1 //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpander.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
42 #include "llvm/Transforms/Utils/LoopUtils.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "loop-interchange"
47 
48 static cl::opt<int> LoopInterchangeCostThreshold(
49     "loop-interchange-threshold", cl::init(0), cl::Hidden,
50     cl::desc("Interchange if you gain more than this number"));
51 
52 namespace {
53 
54 typedef SmallVector<Loop *, 8> LoopVector;
55 
56 // TODO: Check if we can use a sparse matrix here.
57 typedef std::vector<std::vector<char>> CharMatrix;
58 
59 // Maximum number of dependencies that can be handled in the dependency matrix.
60 static const unsigned MaxMemInstrCount = 100;
61 
62 // Maximum loop depth supported.
63 static const unsigned MaxLoopNestDepth = 10;
64 
65 struct LoopInterchange;
66 
67 #ifdef DUMP_DEP_MATRICIES
68 void printDepMatrix(CharMatrix &DepMatrix) {
69   for (auto &Row : DepMatrix) {
70     for (auto D : Row)
71       DEBUG(dbgs() << D << " ");
72     DEBUG(dbgs() << "\n");
73   }
74 }
75 #endif
76 
77 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
78                                      Loop *L, DependenceInfo *DI) {
79   typedef SmallVector<Value *, 16> ValueVector;
80   ValueVector MemInstr;
81 
82   // For each block.
83   for (BasicBlock *BB : L->blocks()) {
84     // Scan the BB and collect legal loads and stores.
85     for (Instruction &I : *BB) {
86       if (!isa<Instruction>(I))
87         return false;
88       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
89         if (!Ld->isSimple())
90           return false;
91         MemInstr.push_back(&I);
92       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
93         if (!St->isSimple())
94           return false;
95         MemInstr.push_back(&I);
96       }
97     }
98   }
99 
100   DEBUG(dbgs() << "Found " << MemInstr.size()
101                << " Loads and Stores to analyze\n");
102 
103   ValueVector::iterator I, IE, J, JE;
104 
105   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
106     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
107       std::vector<char> Dep;
108       Instruction *Src = cast<Instruction>(*I);
109       Instruction *Dst = cast<Instruction>(*J);
110       if (Src == Dst)
111         continue;
112       // Ignore Input dependencies.
113       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
114         continue;
115       // Track Output, Flow, and Anti dependencies.
116       if (auto D = DI->depends(Src, Dst, true)) {
117         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
118         DEBUG(StringRef DepType =
119                   D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
120               dbgs() << "Found " << DepType
121                      << " dependency between Src and Dst\n"
122                      << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
123         unsigned Levels = D->getLevels();
124         char Direction;
125         for (unsigned II = 1; II <= Levels; ++II) {
126           const SCEV *Distance = D->getDistance(II);
127           const SCEVConstant *SCEVConst =
128               dyn_cast_or_null<SCEVConstant>(Distance);
129           if (SCEVConst) {
130             const ConstantInt *CI = SCEVConst->getValue();
131             if (CI->isNegative())
132               Direction = '<';
133             else if (CI->isZero())
134               Direction = '=';
135             else
136               Direction = '>';
137             Dep.push_back(Direction);
138           } else if (D->isScalar(II)) {
139             Direction = 'S';
140             Dep.push_back(Direction);
141           } else {
142             unsigned Dir = D->getDirection(II);
143             if (Dir == Dependence::DVEntry::LT ||
144                 Dir == Dependence::DVEntry::LE)
145               Direction = '<';
146             else if (Dir == Dependence::DVEntry::GT ||
147                      Dir == Dependence::DVEntry::GE)
148               Direction = '>';
149             else if (Dir == Dependence::DVEntry::EQ)
150               Direction = '=';
151             else
152               Direction = '*';
153             Dep.push_back(Direction);
154           }
155         }
156         while (Dep.size() != Level) {
157           Dep.push_back('I');
158         }
159 
160         DepMatrix.push_back(Dep);
161         if (DepMatrix.size() > MaxMemInstrCount) {
162           DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
163                        << " dependencies inside loop\n");
164           return false;
165         }
166       }
167     }
168   }
169 
170   // We don't have a DepMatrix to check legality return false.
171   if (DepMatrix.size() == 0)
172     return false;
173   return true;
174 }
175 
176 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
177 // matrix by exchanging the two columns.
178 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
179                                     unsigned ToIndx) {
180   unsigned numRows = DepMatrix.size();
181   for (unsigned i = 0; i < numRows; ++i) {
182     char TmpVal = DepMatrix[i][ToIndx];
183     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
184     DepMatrix[i][FromIndx] = TmpVal;
185   }
186 }
187 
188 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
189 // '>'
190 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
191                                    unsigned Column) {
192   for (unsigned i = 0; i <= Column; ++i) {
193     if (DepMatrix[Row][i] == '<')
194       return false;
195     if (DepMatrix[Row][i] == '>')
196       return true;
197   }
198   // All dependencies were '=','S' or 'I'
199   return false;
200 }
201 
202 // Checks if no dependence exist in the dependency matrix in Row before Column.
203 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
204                                  unsigned Column) {
205   for (unsigned i = 0; i < Column; ++i) {
206     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
207         DepMatrix[Row][i] != 'I')
208       return false;
209   }
210   return true;
211 }
212 
213 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
214                                 unsigned OuterLoopId, char InnerDep,
215                                 char OuterDep) {
216 
217   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
218     return false;
219 
220   if (InnerDep == OuterDep)
221     return true;
222 
223   // It is legal to interchange if and only if after interchange no row has a
224   // '>' direction as the leftmost non-'='.
225 
226   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
227     return true;
228 
229   if (InnerDep == '<')
230     return true;
231 
232   if (InnerDep == '>') {
233     // If OuterLoopId represents outermost loop then interchanging will make the
234     // 1st dependency as '>'
235     if (OuterLoopId == 0)
236       return false;
237 
238     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
239     // interchanging will result in this row having an outermost non '='
240     // dependency of '>'
241     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
242       return true;
243   }
244 
245   return false;
246 }
247 
248 // Checks if it is legal to interchange 2 loops.
249 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
250 // if the direction matrix, after the same permutation is applied to its
251 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
252 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
253                                       unsigned InnerLoopId,
254                                       unsigned OuterLoopId) {
255 
256   unsigned NumRows = DepMatrix.size();
257   // For each row check if it is valid to interchange.
258   for (unsigned Row = 0; Row < NumRows; ++Row) {
259     char InnerDep = DepMatrix[Row][InnerLoopId];
260     char OuterDep = DepMatrix[Row][OuterLoopId];
261     if (InnerDep == '*' || OuterDep == '*')
262       return false;
263     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
264       return false;
265   }
266   return true;
267 }
268 
269 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
270 
271   DEBUG(dbgs() << "Calling populateWorklist on Func: "
272                << L.getHeader()->getParent()->getName() << " Loop: %"
273                << L.getHeader()->getName() << '\n');
274   LoopVector LoopList;
275   Loop *CurrentLoop = &L;
276   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
277   while (!Vec->empty()) {
278     // The current loop has multiple subloops in it hence it is not tightly
279     // nested.
280     // Discard all loops above it added into Worklist.
281     if (Vec->size() != 1) {
282       LoopList.clear();
283       return;
284     }
285     LoopList.push_back(CurrentLoop);
286     CurrentLoop = Vec->front();
287     Vec = &CurrentLoop->getSubLoops();
288   }
289   LoopList.push_back(CurrentLoop);
290   V.push_back(std::move(LoopList));
291 }
292 
293 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
294   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
295   if (InnerIndexVar)
296     return InnerIndexVar;
297   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
298     return nullptr;
299   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
300     PHINode *PhiVar = cast<PHINode>(I);
301     Type *PhiTy = PhiVar->getType();
302     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
303         !PhiTy->isPointerTy())
304       return nullptr;
305     const SCEVAddRecExpr *AddRec =
306         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
307     if (!AddRec || !AddRec->isAffine())
308       continue;
309     const SCEV *Step = AddRec->getStepRecurrence(*SE);
310     if (!isa<SCEVConstant>(Step))
311       continue;
312     // Found the induction variable.
313     // FIXME: Handle loops with more than one induction variable. Note that,
314     // currently, legality makes sure we have only one induction variable.
315     return PhiVar;
316   }
317   return nullptr;
318 }
319 
320 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
321 class LoopInterchangeLegality {
322 public:
323   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
324                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA,
325                           OptimizationRemarkEmitter *ORE)
326       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
327         PreserveLCSSA(PreserveLCSSA), ORE(ORE), InnerLoopHasReduction(false) {}
328 
329   /// Check if the loops can be interchanged.
330   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
331                            CharMatrix &DepMatrix);
332   /// Check if the loop structure is understood. We do not handle triangular
333   /// loops for now.
334   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
335 
336   bool currentLimitations();
337 
338   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
339 
340 private:
341   bool tightlyNested(Loop *Outer, Loop *Inner);
342   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
343   bool areAllUsesReductions(Instruction *Ins, Loop *L);
344   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
345   bool findInductionAndReductions(Loop *L,
346                                   SmallVector<PHINode *, 8> &Inductions,
347                                   SmallVector<PHINode *, 8> &Reductions);
348   Loop *OuterLoop;
349   Loop *InnerLoop;
350 
351   ScalarEvolution *SE;
352   LoopInfo *LI;
353   DominatorTree *DT;
354   bool PreserveLCSSA;
355   /// Interface to emit optimization remarks.
356   OptimizationRemarkEmitter *ORE;
357 
358   bool InnerLoopHasReduction;
359 };
360 
361 /// LoopInterchangeProfitability checks if it is profitable to interchange the
362 /// loop.
363 class LoopInterchangeProfitability {
364 public:
365   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
366                                OptimizationRemarkEmitter *ORE)
367       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
368 
369   /// Check if the loop interchange is profitable.
370   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
371                     CharMatrix &DepMatrix);
372 
373 private:
374   int getInstrOrderCost();
375 
376   Loop *OuterLoop;
377   Loop *InnerLoop;
378 
379   /// Scev analysis.
380   ScalarEvolution *SE;
381   /// Interface to emit optimization remarks.
382   OptimizationRemarkEmitter *ORE;
383 };
384 
385 /// LoopInterchangeTransform interchanges the loop.
386 class LoopInterchangeTransform {
387 public:
388   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
389                            LoopInfo *LI, DominatorTree *DT,
390                            BasicBlock *LoopNestExit,
391                            bool InnerLoopContainsReductions)
392       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
393         LoopExit(LoopNestExit),
394         InnerLoopHasReduction(InnerLoopContainsReductions) {}
395 
396   /// Interchange OuterLoop and InnerLoop.
397   bool transform();
398   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
399   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
400 
401 private:
402   void splitInnerLoopLatch(Instruction *);
403   void splitInnerLoopHeader();
404   bool adjustLoopLinks();
405   void adjustLoopPreheaders();
406   bool adjustLoopBranches();
407   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
408                            BasicBlock *NewPred);
409 
410   Loop *OuterLoop;
411   Loop *InnerLoop;
412 
413   /// Scev analysis.
414   ScalarEvolution *SE;
415   LoopInfo *LI;
416   DominatorTree *DT;
417   BasicBlock *LoopExit;
418   bool InnerLoopHasReduction;
419 };
420 
421 // Main LoopInterchange Pass.
422 struct LoopInterchange : public FunctionPass {
423   static char ID;
424   ScalarEvolution *SE;
425   LoopInfo *LI;
426   DependenceInfo *DI;
427   DominatorTree *DT;
428   bool PreserveLCSSA;
429   /// Interface to emit optimization remarks.
430   OptimizationRemarkEmitter *ORE;
431 
432   LoopInterchange()
433       : FunctionPass(ID), SE(nullptr), LI(nullptr), DI(nullptr), DT(nullptr) {
434     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
435   }
436 
437   void getAnalysisUsage(AnalysisUsage &AU) const override {
438     AU.addRequired<ScalarEvolutionWrapperPass>();
439     AU.addRequired<AAResultsWrapperPass>();
440     AU.addRequired<DominatorTreeWrapperPass>();
441     AU.addRequired<LoopInfoWrapperPass>();
442     AU.addRequired<DependenceAnalysisWrapperPass>();
443     AU.addRequiredID(LoopSimplifyID);
444     AU.addRequiredID(LCSSAID);
445     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
446   }
447 
448   bool runOnFunction(Function &F) override {
449     if (skipFunction(F))
450       return false;
451 
452     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
453     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
454     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
455     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
456     DT = DTWP ? &DTWP->getDomTree() : nullptr;
457     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
458     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
459 
460     // Build up a worklist of loop pairs to analyze.
461     SmallVector<LoopVector, 8> Worklist;
462 
463     for (Loop *L : *LI)
464       populateWorklist(*L, Worklist);
465 
466     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
467     bool Changed = true;
468     while (!Worklist.empty()) {
469       LoopVector LoopList = Worklist.pop_back_val();
470       Changed = processLoopList(LoopList, F);
471     }
472     return Changed;
473   }
474 
475   bool isComputableLoopNest(LoopVector LoopList) {
476     for (Loop *L : LoopList) {
477       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
478       if (ExitCountOuter == SE->getCouldNotCompute()) {
479         DEBUG(dbgs() << "Couldn't compute backedge count\n");
480         return false;
481       }
482       if (L->getNumBackEdges() != 1) {
483         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
484         return false;
485       }
486       if (!L->getExitingBlock()) {
487         DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
488         return false;
489       }
490     }
491     return true;
492   }
493 
494   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
495     // TODO: Add a better heuristic to select the loop to be interchanged based
496     // on the dependence matrix. Currently we select the innermost loop.
497     return LoopList.size() - 1;
498   }
499 
500   bool processLoopList(LoopVector LoopList, Function &F) {
501 
502     bool Changed = false;
503     unsigned LoopNestDepth = LoopList.size();
504     if (LoopNestDepth < 2) {
505       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
506       return false;
507     }
508     if (LoopNestDepth > MaxLoopNestDepth) {
509       DEBUG(dbgs() << "Cannot handle loops of depth greater than "
510                    << MaxLoopNestDepth << "\n");
511       return false;
512     }
513     if (!isComputableLoopNest(LoopList)) {
514       DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
515       return false;
516     }
517 
518     DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth << "\n");
519 
520     CharMatrix DependencyMatrix;
521     Loop *OuterMostLoop = *(LoopList.begin());
522     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
523                                   OuterMostLoop, DI)) {
524       DEBUG(dbgs() << "Populating dependency matrix failed\n");
525       return false;
526     }
527 #ifdef DUMP_DEP_MATRICIES
528     DEBUG(dbgs() << "Dependence before interchange\n");
529     printDepMatrix(DependencyMatrix);
530 #endif
531 
532     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
533     BranchInst *OuterMostLoopLatchBI =
534         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
535     if (!OuterMostLoopLatchBI)
536       return false;
537 
538     // Since we currently do not handle LCSSA PHI's any failure in loop
539     // condition will now branch to LoopNestExit.
540     // TODO: This should be removed once we handle LCSSA PHI nodes.
541 
542     // Get the Outermost loop exit.
543     BasicBlock *LoopNestExit;
544     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
545       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
546     else
547       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
548 
549     if (isa<PHINode>(LoopNestExit->begin())) {
550       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
551                       "since on failure all loops branch to loop nest exit.\n");
552       return false;
553     }
554 
555     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
556     // Move the selected loop outwards to the best possible position.
557     for (unsigned i = SelecLoopId; i > 0; i--) {
558       bool Interchanged =
559           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
560       if (!Interchanged)
561         return Changed;
562       // Loops interchanged reflect the same in LoopList
563       std::swap(LoopList[i - 1], LoopList[i]);
564 
565       // Update the DependencyMatrix
566       interChangeDependencies(DependencyMatrix, i, i - 1);
567       DT->recalculate(F);
568 #ifdef DUMP_DEP_MATRICIES
569       DEBUG(dbgs() << "Dependence after interchange\n");
570       printDepMatrix(DependencyMatrix);
571 #endif
572       Changed |= Interchanged;
573     }
574     return Changed;
575   }
576 
577   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
578                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
579                    std::vector<std::vector<char>> &DependencyMatrix) {
580 
581     DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
582                  << " and OuterLoopId = " << OuterLoopId << "\n");
583     Loop *InnerLoop = LoopList[InnerLoopId];
584     Loop *OuterLoop = LoopList[OuterLoopId];
585 
586     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
587                                 PreserveLCSSA, ORE);
588     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
589       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
590       return false;
591     }
592     DEBUG(dbgs() << "Loops are legal to interchange\n");
593     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
594     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
595       DEBUG(dbgs() << "Interchanging loops not profitable\n");
596       return false;
597     }
598 
599     ORE->emit(OptimizationRemark(DEBUG_TYPE, "Interchanged",
600                                  InnerLoop->getStartLoc(),
601                                  InnerLoop->getHeader())
602               << "Loop interchanged with enclosing loop.");
603 
604     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
605                                  LoopNestExit, LIL.hasInnerLoopReduction());
606     LIT.transform();
607     DEBUG(dbgs() << "Loops interchanged\n");
608     return true;
609   }
610 };
611 
612 } // end of namespace
613 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
614   return none_of(Ins->users(), [=](User *U) -> bool {
615     auto *UserIns = dyn_cast<PHINode>(U);
616     RecurrenceDescriptor RD;
617     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
618   });
619 }
620 
621 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
622     BasicBlock *BB) {
623   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
624     // Load corresponding to reduction PHI's are safe while concluding if
625     // tightly nested.
626     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
627       if (!areAllUsesReductions(L, InnerLoop))
628         return true;
629     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
630       return true;
631   }
632   return false;
633 }
634 
635 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
636     BasicBlock *BB) {
637   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
638     // Stores corresponding to reductions are safe while concluding if tightly
639     // nested.
640     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
641       if (!isa<PHINode>(L->getOperand(0)))
642         return true;
643     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
644       return true;
645   }
646   return false;
647 }
648 
649 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
650   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
651   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
652   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
653 
654   DEBUG(dbgs() << "Checking if loops are tightly nested\n");
655 
656   // A perfectly nested loop will not have any branch in between the outer and
657   // inner block i.e. outer header will branch to either inner preheader and
658   // outerloop latch.
659   BranchInst *OuterLoopHeaderBI =
660       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
661   if (!OuterLoopHeaderBI)
662     return false;
663 
664   for (BasicBlock *Succ : OuterLoopHeaderBI->successors())
665     if (Succ != InnerLoopPreHeader && Succ != OuterLoopLatch)
666       return false;
667 
668   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
669   // We do not have any basic block in between now make sure the outer header
670   // and outer loop latch doesn't contain any unsafe instructions.
671   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
672       containsUnsafeInstructionsInLatch(OuterLoopLatch))
673     return false;
674 
675   DEBUG(dbgs() << "Loops are perfectly nested\n");
676   // We have a perfect loop nest.
677   return true;
678 }
679 
680 
681 bool LoopInterchangeLegality::isLoopStructureUnderstood(
682     PHINode *InnerInduction) {
683 
684   unsigned Num = InnerInduction->getNumOperands();
685   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
686   for (unsigned i = 0; i < Num; ++i) {
687     Value *Val = InnerInduction->getOperand(i);
688     if (isa<Constant>(Val))
689       continue;
690     Instruction *I = dyn_cast<Instruction>(Val);
691     if (!I)
692       return false;
693     // TODO: Handle triangular loops.
694     // e.g. for(int i=0;i<N;i++)
695     //        for(int j=i;j<N;j++)
696     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
697     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
698             InnerLoopPreheader &&
699         !OuterLoop->isLoopInvariant(I)) {
700       return false;
701     }
702   }
703   return true;
704 }
705 
706 bool LoopInterchangeLegality::findInductionAndReductions(
707     Loop *L, SmallVector<PHINode *, 8> &Inductions,
708     SmallVector<PHINode *, 8> &Reductions) {
709   if (!L->getLoopLatch() || !L->getLoopPredecessor())
710     return false;
711   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
712     RecurrenceDescriptor RD;
713     InductionDescriptor ID;
714     PHINode *PHI = cast<PHINode>(I);
715     if (InductionDescriptor::isInductionPHI(PHI, L, SE, ID))
716       Inductions.push_back(PHI);
717     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
718       Reductions.push_back(PHI);
719     else {
720       DEBUG(
721           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
722       return false;
723     }
724   }
725   return true;
726 }
727 
728 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
729   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
730     PHINode *PHI = cast<PHINode>(I);
731     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
732     if (PHI->getNumIncomingValues() > 1)
733       return false;
734     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
735     if (!Ins)
736       return false;
737     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
738     // exits lcssa phi else it would not be tightly nested.
739     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
740       return false;
741   }
742   return true;
743 }
744 
745 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
746                                          BasicBlock *LoopHeader) {
747   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
748     assert(BI->getNumSuccessors() == 2 &&
749            "Branch leaving loop latch must have 2 successors");
750     for (BasicBlock *Succ : BI->successors()) {
751       if (Succ == LoopHeader)
752         continue;
753       return Succ;
754     }
755   }
756   return nullptr;
757 }
758 
759 // This function indicates the current limitations in the transform as a result
760 // of which we do not proceed.
761 bool LoopInterchangeLegality::currentLimitations() {
762 
763   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
764   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
765   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
766   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
767   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
768 
769   PHINode *InnerInductionVar;
770   SmallVector<PHINode *, 8> Inductions;
771   SmallVector<PHINode *, 8> Reductions;
772   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions)) {
773     DEBUG(dbgs() << "Only inner loops with induction or reduction PHI nodes "
774                  << "are supported currently.\n");
775     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
776                                        "UnsupportedPHIInner",
777                                        InnerLoop->getStartLoc(),
778                                        InnerLoop->getHeader())
779               << "Only inner loops with induction or reduction PHI nodes can be"
780                  " interchange currently.");
781     return true;
782   }
783 
784   // TODO: Currently we handle only loops with 1 induction variable.
785   if (Inductions.size() != 1) {
786     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
787                  << "Failed to interchange due to current limitation\n");
788     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
789                                        "MultiInductionInner",
790                                        InnerLoop->getStartLoc(),
791                                        InnerLoop->getHeader())
792               << "Only inner loops with 1 induction variable can be "
793                  "interchanged currently.");
794     return true;
795   }
796   if (Reductions.size() > 0)
797     InnerLoopHasReduction = true;
798 
799   InnerInductionVar = Inductions.pop_back_val();
800   Reductions.clear();
801   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions)) {
802     DEBUG(dbgs() << "Only outer loops with induction or reduction PHI nodes "
803                  << "are supported currently.\n");
804     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
805                                        "UnsupportedPHIOuter",
806                                        OuterLoop->getStartLoc(),
807                                        OuterLoop->getHeader())
808               << "Only outer loops with induction or reduction PHI nodes can be"
809                  " interchanged currently.");
810     return true;
811   }
812 
813   // Outer loop cannot have reduction because then loops will not be tightly
814   // nested.
815   if (!Reductions.empty()) {
816     DEBUG(dbgs() << "Outer loops with reductions are not supported "
817                  << "currently.\n");
818     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
819                                        "ReductionsOuter",
820                                        OuterLoop->getStartLoc(),
821                                        OuterLoop->getHeader())
822               << "Outer loops with reductions cannot be interchangeed "
823                  "currently.");
824     return true;
825   }
826   // TODO: Currently we handle only loops with 1 induction variable.
827   if (Inductions.size() != 1) {
828     DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
829                  << "supported currently.\n");
830     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
831                                        "MultiIndutionOuter",
832                                        OuterLoop->getStartLoc(),
833                                        OuterLoop->getHeader())
834               << "Only outer loops with 1 induction variable can be "
835                  "interchanged currently.");
836     return true;
837   }
838 
839   // TODO: Triangular loops are not handled for now.
840   if (!isLoopStructureUnderstood(InnerInductionVar)) {
841     DEBUG(dbgs() << "Loop structure not understood by pass\n");
842     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
843                                        "UnsupportedStructureInner",
844                                        InnerLoop->getStartLoc(),
845                                        InnerLoop->getHeader())
846               << "Inner loop structure not understood currently.");
847     return true;
848   }
849 
850   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
851   BasicBlock *LoopExitBlock =
852       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
853   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true)) {
854     DEBUG(dbgs() << "Can only handle LCSSA PHIs in outer loops currently.\n");
855     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
856                                        "NoLCSSAPHIOuter",
857                                        OuterLoop->getStartLoc(),
858                                        OuterLoop->getHeader())
859               << "Only outer loops with LCSSA PHIs can be interchange "
860                  "currently.");
861     return true;
862   }
863 
864   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
865   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false)) {
866     DEBUG(dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
867     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
868                                        "NoLCSSAPHIOuterInner",
869                                        InnerLoop->getStartLoc(),
870                                        InnerLoop->getHeader())
871               << "Only inner loops with LCSSA PHIs can be interchange "
872                  "currently.");
873     return true;
874   }
875 
876   // TODO: Current limitation: Since we split the inner loop latch at the point
877   // were induction variable is incremented (induction.next); We cannot have
878   // more than 1 user of induction.next since it would result in broken code
879   // after split.
880   // e.g.
881   // for(i=0;i<N;i++) {
882   //    for(j = 0;j<M;j++) {
883   //      A[j+1][i+2] = A[j][i]+k;
884   //  }
885   // }
886   Instruction *InnerIndexVarInc = nullptr;
887   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
888     InnerIndexVarInc =
889         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
890   else
891     InnerIndexVarInc =
892         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
893 
894   if (!InnerIndexVarInc) {
895     DEBUG(dbgs() << "Did not find an instruction to increment the induction "
896                  << "variable.\n");
897     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
898                                        "NoIncrementInInner",
899                                        InnerLoop->getStartLoc(),
900                                        InnerLoop->getHeader())
901               << "The inner loop does not increment the induction variable.");
902     return true;
903   }
904 
905   // Since we split the inner loop latch on this induction variable. Make sure
906   // we do not have any instruction between the induction variable and branch
907   // instruction.
908 
909   bool FoundInduction = false;
910   for (const Instruction &I : reverse(*InnerLoopLatch)) {
911     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
912         isa<ZExtInst>(I))
913       continue;
914 
915     // We found an instruction. If this is not induction variable then it is not
916     // safe to split this loop latch.
917     if (!I.isIdenticalTo(InnerIndexVarInc)) {
918       DEBUG(dbgs() << "Found unsupported instructions between induction "
919                    << "variable increment and branch.\n");
920     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
921                                        "UnsupportedInsBetweenInduction",
922                                        InnerLoop->getStartLoc(),
923                                        InnerLoop->getHeader())
924               << "Found unsupported instruction between induction variable "
925                  "increment and branch.");
926       return true;
927     }
928 
929     FoundInduction = true;
930     break;
931   }
932   // The loop latch ended and we didn't find the induction variable return as
933   // current limitation.
934   if (!FoundInduction) {
935     DEBUG(dbgs() << "Did not find the induction variable.\n");
936     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
937                                        "NoIndutionVariable",
938                                        InnerLoop->getStartLoc(),
939                                        InnerLoop->getHeader())
940               << "Did not find the induction variable.");
941     return true;
942   }
943   return false;
944 }
945 
946 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
947                                                   unsigned OuterLoopId,
948                                                   CharMatrix &DepMatrix) {
949 
950   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
951     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
952                  << " and OuterLoopId = " << OuterLoopId
953                  << " due to dependence\n");
954     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
955                                        "Dependence",
956                                        InnerLoop->getStartLoc(),
957                                        InnerLoop->getHeader())
958               << "Cannot interchange loops due to dependences.");
959     return false;
960   }
961 
962   // Check if outer and inner loop contain legal instructions only.
963   for (auto *BB : OuterLoop->blocks())
964     for (Instruction &I : *BB)
965       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
966         // readnone functions do not prevent interchanging.
967         if (CI->doesNotReadMemory())
968           continue;
969         DEBUG(dbgs() << "Loops with call instructions cannot be interchanged "
970                      << "safely.");
971         return false;
972       }
973 
974   // Create unique Preheaders if we already do not have one.
975   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
976   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
977 
978   // Create  a unique outer preheader -
979   // 1) If OuterLoop preheader is not present.
980   // 2) If OuterLoop Preheader is same as OuterLoop Header
981   // 3) If OuterLoop Preheader is same as Header of the previous loop.
982   // 4) If OuterLoop Preheader is Entry node.
983   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
984       isa<PHINode>(OuterLoopPreHeader->begin()) ||
985       !OuterLoopPreHeader->getUniquePredecessor()) {
986     OuterLoopPreHeader =
987         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
988   }
989 
990   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
991       InnerLoopPreHeader == OuterLoop->getHeader()) {
992     InnerLoopPreHeader =
993         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
994   }
995 
996   // TODO: The loops could not be interchanged due to current limitations in the
997   // transform module.
998   if (currentLimitations()) {
999     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1000     return false;
1001   }
1002 
1003   // Check if the loops are tightly nested.
1004   if (!tightlyNested(OuterLoop, InnerLoop)) {
1005     DEBUG(dbgs() << "Loops not tightly nested\n");
1006     ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
1007                                        "NotTightlyNested",
1008                                        InnerLoop->getStartLoc(),
1009                                        InnerLoop->getHeader())
1010               << "Cannot interchange loops because they are not tightly "
1011                  "nested.");
1012     return false;
1013   }
1014 
1015   return true;
1016 }
1017 
1018 int LoopInterchangeProfitability::getInstrOrderCost() {
1019   unsigned GoodOrder, BadOrder;
1020   BadOrder = GoodOrder = 0;
1021   for (BasicBlock *BB : InnerLoop->blocks()) {
1022     for (Instruction &Ins : *BB) {
1023       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1024         unsigned NumOp = GEP->getNumOperands();
1025         bool FoundInnerInduction = false;
1026         bool FoundOuterInduction = false;
1027         for (unsigned i = 0; i < NumOp; ++i) {
1028           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1029           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1030           if (!AR)
1031             continue;
1032 
1033           // If we find the inner induction after an outer induction e.g.
1034           // for(int i=0;i<N;i++)
1035           //   for(int j=0;j<N;j++)
1036           //     A[i][j] = A[i-1][j-1]+k;
1037           // then it is a good order.
1038           if (AR->getLoop() == InnerLoop) {
1039             // We found an InnerLoop induction after OuterLoop induction. It is
1040             // a good order.
1041             FoundInnerInduction = true;
1042             if (FoundOuterInduction) {
1043               GoodOrder++;
1044               break;
1045             }
1046           }
1047           // If we find the outer induction after an inner induction e.g.
1048           // for(int i=0;i<N;i++)
1049           //   for(int j=0;j<N;j++)
1050           //     A[j][i] = A[j-1][i-1]+k;
1051           // then it is a bad order.
1052           if (AR->getLoop() == OuterLoop) {
1053             // We found an OuterLoop induction after InnerLoop induction. It is
1054             // a bad order.
1055             FoundOuterInduction = true;
1056             if (FoundInnerInduction) {
1057               BadOrder++;
1058               break;
1059             }
1060           }
1061         }
1062       }
1063     }
1064   }
1065   return GoodOrder - BadOrder;
1066 }
1067 
1068 static bool isProfitableForVectorization(unsigned InnerLoopId,
1069                                          unsigned OuterLoopId,
1070                                          CharMatrix &DepMatrix) {
1071   // TODO: Improve this heuristic to catch more cases.
1072   // If the inner loop is loop independent or doesn't carry any dependency it is
1073   // profitable to move this to outer position.
1074   for (auto &Row : DepMatrix) {
1075     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1076       return false;
1077     // TODO: We need to improve this heuristic.
1078     if (Row[OuterLoopId] != '=')
1079       return false;
1080   }
1081   // If outer loop has dependence and inner loop is loop independent then it is
1082   // profitable to interchange to enable parallelism.
1083   return true;
1084 }
1085 
1086 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1087                                                 unsigned OuterLoopId,
1088                                                 CharMatrix &DepMatrix) {
1089 
1090   // TODO: Add better profitability checks.
1091   // e.g
1092   // 1) Construct dependency matrix and move the one with no loop carried dep
1093   //    inside to enable vectorization.
1094 
1095   // This is rough cost estimation algorithm. It counts the good and bad order
1096   // of induction variables in the instruction and allows reordering if number
1097   // of bad orders is more than good.
1098   int Cost = getInstrOrderCost();
1099   DEBUG(dbgs() << "Cost = " << Cost << "\n");
1100   if (Cost < -LoopInterchangeCostThreshold)
1101     return true;
1102 
1103   // It is not profitable as per current cache profitability model. But check if
1104   // we can move this loop outside to improve parallelism.
1105   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1106     return true;
1107 
1108   ORE->emit(OptimizationRemarkMissed(DEBUG_TYPE,
1109                                      "InterchangeNotProfitable",
1110                                      InnerLoop->getStartLoc(),
1111                                      InnerLoop->getHeader())
1112             << "Interchanging loops is too costly (cost="
1113             << ore::NV("Cost", Cost) << ", threshold="
1114             << ore::NV("Threshold", LoopInterchangeCostThreshold) <<
1115             ") and it does not improve parallelism.");
1116   return false;
1117 }
1118 
1119 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1120                                                Loop *InnerLoop) {
1121   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
1122        ++I) {
1123     if (*I == InnerLoop) {
1124       OuterLoop->removeChildLoop(I);
1125       return;
1126     }
1127   }
1128   llvm_unreachable("Couldn't find loop");
1129 }
1130 
1131 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1132                                                 Loop *OuterLoop) {
1133   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1134   if (OuterLoopParent) {
1135     // Remove the loop from its parent loop.
1136     removeChildLoop(OuterLoopParent, OuterLoop);
1137     removeChildLoop(OuterLoop, InnerLoop);
1138     OuterLoopParent->addChildLoop(InnerLoop);
1139   } else {
1140     removeChildLoop(OuterLoop, InnerLoop);
1141     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1142   }
1143 
1144   while (!InnerLoop->empty())
1145     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1146 
1147   InnerLoop->addChildLoop(OuterLoop);
1148 }
1149 
1150 bool LoopInterchangeTransform::transform() {
1151   bool Transformed = false;
1152   Instruction *InnerIndexVar;
1153 
1154   if (InnerLoop->getSubLoops().size() == 0) {
1155     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1156     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1157     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1158     if (!InductionPHI) {
1159       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1160       return false;
1161     }
1162 
1163     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1164       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1165     else
1166       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1167 
1168     //
1169     // Split at the place were the induction variable is
1170     // incremented/decremented.
1171     // TODO: This splitting logic may not work always. Fix this.
1172     splitInnerLoopLatch(InnerIndexVar);
1173     DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1174 
1175     // Splits the inner loops phi nodes out into a separate basic block.
1176     splitInnerLoopHeader();
1177     DEBUG(dbgs() << "splitInnerLoopHeader done\n");
1178   }
1179 
1180   Transformed |= adjustLoopLinks();
1181   if (!Transformed) {
1182     DEBUG(dbgs() << "adjustLoopLinks failed\n");
1183     return false;
1184   }
1185 
1186   restructureLoops(InnerLoop, OuterLoop);
1187   return true;
1188 }
1189 
1190 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1191   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1192   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1193   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1194 }
1195 
1196 void LoopInterchangeTransform::splitInnerLoopHeader() {
1197 
1198   // Split the inner loop header out. Here make sure that the reduction PHI's
1199   // stay in the innerloop body.
1200   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1201   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1202   if (InnerLoopHasReduction) {
1203     // FIXME: Check if the induction PHI will always be the first PHI.
1204     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
1205         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
1206     if (LI)
1207       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
1208         L->addBasicBlockToLoop(New, *LI);
1209 
1210     // Adjust Reduction PHI's in the block.
1211     SmallVector<PHINode *, 8> PHIVec;
1212     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
1213       PHINode *PHI = dyn_cast<PHINode>(I);
1214       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1215       PHI->replaceAllUsesWith(V);
1216       PHIVec.push_back((PHI));
1217     }
1218     for (PHINode *P : PHIVec) {
1219       P->eraseFromParent();
1220     }
1221   } else {
1222     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1223   }
1224 
1225   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1226                   "InnerLoopHeader\n");
1227 }
1228 
1229 /// \brief Move all instructions except the terminator from FromBB right before
1230 /// InsertBefore
1231 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1232   auto &ToList = InsertBefore->getParent()->getInstList();
1233   auto &FromList = FromBB->getInstList();
1234 
1235   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1236                 FromBB->getTerminator()->getIterator());
1237 }
1238 
1239 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1240                                                    BasicBlock *OldPred,
1241                                                    BasicBlock *NewPred) {
1242   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1243     PHINode *PHI = cast<PHINode>(I);
1244     unsigned Num = PHI->getNumIncomingValues();
1245     for (unsigned i = 0; i < Num; ++i) {
1246       if (PHI->getIncomingBlock(i) == OldPred)
1247         PHI->setIncomingBlock(i, NewPred);
1248     }
1249   }
1250 }
1251 
1252 bool LoopInterchangeTransform::adjustLoopBranches() {
1253 
1254   DEBUG(dbgs() << "adjustLoopBranches called\n");
1255   // Adjust the loop preheader
1256   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1257   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1258   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1259   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1260   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1261   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1262   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1263   BasicBlock *InnerLoopLatchPredecessor =
1264       InnerLoopLatch->getUniquePredecessor();
1265   BasicBlock *InnerLoopLatchSuccessor;
1266   BasicBlock *OuterLoopLatchSuccessor;
1267 
1268   BranchInst *OuterLoopLatchBI =
1269       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1270   BranchInst *InnerLoopLatchBI =
1271       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1272   BranchInst *OuterLoopHeaderBI =
1273       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1274   BranchInst *InnerLoopHeaderBI =
1275       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1276 
1277   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1278       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1279       !InnerLoopHeaderBI)
1280     return false;
1281 
1282   BranchInst *InnerLoopLatchPredecessorBI =
1283       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1284   BranchInst *OuterLoopPredecessorBI =
1285       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1286 
1287   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1288     return false;
1289   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1290   if (!InnerLoopHeaderSuccessor)
1291     return false;
1292 
1293   // Adjust Loop Preheader and headers
1294 
1295   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
1296   for (unsigned i = 0; i < NumSucc; ++i) {
1297     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
1298       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
1299   }
1300 
1301   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
1302   for (unsigned i = 0; i < NumSucc; ++i) {
1303     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
1304       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
1305     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
1306       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
1307   }
1308 
1309   // Adjust reduction PHI's now that the incoming block has changed.
1310   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1311                       OuterLoopHeader);
1312 
1313   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
1314   InnerLoopHeaderBI->eraseFromParent();
1315 
1316   // -------------Adjust loop latches-----------
1317   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1318     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1319   else
1320     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1321 
1322   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
1323   for (unsigned i = 0; i < NumSucc; ++i) {
1324     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
1325       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
1326   }
1327 
1328   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1329   // the value and remove this PHI node from inner loop.
1330   SmallVector<PHINode *, 8> LcssaVec;
1331   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1332     PHINode *LcssaPhi = cast<PHINode>(I);
1333     LcssaVec.push_back(LcssaPhi);
1334   }
1335   for (PHINode *P : LcssaVec) {
1336     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1337     P->replaceAllUsesWith(Incoming);
1338     P->eraseFromParent();
1339   }
1340 
1341   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1342     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1343   else
1344     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1345 
1346   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
1347     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
1348   else
1349     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
1350 
1351   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1352 
1353   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
1354     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
1355   } else {
1356     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
1357   }
1358 
1359   return true;
1360 }
1361 void LoopInterchangeTransform::adjustLoopPreheaders() {
1362 
1363   // We have interchanged the preheaders so we need to interchange the data in
1364   // the preheader as well.
1365   // This is because the content of inner preheader was previously executed
1366   // inside the outer loop.
1367   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1368   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1369   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1370   BranchInst *InnerTermBI =
1371       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1372 
1373   // These instructions should now be executed inside the loop.
1374   // Move instruction into a new block after outer header.
1375   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1376   // These instructions were not executed previously in the loop so move them to
1377   // the older inner loop preheader.
1378   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1379 }
1380 
1381 bool LoopInterchangeTransform::adjustLoopLinks() {
1382 
1383   // Adjust all branches in the inner and outer loop.
1384   bool Changed = adjustLoopBranches();
1385   if (Changed)
1386     adjustLoopPreheaders();
1387   return Changed;
1388 }
1389 
1390 char LoopInterchange::ID = 0;
1391 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1392                       "Interchanges loops for cache reuse", false, false)
1393 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1394 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1395 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1396 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1397 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1398 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1399 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1400 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1401 
1402 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1403                     "Interchanges loops for cache reuse", false, false)
1404 
1405 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1406