1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/Utils/LoopUtils.h"
45 #include <cassert>
46 #include <utility>
47 #include <vector>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "loop-interchange"
52 
53 static cl::opt<int> LoopInterchangeCostThreshold(
54     "loop-interchange-threshold", cl::init(0), cl::Hidden,
55     cl::desc("Interchange if you gain more than this number"));
56 
57 namespace {
58 
59 using LoopVector = SmallVector<Loop *, 8>;
60 
61 // TODO: Check if we can use a sparse matrix here.
62 using CharMatrix = std::vector<std::vector<char>>;
63 
64 } // end anonymous namespace
65 
66 // Maximum number of dependencies that can be handled in the dependency matrix.
67 static const unsigned MaxMemInstrCount = 100;
68 
69 // Maximum loop depth supported.
70 static const unsigned MaxLoopNestDepth = 10;
71 
72 #ifdef DUMP_DEP_MATRICIES
73 static void printDepMatrix(CharMatrix &DepMatrix) {
74   for (auto &Row : DepMatrix) {
75     for (auto D : Row)
76       DEBUG(dbgs() << D << " ");
77     DEBUG(dbgs() << "\n");
78   }
79 }
80 #endif
81 
82 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
83                                      Loop *L, DependenceInfo *DI) {
84   using ValueVector = SmallVector<Value *, 16>;
85 
86   ValueVector MemInstr;
87 
88   // For each block.
89   for (BasicBlock *BB : L->blocks()) {
90     // Scan the BB and collect legal loads and stores.
91     for (Instruction &I : *BB) {
92       if (!isa<Instruction>(I))
93         return false;
94       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
95         if (!Ld->isSimple())
96           return false;
97         MemInstr.push_back(&I);
98       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
99         if (!St->isSimple())
100           return false;
101         MemInstr.push_back(&I);
102       }
103     }
104   }
105 
106   DEBUG(dbgs() << "Found " << MemInstr.size()
107                << " Loads and Stores to analyze\n");
108 
109   ValueVector::iterator I, IE, J, JE;
110 
111   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
112     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
113       std::vector<char> Dep;
114       Instruction *Src = cast<Instruction>(*I);
115       Instruction *Dst = cast<Instruction>(*J);
116       if (Src == Dst)
117         continue;
118       // Ignore Input dependencies.
119       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
120         continue;
121       // Track Output, Flow, and Anti dependencies.
122       if (auto D = DI->depends(Src, Dst, true)) {
123         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
124         DEBUG(StringRef DepType =
125                   D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
126               dbgs() << "Found " << DepType
127                      << " dependency between Src and Dst\n"
128                      << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
129         unsigned Levels = D->getLevels();
130         char Direction;
131         for (unsigned II = 1; II <= Levels; ++II) {
132           const SCEV *Distance = D->getDistance(II);
133           const SCEVConstant *SCEVConst =
134               dyn_cast_or_null<SCEVConstant>(Distance);
135           if (SCEVConst) {
136             const ConstantInt *CI = SCEVConst->getValue();
137             if (CI->isNegative())
138               Direction = '<';
139             else if (CI->isZero())
140               Direction = '=';
141             else
142               Direction = '>';
143             Dep.push_back(Direction);
144           } else if (D->isScalar(II)) {
145             Direction = 'S';
146             Dep.push_back(Direction);
147           } else {
148             unsigned Dir = D->getDirection(II);
149             if (Dir == Dependence::DVEntry::LT ||
150                 Dir == Dependence::DVEntry::LE)
151               Direction = '<';
152             else if (Dir == Dependence::DVEntry::GT ||
153                      Dir == Dependence::DVEntry::GE)
154               Direction = '>';
155             else if (Dir == Dependence::DVEntry::EQ)
156               Direction = '=';
157             else
158               Direction = '*';
159             Dep.push_back(Direction);
160           }
161         }
162         while (Dep.size() != Level) {
163           Dep.push_back('I');
164         }
165 
166         DepMatrix.push_back(Dep);
167         if (DepMatrix.size() > MaxMemInstrCount) {
168           DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
169                        << " dependencies inside loop\n");
170           return false;
171         }
172       }
173     }
174   }
175 
176   return true;
177 }
178 
179 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
180 // matrix by exchanging the two columns.
181 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
182                                     unsigned ToIndx) {
183   unsigned numRows = DepMatrix.size();
184   for (unsigned i = 0; i < numRows; ++i) {
185     char TmpVal = DepMatrix[i][ToIndx];
186     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
187     DepMatrix[i][FromIndx] = TmpVal;
188   }
189 }
190 
191 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
192 // '>'
193 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
194                                    unsigned Column) {
195   for (unsigned i = 0; i <= Column; ++i) {
196     if (DepMatrix[Row][i] == '<')
197       return false;
198     if (DepMatrix[Row][i] == '>')
199       return true;
200   }
201   // All dependencies were '=','S' or 'I'
202   return false;
203 }
204 
205 // Checks if no dependence exist in the dependency matrix in Row before Column.
206 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
207                                  unsigned Column) {
208   for (unsigned i = 0; i < Column; ++i) {
209     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
210         DepMatrix[Row][i] != 'I')
211       return false;
212   }
213   return true;
214 }
215 
216 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
217                                 unsigned OuterLoopId, char InnerDep,
218                                 char OuterDep) {
219   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
220     return false;
221 
222   if (InnerDep == OuterDep)
223     return true;
224 
225   // It is legal to interchange if and only if after interchange no row has a
226   // '>' direction as the leftmost non-'='.
227 
228   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
229     return true;
230 
231   if (InnerDep == '<')
232     return true;
233 
234   if (InnerDep == '>') {
235     // If OuterLoopId represents outermost loop then interchanging will make the
236     // 1st dependency as '>'
237     if (OuterLoopId == 0)
238       return false;
239 
240     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
241     // interchanging will result in this row having an outermost non '='
242     // dependency of '>'
243     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
244       return true;
245   }
246 
247   return false;
248 }
249 
250 // Checks if it is legal to interchange 2 loops.
251 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
252 // if the direction matrix, after the same permutation is applied to its
253 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
254 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
255                                       unsigned InnerLoopId,
256                                       unsigned OuterLoopId) {
257   unsigned NumRows = DepMatrix.size();
258   // For each row check if it is valid to interchange.
259   for (unsigned Row = 0; Row < NumRows; ++Row) {
260     char InnerDep = DepMatrix[Row][InnerLoopId];
261     char OuterDep = DepMatrix[Row][OuterLoopId];
262     if (InnerDep == '*' || OuterDep == '*')
263       return false;
264     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
265       return false;
266   }
267   return true;
268 }
269 
270 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
271   DEBUG(dbgs() << "Calling populateWorklist on Func: "
272                << L.getHeader()->getParent()->getName() << " Loop: %"
273                << L.getHeader()->getName() << '\n');
274   LoopVector LoopList;
275   Loop *CurrentLoop = &L;
276   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
277   while (!Vec->empty()) {
278     // The current loop has multiple subloops in it hence it is not tightly
279     // nested.
280     // Discard all loops above it added into Worklist.
281     if (Vec->size() != 1) {
282       LoopList.clear();
283       return;
284     }
285     LoopList.push_back(CurrentLoop);
286     CurrentLoop = Vec->front();
287     Vec = &CurrentLoop->getSubLoops();
288   }
289   LoopList.push_back(CurrentLoop);
290   V.push_back(std::move(LoopList));
291 }
292 
293 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
294   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
295   if (InnerIndexVar)
296     return InnerIndexVar;
297   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
298     return nullptr;
299   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
300     PHINode *PhiVar = cast<PHINode>(I);
301     Type *PhiTy = PhiVar->getType();
302     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
303         !PhiTy->isPointerTy())
304       return nullptr;
305     const SCEVAddRecExpr *AddRec =
306         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
307     if (!AddRec || !AddRec->isAffine())
308       continue;
309     const SCEV *Step = AddRec->getStepRecurrence(*SE);
310     if (!isa<SCEVConstant>(Step))
311       continue;
312     // Found the induction variable.
313     // FIXME: Handle loops with more than one induction variable. Note that,
314     // currently, legality makes sure we have only one induction variable.
315     return PhiVar;
316   }
317   return nullptr;
318 }
319 
320 namespace {
321 
322 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
323 class LoopInterchangeLegality {
324 public:
325   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
326                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA,
327                           OptimizationRemarkEmitter *ORE)
328       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
329         PreserveLCSSA(PreserveLCSSA), ORE(ORE) {}
330 
331   /// Check if the loops can be interchanged.
332   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333                            CharMatrix &DepMatrix);
334 
335   /// Check if the loop structure is understood. We do not handle triangular
336   /// loops for now.
337   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
338 
339   bool currentLimitations();
340 
341   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
342 
343 private:
344   bool tightlyNested(Loop *Outer, Loop *Inner);
345   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
346   bool areAllUsesReductions(Instruction *Ins, Loop *L);
347   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
348   bool findInductionAndReductions(Loop *L,
349                                   SmallVector<PHINode *, 8> &Inductions,
350                                   SmallVector<PHINode *, 8> &Reductions);
351 
352   Loop *OuterLoop;
353   Loop *InnerLoop;
354 
355   ScalarEvolution *SE;
356   LoopInfo *LI;
357   DominatorTree *DT;
358   bool PreserveLCSSA;
359 
360   /// Interface to emit optimization remarks.
361   OptimizationRemarkEmitter *ORE;
362 
363   bool InnerLoopHasReduction = false;
364 };
365 
366 /// LoopInterchangeProfitability checks if it is profitable to interchange the
367 /// loop.
368 class LoopInterchangeProfitability {
369 public:
370   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
371                                OptimizationRemarkEmitter *ORE)
372       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
373 
374   /// Check if the loop interchange is profitable.
375   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
376                     CharMatrix &DepMatrix);
377 
378 private:
379   int getInstrOrderCost();
380 
381   Loop *OuterLoop;
382   Loop *InnerLoop;
383 
384   /// Scev analysis.
385   ScalarEvolution *SE;
386 
387   /// Interface to emit optimization remarks.
388   OptimizationRemarkEmitter *ORE;
389 };
390 
391 /// LoopInterchangeTransform interchanges the loop.
392 class LoopInterchangeTransform {
393 public:
394   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
395                            LoopInfo *LI, DominatorTree *DT,
396                            BasicBlock *LoopNestExit,
397                            bool InnerLoopContainsReductions)
398       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
399         LoopExit(LoopNestExit),
400         InnerLoopHasReduction(InnerLoopContainsReductions) {}
401 
402   /// Interchange OuterLoop and InnerLoop.
403   bool transform();
404   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
405   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
406 
407 private:
408   void splitInnerLoopLatch(Instruction *);
409   void splitInnerLoopHeader();
410   bool adjustLoopLinks();
411   void adjustLoopPreheaders();
412   bool adjustLoopBranches();
413   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
414                            BasicBlock *NewPred);
415 
416   Loop *OuterLoop;
417   Loop *InnerLoop;
418 
419   /// Scev analysis.
420   ScalarEvolution *SE;
421 
422   LoopInfo *LI;
423   DominatorTree *DT;
424   BasicBlock *LoopExit;
425   bool InnerLoopHasReduction;
426 };
427 
428 // Main LoopInterchange Pass.
429 struct LoopInterchange : public FunctionPass {
430   static char ID;
431   ScalarEvolution *SE = nullptr;
432   LoopInfo *LI = nullptr;
433   DependenceInfo *DI = nullptr;
434   DominatorTree *DT = nullptr;
435   bool PreserveLCSSA;
436 
437   /// Interface to emit optimization remarks.
438   OptimizationRemarkEmitter *ORE;
439 
440   LoopInterchange() : FunctionPass(ID) {
441     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
442   }
443 
444   void getAnalysisUsage(AnalysisUsage &AU) const override {
445     AU.addRequired<ScalarEvolutionWrapperPass>();
446     AU.addRequired<AAResultsWrapperPass>();
447     AU.addRequired<DominatorTreeWrapperPass>();
448     AU.addRequired<LoopInfoWrapperPass>();
449     AU.addRequired<DependenceAnalysisWrapperPass>();
450     AU.addRequiredID(LoopSimplifyID);
451     AU.addRequiredID(LCSSAID);
452     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
453 
454     AU.addPreserved<DominatorTreeWrapperPass>();
455   }
456 
457   bool runOnFunction(Function &F) override {
458     if (skipFunction(F))
459       return false;
460 
461     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
462     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
463     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
464     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
465     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
466     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
467 
468     // Build up a worklist of loop pairs to analyze.
469     SmallVector<LoopVector, 8> Worklist;
470 
471     for (Loop *L : *LI)
472       populateWorklist(*L, Worklist);
473 
474     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
475     bool Changed = true;
476     while (!Worklist.empty()) {
477       LoopVector LoopList = Worklist.pop_back_val();
478       Changed = processLoopList(LoopList, F);
479     }
480     return Changed;
481   }
482 
483   bool isComputableLoopNest(LoopVector LoopList) {
484     for (Loop *L : LoopList) {
485       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
486       if (ExitCountOuter == SE->getCouldNotCompute()) {
487         DEBUG(dbgs() << "Couldn't compute backedge count\n");
488         return false;
489       }
490       if (L->getNumBackEdges() != 1) {
491         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
492         return false;
493       }
494       if (!L->getExitingBlock()) {
495         DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
496         return false;
497       }
498     }
499     return true;
500   }
501 
502   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
503     // TODO: Add a better heuristic to select the loop to be interchanged based
504     // on the dependence matrix. Currently we select the innermost loop.
505     return LoopList.size() - 1;
506   }
507 
508   bool processLoopList(LoopVector LoopList, Function &F) {
509     bool Changed = false;
510     unsigned LoopNestDepth = LoopList.size();
511     if (LoopNestDepth < 2) {
512       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
513       return false;
514     }
515     if (LoopNestDepth > MaxLoopNestDepth) {
516       DEBUG(dbgs() << "Cannot handle loops of depth greater than "
517                    << MaxLoopNestDepth << "\n");
518       return false;
519     }
520     if (!isComputableLoopNest(LoopList)) {
521       DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
522       return false;
523     }
524 
525     DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n");
526 
527     CharMatrix DependencyMatrix;
528     Loop *OuterMostLoop = *(LoopList.begin());
529     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
530                                   OuterMostLoop, DI)) {
531       DEBUG(dbgs() << "Populating dependency matrix failed\n");
532       return false;
533     }
534 #ifdef DUMP_DEP_MATRICIES
535     DEBUG(dbgs() << "Dependence before interchange\n");
536     printDepMatrix(DependencyMatrix);
537 #endif
538 
539     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
540     BranchInst *OuterMostLoopLatchBI =
541         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
542     if (!OuterMostLoopLatchBI || OuterMostLoopLatchBI->getNumSuccessors() != 2)
543       return false;
544 
545     // Since we currently do not handle LCSSA PHI's any failure in loop
546     // condition will now branch to LoopNestExit.
547     // TODO: This should be removed once we handle LCSSA PHI nodes.
548 
549     // Get the Outermost loop exit.
550     BasicBlock *LoopNestExit;
551     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
552       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
553     else
554       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
555 
556     if (isa<PHINode>(LoopNestExit->begin())) {
557       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
558                       "since on failure all loops branch to loop nest exit.\n");
559       return false;
560     }
561 
562     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
563     // Move the selected loop outwards to the best possible position.
564     for (unsigned i = SelecLoopId; i > 0; i--) {
565       bool Interchanged =
566           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
567       if (!Interchanged)
568         return Changed;
569       // Loops interchanged reflect the same in LoopList
570       std::swap(LoopList[i - 1], LoopList[i]);
571 
572       // Update the DependencyMatrix
573       interChangeDependencies(DependencyMatrix, i, i - 1);
574 #ifdef DUMP_DEP_MATRICIES
575       DEBUG(dbgs() << "Dependence after interchange\n");
576       printDepMatrix(DependencyMatrix);
577 #endif
578       Changed |= Interchanged;
579     }
580     return Changed;
581   }
582 
583   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
584                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
585                    std::vector<std::vector<char>> &DependencyMatrix) {
586     DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
587                  << " and OuterLoopId = " << OuterLoopId << "\n");
588     Loop *InnerLoop = LoopList[InnerLoopId];
589     Loop *OuterLoop = LoopList[OuterLoopId];
590 
591     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
592                                 PreserveLCSSA, ORE);
593     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
594       DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
595       return false;
596     }
597     DEBUG(dbgs() << "Loops are legal to interchange\n");
598     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
599     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
600       DEBUG(dbgs() << "Interchanging loops not profitable.\n");
601       return false;
602     }
603 
604     ORE->emit([&]() {
605       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
606                                 InnerLoop->getStartLoc(),
607                                 InnerLoop->getHeader())
608              << "Loop interchanged with enclosing loop.";
609     });
610 
611     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
612                                  LoopNestExit, LIL.hasInnerLoopReduction());
613     LIT.transform();
614     DEBUG(dbgs() << "Loops interchanged.\n");
615     return true;
616   }
617 };
618 
619 } // end anonymous namespace
620 
621 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
622   return llvm::none_of(Ins->users(), [=](User *U) -> bool {
623     auto *UserIns = dyn_cast<PHINode>(U);
624     RecurrenceDescriptor RD;
625     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
626   });
627 }
628 
629 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
630     BasicBlock *BB) {
631   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
632     // Load corresponding to reduction PHI's are safe while concluding if
633     // tightly nested.
634     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
635       if (!areAllUsesReductions(L, InnerLoop))
636         return true;
637     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
638       return true;
639   }
640   return false;
641 }
642 
643 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
644     BasicBlock *BB) {
645   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
646     // Stores corresponding to reductions are safe while concluding if tightly
647     // nested.
648     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
649       if (!isa<PHINode>(L->getOperand(0)))
650         return true;
651     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
652       return true;
653   }
654   return false;
655 }
656 
657 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
658   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
659   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
660   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
661 
662   DEBUG(dbgs() << "Checking if loops are tightly nested\n");
663 
664   // A perfectly nested loop will not have any branch in between the outer and
665   // inner block i.e. outer header will branch to either inner preheader and
666   // outerloop latch.
667   BranchInst *OuterLoopHeaderBI =
668       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
669   if (!OuterLoopHeaderBI)
670     return false;
671 
672   for (BasicBlock *Succ : OuterLoopHeaderBI->successors())
673     if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch)
674       return false;
675 
676   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
677   // We do not have any basic block in between now make sure the outer header
678   // and outer loop latch doesn't contain any unsafe instructions.
679   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
680       containsUnsafeInstructionsInLatch(OuterLoopLatch))
681     return false;
682 
683   DEBUG(dbgs() << "Loops are perfectly nested\n");
684   // We have a perfect loop nest.
685   return true;
686 }
687 
688 bool LoopInterchangeLegality::isLoopStructureUnderstood(
689     PHINode *InnerInduction) {
690   unsigned Num = InnerInduction->getNumOperands();
691   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
692   for (unsigned i = 0; i < Num; ++i) {
693     Value *Val = InnerInduction->getOperand(i);
694     if (isa<Constant>(Val))
695       continue;
696     Instruction *I = dyn_cast<Instruction>(Val);
697     if (!I)
698       return false;
699     // TODO: Handle triangular loops.
700     // e.g. for(int i=0;i<N;i++)
701     //        for(int j=i;j<N;j++)
702     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
703     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
704             InnerLoopPreheader &&
705         !OuterLoop->isLoopInvariant(I)) {
706       return false;
707     }
708   }
709   return true;
710 }
711 
712 bool LoopInterchangeLegality::findInductionAndReductions(
713     Loop *L, SmallVector<PHINode *, 8> &Inductions,
714     SmallVector<PHINode *, 8> &Reductions) {
715   if (!L->getLoopLatch() || !L->getLoopPredecessor())
716     return false;
717   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
718     RecurrenceDescriptor RD;
719     InductionDescriptor ID;
720     PHINode *PHI = cast<PHINode>(I);
721     if (InductionDescriptor::isInductionPHI(PHI, L, SE, ID))
722       Inductions.push_back(PHI);
723     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
724       Reductions.push_back(PHI);
725     else {
726       DEBUG(
727           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
728       return false;
729     }
730   }
731   return true;
732 }
733 
734 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
735   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
736     PHINode *PHI = cast<PHINode>(I);
737     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
738     if (PHI->getNumIncomingValues() > 1)
739       return false;
740     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
741     if (!Ins)
742       return false;
743     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
744     // exits lcssa phi else it would not be tightly nested.
745     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
746       return false;
747   }
748   return true;
749 }
750 
751 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
752                                          BasicBlock *LoopHeader) {
753   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
754     assert(BI->getNumSuccessors() == 2 &&
755            "Branch leaving loop latch must have 2 successors");
756     for (BasicBlock *Succ : BI->successors()) {
757       if (Succ == LoopHeader)
758         continue;
759       return Succ;
760     }
761   }
762   return nullptr;
763 }
764 
765 // This function indicates the current limitations in the transform as a result
766 // of which we do not proceed.
767 bool LoopInterchangeLegality::currentLimitations() {
768   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
769   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
770   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
771   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
772   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
773 
774   PHINode *InnerInductionVar;
775   SmallVector<PHINode *, 8> Inductions;
776   SmallVector<PHINode *, 8> Reductions;
777   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
778     DEBUG(dbgs() << "Only inner loops with induction or reduction PHI nodes "
779                  << "are supported currently.\n");
780     ORE->emit([&]() {
781       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
782                                       InnerLoop->getStartLoc(),
783                                       InnerLoop->getHeader())
784              << "Only inner loops with induction or reduction PHI nodes can be"
785                 " interchange currently.";
786     });
787     return true;
788   }
789 
790   // TODO: Currently we handle only loops with 1 induction variable.
791   if (Inductions.size() != 1) {
792     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
793                  << "Failed to interchange due to current limitation\n");
794     ORE->emit([&]() {
795       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
796                                       InnerLoop->getStartLoc(),
797                                       InnerLoop->getHeader())
798              << "Only inner loops with 1 induction variable can be "
799                 "interchanged currently.";
800     });
801     return true;
802   }
803   if (Reductions.size() > 0)
804     InnerLoopHasReduction = true;
805 
806   InnerInductionVar = Inductions.pop_back_val();
807   Reductions.clear();
808   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
809     DEBUG(dbgs() << "Only outer loops with induction or reduction PHI nodes "
810                  << "are supported currently.\n");
811     ORE->emit([&]() {
812       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
813                                       OuterLoop->getStartLoc(),
814                                       OuterLoop->getHeader())
815              << "Only outer loops with induction or reduction PHI nodes can be"
816                 " interchanged currently.";
817     });
818     return true;
819   }
820 
821   // Outer loop cannot have reduction because then loops will not be tightly
822   // nested.
823   if (!Reductions.empty()) {
824     DEBUG(dbgs() << "Outer loops with reductions are not supported "
825                  << "currently.\n");
826     ORE->emit([&]() {
827       return OptimizationRemarkMissed(DEBUG_TYPE, "ReductionsOuter",
828                                       OuterLoop->getStartLoc(),
829                                       OuterLoop->getHeader())
830              << "Outer loops with reductions cannot be interchangeed "
831                 "currently.";
832     });
833     return true;
834   }
835   // TODO: Currently we handle only loops with 1 induction variable.
836   if (Inductions.size() != 1) {
837     DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
838                  << "supported currently.\n");
839     ORE->emit([&]() {
840       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
841                                       OuterLoop->getStartLoc(),
842                                       OuterLoop->getHeader())
843              << "Only outer loops with 1 induction variable can be "
844                 "interchanged currently.";
845     });
846     return true;
847   }
848 
849   // TODO: Triangular loops are not handled for now.
850   if (!isLoopStructureUnderstood(InnerInductionVar)) {
851     DEBUG(dbgs() << "Loop structure not understood by pass\n");
852     ORE->emit([&]() {
853       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
854                                       InnerLoop->getStartLoc(),
855                                       InnerLoop->getHeader())
856              << "Inner loop structure not understood currently.";
857     });
858     return true;
859   }
860 
861   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
862   BasicBlock *LoopExitBlock =
863       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
864   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true)) {
865     DEBUG(dbgs() << "Can only handle LCSSA PHIs in outer loops currently.\n");
866     ORE->emit([&]() {
867       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuter",
868                                       OuterLoop->getStartLoc(),
869                                       OuterLoop->getHeader())
870              << "Only outer loops with LCSSA PHIs can be interchange "
871                 "currently.";
872     });
873     return true;
874   }
875 
876   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
877   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false)) {
878     DEBUG(dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
879     ORE->emit([&]() {
880       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
881                                       InnerLoop->getStartLoc(),
882                                       InnerLoop->getHeader())
883              << "Only inner loops with LCSSA PHIs can be interchange "
884                 "currently.";
885     });
886     return true;
887   }
888 
889   // TODO: Current limitation: Since we split the inner loop latch at the point
890   // were induction variable is incremented (induction.next); We cannot have
891   // more than 1 user of induction.next since it would result in broken code
892   // after split.
893   // e.g.
894   // for(i=0;i<N;i++) {
895   //    for(j = 0;j<M;j++) {
896   //      A[j+1][i+2] = A[j][i]+k;
897   //  }
898   // }
899   Instruction *InnerIndexVarInc = nullptr;
900   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
901     InnerIndexVarInc =
902         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
903   else
904     InnerIndexVarInc =
905         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
906 
907   if (!InnerIndexVarInc) {
908     DEBUG(dbgs() << "Did not find an instruction to increment the induction "
909                  << "variable.\n");
910     ORE->emit([&]() {
911       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
912                                       InnerLoop->getStartLoc(),
913                                       InnerLoop->getHeader())
914              << "The inner loop does not increment the induction variable.";
915     });
916     return true;
917   }
918 
919   // Since we split the inner loop latch on this induction variable. Make sure
920   // we do not have any instruction between the induction variable and branch
921   // instruction.
922 
923   bool FoundInduction = false;
924   for (const Instruction &I : llvm::reverse(*InnerLoopLatch)) {
925     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
926         isa<ZExtInst>(I))
927       continue;
928 
929     // We found an instruction. If this is not induction variable then it is not
930     // safe to split this loop latch.
931     if (!I.isIdenticalTo(InnerIndexVarInc)) {
932       DEBUG(dbgs() << "Found unsupported instructions between induction "
933                    << "variable increment and branch.\n");
934       ORE->emit([&]() {
935         return OptimizationRemarkMissed(
936                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
937                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
938                << "Found unsupported instruction between induction variable "
939                   "increment and branch.";
940       });
941       return true;
942     }
943 
944     FoundInduction = true;
945     break;
946   }
947   // The loop latch ended and we didn't find the induction variable return as
948   // current limitation.
949   if (!FoundInduction) {
950     DEBUG(dbgs() << "Did not find the induction variable.\n");
951     ORE->emit([&]() {
952       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
953                                       InnerLoop->getStartLoc(),
954                                       InnerLoop->getHeader())
955              << "Did not find the induction variable.";
956     });
957     return true;
958   }
959   return false;
960 }
961 
962 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
963                                                   unsigned OuterLoopId,
964                                                   CharMatrix &DepMatrix) {
965   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
966     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
967                  << " and OuterLoopId = " << OuterLoopId
968                  << " due to dependence\n");
969     ORE->emit([&]() {
970       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
971                                       InnerLoop->getStartLoc(),
972                                       InnerLoop->getHeader())
973              << "Cannot interchange loops due to dependences.";
974     });
975     return false;
976   }
977 
978   // Check if outer and inner loop contain legal instructions only.
979   for (auto *BB : OuterLoop->blocks())
980     for (Instruction &I : *BB)
981       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
982         // readnone functions do not prevent interchanging.
983         if (CI->doesNotReadMemory())
984           continue;
985         DEBUG(dbgs() << "Loops with call instructions cannot be interchanged "
986                      << "safely.");
987         return false;
988       }
989 
990   // Create unique Preheaders if we already do not have one.
991   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
992   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
993 
994   // Create  a unique outer preheader -
995   // 1) If OuterLoop preheader is not present.
996   // 2) If OuterLoop Preheader is same as OuterLoop Header
997   // 3) If OuterLoop Preheader is same as Header of the previous loop.
998   // 4) If OuterLoop Preheader is Entry node.
999   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
1000       isa<PHINode>(OuterLoopPreHeader->begin()) ||
1001       !OuterLoopPreHeader->getUniquePredecessor()) {
1002     OuterLoopPreHeader =
1003         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
1004   }
1005 
1006   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
1007       InnerLoopPreHeader == OuterLoop->getHeader()) {
1008     InnerLoopPreHeader =
1009         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
1010   }
1011 
1012   // TODO: The loops could not be interchanged due to current limitations in the
1013   // transform module.
1014   if (currentLimitations()) {
1015     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1016     return false;
1017   }
1018 
1019   // Check if the loops are tightly nested.
1020   if (!tightlyNested(OuterLoop, InnerLoop)) {
1021     DEBUG(dbgs() << "Loops not tightly nested\n");
1022     ORE->emit([&]() {
1023       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1024                                       InnerLoop->getStartLoc(),
1025                                       InnerLoop->getHeader())
1026              << "Cannot interchange loops because they are not tightly "
1027                 "nested.";
1028     });
1029     return false;
1030   }
1031 
1032   return true;
1033 }
1034 
1035 int LoopInterchangeProfitability::getInstrOrderCost() {
1036   unsigned GoodOrder, BadOrder;
1037   BadOrder = GoodOrder = 0;
1038   for (BasicBlock *BB : InnerLoop->blocks()) {
1039     for (Instruction &Ins : *BB) {
1040       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1041         unsigned NumOp = GEP->getNumOperands();
1042         bool FoundInnerInduction = false;
1043         bool FoundOuterInduction = false;
1044         for (unsigned i = 0; i < NumOp; ++i) {
1045           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1046           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1047           if (!AR)
1048             continue;
1049 
1050           // If we find the inner induction after an outer induction e.g.
1051           // for(int i=0;i<N;i++)
1052           //   for(int j=0;j<N;j++)
1053           //     A[i][j] = A[i-1][j-1]+k;
1054           // then it is a good order.
1055           if (AR->getLoop() == InnerLoop) {
1056             // We found an InnerLoop induction after OuterLoop induction. It is
1057             // a good order.
1058             FoundInnerInduction = true;
1059             if (FoundOuterInduction) {
1060               GoodOrder++;
1061               break;
1062             }
1063           }
1064           // If we find the outer induction after an inner induction e.g.
1065           // for(int i=0;i<N;i++)
1066           //   for(int j=0;j<N;j++)
1067           //     A[j][i] = A[j-1][i-1]+k;
1068           // then it is a bad order.
1069           if (AR->getLoop() == OuterLoop) {
1070             // We found an OuterLoop induction after InnerLoop induction. It is
1071             // a bad order.
1072             FoundOuterInduction = true;
1073             if (FoundInnerInduction) {
1074               BadOrder++;
1075               break;
1076             }
1077           }
1078         }
1079       }
1080     }
1081   }
1082   return GoodOrder - BadOrder;
1083 }
1084 
1085 static bool isProfitableForVectorization(unsigned InnerLoopId,
1086                                          unsigned OuterLoopId,
1087                                          CharMatrix &DepMatrix) {
1088   // TODO: Improve this heuristic to catch more cases.
1089   // If the inner loop is loop independent or doesn't carry any dependency it is
1090   // profitable to move this to outer position.
1091   for (auto &Row : DepMatrix) {
1092     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1093       return false;
1094     // TODO: We need to improve this heuristic.
1095     if (Row[OuterLoopId] != '=')
1096       return false;
1097   }
1098   // If outer loop has dependence and inner loop is loop independent then it is
1099   // profitable to interchange to enable parallelism.
1100   return true;
1101 }
1102 
1103 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1104                                                 unsigned OuterLoopId,
1105                                                 CharMatrix &DepMatrix) {
1106   // TODO: Add better profitability checks.
1107   // e.g
1108   // 1) Construct dependency matrix and move the one with no loop carried dep
1109   //    inside to enable vectorization.
1110 
1111   // This is rough cost estimation algorithm. It counts the good and bad order
1112   // of induction variables in the instruction and allows reordering if number
1113   // of bad orders is more than good.
1114   int Cost = getInstrOrderCost();
1115   DEBUG(dbgs() << "Cost = " << Cost << "\n");
1116   if (Cost < -LoopInterchangeCostThreshold)
1117     return true;
1118 
1119   // It is not profitable as per current cache profitability model. But check if
1120   // we can move this loop outside to improve parallelism.
1121   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1122     return true;
1123 
1124   ORE->emit([&]() {
1125     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1126                                     InnerLoop->getStartLoc(),
1127                                     InnerLoop->getHeader())
1128            << "Interchanging loops is too costly (cost="
1129            << ore::NV("Cost", Cost) << ", threshold="
1130            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1131            << ") and it does not improve parallelism.";
1132   });
1133   return false;
1134 }
1135 
1136 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1137                                                Loop *InnerLoop) {
1138   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
1139        ++I) {
1140     if (*I == InnerLoop) {
1141       OuterLoop->removeChildLoop(I);
1142       return;
1143     }
1144   }
1145   llvm_unreachable("Couldn't find loop");
1146 }
1147 
1148 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1149                                                 Loop *OuterLoop) {
1150   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1151   if (OuterLoopParent) {
1152     // Remove the loop from its parent loop.
1153     removeChildLoop(OuterLoopParent, OuterLoop);
1154     removeChildLoop(OuterLoop, InnerLoop);
1155     OuterLoopParent->addChildLoop(InnerLoop);
1156   } else {
1157     removeChildLoop(OuterLoop, InnerLoop);
1158     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1159   }
1160 
1161   while (!InnerLoop->empty())
1162     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1163 
1164   InnerLoop->addChildLoop(OuterLoop);
1165 }
1166 
1167 bool LoopInterchangeTransform::transform() {
1168   bool Transformed = false;
1169   Instruction *InnerIndexVar;
1170 
1171   if (InnerLoop->getSubLoops().empty()) {
1172     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1173     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1174     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1175     if (!InductionPHI) {
1176       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1177       return false;
1178     }
1179 
1180     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1181       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1182     else
1183       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1184 
1185     // Ensure that InductionPHI is the first Phi node as required by
1186     // splitInnerLoopHeader
1187     if (&InductionPHI->getParent()->front() != InductionPHI)
1188       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1189 
1190     // Split at the place were the induction variable is
1191     // incremented/decremented.
1192     // TODO: This splitting logic may not work always. Fix this.
1193     splitInnerLoopLatch(InnerIndexVar);
1194     DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1195 
1196     // Splits the inner loops phi nodes out into a separate basic block.
1197     splitInnerLoopHeader();
1198     DEBUG(dbgs() << "splitInnerLoopHeader done\n");
1199   }
1200 
1201   Transformed |= adjustLoopLinks();
1202   if (!Transformed) {
1203     DEBUG(dbgs() << "adjustLoopLinks failed\n");
1204     return false;
1205   }
1206 
1207   restructureLoops(InnerLoop, OuterLoop);
1208   return true;
1209 }
1210 
1211 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1212   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1213   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1214   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1215 }
1216 
1217 void LoopInterchangeTransform::splitInnerLoopHeader() {
1218   // Split the inner loop header out. Here make sure that the reduction PHI's
1219   // stay in the innerloop body.
1220   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1221   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1222   SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1223   if (InnerLoopHasReduction) {
1224     // Adjust Reduction PHI's in the block. The induction PHI must be the first
1225     // PHI in InnerLoopHeader for this to work.
1226     SmallVector<PHINode *, 8> PHIVec;
1227     for (auto I = std::next(InnerLoopHeader->begin()); isa<PHINode>(I); ++I) {
1228       PHINode *PHI = dyn_cast<PHINode>(I);
1229       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1230       PHI->replaceAllUsesWith(V);
1231       PHIVec.push_back((PHI));
1232     }
1233     for (PHINode *P : PHIVec) {
1234       P->eraseFromParent();
1235     }
1236   }
1237 
1238   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1239                   "InnerLoopHeader\n");
1240 }
1241 
1242 /// \brief Move all instructions except the terminator from FromBB right before
1243 /// InsertBefore
1244 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1245   auto &ToList = InsertBefore->getParent()->getInstList();
1246   auto &FromList = FromBB->getInstList();
1247 
1248   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1249                 FromBB->getTerminator()->getIterator());
1250 }
1251 
1252 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1253                                                    BasicBlock *OldPred,
1254                                                    BasicBlock *NewPred) {
1255   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1256     PHINode *PHI = cast<PHINode>(I);
1257     unsigned Num = PHI->getNumIncomingValues();
1258     for (unsigned i = 0; i < Num; ++i) {
1259       if (PHI->getIncomingBlock(i) == OldPred)
1260         PHI->setIncomingBlock(i, NewPred);
1261     }
1262   }
1263 }
1264 
1265 /// \brief Update BI to jump to NewBB instead of OldBB. Records updates to
1266 /// the dominator tree in DTUpdates, if DT should be preserved.
1267 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1268                             BasicBlock *NewBB,
1269                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1270   assert(llvm::count_if(BI->successors(),
1271                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1272          "BI must jump to OldBB at most once.");
1273   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1274     if (BI->getSuccessor(i) == OldBB) {
1275       BI->setSuccessor(i, NewBB);
1276 
1277       DTUpdates.push_back(
1278           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1279       DTUpdates.push_back(
1280           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1281       break;
1282     }
1283   }
1284 }
1285 
1286 bool LoopInterchangeTransform::adjustLoopBranches() {
1287   DEBUG(dbgs() << "adjustLoopBranches called\n");
1288   std::vector<DominatorTree::UpdateType> DTUpdates;
1289 
1290   // Adjust the loop preheader
1291   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1292   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1293   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1294   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1295   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1296   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1297   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1298   BasicBlock *InnerLoopLatchPredecessor =
1299       InnerLoopLatch->getUniquePredecessor();
1300   BasicBlock *InnerLoopLatchSuccessor;
1301   BasicBlock *OuterLoopLatchSuccessor;
1302 
1303   BranchInst *OuterLoopLatchBI =
1304       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1305   BranchInst *InnerLoopLatchBI =
1306       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1307   BranchInst *OuterLoopHeaderBI =
1308       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1309   BranchInst *InnerLoopHeaderBI =
1310       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1311 
1312   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1313       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1314       !InnerLoopHeaderBI)
1315     return false;
1316 
1317   BranchInst *InnerLoopLatchPredecessorBI =
1318       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1319   BranchInst *OuterLoopPredecessorBI =
1320       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1321 
1322   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1323     return false;
1324   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1325   if (!InnerLoopHeaderSuccessor)
1326     return false;
1327 
1328   // Adjust Loop Preheader and headers
1329   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1330                   InnerLoopPreHeader, DTUpdates);
1331   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1332   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1333                   InnerLoopHeaderSuccessor, DTUpdates);
1334 
1335   // Adjust reduction PHI's now that the incoming block has changed.
1336   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1337                       OuterLoopHeader);
1338 
1339   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1340                   OuterLoopPreHeader, DTUpdates);
1341 
1342   // -------------Adjust loop latches-----------
1343   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1344     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1345   else
1346     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1347 
1348   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1349                   InnerLoopLatchSuccessor, DTUpdates);
1350 
1351   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1352   // the value and remove this PHI node from inner loop.
1353   SmallVector<PHINode *, 8> LcssaVec;
1354   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1355     PHINode *LcssaPhi = cast<PHINode>(I);
1356     LcssaVec.push_back(LcssaPhi);
1357   }
1358   for (PHINode *P : LcssaVec) {
1359     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1360     P->replaceAllUsesWith(Incoming);
1361     P->eraseFromParent();
1362   }
1363 
1364   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1365     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1366   else
1367     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1368 
1369   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1370                   OuterLoopLatchSuccessor, DTUpdates);
1371   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1372                   DTUpdates);
1373 
1374   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1375 
1376   DT->applyUpdates(DTUpdates);
1377   return true;
1378 }
1379 
1380 void LoopInterchangeTransform::adjustLoopPreheaders() {
1381   // We have interchanged the preheaders so we need to interchange the data in
1382   // the preheader as well.
1383   // This is because the content of inner preheader was previously executed
1384   // inside the outer loop.
1385   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1386   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1387   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1388   BranchInst *InnerTermBI =
1389       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1390 
1391   // These instructions should now be executed inside the loop.
1392   // Move instruction into a new block after outer header.
1393   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1394   // These instructions were not executed previously in the loop so move them to
1395   // the older inner loop preheader.
1396   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1397 }
1398 
1399 bool LoopInterchangeTransform::adjustLoopLinks() {
1400   // Adjust all branches in the inner and outer loop.
1401   bool Changed = adjustLoopBranches();
1402   if (Changed)
1403     adjustLoopPreheaders();
1404   return Changed;
1405 }
1406 
1407 char LoopInterchange::ID = 0;
1408 
1409 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1410                       "Interchanges loops for cache reuse", false, false)
1411 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1412 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1413 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1414 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1415 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1416 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1417 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1418 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1419 
1420 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1421                     "Interchanges loops for cache reuse", false, false)
1422 
1423 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1424