1 //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-interchange"
46 
47 namespace {
48 
49 typedef SmallVector<Loop *, 8> LoopVector;
50 
51 // TODO: Check if we can use a sparse matrix here.
52 typedef std::vector<std::vector<char>> CharMatrix;
53 
54 // Maximum number of dependencies that can be handled in the dependency matrix.
55 static const unsigned MaxMemInstrCount = 100;
56 
57 // Maximum loop depth supported.
58 static const unsigned MaxLoopNestDepth = 10;
59 
60 struct LoopInterchange;
61 
62 #ifdef DUMP_DEP_MATRICIES
63 void printDepMatrix(CharMatrix &DepMatrix) {
64   for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
65     std::vector<char> Vec = *I;
66     for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
67       DEBUG(dbgs() << *II << " ");
68     DEBUG(dbgs() << "\n");
69   }
70 }
71 #endif
72 
73 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
74                                      Loop *L, DependenceInfo *DI) {
75   typedef SmallVector<Value *, 16> ValueVector;
76   ValueVector MemInstr;
77 
78   if (Level > MaxLoopNestDepth) {
79     DEBUG(dbgs() << "Cannot handle loops of depth greater than "
80                  << MaxLoopNestDepth << "\n");
81     return false;
82   }
83 
84   // For each block.
85   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
86        BB != BE; ++BB) {
87     // Scan the BB and collect legal loads and stores.
88     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
89          ++I) {
90       Instruction *Ins = dyn_cast<Instruction>(I);
91       if (!Ins)
92         return false;
93       LoadInst *Ld = dyn_cast<LoadInst>(I);
94       StoreInst *St = dyn_cast<StoreInst>(I);
95       if (!St && !Ld)
96         continue;
97       if (Ld && !Ld->isSimple())
98         return false;
99       if (St && !St->isSimple())
100         return false;
101       MemInstr.push_back(&*I);
102     }
103   }
104 
105   DEBUG(dbgs() << "Found " << MemInstr.size()
106                << " Loads and Stores to analyze\n");
107 
108   ValueVector::iterator I, IE, J, JE;
109 
110   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
111     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
112       std::vector<char> Dep;
113       Instruction *Src = dyn_cast<Instruction>(*I);
114       Instruction *Des = dyn_cast<Instruction>(*J);
115       if (Src == Des)
116         continue;
117       if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
118         continue;
119       if (auto D = DI->depends(Src, Des, true)) {
120         DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
121                      << "\n");
122         if (D->isFlow()) {
123           // TODO: Handle Flow dependence.Check if it is sufficient to populate
124           // the Dependence Matrix with the direction reversed.
125           DEBUG(dbgs() << "Flow dependence not handled");
126           return false;
127         }
128         if (D->isAnti()) {
129           DEBUG(dbgs() << "Found Anti dependence \n");
130           unsigned Levels = D->getLevels();
131           char Direction;
132           for (unsigned II = 1; II <= Levels; ++II) {
133             const SCEV *Distance = D->getDistance(II);
134             const SCEVConstant *SCEVConst =
135                 dyn_cast_or_null<SCEVConstant>(Distance);
136             if (SCEVConst) {
137               const ConstantInt *CI = SCEVConst->getValue();
138               if (CI->isNegative())
139                 Direction = '<';
140               else if (CI->isZero())
141                 Direction = '=';
142               else
143                 Direction = '>';
144               Dep.push_back(Direction);
145             } else if (D->isScalar(II)) {
146               Direction = 'S';
147               Dep.push_back(Direction);
148             } else {
149               unsigned Dir = D->getDirection(II);
150               if (Dir == Dependence::DVEntry::LT ||
151                   Dir == Dependence::DVEntry::LE)
152                 Direction = '<';
153               else if (Dir == Dependence::DVEntry::GT ||
154                        Dir == Dependence::DVEntry::GE)
155                 Direction = '>';
156               else if (Dir == Dependence::DVEntry::EQ)
157                 Direction = '=';
158               else
159                 Direction = '*';
160               Dep.push_back(Direction);
161             }
162           }
163           while (Dep.size() != Level) {
164             Dep.push_back('I');
165           }
166 
167           DepMatrix.push_back(Dep);
168           if (DepMatrix.size() > MaxMemInstrCount) {
169             DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
170                          << " dependencies inside loop\n");
171             return false;
172           }
173         }
174       }
175     }
176   }
177 
178   // We don't have a DepMatrix to check legality return false.
179   if (DepMatrix.size() == 0)
180     return false;
181   return true;
182 }
183 
184 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
185 // matrix by exchanging the two columns.
186 static void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
187                                    unsigned ToIndx) {
188   unsigned numRows = DepMatrix.size();
189   for (unsigned i = 0; i < numRows; ++i) {
190     char TmpVal = DepMatrix[i][ToIndx];
191     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
192     DepMatrix[i][FromIndx] = TmpVal;
193   }
194 }
195 
196 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
197 // '>'
198 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
199                                    unsigned Column) {
200   for (unsigned i = 0; i <= Column; ++i) {
201     if (DepMatrix[Row][i] == '<')
202       return false;
203     if (DepMatrix[Row][i] == '>')
204       return true;
205   }
206   // All dependencies were '=','S' or 'I'
207   return false;
208 }
209 
210 // Checks if no dependence exist in the dependency matrix in Row before Column.
211 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
212                                  unsigned Column) {
213   for (unsigned i = 0; i < Column; ++i) {
214     if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
215         DepMatrix[Row][i] != 'I')
216       return false;
217   }
218   return true;
219 }
220 
221 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
222                                 unsigned OuterLoopId, char InnerDep,
223                                 char OuterDep) {
224 
225   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
226     return false;
227 
228   if (InnerDep == OuterDep)
229     return true;
230 
231   // It is legal to interchange if and only if after interchange no row has a
232   // '>' direction as the leftmost non-'='.
233 
234   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
235     return true;
236 
237   if (InnerDep == '<')
238     return true;
239 
240   if (InnerDep == '>') {
241     // If OuterLoopId represents outermost loop then interchanging will make the
242     // 1st dependency as '>'
243     if (OuterLoopId == 0)
244       return false;
245 
246     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
247     // interchanging will result in this row having an outermost non '='
248     // dependency of '>'
249     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
250       return true;
251   }
252 
253   return false;
254 }
255 
256 // Checks if it is legal to interchange 2 loops.
257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
258 // if
259 // the direction matrix, after the same permutation is applied to its columns,
260 // has no ">" direction as the leftmost non-"=" direction in any row.
261 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
262                                       unsigned InnerLoopId,
263                                       unsigned OuterLoopId) {
264 
265   unsigned NumRows = DepMatrix.size();
266   // For each row check if it is valid to interchange.
267   for (unsigned Row = 0; Row < NumRows; ++Row) {
268     char InnerDep = DepMatrix[Row][InnerLoopId];
269     char OuterDep = DepMatrix[Row][OuterLoopId];
270     if (InnerDep == '*' || OuterDep == '*')
271       return false;
272     else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
273                                   OuterDep))
274       return false;
275   }
276   return true;
277 }
278 
279 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
280 
281   DEBUG(dbgs() << "Calling populateWorklist called\n");
282   LoopVector LoopList;
283   Loop *CurrentLoop = &L;
284   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
285   while (!Vec->empty()) {
286     // The current loop has multiple subloops in it hence it is not tightly
287     // nested.
288     // Discard all loops above it added into Worklist.
289     if (Vec->size() != 1) {
290       LoopList.clear();
291       return;
292     }
293     LoopList.push_back(CurrentLoop);
294     CurrentLoop = Vec->front();
295     Vec = &CurrentLoop->getSubLoops();
296   }
297   LoopList.push_back(CurrentLoop);
298   V.push_back(std::move(LoopList));
299 }
300 
301 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
302   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
303   if (InnerIndexVar)
304     return InnerIndexVar;
305   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
306     return nullptr;
307   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
308     PHINode *PhiVar = cast<PHINode>(I);
309     Type *PhiTy = PhiVar->getType();
310     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
311         !PhiTy->isPointerTy())
312       return nullptr;
313     const SCEVAddRecExpr *AddRec =
314         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
315     if (!AddRec || !AddRec->isAffine())
316       continue;
317     const SCEV *Step = AddRec->getStepRecurrence(*SE);
318     const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
319     if (!C)
320       continue;
321     // Found the induction variable.
322     // FIXME: Handle loops with more than one induction variable. Note that,
323     // currently, legality makes sure we have only one induction variable.
324     return PhiVar;
325   }
326   return nullptr;
327 }
328 
329 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
330 class LoopInterchangeLegality {
331 public:
332   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
333                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA)
334       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
335         PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {}
336 
337   /// Check if the loops can be interchanged.
338   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
339                            CharMatrix &DepMatrix);
340   /// Check if the loop structure is understood. We do not handle triangular
341   /// loops for now.
342   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
343 
344   bool currentLimitations();
345 
346   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
347 
348 private:
349   bool tightlyNested(Loop *Outer, Loop *Inner);
350   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
351   bool areAllUsesReductions(Instruction *Ins, Loop *L);
352   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   SmallVector<PHINode *, 8> &Reductions);
356   Loop *OuterLoop;
357   Loop *InnerLoop;
358 
359   ScalarEvolution *SE;
360   LoopInfo *LI;
361   DominatorTree *DT;
362   bool PreserveLCSSA;
363 
364   bool InnerLoopHasReduction;
365 };
366 
367 /// LoopInterchangeProfitability checks if it is profitable to interchange the
368 /// loop.
369 class LoopInterchangeProfitability {
370 public:
371   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
372       : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
373 
374   /// Check if the loop interchange is profitable.
375   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
376                     CharMatrix &DepMatrix);
377 
378 private:
379   int getInstrOrderCost();
380 
381   Loop *OuterLoop;
382   Loop *InnerLoop;
383 
384   /// Scev analysis.
385   ScalarEvolution *SE;
386 };
387 
388 /// LoopInterchangeTransform interchanges the loop.
389 class LoopInterchangeTransform {
390 public:
391   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
392                            LoopInfo *LI, DominatorTree *DT,
393                            BasicBlock *LoopNestExit,
394                            bool InnerLoopContainsReductions)
395       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
396         LoopExit(LoopNestExit),
397         InnerLoopHasReduction(InnerLoopContainsReductions) {}
398 
399   /// Interchange OuterLoop and InnerLoop.
400   bool transform();
401   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
402   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
403 
404 private:
405   void splitInnerLoopLatch(Instruction *);
406   void splitOuterLoopLatch();
407   void splitInnerLoopHeader();
408   bool adjustLoopLinks();
409   void adjustLoopPreheaders();
410   void adjustOuterLoopPreheader();
411   void adjustInnerLoopPreheader();
412   bool adjustLoopBranches();
413   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
414                            BasicBlock *NewPred);
415 
416   Loop *OuterLoop;
417   Loop *InnerLoop;
418 
419   /// Scev analysis.
420   ScalarEvolution *SE;
421   LoopInfo *LI;
422   DominatorTree *DT;
423   BasicBlock *LoopExit;
424   bool InnerLoopHasReduction;
425 };
426 
427 // Main LoopInterchange Pass.
428 struct LoopInterchange : public FunctionPass {
429   static char ID;
430   ScalarEvolution *SE;
431   LoopInfo *LI;
432   DependenceInfo *DI;
433   DominatorTree *DT;
434   bool PreserveLCSSA;
435   LoopInterchange()
436       : FunctionPass(ID), SE(nullptr), LI(nullptr), DI(nullptr), DT(nullptr) {
437     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
438   }
439 
440   void getAnalysisUsage(AnalysisUsage &AU) const override {
441     AU.addRequired<ScalarEvolutionWrapperPass>();
442     AU.addRequired<AAResultsWrapperPass>();
443     AU.addRequired<DominatorTreeWrapperPass>();
444     AU.addRequired<LoopInfoWrapperPass>();
445     AU.addRequired<DependenceAnalysisWrapperPass>();
446     AU.addRequiredID(LoopSimplifyID);
447     AU.addRequiredID(LCSSAID);
448   }
449 
450   bool runOnFunction(Function &F) override {
451     if (skipFunction(F))
452       return false;
453 
454     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
455     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
456     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
457     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
458     DT = DTWP ? &DTWP->getDomTree() : nullptr;
459     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
460 
461     // Build up a worklist of loop pairs to analyze.
462     SmallVector<LoopVector, 8> Worklist;
463 
464     for (Loop *L : *LI)
465       populateWorklist(*L, Worklist);
466 
467     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
468     bool Changed = true;
469     while (!Worklist.empty()) {
470       LoopVector LoopList = Worklist.pop_back_val();
471       Changed = processLoopList(LoopList, F);
472     }
473     return Changed;
474   }
475 
476   bool isComputableLoopNest(LoopVector LoopList) {
477     for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
478       Loop *L = *I;
479       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
480       if (ExitCountOuter == SE->getCouldNotCompute()) {
481         DEBUG(dbgs() << "Couldn't compute Backedge count\n");
482         return false;
483       }
484       if (L->getNumBackEdges() != 1) {
485         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
486         return false;
487       }
488       if (!L->getExitingBlock()) {
489         DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
490         return false;
491       }
492     }
493     return true;
494   }
495 
496   unsigned selectLoopForInterchange(LoopVector LoopList) {
497     // TODO: Add a better heuristic to select the loop to be interchanged based
498     // on the dependence matrix. Currently we select the innermost loop.
499     return LoopList.size() - 1;
500   }
501 
502   bool processLoopList(LoopVector LoopList, Function &F) {
503 
504     bool Changed = false;
505     CharMatrix DependencyMatrix;
506     if (LoopList.size() < 2) {
507       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
508       return false;
509     }
510     if (!isComputableLoopNest(LoopList)) {
511       DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
512       return false;
513     }
514     Loop *OuterMostLoop = *(LoopList.begin());
515 
516     DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
517                  << "\n");
518 
519     if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
520                                   OuterMostLoop, DI)) {
521       DEBUG(dbgs() << "Populating Dependency matrix failed\n");
522       return false;
523     }
524 #ifdef DUMP_DEP_MATRICIES
525     DEBUG(dbgs() << "Dependence before inter change \n");
526     printDepMatrix(DependencyMatrix);
527 #endif
528 
529     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
530     BranchInst *OuterMostLoopLatchBI =
531         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
532     if (!OuterMostLoopLatchBI)
533       return false;
534 
535     // Since we currently do not handle LCSSA PHI's any failure in loop
536     // condition will now branch to LoopNestExit.
537     // TODO: This should be removed once we handle LCSSA PHI nodes.
538 
539     // Get the Outermost loop exit.
540     BasicBlock *LoopNestExit;
541     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
542       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
543     else
544       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
545 
546     if (isa<PHINode>(LoopNestExit->begin())) {
547       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
548                       "since on failure all loops branch to loop nest exit.\n");
549       return false;
550     }
551 
552     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
553     // Move the selected loop outwards to the best possible position.
554     for (unsigned i = SelecLoopId; i > 0; i--) {
555       bool Interchanged =
556           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
557       if (!Interchanged)
558         return Changed;
559       // Loops interchanged reflect the same in LoopList
560       std::swap(LoopList[i - 1], LoopList[i]);
561 
562       // Update the DependencyMatrix
563       interChangeDepedencies(DependencyMatrix, i, i - 1);
564       DT->recalculate(F);
565 #ifdef DUMP_DEP_MATRICIES
566       DEBUG(dbgs() << "Dependence after inter change \n");
567       printDepMatrix(DependencyMatrix);
568 #endif
569       Changed |= Interchanged;
570     }
571     return Changed;
572   }
573 
574   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
575                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
576                    std::vector<std::vector<char>> &DependencyMatrix) {
577 
578     DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
579                  << " and OuterLoopId = " << OuterLoopId << "\n");
580     Loop *InnerLoop = LoopList[InnerLoopId];
581     Loop *OuterLoop = LoopList[OuterLoopId];
582 
583     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
584                                 PreserveLCSSA);
585     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
586       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
587       return false;
588     }
589     DEBUG(dbgs() << "Loops are legal to interchange\n");
590     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
591     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
592       DEBUG(dbgs() << "Interchanging Loops not profitable\n");
593       return false;
594     }
595 
596     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
597                                  LoopNestExit, LIL.hasInnerLoopReduction());
598     LIT.transform();
599     DEBUG(dbgs() << "Loops interchanged\n");
600     return true;
601   }
602 };
603 
604 } // end of namespace
605 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
606   return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
607     PHINode *UserIns = dyn_cast<PHINode>(U);
608     RecurrenceDescriptor RD;
609     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
610   });
611 }
612 
613 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
614     BasicBlock *BB) {
615   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
616     // Load corresponding to reduction PHI's are safe while concluding if
617     // tightly nested.
618     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
619       if (!areAllUsesReductions(L, InnerLoop))
620         return true;
621     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
622       return true;
623   }
624   return false;
625 }
626 
627 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
628     BasicBlock *BB) {
629   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
630     // Stores corresponding to reductions are safe while concluding if tightly
631     // nested.
632     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
633       PHINode *PHI = dyn_cast<PHINode>(L->getOperand(0));
634       if (!PHI)
635         return true;
636     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
637       return true;
638   }
639   return false;
640 }
641 
642 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
643   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
644   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
645   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
646 
647   DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
648 
649   // A perfectly nested loop will not have any branch in between the outer and
650   // inner block i.e. outer header will branch to either inner preheader and
651   // outerloop latch.
652   BranchInst *outerLoopHeaderBI =
653       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
654   if (!outerLoopHeaderBI)
655     return false;
656   unsigned num = outerLoopHeaderBI->getNumSuccessors();
657   for (unsigned i = 0; i < num; i++) {
658     if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
659         outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
660       return false;
661   }
662 
663   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
664   // We do not have any basic block in between now make sure the outer header
665   // and outer loop latch doesn't contain any unsafe instructions.
666   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
667       containsUnsafeInstructionsInLatch(OuterLoopLatch))
668     return false;
669 
670   DEBUG(dbgs() << "Loops are perfectly nested \n");
671   // We have a perfect loop nest.
672   return true;
673 }
674 
675 
676 bool LoopInterchangeLegality::isLoopStructureUnderstood(
677     PHINode *InnerInduction) {
678 
679   unsigned Num = InnerInduction->getNumOperands();
680   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
681   for (unsigned i = 0; i < Num; ++i) {
682     Value *Val = InnerInduction->getOperand(i);
683     if (isa<Constant>(Val))
684       continue;
685     Instruction *I = dyn_cast<Instruction>(Val);
686     if (!I)
687       return false;
688     // TODO: Handle triangular loops.
689     // e.g. for(int i=0;i<N;i++)
690     //        for(int j=i;j<N;j++)
691     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
692     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
693             InnerLoopPreheader &&
694         !OuterLoop->isLoopInvariant(I)) {
695       return false;
696     }
697   }
698   return true;
699 }
700 
701 bool LoopInterchangeLegality::findInductionAndReductions(
702     Loop *L, SmallVector<PHINode *, 8> &Inductions,
703     SmallVector<PHINode *, 8> &Reductions) {
704   if (!L->getLoopLatch() || !L->getLoopPredecessor())
705     return false;
706   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
707     RecurrenceDescriptor RD;
708     InductionDescriptor ID;
709     PHINode *PHI = cast<PHINode>(I);
710     if (InductionDescriptor::isInductionPHI(PHI, SE, ID))
711       Inductions.push_back(PHI);
712     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
713       Reductions.push_back(PHI);
714     else {
715       DEBUG(
716           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
717       return false;
718     }
719   }
720   return true;
721 }
722 
723 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
724   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
725     PHINode *PHI = cast<PHINode>(I);
726     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
727     if (PHI->getNumIncomingValues() > 1)
728       return false;
729     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
730     if (!Ins)
731       return false;
732     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
733     // exits lcssa phi else it would not be tightly nested.
734     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
735       return false;
736   }
737   return true;
738 }
739 
740 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
741                                          BasicBlock *LoopHeader) {
742   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
743     unsigned Num = BI->getNumSuccessors();
744     assert(Num == 2);
745     for (unsigned i = 0; i < Num; ++i) {
746       if (BI->getSuccessor(i) == LoopHeader)
747         continue;
748       return BI->getSuccessor(i);
749     }
750   }
751   return nullptr;
752 }
753 
754 // This function indicates the current limitations in the transform as a result
755 // of which we do not proceed.
756 bool LoopInterchangeLegality::currentLimitations() {
757 
758   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
759   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
760   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
761   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
762   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
763 
764   PHINode *InnerInductionVar;
765   SmallVector<PHINode *, 8> Inductions;
766   SmallVector<PHINode *, 8> Reductions;
767   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions))
768     return true;
769 
770   // TODO: Currently we handle only loops with 1 induction variable.
771   if (Inductions.size() != 1) {
772     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
773                  << "Failed to interchange due to current limitation\n");
774     return true;
775   }
776   if (Reductions.size() > 0)
777     InnerLoopHasReduction = true;
778 
779   InnerInductionVar = Inductions.pop_back_val();
780   Reductions.clear();
781   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions))
782     return true;
783 
784   // Outer loop cannot have reduction because then loops will not be tightly
785   // nested.
786   if (!Reductions.empty())
787     return true;
788   // TODO: Currently we handle only loops with 1 induction variable.
789   if (Inductions.size() != 1)
790     return true;
791 
792   // TODO: Triangular loops are not handled for now.
793   if (!isLoopStructureUnderstood(InnerInductionVar)) {
794     DEBUG(dbgs() << "Loop structure not understood by pass\n");
795     return true;
796   }
797 
798   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
799   BasicBlock *LoopExitBlock =
800       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
801   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true))
802     return true;
803 
804   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
805   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false))
806     return true;
807 
808   // TODO: Current limitation: Since we split the inner loop latch at the point
809   // were induction variable is incremented (induction.next); We cannot have
810   // more than 1 user of induction.next since it would result in broken code
811   // after split.
812   // e.g.
813   // for(i=0;i<N;i++) {
814   //    for(j = 0;j<M;j++) {
815   //      A[j+1][i+2] = A[j][i]+k;
816   //  }
817   // }
818   bool FoundInduction = false;
819   Instruction *InnerIndexVarInc = nullptr;
820   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
821     InnerIndexVarInc =
822         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
823   else
824     InnerIndexVarInc =
825         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
826 
827   if (!InnerIndexVarInc)
828     return true;
829 
830   // Since we split the inner loop latch on this induction variable. Make sure
831   // we do not have any instruction between the induction variable and branch
832   // instruction.
833 
834   for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend();
835        I != E && !FoundInduction; ++I) {
836     if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I))
837       continue;
838     const Instruction &Ins = *I;
839     // We found an instruction. If this is not induction variable then it is not
840     // safe to split this loop latch.
841     if (!Ins.isIdenticalTo(InnerIndexVarInc))
842       return true;
843     else
844       FoundInduction = true;
845   }
846   // The loop latch ended and we didn't find the induction variable return as
847   // current limitation.
848   if (!FoundInduction)
849     return true;
850 
851   return false;
852 }
853 
854 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
855                                                   unsigned OuterLoopId,
856                                                   CharMatrix &DepMatrix) {
857 
858   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
859     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
860                  << "and OuterLoopId = " << OuterLoopId
861                  << "due to dependence\n");
862     return false;
863   }
864 
865   // Create unique Preheaders if we already do not have one.
866   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
867   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
868 
869   // Create  a unique outer preheader -
870   // 1) If OuterLoop preheader is not present.
871   // 2) If OuterLoop Preheader is same as OuterLoop Header
872   // 3) If OuterLoop Preheader is same as Header of the previous loop.
873   // 4) If OuterLoop Preheader is Entry node.
874   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
875       isa<PHINode>(OuterLoopPreHeader->begin()) ||
876       !OuterLoopPreHeader->getUniquePredecessor()) {
877     OuterLoopPreHeader =
878         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
879   }
880 
881   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
882       InnerLoopPreHeader == OuterLoop->getHeader()) {
883     InnerLoopPreHeader =
884         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
885   }
886 
887   // TODO: The loops could not be interchanged due to current limitations in the
888   // transform module.
889   if (currentLimitations()) {
890     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
891     return false;
892   }
893 
894   // Check if the loops are tightly nested.
895   if (!tightlyNested(OuterLoop, InnerLoop)) {
896     DEBUG(dbgs() << "Loops not tightly nested\n");
897     return false;
898   }
899 
900   return true;
901 }
902 
903 int LoopInterchangeProfitability::getInstrOrderCost() {
904   unsigned GoodOrder, BadOrder;
905   BadOrder = GoodOrder = 0;
906   for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
907        BI != BE; ++BI) {
908     for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
909       const Instruction &Ins = *I;
910       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
911         unsigned NumOp = GEP->getNumOperands();
912         bool FoundInnerInduction = false;
913         bool FoundOuterInduction = false;
914         for (unsigned i = 0; i < NumOp; ++i) {
915           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
916           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
917           if (!AR)
918             continue;
919 
920           // If we find the inner induction after an outer induction e.g.
921           // for(int i=0;i<N;i++)
922           //   for(int j=0;j<N;j++)
923           //     A[i][j] = A[i-1][j-1]+k;
924           // then it is a good order.
925           if (AR->getLoop() == InnerLoop) {
926             // We found an InnerLoop induction after OuterLoop induction. It is
927             // a good order.
928             FoundInnerInduction = true;
929             if (FoundOuterInduction) {
930               GoodOrder++;
931               break;
932             }
933           }
934           // If we find the outer induction after an inner induction e.g.
935           // for(int i=0;i<N;i++)
936           //   for(int j=0;j<N;j++)
937           //     A[j][i] = A[j-1][i-1]+k;
938           // then it is a bad order.
939           if (AR->getLoop() == OuterLoop) {
940             // We found an OuterLoop induction after InnerLoop induction. It is
941             // a bad order.
942             FoundOuterInduction = true;
943             if (FoundInnerInduction) {
944               BadOrder++;
945               break;
946             }
947           }
948         }
949       }
950     }
951   }
952   return GoodOrder - BadOrder;
953 }
954 
955 static bool isProfitabileForVectorization(unsigned InnerLoopId,
956                                           unsigned OuterLoopId,
957                                           CharMatrix &DepMatrix) {
958   // TODO: Improve this heuristic to catch more cases.
959   // If the inner loop is loop independent or doesn't carry any dependency it is
960   // profitable to move this to outer position.
961   unsigned Row = DepMatrix.size();
962   for (unsigned i = 0; i < Row; ++i) {
963     if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
964       return false;
965     // TODO: We need to improve this heuristic.
966     if (DepMatrix[i][OuterLoopId] != '=')
967       return false;
968   }
969   // If outer loop has dependence and inner loop is loop independent then it is
970   // profitable to interchange to enable parallelism.
971   return true;
972 }
973 
974 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
975                                                 unsigned OuterLoopId,
976                                                 CharMatrix &DepMatrix) {
977 
978   // TODO: Add better profitability checks.
979   // e.g
980   // 1) Construct dependency matrix and move the one with no loop carried dep
981   //    inside to enable vectorization.
982 
983   // This is rough cost estimation algorithm. It counts the good and bad order
984   // of induction variables in the instruction and allows reordering if number
985   // of bad orders is more than good.
986   int Cost = 0;
987   Cost += getInstrOrderCost();
988   DEBUG(dbgs() << "Cost = " << Cost << "\n");
989   if (Cost < 0)
990     return true;
991 
992   // It is not profitable as per current cache profitability model. But check if
993   // we can move this loop outside to improve parallelism.
994   bool ImprovesPar =
995       isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
996   return ImprovesPar;
997 }
998 
999 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1000                                                Loop *InnerLoop) {
1001   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
1002        ++I) {
1003     if (*I == InnerLoop) {
1004       OuterLoop->removeChildLoop(I);
1005       return;
1006     }
1007   }
1008   llvm_unreachable("Couldn't find loop");
1009 }
1010 
1011 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1012                                                 Loop *OuterLoop) {
1013   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1014   if (OuterLoopParent) {
1015     // Remove the loop from its parent loop.
1016     removeChildLoop(OuterLoopParent, OuterLoop);
1017     removeChildLoop(OuterLoop, InnerLoop);
1018     OuterLoopParent->addChildLoop(InnerLoop);
1019   } else {
1020     removeChildLoop(OuterLoop, InnerLoop);
1021     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1022   }
1023 
1024   while (!InnerLoop->empty())
1025     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1026 
1027   InnerLoop->addChildLoop(OuterLoop);
1028 }
1029 
1030 bool LoopInterchangeTransform::transform() {
1031 
1032   DEBUG(dbgs() << "transform\n");
1033   bool Transformed = false;
1034   Instruction *InnerIndexVar;
1035 
1036   if (InnerLoop->getSubLoops().size() == 0) {
1037     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1038     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1039     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1040     if (!InductionPHI) {
1041       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1042       return false;
1043     }
1044 
1045     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1046       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1047     else
1048       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1049 
1050     //
1051     // Split at the place were the induction variable is
1052     // incremented/decremented.
1053     // TODO: This splitting logic may not work always. Fix this.
1054     splitInnerLoopLatch(InnerIndexVar);
1055     DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
1056 
1057     // Splits the inner loops phi nodes out into a separate basic block.
1058     splitInnerLoopHeader();
1059     DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
1060   }
1061 
1062   Transformed |= adjustLoopLinks();
1063   if (!Transformed) {
1064     DEBUG(dbgs() << "adjustLoopLinks Failed\n");
1065     return false;
1066   }
1067 
1068   restructureLoops(InnerLoop, OuterLoop);
1069   return true;
1070 }
1071 
1072 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1073   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1074   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1075   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1076 }
1077 
1078 void LoopInterchangeTransform::splitOuterLoopLatch() {
1079   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1080   BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch;
1081   OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock,
1082                               OuterLoopLatch->getFirstNonPHI(), DT, LI);
1083 }
1084 
1085 void LoopInterchangeTransform::splitInnerLoopHeader() {
1086 
1087   // Split the inner loop header out. Here make sure that the reduction PHI's
1088   // stay in the innerloop body.
1089   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1090   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1091   if (InnerLoopHasReduction) {
1092     // FIXME: Check if the induction PHI will always be the first PHI.
1093     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
1094         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
1095     if (LI)
1096       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
1097         L->addBasicBlockToLoop(New, *LI);
1098 
1099     // Adjust Reduction PHI's in the block.
1100     SmallVector<PHINode *, 8> PHIVec;
1101     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
1102       PHINode *PHI = dyn_cast<PHINode>(I);
1103       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1104       PHI->replaceAllUsesWith(V);
1105       PHIVec.push_back((PHI));
1106     }
1107     for (auto I = PHIVec.begin(), E = PHIVec.end(); I != E; ++I) {
1108       PHINode *P = *I;
1109       P->eraseFromParent();
1110     }
1111   } else {
1112     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1113   }
1114 
1115   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1116                   "InnerLoopHeader \n");
1117 }
1118 
1119 /// \brief Move all instructions except the terminator from FromBB right before
1120 /// InsertBefore
1121 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1122   auto &ToList = InsertBefore->getParent()->getInstList();
1123   auto &FromList = FromBB->getInstList();
1124 
1125   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1126                 FromBB->getTerminator()->getIterator());
1127 }
1128 
1129 void LoopInterchangeTransform::adjustOuterLoopPreheader() {
1130   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1131   BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader();
1132 
1133   moveBBContents(OuterLoopPreHeader, InnerPreHeader->getTerminator());
1134 }
1135 
1136 void LoopInterchangeTransform::adjustInnerLoopPreheader() {
1137   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1138   BasicBlock *OuterHeader = OuterLoop->getHeader();
1139 
1140   moveBBContents(InnerLoopPreHeader, OuterHeader->getTerminator());
1141 }
1142 
1143 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1144                                                    BasicBlock *OldPred,
1145                                                    BasicBlock *NewPred) {
1146   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1147     PHINode *PHI = cast<PHINode>(I);
1148     unsigned Num = PHI->getNumIncomingValues();
1149     for (unsigned i = 0; i < Num; ++i) {
1150       if (PHI->getIncomingBlock(i) == OldPred)
1151         PHI->setIncomingBlock(i, NewPred);
1152     }
1153   }
1154 }
1155 
1156 bool LoopInterchangeTransform::adjustLoopBranches() {
1157 
1158   DEBUG(dbgs() << "adjustLoopBranches called\n");
1159   // Adjust the loop preheader
1160   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1161   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1162   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1163   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1164   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1165   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1166   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1167   BasicBlock *InnerLoopLatchPredecessor =
1168       InnerLoopLatch->getUniquePredecessor();
1169   BasicBlock *InnerLoopLatchSuccessor;
1170   BasicBlock *OuterLoopLatchSuccessor;
1171 
1172   BranchInst *OuterLoopLatchBI =
1173       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1174   BranchInst *InnerLoopLatchBI =
1175       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1176   BranchInst *OuterLoopHeaderBI =
1177       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1178   BranchInst *InnerLoopHeaderBI =
1179       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1180 
1181   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1182       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1183       !InnerLoopHeaderBI)
1184     return false;
1185 
1186   BranchInst *InnerLoopLatchPredecessorBI =
1187       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1188   BranchInst *OuterLoopPredecessorBI =
1189       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1190 
1191   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1192     return false;
1193   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1194   if (!InnerLoopHeaderSuccessor)
1195     return false;
1196 
1197   // Adjust Loop Preheader and headers
1198 
1199   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
1200   for (unsigned i = 0; i < NumSucc; ++i) {
1201     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
1202       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
1203   }
1204 
1205   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
1206   for (unsigned i = 0; i < NumSucc; ++i) {
1207     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
1208       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
1209     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
1210       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
1211   }
1212 
1213   // Adjust reduction PHI's now that the incoming block has changed.
1214   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1215                       OuterLoopHeader);
1216 
1217   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
1218   InnerLoopHeaderBI->eraseFromParent();
1219 
1220   // -------------Adjust loop latches-----------
1221   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1222     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1223   else
1224     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1225 
1226   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
1227   for (unsigned i = 0; i < NumSucc; ++i) {
1228     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
1229       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
1230   }
1231 
1232   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1233   // the value and remove this PHI node from inner loop.
1234   SmallVector<PHINode *, 8> LcssaVec;
1235   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1236     PHINode *LcssaPhi = cast<PHINode>(I);
1237     LcssaVec.push_back(LcssaPhi);
1238   }
1239   for (auto I = LcssaVec.begin(), E = LcssaVec.end(); I != E; ++I) {
1240     PHINode *P = *I;
1241     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1242     P->replaceAllUsesWith(Incoming);
1243     P->eraseFromParent();
1244   }
1245 
1246   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1247     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1248   else
1249     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1250 
1251   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
1252     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
1253   else
1254     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
1255 
1256   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1257 
1258   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
1259     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
1260   } else {
1261     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
1262   }
1263 
1264   return true;
1265 }
1266 void LoopInterchangeTransform::adjustLoopPreheaders() {
1267 
1268   // We have interchanged the preheaders so we need to interchange the data in
1269   // the preheader as well.
1270   // This is because the content of inner preheader was previously executed
1271   // inside the outer loop.
1272   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1273   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1274   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1275   BranchInst *InnerTermBI =
1276       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1277 
1278   // These instructions should now be executed inside the loop.
1279   // Move instruction into a new block after outer header.
1280   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1281   // These instructions were not executed previously in the loop so move them to
1282   // the older inner loop preheader.
1283   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1284 }
1285 
1286 bool LoopInterchangeTransform::adjustLoopLinks() {
1287 
1288   // Adjust all branches in the inner and outer loop.
1289   bool Changed = adjustLoopBranches();
1290   if (Changed)
1291     adjustLoopPreheaders();
1292   return Changed;
1293 }
1294 
1295 char LoopInterchange::ID = 0;
1296 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1297                       "Interchanges loops for cache reuse", false, false)
1298 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1299 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1300 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1301 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1302 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1303 INITIALIZE_PASS_DEPENDENCY(LCSSA)
1304 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1305 
1306 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1307                     "Interchanges loops for cache reuse", false, false)
1308 
1309 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1310