(I)) {
698       return false;
699     }
700   }
701   return true;
702 }
703 
704 bool LoopInterchangeLegality::findInductionAndReductions(
705     Loop *L, SmallVector<PHINode *, 8> &Inductions,
706     SmallVector<PHINode *, 8> &Reductions) {
707   if (!L->getLoopLatch() || !L->getLoopPredecessor())
708     return false;
709   for (PHINode &PHI : L->getHeader()->phis()) {
710     RecurrenceDescriptor RD;
711     InductionDescriptor ID;
712     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
713       Inductions.push_back(&PHI);
714     else if (RecurrenceDescriptor::isReductionPHI(&PHI, L, RD))
715       Reductions.push_back(&PHI);
716     else {
717       DEBUG(
718           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
719       return false;
720     }
721   }
722   return true;
723 }
724 
725 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
726   for (PHINode &PHI : Block->phis()) {
727     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
728     if (PHI.getNumIncomingValues() > 1)
729       return false;
730     Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
731     if (!Ins)
732       return false;
733     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
734     // exits lcssa phi else it would not be tightly nested.
735     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
736       return false;
737   }
738   return true;
739 }
740 
741 // This function indicates the current limitations in the transform as a result
742 // of which we do not proceed.
743 bool LoopInterchangeLegality::currentLimitations() {
744   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
745   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
746 
747   // transform currently expects the loop latches to also be the exiting
748   // blocks.
749   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
750       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
751       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
752       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
753     DEBUG(dbgs() << "Loops where the latch is not the exiting block are not"
754                  << " supported currently.\n");
755     ORE->emit([&]() {
756       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
757                                       OuterLoop->getStartLoc(),
758                                       OuterLoop->getHeader())
759              << "Loops where the latch is not the exiting block cannot be"
760                 " interchange currently.";
761     });
762     return true;
763   }
764 
765   PHINode *InnerInductionVar;
766   SmallVector<PHINode *, 8> Inductions;
767   SmallVector<PHINode *, 8> Reductions;
768   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
769     DEBUG(dbgs() << "Only inner loops with induction or reduction PHI nodes "
770                  << "are supported currently.\n");
771     ORE->emit([&]() {
772       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
773                                       InnerLoop->getStartLoc(),
774                                       InnerLoop->getHeader())
775              << "Only inner loops with induction or reduction PHI nodes can be"
776                 " interchange currently.";
777     });
778     return true;
779   }
780 
781   // TODO: Currently we handle only loops with 1 induction variable.
782   if (Inductions.size() != 1) {
783     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
784                  << "Failed to interchange due to current limitation\n");
785     ORE->emit([&]() {
786       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
787                                       InnerLoop->getStartLoc(),
788                                       InnerLoop->getHeader())
789              << "Only inner loops with 1 induction variable can be "
790                 "interchanged currently.";
791     });
792     return true;
793   }
794   if (Reductions.size() > 0)
795     InnerLoopHasReduction = true;
796 
797   InnerInductionVar = Inductions.pop_back_val();
798   Reductions.clear();
799   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
800     DEBUG(dbgs() << "Only outer loops with induction or reduction PHI nodes "
801                  << "are supported currently.\n");
802     ORE->emit([&]() {
803       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
804                                       OuterLoop->getStartLoc(),
805                                       OuterLoop->getHeader())
806              << "Only outer loops with induction or reduction PHI nodes can be"
807                 " interchanged currently.";
808     });
809     return true;
810   }
811 
812   // Outer loop cannot have reduction because then loops will not be tightly
813   // nested.
814   if (!Reductions.empty()) {
815     DEBUG(dbgs() << "Outer loops with reductions are not supported "
816                  << "currently.\n");
817     ORE->emit([&]() {
818       return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter",
819                                       OuterLoop->getStartLoc(),
820                                       OuterLoop->getHeader())
821              << "Outer loops with reductions cannot be interchangeed "
822                 "currently.";
823     });
824     return true;
825   }
826   // TODO: Currently we handle only loops with 1 induction variable.
827   if (Inductions.size() != 1) {
828     DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
829                  << "supported currently.\n");
830     ORE->emit([&]() {
831       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
832                                       OuterLoop->getStartLoc(),
833                                       OuterLoop->getHeader())
834              << "Only outer loops with 1 induction variable can be "
835                 "interchanged currently.";
836     });
837     return true;
838   }
839 
840   // TODO: Triangular loops are not handled for now.
841   if (!isLoopStructureUnderstood(InnerInductionVar)) {
842     DEBUG(dbgs() << "Loop structure not understood by pass\n");
843     ORE->emit([&]() {
844       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
845                                       InnerLoop->getStartLoc(),
846                                       InnerLoop->getHeader())
847              << "Inner loop structure not understood currently.";
848     });
849     return true;
850   }
851 
852   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
853   BasicBlock *InnerExit = InnerLoop->getExitBlock();
854   if (!containsSafePHI(InnerExit, false)) {
855     DEBUG(dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
856     ORE->emit([&]() {
857       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
858                                       InnerLoop->getStartLoc(),
859                                       InnerLoop->getHeader())
860              << "Only inner loops with LCSSA PHIs can be interchange "
861                 "currently.";
862     });
863     return true;
864   }
865 
866   // TODO: Current limitation: Since we split the inner loop latch at the point
867   // were induction variable is incremented (induction.next); We cannot have
868   // more than 1 user of induction.next since it would result in broken code
869   // after split.
870   // e.g.
871   // for(i=0;i<N;i++) {
872   //    for(j = 0;j<M;j++) {
873   //      A[j+1][i+2] = A[j][i]+k;
874   //  }
875   // }
876   Instruction *InnerIndexVarInc = nullptr;
877   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
878     InnerIndexVarInc =
879         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
880   else
881     InnerIndexVarInc =
882         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
883 
884   if (!InnerIndexVarInc) {
885     DEBUG(dbgs() << "Did not find an instruction to increment the induction "
886                  << "variable.\n");
887     ORE->emit([&]() {
888       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
889                                       InnerLoop->getStartLoc(),
890                                       InnerLoop->getHeader())
891              << "The inner loop does not increment the induction variable.";
892     });
893     return true;
894   }
895 
896   // Since we split the inner loop latch on this induction variable. Make sure
897   // we do not have any instruction between the induction variable and branch
898   // instruction.
899 
900   bool FoundInduction = false;
901   for (const Instruction &I :
902        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
903     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
904         isa<ZExtInst>(I))
905       continue;
906 
907     // We found an instruction. If this is not induction variable then it is not
908     // safe to split this loop latch.
909     if (!I.isIdenticalTo(InnerIndexVarInc)) {
910       DEBUG(dbgs() << "Found unsupported instructions between induction "
911                    << "variable increment and branch.\n");
912       ORE->emit([&]() {
913         return OptimizationRemarkMissed(
914                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
915                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
916                << "Found unsupported instruction between induction variable "
917                   "increment and branch.";
918       });
919       return true;
920     }
921 
922     FoundInduction = true;
923     break;
924   }
925   // The loop latch ended and we didn't find the induction variable return as
926   // current limitation.
927   if (!FoundInduction) {
928     DEBUG(dbgs() << "Did not find the induction variable.\n");
929     ORE->emit([&]() {
930       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
931                                       InnerLoop->getStartLoc(),
932                                       InnerLoop->getHeader())
933              << "Did not find the induction variable.";
934     });
935     return true;
936   }
937   return false;
938 }
939 
940 // We currently support LCSSA PHI nodes in the outer loop exit, if their
941 // incoming values do not come from the outer loop latch or if the
942 // outer loop latch has a single predecessor. In that case, the value will
943 // be available if both the inner and outer loop conditions are true, which
944 // will still be true after interchanging. If we have multiple predecessor,
945 // that may not be the case, e.g. because the outer loop latch may be executed
946 // if the inner loop is not executed.
947 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
948   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
949   for (PHINode &PHI : LoopNestExit->phis()) {
950     //  FIXME: We currently are not able to detect floating point reductions
951     //         and have to use floating point PHIs as a proxy to prevent
952     //         interchanging in the presence of floating point reductions.
953     if (PHI.getType()->isFloatingPointTy())
954       return false;
955     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
956      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
957      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
958        continue;
959 
960      // The incoming value is defined in the outer loop latch. Currently we
961      // only support that in case the outer loop latch has a single predecessor.
962      // This guarantees that the outer loop latch is executed if and only if
963      // the inner loop is executed (because tightlyNested() guarantees that the
964      // outer loop header only branches to the inner loop or the outer loop
965      // latch).
966      // FIXME: We could weaken this logic and allow multiple predecessors,
967      //        if the values are produced outside the loop latch. We would need
968      //        additional logic to update the PHI nodes in the exit block as
969      //        well.
970      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
971        return false;
972     }
973   }
974   return true;
975 }
976 
977 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
978                                                   unsigned OuterLoopId,
979                                                   CharMatrix &DepMatrix) {
980   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
981     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
982                  << " and OuterLoopId = " << OuterLoopId
983                  << " due to dependence\n");
984     ORE->emit([&]() {
985       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
986                                       InnerLoop->getStartLoc(),
987                                       InnerLoop->getHeader())
988              << "Cannot interchange loops due to dependences.";
989     });
990     return false;
991   }
992   // Check if outer and inner loop contain legal instructions only.
993   for (auto *BB : OuterLoop->blocks())
994     for (Instruction &I : BB->instructionsWithoutDebug())
995       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
996         // readnone functions do not prevent interchanging.
997         if (CI->doesNotReadMemory())
998           continue;
999         DEBUG(dbgs() << "Loops with call instructions cannot be interchanged "
1000                      << "safely.");
1001         ORE->emit([&]() {
1002           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1003                                           CI->getDebugLoc(),
1004                                           CI->getParent())
1005                  << "Cannot interchange loops due to call instruction.";
1006         });
1007 
1008         return false;
1009       }
1010 
1011   // Create unique Preheaders if we already do not have one.
1012   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1013   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1014 
1015   // Create  a unique outer preheader -
1016   // 1) If OuterLoop preheader is not present.
1017   // 2) If OuterLoop Preheader is same as OuterLoop Header
1018   // 3) If OuterLoop Preheader is same as Header of the previous loop.
1019   // 4) If OuterLoop Preheader is Entry node.
1020   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
1021       isa<PHINode>(OuterLoopPreHeader->begin()) ||
1022       !OuterLoopPreHeader->getUniquePredecessor()) {
1023     OuterLoopPreHeader =
1024         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
1025   }
1026 
1027   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
1028       InnerLoopPreHeader == OuterLoop->getHeader()) {
1029     InnerLoopPreHeader =
1030         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
1031   }
1032 
1033   // TODO: The loops could not be interchanged due to current limitations in the
1034   // transform module.
1035   if (currentLimitations()) {
1036     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1037     return false;
1038   }
1039 
1040   // Check if the loops are tightly nested.
1041   if (!tightlyNested(OuterLoop, InnerLoop)) {
1042     DEBUG(dbgs() << "Loops not tightly nested\n");
1043     ORE->emit([&]() {
1044       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1045                                       InnerLoop->getStartLoc(),
1046                                       InnerLoop->getHeader())
1047              << "Cannot interchange loops because they are not tightly "
1048                 "nested.";
1049     });
1050     return false;
1051   }
1052 
1053   if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1054     DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1055     ORE->emit([&]() {
1056       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1057                                       OuterLoop->getStartLoc(),
1058                                       OuterLoop->getHeader())
1059              << "Found unsupported PHI node in loop exit.";
1060     });
1061     return false;
1062   }
1063 
1064   return true;
1065 }
1066 
1067 int LoopInterchangeProfitability::getInstrOrderCost() {
1068   unsigned GoodOrder, BadOrder;
1069   BadOrder = GoodOrder = 0;
1070   for (BasicBlock *BB : InnerLoop->blocks()) {
1071     for (Instruction &Ins : *BB) {
1072       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1073         unsigned NumOp = GEP->getNumOperands();
1074         bool FoundInnerInduction = false;
1075         bool FoundOuterInduction = false;
1076         for (unsigned i = 0; i < NumOp; ++i) {
1077           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1078           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1079           if (!AR)
1080             continue;
1081 
1082           // If we find the inner induction after an outer induction e.g.
1083           // for(int i=0;i<N;i++)
1084           //   for(int j=0;j<N;j++)
1085           //     A[i][j] = A[i-1][j-1]+k;
1086           // then it is a good order.
1087           if (AR->getLoop() == InnerLoop) {
1088             // We found an InnerLoop induction after OuterLoop induction. It is
1089             // a good order.
1090             FoundInnerInduction = true;
1091             if (FoundOuterInduction) {
1092               GoodOrder++;
1093               break;
1094             }
1095           }
1096           // If we find the outer induction after an inner induction e.g.
1097           // for(int i=0;i<N;i++)
1098           //   for(int j=0;j<N;j++)
1099           //     A[j][i] = A[j-1][i-1]+k;
1100           // then it is a bad order.
1101           if (AR->getLoop() == OuterLoop) {
1102             // We found an OuterLoop induction after InnerLoop induction. It is
1103             // a bad order.
1104             FoundOuterInduction = true;
1105             if (FoundInnerInduction) {
1106               BadOrder++;
1107               break;
1108             }
1109           }
1110         }
1111       }
1112     }
1113   }
1114   return GoodOrder - BadOrder;
1115 }
1116 
1117 static bool isProfitableForVectorization(unsigned InnerLoopId,
1118                                          unsigned OuterLoopId,
1119                                          CharMatrix &DepMatrix) {
1120   // TODO: Improve this heuristic to catch more cases.
1121   // If the inner loop is loop independent or doesn't carry any dependency it is
1122   // profitable to move this to outer position.
1123   for (auto &Row : DepMatrix) {
1124     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1125       return false;
1126     // TODO: We need to improve this heuristic.
1127     if (Row[OuterLoopId] != '=')
1128       return false;
1129   }
1130   // If outer loop has dependence and inner loop is loop independent then it is
1131   // profitable to interchange to enable parallelism.
1132   // If there are no dependences, interchanging will not improve anything.
1133   return !DepMatrix.empty();
1134 }
1135 
1136 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1137                                                 unsigned OuterLoopId,
1138                                                 CharMatrix &DepMatrix) {
1139   // TODO: Add better profitability checks.
1140   // e.g
1141   // 1) Construct dependency matrix and move the one with no loop carried dep
1142   //    inside to enable vectorization.
1143 
1144   // This is rough cost estimation algorithm. It counts the good and bad order
1145   // of induction variables in the instruction and allows reordering if number
1146   // of bad orders is more than good.
1147   int Cost = getInstrOrderCost();
1148   DEBUG(dbgs() << "Cost = " << Cost << "\n");
1149   if (Cost < -LoopInterchangeCostThreshold)
1150     return true;
1151 
1152   // It is not profitable as per current cache profitability model. But check if
1153   // we can move this loop outside to improve parallelism.
1154   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1155     return true;
1156 
1157   ORE->emit([&]() {
1158     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1159                                     InnerLoop->getStartLoc(),
1160                                     InnerLoop->getHeader())
1161            << "Interchanging loops is too costly (cost="
1162            << ore::NV("Cost", Cost) << ", threshold="
1163            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1164            << ") and it does not improve parallelism.";
1165   });
1166   return false;
1167 }
1168 
1169 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1170                                                Loop *InnerLoop) {
1171   for (Loop *L : *OuterLoop)
1172     if (L == InnerLoop) {
1173       OuterLoop->removeChildLoop(L);
1174       return;
1175     }
1176   llvm_unreachable("Couldn't find loop");
1177 }
1178 
1179 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1180 /// new inner and outer loop after interchanging: NewInner is the original
1181 /// outer loop and NewOuter is the original inner loop.
1182 ///
1183 /// Before interchanging, we have the following structure
1184 /// Outer preheader
1185 //  Outer header
1186 //    Inner preheader
1187 //    Inner header
1188 //      Inner body
1189 //      Inner latch
1190 //   outer bbs
1191 //   Outer latch
1192 //
1193 // After interchanging:
1194 // Inner preheader
1195 // Inner header
1196 //   Outer preheader
1197 //   Outer header
1198 //     Inner body
1199 //     outer bbs
1200 //     Outer latch
1201 //   Inner latch
1202 void LoopInterchangeTransform::restructureLoops(
1203     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1204     BasicBlock *OrigOuterPreHeader) {
1205   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1206   // The original inner loop preheader moves from the new inner loop to
1207   // the parent loop, if there is one.
1208   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1209   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1210 
1211   // Switch the loop levels.
1212   if (OuterLoopParent) {
1213     // Remove the loop from its parent loop.
1214     removeChildLoop(OuterLoopParent, NewInner);
1215     removeChildLoop(NewInner, NewOuter);
1216     OuterLoopParent->addChildLoop(NewOuter);
1217   } else {
1218     removeChildLoop(NewInner, NewOuter);
1219     LI->changeTopLevelLoop(NewInner, NewOuter);
1220   }
1221   while (!NewOuter->empty())
1222     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1223   NewOuter->addChildLoop(NewInner);
1224 
1225   // BBs from the original inner loop.
1226   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1227 
1228   // Add BBs from the original outer loop to the original inner loop (excluding
1229   // BBs already in inner loop)
1230   for (BasicBlock *BB : NewInner->blocks())
1231     if (LI->getLoopFor(BB) == NewInner)
1232       NewOuter->addBlockEntry(BB);
1233 
1234   // Now remove inner loop header and latch from the new inner loop and move
1235   // other BBs (the loop body) to the new inner loop.
1236   BasicBlock *OuterHeader = NewOuter->getHeader();
1237   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1238   for (BasicBlock *BB : OrigInnerBBs) {
1239     // Nothing will change for BBs in child loops.
1240     if (LI->getLoopFor(BB) != NewOuter)
1241       continue;
1242     // Remove the new outer loop header and latch from the new inner loop.
1243     if (BB == OuterHeader || BB == OuterLatch)
1244       NewInner->removeBlockFromLoop(BB);
1245     else
1246       LI->changeLoopFor(BB, NewInner);
1247   }
1248 
1249   // The preheader of the original outer loop becomes part of the new
1250   // outer loop.
1251   NewOuter->addBlockEntry(OrigOuterPreHeader);
1252   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1253 }
1254 
1255 bool LoopInterchangeTransform::transform() {
1256   bool Transformed = false;
1257   Instruction *InnerIndexVar;
1258 
1259   if (InnerLoop->getSubLoops().empty()) {
1260     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1261     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1262     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1263     if (!InductionPHI) {
1264       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1265       return false;
1266     }
1267 
1268     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1269       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1270     else
1271       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1272 
1273     // Ensure that InductionPHI is the first Phi node as required by
1274     // splitInnerLoopHeader
1275     if (&InductionPHI->getParent()->front() != InductionPHI)
1276       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1277 
1278     // Split at the place were the induction variable is
1279     // incremented/decremented.
1280     // TODO: This splitting logic may not work always. Fix this.
1281     splitInnerLoopLatch(InnerIndexVar);
1282     DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1283 
1284     // Splits the inner loops phi nodes out into a separate basic block.
1285     splitInnerLoopHeader();
1286     DEBUG(dbgs() << "splitInnerLoopHeader done\n");
1287   }
1288 
1289   Transformed |= adjustLoopLinks();
1290   if (!Transformed) {
1291     DEBUG(dbgs() << "adjustLoopLinks failed\n");
1292     return false;
1293   }
1294 
1295   return true;
1296 }
1297 
1298 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1299   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1300   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1301   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1302 }
1303 
1304 void LoopInterchangeTransform::splitInnerLoopHeader() {
1305   // Split the inner loop header out. Here make sure that the reduction PHI's
1306   // stay in the innerloop body.
1307   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1308   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1309   SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1310   if (InnerLoopHasReduction) {
1311     // Adjust Reduction PHI's in the block. The induction PHI must be the first
1312     // PHI in InnerLoopHeader for this to work.
1313     SmallVector<PHINode *, 8> PHIVec;
1314     for (auto I = std::next(InnerLoopHeader->begin()); isa<PHINode>(I); ++I) {
1315       PHINode *PHI = dyn_cast<PHINode>(I);
1316       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1317       PHI->replaceAllUsesWith(V);
1318       PHIVec.push_back((PHI));
1319     }
1320     for (PHINode *P : PHIVec) {
1321       P->eraseFromParent();
1322     }
1323   }
1324 
1325   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1326                   "InnerLoopHeader\n");
1327 }
1328 
1329 /// Move all instructions except the terminator from FromBB right before
1330 /// InsertBefore
1331 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1332   auto &ToList = InsertBefore->getParent()->getInstList();
1333   auto &FromList = FromBB->getInstList();
1334 
1335   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1336                 FromBB->getTerminator()->getIterator());
1337 }
1338 
1339 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1340                                                    BasicBlock *OldPred,
1341                                                    BasicBlock *NewPred) {
1342   for (PHINode &PHI : CurrBlock->phis()) {
1343     unsigned Num = PHI.getNumIncomingValues();
1344     for (unsigned i = 0; i < Num; ++i) {
1345       if (PHI.getIncomingBlock(i) == OldPred)
1346         PHI.setIncomingBlock(i, NewPred);
1347     }
1348   }
1349 }
1350 
1351 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1352 /// the dominator tree in DTUpdates, if DT should be preserved.
1353 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1354                             BasicBlock *NewBB,
1355                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1356   assert(llvm::count_if(BI->successors(),
1357                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1358          "BI must jump to OldBB at most once.");
1359   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1360     if (BI->getSuccessor(i) == OldBB) {
1361       BI->setSuccessor(i, NewBB);
1362 
1363       DTUpdates.push_back(
1364           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1365       DTUpdates.push_back(
1366           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1367       break;
1368     }
1369   }
1370 }
1371 
1372 bool LoopInterchangeTransform::adjustLoopBranches() {
1373   DEBUG(dbgs() << "adjustLoopBranches called\n");
1374   std::vector<DominatorTree::UpdateType> DTUpdates;
1375 
1376   // Adjust the loop preheader
1377   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1378   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1379   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1380   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1381   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1382   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1383   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1384   BasicBlock *InnerLoopLatchPredecessor =
1385       InnerLoopLatch->getUniquePredecessor();
1386   BasicBlock *InnerLoopLatchSuccessor;
1387   BasicBlock *OuterLoopLatchSuccessor;
1388 
1389   BranchInst *OuterLoopLatchBI =
1390       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1391   BranchInst *InnerLoopLatchBI =
1392       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1393   BranchInst *OuterLoopHeaderBI =
1394       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1395   BranchInst *InnerLoopHeaderBI =
1396       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1397 
1398   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1399       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1400       !InnerLoopHeaderBI)
1401     return false;
1402 
1403   BranchInst *InnerLoopLatchPredecessorBI =
1404       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1405   BranchInst *OuterLoopPredecessorBI =
1406       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1407 
1408   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1409     return false;
1410   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1411   if (!InnerLoopHeaderSuccessor)
1412     return false;
1413 
1414   // Adjust Loop Preheader and headers
1415   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1416                   InnerLoopPreHeader, DTUpdates);
1417   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1418   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1419                   InnerLoopHeaderSuccessor, DTUpdates);
1420 
1421   // Adjust reduction PHI's now that the incoming block has changed.
1422   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1423                       OuterLoopHeader);
1424 
1425   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1426                   OuterLoopPreHeader, DTUpdates);
1427 
1428   // -------------Adjust loop latches-----------
1429   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1430     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1431   else
1432     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1433 
1434   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1435                   InnerLoopLatchSuccessor, DTUpdates);
1436 
1437   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1438   // the value and remove this PHI node from inner loop.
1439   SmallVector<PHINode *, 8> LcssaVec;
1440   for (PHINode &P : InnerLoopLatchSuccessor->phis())
1441     LcssaVec.push_back(&P);
1442 
1443   for (PHINode *P : LcssaVec) {
1444     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1445     P->replaceAllUsesWith(Incoming);
1446     P->eraseFromParent();
1447   }
1448 
1449   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1450     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1451   else
1452     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1453 
1454   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1455                   OuterLoopLatchSuccessor, DTUpdates);
1456   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1457                   DTUpdates);
1458 
1459   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1460 
1461   DT->applyUpdates(DTUpdates);
1462   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1463                    OuterLoopPreHeader);
1464 
1465   return true;
1466 }
1467 
1468 void LoopInterchangeTransform::adjustLoopPreheaders() {
1469   // We have interchanged the preheaders so we need to interchange the data in
1470   // the preheader as well.
1471   // This is because the content of inner preheader was previously executed
1472   // inside the outer loop.
1473   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1474   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1475   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1476   BranchInst *InnerTermBI =
1477       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1478 
1479   // These instructions should now be executed inside the loop.
1480   // Move instruction into a new block after outer header.
1481   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1482   // These instructions were not executed previously in the loop so move them to
1483   // the older inner loop preheader.
1484   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1485 }
1486 
1487 bool LoopInterchangeTransform::adjustLoopLinks() {
1488   // Adjust all branches in the inner and outer loop.
1489   bool Changed = adjustLoopBranches();
1490   if (Changed)
1491     adjustLoopPreheaders();
1492   return Changed;
1493 }
1494 
1495 char LoopInterchange::ID = 0;
1496 
1497 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1498                       "Interchanges loops for cache reuse", false, false)
1499 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1500 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1501 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1502 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1503 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1504 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1505 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1506 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1507 
1508 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1509                     "Interchanges loops for cache reuse", false, false)
1510 
1511 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1512