1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopNestAnalysis.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include <cassert> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "loop-interchange" 57 58 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 59 60 static cl::opt<int> LoopInterchangeCostThreshold( 61 "loop-interchange-threshold", cl::init(0), cl::Hidden, 62 cl::desc("Interchange if you gain more than this number")); 63 64 namespace { 65 66 using LoopVector = SmallVector<Loop *, 8>; 67 68 // TODO: Check if we can use a sparse matrix here. 69 using CharMatrix = std::vector<std::vector<char>>; 70 71 } // end anonymous namespace 72 73 // Maximum number of dependencies that can be handled in the dependency matrix. 74 static const unsigned MaxMemInstrCount = 100; 75 76 // Maximum loop depth supported. 77 static const unsigned MaxLoopNestDepth = 10; 78 79 #ifdef DUMP_DEP_MATRICIES 80 static void printDepMatrix(CharMatrix &DepMatrix) { 81 for (auto &Row : DepMatrix) { 82 for (auto D : Row) 83 LLVM_DEBUG(dbgs() << D << " "); 84 LLVM_DEBUG(dbgs() << "\n"); 85 } 86 } 87 #endif 88 89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 90 Loop *L, DependenceInfo *DI) { 91 using ValueVector = SmallVector<Value *, 16>; 92 93 ValueVector MemInstr; 94 95 // For each block. 96 for (BasicBlock *BB : L->blocks()) { 97 // Scan the BB and collect legal loads and stores. 98 for (Instruction &I : *BB) { 99 if (!isa<Instruction>(I)) 100 return false; 101 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 102 if (!Ld->isSimple()) 103 return false; 104 MemInstr.push_back(&I); 105 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 106 if (!St->isSimple()) 107 return false; 108 MemInstr.push_back(&I); 109 } 110 } 111 } 112 113 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 114 << " Loads and Stores to analyze\n"); 115 116 ValueVector::iterator I, IE, J, JE; 117 118 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 119 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 120 std::vector<char> Dep; 121 Instruction *Src = cast<Instruction>(*I); 122 Instruction *Dst = cast<Instruction>(*J); 123 if (Src == Dst) 124 continue; 125 // Ignore Input dependencies. 126 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 127 continue; 128 // Track Output, Flow, and Anti dependencies. 129 if (auto D = DI->depends(Src, Dst, true)) { 130 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 131 LLVM_DEBUG(StringRef DepType = 132 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 133 dbgs() << "Found " << DepType 134 << " dependency between Src and Dst\n" 135 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 136 unsigned Levels = D->getLevels(); 137 char Direction; 138 for (unsigned II = 1; II <= Levels; ++II) { 139 const SCEV *Distance = D->getDistance(II); 140 const SCEVConstant *SCEVConst = 141 dyn_cast_or_null<SCEVConstant>(Distance); 142 if (SCEVConst) { 143 const ConstantInt *CI = SCEVConst->getValue(); 144 if (CI->isNegative()) 145 Direction = '<'; 146 else if (CI->isZero()) 147 Direction = '='; 148 else 149 Direction = '>'; 150 Dep.push_back(Direction); 151 } else if (D->isScalar(II)) { 152 Direction = 'S'; 153 Dep.push_back(Direction); 154 } else { 155 unsigned Dir = D->getDirection(II); 156 if (Dir == Dependence::DVEntry::LT || 157 Dir == Dependence::DVEntry::LE) 158 Direction = '<'; 159 else if (Dir == Dependence::DVEntry::GT || 160 Dir == Dependence::DVEntry::GE) 161 Direction = '>'; 162 else if (Dir == Dependence::DVEntry::EQ) 163 Direction = '='; 164 else 165 Direction = '*'; 166 Dep.push_back(Direction); 167 } 168 } 169 while (Dep.size() != Level) { 170 Dep.push_back('I'); 171 } 172 173 DepMatrix.push_back(Dep); 174 if (DepMatrix.size() > MaxMemInstrCount) { 175 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 176 << " dependencies inside loop\n"); 177 return false; 178 } 179 } 180 } 181 } 182 183 return true; 184 } 185 186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 187 // matrix by exchanging the two columns. 188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 189 unsigned ToIndx) { 190 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 191 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 192 } 193 194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 195 // '>' 196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 197 unsigned Column) { 198 for (unsigned i = 0; i <= Column; ++i) { 199 if (DepMatrix[Row][i] == '<') 200 return false; 201 if (DepMatrix[Row][i] == '>') 202 return true; 203 } 204 // All dependencies were '=','S' or 'I' 205 return false; 206 } 207 208 // Checks if no dependence exist in the dependency matrix in Row before Column. 209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 210 unsigned Column) { 211 for (unsigned i = 0; i < Column; ++i) { 212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 213 DepMatrix[Row][i] != 'I') 214 return false; 215 } 216 return true; 217 } 218 219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 220 unsigned OuterLoopId, char InnerDep, 221 char OuterDep) { 222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 223 return false; 224 225 if (InnerDep == OuterDep) 226 return true; 227 228 // It is legal to interchange if and only if after interchange no row has a 229 // '>' direction as the leftmost non-'='. 230 231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 232 return true; 233 234 if (InnerDep == '<') 235 return true; 236 237 if (InnerDep == '>') { 238 // If OuterLoopId represents outermost loop then interchanging will make the 239 // 1st dependency as '>' 240 if (OuterLoopId == 0) 241 return false; 242 243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 244 // interchanging will result in this row having an outermost non '=' 245 // dependency of '>' 246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 247 return true; 248 } 249 250 return false; 251 } 252 253 // Checks if it is legal to interchange 2 loops. 254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 255 // if the direction matrix, after the same permutation is applied to its 256 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 258 unsigned InnerLoopId, 259 unsigned OuterLoopId) { 260 unsigned NumRows = DepMatrix.size(); 261 // For each row check if it is valid to interchange. 262 for (unsigned Row = 0; Row < NumRows; ++Row) { 263 char InnerDep = DepMatrix[Row][InnerLoopId]; 264 char OuterDep = DepMatrix[Row][OuterLoopId]; 265 if (InnerDep == '*' || OuterDep == '*') 266 return false; 267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 268 return false; 269 } 270 return true; 271 } 272 273 static LoopVector populateWorklist(Loop &L) { 274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 275 << L.getHeader()->getParent()->getName() << " Loop: %" 276 << L.getHeader()->getName() << '\n'); 277 LoopVector LoopList; 278 Loop *CurrentLoop = &L; 279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 280 while (!Vec->empty()) { 281 // The current loop has multiple subloops in it hence it is not tightly 282 // nested. 283 // Discard all loops above it added into Worklist. 284 if (Vec->size() != 1) 285 return {}; 286 287 LoopList.push_back(CurrentLoop); 288 CurrentLoop = Vec->front(); 289 Vec = &CurrentLoop->getSubLoops(); 290 } 291 LoopList.push_back(CurrentLoop); 292 return LoopList; 293 } 294 295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 297 if (InnerIndexVar) 298 return InnerIndexVar; 299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 300 return nullptr; 301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 302 PHINode *PhiVar = cast<PHINode>(I); 303 Type *PhiTy = PhiVar->getType(); 304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 305 !PhiTy->isPointerTy()) 306 return nullptr; 307 const SCEVAddRecExpr *AddRec = 308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 309 if (!AddRec || !AddRec->isAffine()) 310 continue; 311 const SCEV *Step = AddRec->getStepRecurrence(*SE); 312 if (!isa<SCEVConstant>(Step)) 313 continue; 314 // Found the induction variable. 315 // FIXME: Handle loops with more than one induction variable. Note that, 316 // currently, legality makes sure we have only one induction variable. 317 return PhiVar; 318 } 319 return nullptr; 320 } 321 322 namespace { 323 324 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 325 class LoopInterchangeLegality { 326 public: 327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 328 OptimizationRemarkEmitter *ORE) 329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 330 331 /// Check if the loops can be interchanged. 332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 333 CharMatrix &DepMatrix); 334 335 /// Check if the loop structure is understood. We do not handle triangular 336 /// loops for now. 337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 338 339 bool currentLimitations(); 340 341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 342 return OuterInnerReductions; 343 } 344 345 private: 346 bool tightlyNested(Loop *Outer, Loop *Inner); 347 bool containsUnsafeInstructions(BasicBlock *BB); 348 349 /// Discover induction and reduction PHIs in the header of \p L. Induction 350 /// PHIs are added to \p Inductions, reductions are added to 351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 352 /// to be passed as \p InnerLoop. 353 bool findInductionAndReductions(Loop *L, 354 SmallVector<PHINode *, 8> &Inductions, 355 Loop *InnerLoop); 356 357 Loop *OuterLoop; 358 Loop *InnerLoop; 359 360 ScalarEvolution *SE; 361 362 /// Interface to emit optimization remarks. 363 OptimizationRemarkEmitter *ORE; 364 365 /// Set of reduction PHIs taking part of a reduction across the inner and 366 /// outer loop. 367 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 368 }; 369 370 /// LoopInterchangeProfitability checks if it is profitable to interchange the 371 /// loop. 372 class LoopInterchangeProfitability { 373 public: 374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 375 OptimizationRemarkEmitter *ORE) 376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 377 378 /// Check if the loop interchange is profitable. 379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 380 CharMatrix &DepMatrix); 381 382 private: 383 int getInstrOrderCost(); 384 385 Loop *OuterLoop; 386 Loop *InnerLoop; 387 388 /// Scev analysis. 389 ScalarEvolution *SE; 390 391 /// Interface to emit optimization remarks. 392 OptimizationRemarkEmitter *ORE; 393 }; 394 395 /// LoopInterchangeTransform interchanges the loop. 396 class LoopInterchangeTransform { 397 public: 398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 399 LoopInfo *LI, DominatorTree *DT, 400 const LoopInterchangeLegality &LIL) 401 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 402 403 /// Interchange OuterLoop and InnerLoop. 404 bool transform(); 405 void restructureLoops(Loop *NewInner, Loop *NewOuter, 406 BasicBlock *OrigInnerPreHeader, 407 BasicBlock *OrigOuterPreHeader); 408 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 409 410 private: 411 bool adjustLoopLinks(); 412 bool adjustLoopBranches(); 413 414 Loop *OuterLoop; 415 Loop *InnerLoop; 416 417 /// Scev analysis. 418 ScalarEvolution *SE; 419 420 LoopInfo *LI; 421 DominatorTree *DT; 422 423 const LoopInterchangeLegality &LIL; 424 }; 425 426 struct LoopInterchange { 427 ScalarEvolution *SE = nullptr; 428 LoopInfo *LI = nullptr; 429 DependenceInfo *DI = nullptr; 430 DominatorTree *DT = nullptr; 431 432 /// Interface to emit optimization remarks. 433 OptimizationRemarkEmitter *ORE; 434 435 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 436 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 437 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 438 439 bool run(Loop *L) { 440 if (L->getParentLoop()) 441 return false; 442 443 return processLoopList(populateWorklist(*L)); 444 } 445 446 bool run(LoopNest &LN) { 447 const auto &LoopList = LN.getLoops(); 448 for (unsigned I = 1; I < LoopList.size(); ++I) 449 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 450 return false; 451 return processLoopList(LoopList); 452 } 453 454 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 455 for (Loop *L : LoopList) { 456 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 457 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 458 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 459 return false; 460 } 461 if (L->getNumBackEdges() != 1) { 462 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 463 return false; 464 } 465 if (!L->getExitingBlock()) { 466 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 467 return false; 468 } 469 } 470 return true; 471 } 472 473 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 474 // TODO: Add a better heuristic to select the loop to be interchanged based 475 // on the dependence matrix. Currently we select the innermost loop. 476 return LoopList.size() - 1; 477 } 478 479 bool processLoopList(ArrayRef<Loop *> LoopList) { 480 bool Changed = false; 481 unsigned LoopNestDepth = LoopList.size(); 482 if (LoopNestDepth < 2) { 483 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 484 return false; 485 } 486 if (LoopNestDepth > MaxLoopNestDepth) { 487 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 488 << MaxLoopNestDepth << "\n"); 489 return false; 490 } 491 if (!isComputableLoopNest(LoopList)) { 492 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 493 return false; 494 } 495 496 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 497 << "\n"); 498 499 CharMatrix DependencyMatrix; 500 Loop *OuterMostLoop = *(LoopList.begin()); 501 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 502 OuterMostLoop, DI)) { 503 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 504 return false; 505 } 506 #ifdef DUMP_DEP_MATRICIES 507 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 508 printDepMatrix(DependencyMatrix); 509 #endif 510 511 // Get the Outermost loop exit. 512 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 513 if (!LoopNestExit) { 514 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 515 return false; 516 } 517 518 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 519 // Move the selected loop outwards to the best possible position. 520 Loop *LoopToBeInterchanged = LoopList[SelecLoopId]; 521 for (unsigned i = SelecLoopId; i > 0; i--) { 522 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i, 523 i - 1, DependencyMatrix); 524 if (!Interchanged) 525 return Changed; 526 // Update the DependencyMatrix 527 interChangeDependencies(DependencyMatrix, i, i - 1); 528 #ifdef DUMP_DEP_MATRICIES 529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 530 printDepMatrix(DependencyMatrix); 531 #endif 532 Changed |= Interchanged; 533 } 534 return Changed; 535 } 536 537 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 538 unsigned OuterLoopId, 539 std::vector<std::vector<char>> &DependencyMatrix) { 540 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 541 << " and OuterLoopId = " << OuterLoopId << "\n"); 542 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 543 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 544 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 545 return false; 546 } 547 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 548 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 549 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 550 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 551 return false; 552 } 553 554 ORE->emit([&]() { 555 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 556 InnerLoop->getStartLoc(), 557 InnerLoop->getHeader()) 558 << "Loop interchanged with enclosing loop."; 559 }); 560 561 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 562 LIT.transform(); 563 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 564 LoopsInterchanged++; 565 566 assert(InnerLoop->isLCSSAForm(*DT) && 567 "Inner loop not left in LCSSA form after loop interchange!"); 568 assert(OuterLoop->isLCSSAForm(*DT) && 569 "Outer loop not left in LCSSA form after loop interchange!"); 570 571 return true; 572 } 573 }; 574 575 } // end anonymous namespace 576 577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 578 return any_of(*BB, [](const Instruction &I) { 579 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 580 }); 581 } 582 583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 584 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 585 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 586 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 587 588 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 589 590 // A perfectly nested loop will not have any branch in between the outer and 591 // inner block i.e. outer header will branch to either inner preheader and 592 // outerloop latch. 593 BranchInst *OuterLoopHeaderBI = 594 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 595 if (!OuterLoopHeaderBI) 596 return false; 597 598 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 599 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 600 Succ != OuterLoopLatch) 601 return false; 602 603 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 604 // We do not have any basic block in between now make sure the outer header 605 // and outer loop latch doesn't contain any unsafe instructions. 606 if (containsUnsafeInstructions(OuterLoopHeader) || 607 containsUnsafeInstructions(OuterLoopLatch)) 608 return false; 609 610 // Also make sure the inner loop preheader does not contain any unsafe 611 // instructions. Note that all instructions in the preheader will be moved to 612 // the outer loop header when interchanging. 613 if (InnerLoopPreHeader != OuterLoopHeader && 614 containsUnsafeInstructions(InnerLoopPreHeader)) 615 return false; 616 617 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 618 // Ensure the inner loop exit block flows to the outer loop latch possibly 619 // through empty blocks. 620 const BasicBlock &SuccInner = 621 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 622 if (&SuccInner != OuterLoopLatch) { 623 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 624 << " does not lead to the outer loop latch.\n";); 625 return false; 626 } 627 // The inner loop exit block does flow to the outer loop latch and not some 628 // other BBs, now make sure it contains safe instructions, since it will be 629 // moved into the (new) inner loop after interchange. 630 if (containsUnsafeInstructions(InnerLoopExit)) 631 return false; 632 633 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 634 // We have a perfect loop nest. 635 return true; 636 } 637 638 bool LoopInterchangeLegality::isLoopStructureUnderstood( 639 PHINode *InnerInduction) { 640 unsigned Num = InnerInduction->getNumOperands(); 641 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 642 for (unsigned i = 0; i < Num; ++i) { 643 Value *Val = InnerInduction->getOperand(i); 644 if (isa<Constant>(Val)) 645 continue; 646 Instruction *I = dyn_cast<Instruction>(Val); 647 if (!I) 648 return false; 649 // TODO: Handle triangular loops. 650 // e.g. for(int i=0;i<N;i++) 651 // for(int j=i;j<N;j++) 652 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 653 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 654 InnerLoopPreheader && 655 !OuterLoop->isLoopInvariant(I)) { 656 return false; 657 } 658 } 659 660 // TODO: Handle triangular loops of another form. 661 // e.g. for(int i=0;i<N;i++) 662 // for(int j=0;j<i;j++) 663 // or, 664 // for(int i=0;i<N;i++) 665 // for(int j=0;j*i<N;j++) 666 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 667 BranchInst *InnerLoopLatchBI = 668 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 669 if (!InnerLoopLatchBI->isConditional()) 670 return false; 671 if (CmpInst *InnerLoopCmp = 672 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 673 Value *Op0 = InnerLoopCmp->getOperand(0); 674 Value *Op1 = InnerLoopCmp->getOperand(1); 675 676 // LHS and RHS of the inner loop exit condition, e.g., 677 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 678 Value *Left = nullptr; 679 Value *Right = nullptr; 680 681 // Check if V only involves inner loop induction variable. 682 // Return true if V is InnerInduction, or a cast from 683 // InnerInduction, or a binary operator that involves 684 // InnerInduction and a constant. 685 std::function<bool(Value *)> IsPathToIndVar; 686 IsPathToIndVar = [&InnerInduction, &IsPathToIndVar](Value *V) -> bool { 687 if (V == InnerInduction) 688 return true; 689 if (isa<Constant>(V)) 690 return true; 691 Instruction *I = dyn_cast<Instruction>(V); 692 if (!I) 693 return false; 694 if (isa<CastInst>(I)) 695 return IsPathToIndVar(I->getOperand(0)); 696 if (isa<BinaryOperator>(I)) 697 return IsPathToIndVar(I->getOperand(0)) && 698 IsPathToIndVar(I->getOperand(1)); 699 return false; 700 }; 701 702 if (IsPathToIndVar(Op0) && !isa<Constant>(Op0)) { 703 Left = Op0; 704 Right = Op1; 705 } else if (IsPathToIndVar(Op1) && !isa<Constant>(Op1)) { 706 Left = Op1; 707 Right = Op0; 708 } 709 710 if (Left == nullptr) 711 return false; 712 713 const SCEV *S = SE->getSCEV(Right); 714 if (!SE->isLoopInvariant(S, OuterLoop)) 715 return false; 716 } 717 718 return true; 719 } 720 721 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 722 // value. 723 static Value *followLCSSA(Value *SV) { 724 PHINode *PHI = dyn_cast<PHINode>(SV); 725 if (!PHI) 726 return SV; 727 728 if (PHI->getNumIncomingValues() != 1) 729 return SV; 730 return followLCSSA(PHI->getIncomingValue(0)); 731 } 732 733 // Check V's users to see if it is involved in a reduction in L. 734 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 735 // Reduction variables cannot be constants. 736 if (isa<Constant>(V)) 737 return nullptr; 738 739 for (Value *User : V->users()) { 740 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 741 if (PHI->getNumIncomingValues() == 1) 742 continue; 743 RecurrenceDescriptor RD; 744 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 745 return PHI; 746 return nullptr; 747 } 748 } 749 750 return nullptr; 751 } 752 753 bool LoopInterchangeLegality::findInductionAndReductions( 754 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 755 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 756 return false; 757 for (PHINode &PHI : L->getHeader()->phis()) { 758 RecurrenceDescriptor RD; 759 InductionDescriptor ID; 760 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 761 Inductions.push_back(&PHI); 762 else { 763 // PHIs in inner loops need to be part of a reduction in the outer loop, 764 // discovered when checking the PHIs of the outer loop earlier. 765 if (!InnerLoop) { 766 if (!OuterInnerReductions.count(&PHI)) { 767 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 768 "across the outer loop.\n"); 769 return false; 770 } 771 } else { 772 assert(PHI.getNumIncomingValues() == 2 && 773 "Phis in loop header should have exactly 2 incoming values"); 774 // Check if we have a PHI node in the outer loop that has a reduction 775 // result from the inner loop as an incoming value. 776 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 777 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 778 if (!InnerRedPhi || 779 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 780 LLVM_DEBUG( 781 dbgs() 782 << "Failed to recognize PHI as an induction or reduction.\n"); 783 return false; 784 } 785 OuterInnerReductions.insert(&PHI); 786 OuterInnerReductions.insert(InnerRedPhi); 787 } 788 } 789 } 790 return true; 791 } 792 793 // This function indicates the current limitations in the transform as a result 794 // of which we do not proceed. 795 bool LoopInterchangeLegality::currentLimitations() { 796 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 797 798 // transform currently expects the loop latches to also be the exiting 799 // blocks. 800 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 801 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 802 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 803 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 804 LLVM_DEBUG( 805 dbgs() << "Loops where the latch is not the exiting block are not" 806 << " supported currently.\n"); 807 ORE->emit([&]() { 808 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 809 OuterLoop->getStartLoc(), 810 OuterLoop->getHeader()) 811 << "Loops where the latch is not the exiting block cannot be" 812 " interchange currently."; 813 }); 814 return true; 815 } 816 817 PHINode *InnerInductionVar; 818 SmallVector<PHINode *, 8> Inductions; 819 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 820 LLVM_DEBUG( 821 dbgs() << "Only outer loops with induction or reduction PHI nodes " 822 << "are supported currently.\n"); 823 ORE->emit([&]() { 824 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 825 OuterLoop->getStartLoc(), 826 OuterLoop->getHeader()) 827 << "Only outer loops with induction or reduction PHI nodes can be" 828 " interchanged currently."; 829 }); 830 return true; 831 } 832 833 // TODO: Currently we handle only loops with 1 induction variable. 834 if (Inductions.size() != 1) { 835 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 836 << "supported currently.\n"); 837 ORE->emit([&]() { 838 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 839 OuterLoop->getStartLoc(), 840 OuterLoop->getHeader()) 841 << "Only outer loops with 1 induction variable can be " 842 "interchanged currently."; 843 }); 844 return true; 845 } 846 847 Inductions.clear(); 848 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 849 LLVM_DEBUG( 850 dbgs() << "Only inner loops with induction or reduction PHI nodes " 851 << "are supported currently.\n"); 852 ORE->emit([&]() { 853 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 854 InnerLoop->getStartLoc(), 855 InnerLoop->getHeader()) 856 << "Only inner loops with induction or reduction PHI nodes can be" 857 " interchange currently."; 858 }); 859 return true; 860 } 861 862 // TODO: Currently we handle only loops with 1 induction variable. 863 if (Inductions.size() != 1) { 864 LLVM_DEBUG( 865 dbgs() << "We currently only support loops with 1 induction variable." 866 << "Failed to interchange due to current limitation\n"); 867 ORE->emit([&]() { 868 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 869 InnerLoop->getStartLoc(), 870 InnerLoop->getHeader()) 871 << "Only inner loops with 1 induction variable can be " 872 "interchanged currently."; 873 }); 874 return true; 875 } 876 InnerInductionVar = Inductions.pop_back_val(); 877 878 // TODO: Triangular loops are not handled for now. 879 if (!isLoopStructureUnderstood(InnerInductionVar)) { 880 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 881 ORE->emit([&]() { 882 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 883 InnerLoop->getStartLoc(), 884 InnerLoop->getHeader()) 885 << "Inner loop structure not understood currently."; 886 }); 887 return true; 888 } 889 890 return false; 891 } 892 893 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 894 // users are either reduction PHIs or PHIs outside the outer loop (which means 895 // the we are only interested in the final value after the loop). 896 static bool 897 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 898 SmallPtrSetImpl<PHINode *> &Reductions) { 899 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 900 for (PHINode &PHI : InnerExit->phis()) { 901 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 902 if (PHI.getNumIncomingValues() > 1) 903 return false; 904 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 905 PHINode *PN = dyn_cast<PHINode>(U); 906 return !PN || 907 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 908 })) { 909 return false; 910 } 911 } 912 return true; 913 } 914 915 // We currently support LCSSA PHI nodes in the outer loop exit, if their 916 // incoming values do not come from the outer loop latch or if the 917 // outer loop latch has a single predecessor. In that case, the value will 918 // be available if both the inner and outer loop conditions are true, which 919 // will still be true after interchanging. If we have multiple predecessor, 920 // that may not be the case, e.g. because the outer loop latch may be executed 921 // if the inner loop is not executed. 922 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 923 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 924 for (PHINode &PHI : LoopNestExit->phis()) { 925 // FIXME: We currently are not able to detect floating point reductions 926 // and have to use floating point PHIs as a proxy to prevent 927 // interchanging in the presence of floating point reductions. 928 if (PHI.getType()->isFloatingPointTy()) 929 return false; 930 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 931 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 932 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 933 continue; 934 935 // The incoming value is defined in the outer loop latch. Currently we 936 // only support that in case the outer loop latch has a single predecessor. 937 // This guarantees that the outer loop latch is executed if and only if 938 // the inner loop is executed (because tightlyNested() guarantees that the 939 // outer loop header only branches to the inner loop or the outer loop 940 // latch). 941 // FIXME: We could weaken this logic and allow multiple predecessors, 942 // if the values are produced outside the loop latch. We would need 943 // additional logic to update the PHI nodes in the exit block as 944 // well. 945 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 946 return false; 947 } 948 } 949 return true; 950 } 951 952 // In case of multi-level nested loops, it may occur that lcssa phis exist in 953 // the latch of InnerLoop, i.e., when defs of the incoming values are further 954 // inside the loopnest. Sometimes those incoming values are not available 955 // after interchange, since the original inner latch will become the new outer 956 // latch which may have predecessor paths that do not include those incoming 957 // values. 958 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 959 // multi-level loop nests. 960 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 961 if (InnerLoop->getSubLoops().empty()) 962 return true; 963 // If the original outer latch has only one predecessor, then values defined 964 // further inside the looploop, e.g., in the innermost loop, will be available 965 // at the new outer latch after interchange. 966 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 967 return true; 968 969 // The outer latch has more than one predecessors, i.e., the inner 970 // exit and the inner header. 971 // PHI nodes in the inner latch are lcssa phis where the incoming values 972 // are defined further inside the loopnest. Check if those phis are used 973 // in the original inner latch. If that is the case then bail out since 974 // those incoming values may not be available at the new outer latch. 975 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 976 for (PHINode &PHI : InnerLoopLatch->phis()) { 977 for (auto *U : PHI.users()) { 978 Instruction *UI = cast<Instruction>(U); 979 if (InnerLoopLatch == UI->getParent()) 980 return false; 981 } 982 } 983 return true; 984 } 985 986 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 987 unsigned OuterLoopId, 988 CharMatrix &DepMatrix) { 989 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 990 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 991 << " and OuterLoopId = " << OuterLoopId 992 << " due to dependence\n"); 993 ORE->emit([&]() { 994 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 995 InnerLoop->getStartLoc(), 996 InnerLoop->getHeader()) 997 << "Cannot interchange loops due to dependences."; 998 }); 999 return false; 1000 } 1001 // Check if outer and inner loop contain legal instructions only. 1002 for (auto *BB : OuterLoop->blocks()) 1003 for (Instruction &I : BB->instructionsWithoutDebug()) 1004 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1005 // readnone functions do not prevent interchanging. 1006 if (CI->onlyWritesMemory()) 1007 continue; 1008 LLVM_DEBUG( 1009 dbgs() << "Loops with call instructions cannot be interchanged " 1010 << "safely."); 1011 ORE->emit([&]() { 1012 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1013 CI->getDebugLoc(), 1014 CI->getParent()) 1015 << "Cannot interchange loops due to call instruction."; 1016 }); 1017 1018 return false; 1019 } 1020 1021 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1022 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1023 ORE->emit([&]() { 1024 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1025 InnerLoop->getStartLoc(), 1026 InnerLoop->getHeader()) 1027 << "Cannot interchange loops because unsupported PHI nodes found " 1028 "in inner loop latch."; 1029 }); 1030 return false; 1031 } 1032 1033 // TODO: The loops could not be interchanged due to current limitations in the 1034 // transform module. 1035 if (currentLimitations()) { 1036 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1037 return false; 1038 } 1039 1040 // Check if the loops are tightly nested. 1041 if (!tightlyNested(OuterLoop, InnerLoop)) { 1042 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1043 ORE->emit([&]() { 1044 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1045 InnerLoop->getStartLoc(), 1046 InnerLoop->getHeader()) 1047 << "Cannot interchange loops because they are not tightly " 1048 "nested."; 1049 }); 1050 return false; 1051 } 1052 1053 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1054 OuterInnerReductions)) { 1055 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1056 ORE->emit([&]() { 1057 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1058 InnerLoop->getStartLoc(), 1059 InnerLoop->getHeader()) 1060 << "Found unsupported PHI node in loop exit."; 1061 }); 1062 return false; 1063 } 1064 1065 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1066 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1067 ORE->emit([&]() { 1068 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1069 OuterLoop->getStartLoc(), 1070 OuterLoop->getHeader()) 1071 << "Found unsupported PHI node in loop exit."; 1072 }); 1073 return false; 1074 } 1075 1076 return true; 1077 } 1078 1079 int LoopInterchangeProfitability::getInstrOrderCost() { 1080 unsigned GoodOrder, BadOrder; 1081 BadOrder = GoodOrder = 0; 1082 for (BasicBlock *BB : InnerLoop->blocks()) { 1083 for (Instruction &Ins : *BB) { 1084 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1085 unsigned NumOp = GEP->getNumOperands(); 1086 bool FoundInnerInduction = false; 1087 bool FoundOuterInduction = false; 1088 for (unsigned i = 0; i < NumOp; ++i) { 1089 // Skip operands that are not SCEV-able. 1090 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1091 continue; 1092 1093 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1094 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1095 if (!AR) 1096 continue; 1097 1098 // If we find the inner induction after an outer induction e.g. 1099 // for(int i=0;i<N;i++) 1100 // for(int j=0;j<N;j++) 1101 // A[i][j] = A[i-1][j-1]+k; 1102 // then it is a good order. 1103 if (AR->getLoop() == InnerLoop) { 1104 // We found an InnerLoop induction after OuterLoop induction. It is 1105 // a good order. 1106 FoundInnerInduction = true; 1107 if (FoundOuterInduction) { 1108 GoodOrder++; 1109 break; 1110 } 1111 } 1112 // If we find the outer induction after an inner induction e.g. 1113 // for(int i=0;i<N;i++) 1114 // for(int j=0;j<N;j++) 1115 // A[j][i] = A[j-1][i-1]+k; 1116 // then it is a bad order. 1117 if (AR->getLoop() == OuterLoop) { 1118 // We found an OuterLoop induction after InnerLoop induction. It is 1119 // a bad order. 1120 FoundOuterInduction = true; 1121 if (FoundInnerInduction) { 1122 BadOrder++; 1123 break; 1124 } 1125 } 1126 } 1127 } 1128 } 1129 } 1130 return GoodOrder - BadOrder; 1131 } 1132 1133 static bool isProfitableForVectorization(unsigned InnerLoopId, 1134 unsigned OuterLoopId, 1135 CharMatrix &DepMatrix) { 1136 // TODO: Improve this heuristic to catch more cases. 1137 // If the inner loop is loop independent or doesn't carry any dependency it is 1138 // profitable to move this to outer position. 1139 for (auto &Row : DepMatrix) { 1140 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1141 return false; 1142 // TODO: We need to improve this heuristic. 1143 if (Row[OuterLoopId] != '=') 1144 return false; 1145 } 1146 // If outer loop has dependence and inner loop is loop independent then it is 1147 // profitable to interchange to enable parallelism. 1148 // If there are no dependences, interchanging will not improve anything. 1149 return !DepMatrix.empty(); 1150 } 1151 1152 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1153 unsigned OuterLoopId, 1154 CharMatrix &DepMatrix) { 1155 // TODO: Add better profitability checks. 1156 // e.g 1157 // 1) Construct dependency matrix and move the one with no loop carried dep 1158 // inside to enable vectorization. 1159 1160 // This is rough cost estimation algorithm. It counts the good and bad order 1161 // of induction variables in the instruction and allows reordering if number 1162 // of bad orders is more than good. 1163 int Cost = getInstrOrderCost(); 1164 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1165 if (Cost < -LoopInterchangeCostThreshold) 1166 return true; 1167 1168 // It is not profitable as per current cache profitability model. But check if 1169 // we can move this loop outside to improve parallelism. 1170 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1171 return true; 1172 1173 ORE->emit([&]() { 1174 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1175 InnerLoop->getStartLoc(), 1176 InnerLoop->getHeader()) 1177 << "Interchanging loops is too costly (cost=" 1178 << ore::NV("Cost", Cost) << ", threshold=" 1179 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1180 << ") and it does not improve parallelism."; 1181 }); 1182 return false; 1183 } 1184 1185 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1186 Loop *InnerLoop) { 1187 for (Loop *L : *OuterLoop) 1188 if (L == InnerLoop) { 1189 OuterLoop->removeChildLoop(L); 1190 return; 1191 } 1192 llvm_unreachable("Couldn't find loop"); 1193 } 1194 1195 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1196 /// new inner and outer loop after interchanging: NewInner is the original 1197 /// outer loop and NewOuter is the original inner loop. 1198 /// 1199 /// Before interchanging, we have the following structure 1200 /// Outer preheader 1201 // Outer header 1202 // Inner preheader 1203 // Inner header 1204 // Inner body 1205 // Inner latch 1206 // outer bbs 1207 // Outer latch 1208 // 1209 // After interchanging: 1210 // Inner preheader 1211 // Inner header 1212 // Outer preheader 1213 // Outer header 1214 // Inner body 1215 // outer bbs 1216 // Outer latch 1217 // Inner latch 1218 void LoopInterchangeTransform::restructureLoops( 1219 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1220 BasicBlock *OrigOuterPreHeader) { 1221 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1222 // The original inner loop preheader moves from the new inner loop to 1223 // the parent loop, if there is one. 1224 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1225 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1226 1227 // Switch the loop levels. 1228 if (OuterLoopParent) { 1229 // Remove the loop from its parent loop. 1230 removeChildLoop(OuterLoopParent, NewInner); 1231 removeChildLoop(NewInner, NewOuter); 1232 OuterLoopParent->addChildLoop(NewOuter); 1233 } else { 1234 removeChildLoop(NewInner, NewOuter); 1235 LI->changeTopLevelLoop(NewInner, NewOuter); 1236 } 1237 while (!NewOuter->isInnermost()) 1238 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1239 NewOuter->addChildLoop(NewInner); 1240 1241 // BBs from the original inner loop. 1242 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1243 1244 // Add BBs from the original outer loop to the original inner loop (excluding 1245 // BBs already in inner loop) 1246 for (BasicBlock *BB : NewInner->blocks()) 1247 if (LI->getLoopFor(BB) == NewInner) 1248 NewOuter->addBlockEntry(BB); 1249 1250 // Now remove inner loop header and latch from the new inner loop and move 1251 // other BBs (the loop body) to the new inner loop. 1252 BasicBlock *OuterHeader = NewOuter->getHeader(); 1253 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1254 for (BasicBlock *BB : OrigInnerBBs) { 1255 // Nothing will change for BBs in child loops. 1256 if (LI->getLoopFor(BB) != NewOuter) 1257 continue; 1258 // Remove the new outer loop header and latch from the new inner loop. 1259 if (BB == OuterHeader || BB == OuterLatch) 1260 NewInner->removeBlockFromLoop(BB); 1261 else 1262 LI->changeLoopFor(BB, NewInner); 1263 } 1264 1265 // The preheader of the original outer loop becomes part of the new 1266 // outer loop. 1267 NewOuter->addBlockEntry(OrigOuterPreHeader); 1268 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1269 1270 // Tell SE that we move the loops around. 1271 SE->forgetLoop(NewOuter); 1272 SE->forgetLoop(NewInner); 1273 } 1274 1275 bool LoopInterchangeTransform::transform() { 1276 bool Transformed = false; 1277 Instruction *InnerIndexVar; 1278 1279 if (InnerLoop->getSubLoops().empty()) { 1280 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1281 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1282 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1283 if (!InductionPHI) { 1284 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1285 return false; 1286 } 1287 1288 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1289 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1290 else 1291 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1292 1293 // Ensure that InductionPHI is the first Phi node. 1294 if (&InductionPHI->getParent()->front() != InductionPHI) 1295 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1296 1297 // Create a new latch block for the inner loop. We split at the 1298 // current latch's terminator and then move the condition and all 1299 // operands that are not either loop-invariant or the induction PHI into the 1300 // new latch block. 1301 BasicBlock *NewLatch = 1302 SplitBlock(InnerLoop->getLoopLatch(), 1303 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1304 1305 SmallSetVector<Instruction *, 4> WorkList; 1306 unsigned i = 0; 1307 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1308 for (; i < WorkList.size(); i++) { 1309 // Duplicate instruction and move it the new latch. Update uses that 1310 // have been moved. 1311 Instruction *NewI = WorkList[i]->clone(); 1312 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1313 assert(!NewI->mayHaveSideEffects() && 1314 "Moving instructions with side-effects may change behavior of " 1315 "the loop nest!"); 1316 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1317 Instruction *UserI = cast<Instruction>(U.getUser()); 1318 if (!InnerLoop->contains(UserI->getParent()) || 1319 UserI->getParent() == NewLatch || UserI == InductionPHI) 1320 U.set(NewI); 1321 } 1322 // Add operands of moved instruction to the worklist, except if they are 1323 // outside the inner loop or are the induction PHI. 1324 for (Value *Op : WorkList[i]->operands()) { 1325 Instruction *OpI = dyn_cast<Instruction>(Op); 1326 if (!OpI || 1327 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1328 OpI == InductionPHI) 1329 continue; 1330 WorkList.insert(OpI); 1331 } 1332 } 1333 }; 1334 1335 // FIXME: Should we interchange when we have a constant condition? 1336 Instruction *CondI = dyn_cast<Instruction>( 1337 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1338 ->getCondition()); 1339 if (CondI) 1340 WorkList.insert(CondI); 1341 MoveInstructions(); 1342 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1343 MoveInstructions(); 1344 1345 // Splits the inner loops phi nodes out into a separate basic block. 1346 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1347 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1348 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1349 } 1350 1351 // Instructions in the original inner loop preheader may depend on values 1352 // defined in the outer loop header. Move them there, because the original 1353 // inner loop preheader will become the entry into the interchanged loop nest. 1354 // Currently we move all instructions and rely on LICM to move invariant 1355 // instructions outside the loop nest. 1356 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1357 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1358 if (InnerLoopPreHeader != OuterLoopHeader) { 1359 SmallPtrSet<Instruction *, 4> NeedsMoving; 1360 for (Instruction &I : 1361 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1362 std::prev(InnerLoopPreHeader->end())))) 1363 I.moveBefore(OuterLoopHeader->getTerminator()); 1364 } 1365 1366 Transformed |= adjustLoopLinks(); 1367 if (!Transformed) { 1368 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1369 return false; 1370 } 1371 1372 return true; 1373 } 1374 1375 /// \brief Move all instructions except the terminator from FromBB right before 1376 /// InsertBefore 1377 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1378 auto &ToList = InsertBefore->getParent()->getInstList(); 1379 auto &FromList = FromBB->getInstList(); 1380 1381 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1382 FromBB->getTerminator()->getIterator()); 1383 } 1384 1385 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1386 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1387 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1388 // from BB1 afterwards. 1389 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1390 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1391 for (Instruction *I : TempInstrs) 1392 I->removeFromParent(); 1393 1394 // Move instructions from BB2 to BB1. 1395 moveBBContents(BB2, BB1->getTerminator()); 1396 1397 // Move instructions from TempInstrs to BB2. 1398 for (Instruction *I : TempInstrs) 1399 I->insertBefore(BB2->getTerminator()); 1400 } 1401 1402 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1403 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1404 // \p OldBB is exactly once in BI's successor list. 1405 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1406 BasicBlock *NewBB, 1407 std::vector<DominatorTree::UpdateType> &DTUpdates, 1408 bool MustUpdateOnce = true) { 1409 assert((!MustUpdateOnce || 1410 llvm::count_if(successors(BI), 1411 [OldBB](BasicBlock *BB) { 1412 return BB == OldBB; 1413 }) == 1) && "BI must jump to OldBB exactly once."); 1414 bool Changed = false; 1415 for (Use &Op : BI->operands()) 1416 if (Op == OldBB) { 1417 Op.set(NewBB); 1418 Changed = true; 1419 } 1420 1421 if (Changed) { 1422 DTUpdates.push_back( 1423 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1424 DTUpdates.push_back( 1425 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1426 } 1427 assert(Changed && "Expected a successor to be updated"); 1428 } 1429 1430 // Move Lcssa PHIs to the right place. 1431 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1432 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1433 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1434 Loop *InnerLoop, LoopInfo *LI) { 1435 1436 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1437 // defined either in the header or latch. Those blocks will become header and 1438 // latch of the new outer loop, and the only possible users can PHI nodes 1439 // in the exit block of the loop nest or the outer loop header (reduction 1440 // PHIs, in that case, the incoming value must be defined in the inner loop 1441 // header). We can just substitute the user with the incoming value and remove 1442 // the PHI. 1443 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1444 assert(P.getNumIncomingValues() == 1 && 1445 "Only loops with a single exit are supported!"); 1446 1447 // Incoming values are guaranteed be instructions currently. 1448 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1449 // Skip phis with incoming values from the inner loop body, excluding the 1450 // header and latch. 1451 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1452 continue; 1453 1454 assert(all_of(P.users(), 1455 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1456 return (cast<PHINode>(U)->getParent() == OuterHeader && 1457 IncI->getParent() == InnerHeader) || 1458 cast<PHINode>(U)->getParent() == OuterExit; 1459 }) && 1460 "Can only replace phis iff the uses are in the loop nest exit or " 1461 "the incoming value is defined in the inner header (it will " 1462 "dominate all loop blocks after interchanging)"); 1463 P.replaceAllUsesWith(IncI); 1464 P.eraseFromParent(); 1465 } 1466 1467 SmallVector<PHINode *, 8> LcssaInnerExit; 1468 for (PHINode &P : InnerExit->phis()) 1469 LcssaInnerExit.push_back(&P); 1470 1471 SmallVector<PHINode *, 8> LcssaInnerLatch; 1472 for (PHINode &P : InnerLatch->phis()) 1473 LcssaInnerLatch.push_back(&P); 1474 1475 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1476 // If a PHI node has users outside of InnerExit, it has a use outside the 1477 // interchanged loop and we have to preserve it. We move these to 1478 // InnerLatch, which will become the new exit block for the innermost 1479 // loop after interchanging. 1480 for (PHINode *P : LcssaInnerExit) 1481 P->moveBefore(InnerLatch->getFirstNonPHI()); 1482 1483 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1484 // and we have to move them to the new inner latch. 1485 for (PHINode *P : LcssaInnerLatch) 1486 P->moveBefore(InnerExit->getFirstNonPHI()); 1487 1488 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1489 // incoming values defined in the outer loop, we have to add a new PHI 1490 // in the inner loop latch, which became the exit block of the outer loop, 1491 // after interchanging. 1492 if (OuterExit) { 1493 for (PHINode &P : OuterExit->phis()) { 1494 if (P.getNumIncomingValues() != 1) 1495 continue; 1496 // Skip Phis with incoming values defined in the inner loop. Those should 1497 // already have been updated. 1498 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1499 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1500 continue; 1501 1502 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1503 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1504 NewPhi->setIncomingBlock(0, OuterLatch); 1505 // We might have incoming edges from other BBs, i.e., the original outer 1506 // header. 1507 for (auto *Pred : predecessors(InnerLatch)) { 1508 if (Pred == OuterLatch) 1509 continue; 1510 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1511 } 1512 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1513 P.setIncomingValue(0, NewPhi); 1514 } 1515 } 1516 1517 // Now adjust the incoming blocks for the LCSSA PHIs. 1518 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1519 // with the new latch. 1520 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1521 } 1522 1523 bool LoopInterchangeTransform::adjustLoopBranches() { 1524 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1525 std::vector<DominatorTree::UpdateType> DTUpdates; 1526 1527 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1528 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1529 1530 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1531 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1532 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1533 // Ensure that both preheaders do not contain PHI nodes and have single 1534 // predecessors. This allows us to move them easily. We use 1535 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1536 // preheaders do not satisfy those conditions. 1537 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1538 !OuterLoopPreHeader->getUniquePredecessor()) 1539 OuterLoopPreHeader = 1540 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1541 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1542 InnerLoopPreHeader = 1543 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1544 1545 // Adjust the loop preheader 1546 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1547 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1548 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1549 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1550 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1551 BasicBlock *InnerLoopLatchPredecessor = 1552 InnerLoopLatch->getUniquePredecessor(); 1553 BasicBlock *InnerLoopLatchSuccessor; 1554 BasicBlock *OuterLoopLatchSuccessor; 1555 1556 BranchInst *OuterLoopLatchBI = 1557 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1558 BranchInst *InnerLoopLatchBI = 1559 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1560 BranchInst *OuterLoopHeaderBI = 1561 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1562 BranchInst *InnerLoopHeaderBI = 1563 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1564 1565 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1566 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1567 !InnerLoopHeaderBI) 1568 return false; 1569 1570 BranchInst *InnerLoopLatchPredecessorBI = 1571 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1572 BranchInst *OuterLoopPredecessorBI = 1573 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1574 1575 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1576 return false; 1577 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1578 if (!InnerLoopHeaderSuccessor) 1579 return false; 1580 1581 // Adjust Loop Preheader and headers. 1582 // The branches in the outer loop predecessor and the outer loop header can 1583 // be unconditional branches or conditional branches with duplicates. Consider 1584 // this when updating the successors. 1585 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1586 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1587 // The outer loop header might or might not branch to the outer latch. 1588 // We are guaranteed to branch to the inner loop preheader. 1589 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1590 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1591 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1592 DTUpdates, 1593 /*MustUpdateOnce=*/false); 1594 } 1595 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1596 InnerLoopHeaderSuccessor, DTUpdates, 1597 /*MustUpdateOnce=*/false); 1598 1599 // Adjust reduction PHI's now that the incoming block has changed. 1600 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1601 OuterLoopHeader); 1602 1603 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1604 OuterLoopPreHeader, DTUpdates); 1605 1606 // -------------Adjust loop latches----------- 1607 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1608 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1609 else 1610 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1611 1612 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1613 InnerLoopLatchSuccessor, DTUpdates); 1614 1615 1616 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1617 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1618 else 1619 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1620 1621 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1622 OuterLoopLatchSuccessor, DTUpdates); 1623 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1624 DTUpdates); 1625 1626 DT->applyUpdates(DTUpdates); 1627 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1628 OuterLoopPreHeader); 1629 1630 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1631 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1632 InnerLoop, LI); 1633 // For PHIs in the exit block of the outer loop, outer's latch has been 1634 // replaced by Inners'. 1635 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1636 1637 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1638 // Now update the reduction PHIs in the inner and outer loop headers. 1639 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1640 for (PHINode &PHI : InnerLoopHeader->phis()) 1641 if (OuterInnerReductions.contains(&PHI)) 1642 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1643 for (PHINode &PHI : OuterLoopHeader->phis()) 1644 if (OuterInnerReductions.contains(&PHI)) 1645 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1646 1647 // Now move the remaining reduction PHIs from outer to inner loop header and 1648 // vice versa. The PHI nodes must be part of a reduction across the inner and 1649 // outer loop and all the remains to do is and updating the incoming blocks. 1650 for (PHINode *PHI : OuterLoopPHIs) { 1651 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1652 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1653 } 1654 for (PHINode *PHI : InnerLoopPHIs) { 1655 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1656 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1657 } 1658 1659 // Update the incoming blocks for moved PHI nodes. 1660 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1661 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1662 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1663 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1664 1665 // Values defined in the outer loop header could be used in the inner loop 1666 // latch. In that case, we need to create LCSSA phis for them, because after 1667 // interchanging they will be defined in the new inner loop and used in the 1668 // new outer loop. 1669 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1670 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1671 for (Instruction &I : 1672 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1673 MayNeedLCSSAPhis.push_back(&I); 1674 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1675 1676 return true; 1677 } 1678 1679 bool LoopInterchangeTransform::adjustLoopLinks() { 1680 // Adjust all branches in the inner and outer loop. 1681 bool Changed = adjustLoopBranches(); 1682 if (Changed) { 1683 // We have interchanged the preheaders so we need to interchange the data in 1684 // the preheaders as well. This is because the content of the inner 1685 // preheader was previously executed inside the outer loop. 1686 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1687 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1688 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1689 } 1690 return Changed; 1691 } 1692 1693 namespace { 1694 /// Main LoopInterchange Pass. 1695 struct LoopInterchangeLegacyPass : public LoopPass { 1696 static char ID; 1697 1698 LoopInterchangeLegacyPass() : LoopPass(ID) { 1699 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1700 } 1701 1702 void getAnalysisUsage(AnalysisUsage &AU) const override { 1703 AU.addRequired<DependenceAnalysisWrapperPass>(); 1704 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1705 1706 getLoopAnalysisUsage(AU); 1707 } 1708 1709 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1710 if (skipLoop(L)) 1711 return false; 1712 1713 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1714 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1715 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1716 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1717 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1718 1719 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1720 } 1721 }; 1722 } // namespace 1723 1724 char LoopInterchangeLegacyPass::ID = 0; 1725 1726 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1727 "Interchanges loops for cache reuse", false, false) 1728 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1729 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1730 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1731 1732 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1733 "Interchanges loops for cache reuse", false, false) 1734 1735 Pass *llvm::createLoopInterchangePass() { 1736 return new LoopInterchangeLegacyPass(); 1737 } 1738 1739 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1740 LoopAnalysisManager &AM, 1741 LoopStandardAnalysisResults &AR, 1742 LPMUpdater &U) { 1743 Function &F = *LN.getParent(); 1744 1745 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1746 OptimizationRemarkEmitter ORE(&F); 1747 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN)) 1748 return PreservedAnalyses::all(); 1749 return getLoopPassPreservedAnalyses(); 1750 } 1751