1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This Pass handles loop interchange transform. 11 // This pass interchanges loops to provide a more cache-friendly memory access 12 // patterns. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include <cassert> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "loop-interchange" 54 55 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 56 57 static cl::opt<int> LoopInterchangeCostThreshold( 58 "loop-interchange-threshold", cl::init(0), cl::Hidden, 59 cl::desc("Interchange if you gain more than this number")); 60 61 namespace { 62 63 using LoopVector = SmallVector<Loop *, 8>; 64 65 // TODO: Check if we can use a sparse matrix here. 66 using CharMatrix = std::vector<std::vector<char>>; 67 68 } // end anonymous namespace 69 70 // Maximum number of dependencies that can be handled in the dependency matrix. 71 static const unsigned MaxMemInstrCount = 100; 72 73 // Maximum loop depth supported. 74 static const unsigned MaxLoopNestDepth = 10; 75 76 #ifdef DUMP_DEP_MATRICIES 77 static void printDepMatrix(CharMatrix &DepMatrix) { 78 for (auto &Row : DepMatrix) { 79 for (auto D : Row) 80 LLVM_DEBUG(dbgs() << D << " "); 81 LLVM_DEBUG(dbgs() << "\n"); 82 } 83 } 84 #endif 85 86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 87 Loop *L, DependenceInfo *DI) { 88 using ValueVector = SmallVector<Value *, 16>; 89 90 ValueVector MemInstr; 91 92 // For each block. 93 for (BasicBlock *BB : L->blocks()) { 94 // Scan the BB and collect legal loads and stores. 95 for (Instruction &I : *BB) { 96 if (!isa<Instruction>(I)) 97 return false; 98 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 99 if (!Ld->isSimple()) 100 return false; 101 MemInstr.push_back(&I); 102 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 103 if (!St->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } 107 } 108 } 109 110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 111 << " Loads and Stores to analyze\n"); 112 113 ValueVector::iterator I, IE, J, JE; 114 115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 116 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 117 std::vector<char> Dep; 118 Instruction *Src = cast<Instruction>(*I); 119 Instruction *Dst = cast<Instruction>(*J); 120 if (Src == Dst) 121 continue; 122 // Ignore Input dependencies. 123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 124 continue; 125 // Track Output, Flow, and Anti dependencies. 126 if (auto D = DI->depends(Src, Dst, true)) { 127 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 128 LLVM_DEBUG(StringRef DepType = 129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 130 dbgs() << "Found " << DepType 131 << " dependency between Src and Dst\n" 132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 133 unsigned Levels = D->getLevels(); 134 char Direction; 135 for (unsigned II = 1; II <= Levels; ++II) { 136 const SCEV *Distance = D->getDistance(II); 137 const SCEVConstant *SCEVConst = 138 dyn_cast_or_null<SCEVConstant>(Distance); 139 if (SCEVConst) { 140 const ConstantInt *CI = SCEVConst->getValue(); 141 if (CI->isNegative()) 142 Direction = '<'; 143 else if (CI->isZero()) 144 Direction = '='; 145 else 146 Direction = '>'; 147 Dep.push_back(Direction); 148 } else if (D->isScalar(II)) { 149 Direction = 'S'; 150 Dep.push_back(Direction); 151 } else { 152 unsigned Dir = D->getDirection(II); 153 if (Dir == Dependence::DVEntry::LT || 154 Dir == Dependence::DVEntry::LE) 155 Direction = '<'; 156 else if (Dir == Dependence::DVEntry::GT || 157 Dir == Dependence::DVEntry::GE) 158 Direction = '>'; 159 else if (Dir == Dependence::DVEntry::EQ) 160 Direction = '='; 161 else 162 Direction = '*'; 163 Dep.push_back(Direction); 164 } 165 } 166 while (Dep.size() != Level) { 167 Dep.push_back('I'); 168 } 169 170 DepMatrix.push_back(Dep); 171 if (DepMatrix.size() > MaxMemInstrCount) { 172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 173 << " dependencies inside loop\n"); 174 return false; 175 } 176 } 177 } 178 } 179 180 return true; 181 } 182 183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 184 // matrix by exchanging the two columns. 185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 186 unsigned ToIndx) { 187 unsigned numRows = DepMatrix.size(); 188 for (unsigned i = 0; i < numRows; ++i) { 189 char TmpVal = DepMatrix[i][ToIndx]; 190 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 191 DepMatrix[i][FromIndx] = TmpVal; 192 } 193 } 194 195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 196 // '>' 197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 198 unsigned Column) { 199 for (unsigned i = 0; i <= Column; ++i) { 200 if (DepMatrix[Row][i] == '<') 201 return false; 202 if (DepMatrix[Row][i] == '>') 203 return true; 204 } 205 // All dependencies were '=','S' or 'I' 206 return false; 207 } 208 209 // Checks if no dependence exist in the dependency matrix in Row before Column. 210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 211 unsigned Column) { 212 for (unsigned i = 0; i < Column; ++i) { 213 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 214 DepMatrix[Row][i] != 'I') 215 return false; 216 } 217 return true; 218 } 219 220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 221 unsigned OuterLoopId, char InnerDep, 222 char OuterDep) { 223 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 224 return false; 225 226 if (InnerDep == OuterDep) 227 return true; 228 229 // It is legal to interchange if and only if after interchange no row has a 230 // '>' direction as the leftmost non-'='. 231 232 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 233 return true; 234 235 if (InnerDep == '<') 236 return true; 237 238 if (InnerDep == '>') { 239 // If OuterLoopId represents outermost loop then interchanging will make the 240 // 1st dependency as '>' 241 if (OuterLoopId == 0) 242 return false; 243 244 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 245 // interchanging will result in this row having an outermost non '=' 246 // dependency of '>' 247 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 248 return true; 249 } 250 251 return false; 252 } 253 254 // Checks if it is legal to interchange 2 loops. 255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 256 // if the direction matrix, after the same permutation is applied to its 257 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 259 unsigned InnerLoopId, 260 unsigned OuterLoopId) { 261 unsigned NumRows = DepMatrix.size(); 262 // For each row check if it is valid to interchange. 263 for (unsigned Row = 0; Row < NumRows; ++Row) { 264 char InnerDep = DepMatrix[Row][InnerLoopId]; 265 char OuterDep = DepMatrix[Row][OuterLoopId]; 266 if (InnerDep == '*' || OuterDep == '*') 267 return false; 268 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 269 return false; 270 } 271 return true; 272 } 273 274 static LoopVector populateWorklist(Loop &L) { 275 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 276 << L.getHeader()->getParent()->getName() << " Loop: %" 277 << L.getHeader()->getName() << '\n'); 278 LoopVector LoopList; 279 Loop *CurrentLoop = &L; 280 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 281 while (!Vec->empty()) { 282 // The current loop has multiple subloops in it hence it is not tightly 283 // nested. 284 // Discard all loops above it added into Worklist. 285 if (Vec->size() != 1) 286 return {}; 287 288 LoopList.push_back(CurrentLoop); 289 CurrentLoop = Vec->front(); 290 Vec = &CurrentLoop->getSubLoops(); 291 } 292 LoopList.push_back(CurrentLoop); 293 return LoopList; 294 } 295 296 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 297 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 298 if (InnerIndexVar) 299 return InnerIndexVar; 300 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 301 return nullptr; 302 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 303 PHINode *PhiVar = cast<PHINode>(I); 304 Type *PhiTy = PhiVar->getType(); 305 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 306 !PhiTy->isPointerTy()) 307 return nullptr; 308 const SCEVAddRecExpr *AddRec = 309 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 310 if (!AddRec || !AddRec->isAffine()) 311 continue; 312 const SCEV *Step = AddRec->getStepRecurrence(*SE); 313 if (!isa<SCEVConstant>(Step)) 314 continue; 315 // Found the induction variable. 316 // FIXME: Handle loops with more than one induction variable. Note that, 317 // currently, legality makes sure we have only one induction variable. 318 return PhiVar; 319 } 320 return nullptr; 321 } 322 323 namespace { 324 325 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 326 class LoopInterchangeLegality { 327 public: 328 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 329 OptimizationRemarkEmitter *ORE) 330 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 331 332 /// Check if the loops can be interchanged. 333 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 334 CharMatrix &DepMatrix); 335 336 /// Check if the loop structure is understood. We do not handle triangular 337 /// loops for now. 338 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 339 340 bool currentLimitations(); 341 342 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 343 return OuterInnerReductions; 344 } 345 346 private: 347 bool tightlyNested(Loop *Outer, Loop *Inner); 348 bool containsUnsafeInstructions(BasicBlock *BB); 349 350 /// Discover induction and reduction PHIs in the header of \p L. Induction 351 /// PHIs are added to \p Inductions, reductions are added to 352 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 353 /// to be passed as \p InnerLoop. 354 bool findInductionAndReductions(Loop *L, 355 SmallVector<PHINode *, 8> &Inductions, 356 Loop *InnerLoop); 357 358 Loop *OuterLoop; 359 Loop *InnerLoop; 360 361 ScalarEvolution *SE; 362 363 /// Interface to emit optimization remarks. 364 OptimizationRemarkEmitter *ORE; 365 366 /// Set of reduction PHIs taking part of a reduction across the inner and 367 /// outer loop. 368 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 369 }; 370 371 /// LoopInterchangeProfitability checks if it is profitable to interchange the 372 /// loop. 373 class LoopInterchangeProfitability { 374 public: 375 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 376 OptimizationRemarkEmitter *ORE) 377 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 378 379 /// Check if the loop interchange is profitable. 380 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 381 CharMatrix &DepMatrix); 382 383 private: 384 int getInstrOrderCost(); 385 386 Loop *OuterLoop; 387 Loop *InnerLoop; 388 389 /// Scev analysis. 390 ScalarEvolution *SE; 391 392 /// Interface to emit optimization remarks. 393 OptimizationRemarkEmitter *ORE; 394 }; 395 396 /// LoopInterchangeTransform interchanges the loop. 397 class LoopInterchangeTransform { 398 public: 399 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 400 LoopInfo *LI, DominatorTree *DT, 401 BasicBlock *LoopNestExit, 402 const LoopInterchangeLegality &LIL) 403 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 404 LoopExit(LoopNestExit), LIL(LIL) {} 405 406 /// Interchange OuterLoop and InnerLoop. 407 bool transform(); 408 void restructureLoops(Loop *NewInner, Loop *NewOuter, 409 BasicBlock *OrigInnerPreHeader, 410 BasicBlock *OrigOuterPreHeader); 411 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 412 413 private: 414 void splitInnerLoopLatch(Instruction *); 415 void splitInnerLoopHeader(); 416 bool adjustLoopLinks(); 417 void adjustLoopPreheaders(); 418 bool adjustLoopBranches(); 419 420 Loop *OuterLoop; 421 Loop *InnerLoop; 422 423 /// Scev analysis. 424 ScalarEvolution *SE; 425 426 LoopInfo *LI; 427 DominatorTree *DT; 428 BasicBlock *LoopExit; 429 430 const LoopInterchangeLegality &LIL; 431 }; 432 433 // Main LoopInterchange Pass. 434 struct LoopInterchange : public LoopPass { 435 static char ID; 436 ScalarEvolution *SE = nullptr; 437 LoopInfo *LI = nullptr; 438 DependenceInfo *DI = nullptr; 439 DominatorTree *DT = nullptr; 440 441 /// Interface to emit optimization remarks. 442 OptimizationRemarkEmitter *ORE; 443 444 LoopInterchange() : LoopPass(ID) { 445 initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); 446 } 447 448 void getAnalysisUsage(AnalysisUsage &AU) const override { 449 AU.addRequired<DependenceAnalysisWrapperPass>(); 450 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 451 452 getLoopAnalysisUsage(AU); 453 } 454 455 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 456 if (skipLoop(L) || L->getParentLoop()) 457 return false; 458 459 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 460 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 461 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 462 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 463 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 464 465 return processLoopList(populateWorklist(*L)); 466 } 467 468 bool isComputableLoopNest(LoopVector LoopList) { 469 for (Loop *L : LoopList) { 470 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 471 if (ExitCountOuter == SE->getCouldNotCompute()) { 472 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 473 return false; 474 } 475 if (L->getNumBackEdges() != 1) { 476 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 477 return false; 478 } 479 if (!L->getExitingBlock()) { 480 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 481 return false; 482 } 483 } 484 return true; 485 } 486 487 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 488 // TODO: Add a better heuristic to select the loop to be interchanged based 489 // on the dependence matrix. Currently we select the innermost loop. 490 return LoopList.size() - 1; 491 } 492 493 bool processLoopList(LoopVector LoopList) { 494 bool Changed = false; 495 unsigned LoopNestDepth = LoopList.size(); 496 if (LoopNestDepth < 2) { 497 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 498 return false; 499 } 500 if (LoopNestDepth > MaxLoopNestDepth) { 501 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 502 << MaxLoopNestDepth << "\n"); 503 return false; 504 } 505 if (!isComputableLoopNest(LoopList)) { 506 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 507 return false; 508 } 509 510 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 511 << "\n"); 512 513 CharMatrix DependencyMatrix; 514 Loop *OuterMostLoop = *(LoopList.begin()); 515 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 516 OuterMostLoop, DI)) { 517 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 518 return false; 519 } 520 #ifdef DUMP_DEP_MATRICIES 521 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 522 printDepMatrix(DependencyMatrix); 523 #endif 524 525 // Get the Outermost loop exit. 526 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 527 if (!LoopNestExit) { 528 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 529 return false; 530 } 531 532 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 533 // Move the selected loop outwards to the best possible position. 534 for (unsigned i = SelecLoopId; i > 0; i--) { 535 bool Interchanged = 536 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 537 if (!Interchanged) 538 return Changed; 539 // Loops interchanged reflect the same in LoopList 540 std::swap(LoopList[i - 1], LoopList[i]); 541 542 // Update the DependencyMatrix 543 interChangeDependencies(DependencyMatrix, i, i - 1); 544 #ifdef DUMP_DEP_MATRICIES 545 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 546 printDepMatrix(DependencyMatrix); 547 #endif 548 Changed |= Interchanged; 549 } 550 return Changed; 551 } 552 553 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 554 unsigned OuterLoopId, BasicBlock *LoopNestExit, 555 std::vector<std::vector<char>> &DependencyMatrix) { 556 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 557 << " and OuterLoopId = " << OuterLoopId << "\n"); 558 Loop *InnerLoop = LoopList[InnerLoopId]; 559 Loop *OuterLoop = LoopList[OuterLoopId]; 560 561 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 562 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 563 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 564 return false; 565 } 566 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 567 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 568 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 569 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 570 return false; 571 } 572 573 ORE->emit([&]() { 574 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 575 InnerLoop->getStartLoc(), 576 InnerLoop->getHeader()) 577 << "Loop interchanged with enclosing loop."; 578 }); 579 580 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 581 LIL); 582 LIT.transform(); 583 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 584 LoopsInterchanged++; 585 return true; 586 } 587 }; 588 589 } // end anonymous namespace 590 591 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 592 return any_of(*BB, [](const Instruction &I) { 593 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 594 }); 595 } 596 597 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 598 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 599 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 600 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 601 602 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 603 604 // A perfectly nested loop will not have any branch in between the outer and 605 // inner block i.e. outer header will branch to either inner preheader and 606 // outerloop latch. 607 BranchInst *OuterLoopHeaderBI = 608 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 609 if (!OuterLoopHeaderBI) 610 return false; 611 612 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 613 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 614 Succ != OuterLoopLatch) 615 return false; 616 617 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 618 // We do not have any basic block in between now make sure the outer header 619 // and outer loop latch doesn't contain any unsafe instructions. 620 if (containsUnsafeInstructions(OuterLoopHeader) || 621 containsUnsafeInstructions(OuterLoopLatch)) 622 return false; 623 624 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 625 // We have a perfect loop nest. 626 return true; 627 } 628 629 bool LoopInterchangeLegality::isLoopStructureUnderstood( 630 PHINode *InnerInduction) { 631 unsigned Num = InnerInduction->getNumOperands(); 632 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 633 for (unsigned i = 0; i < Num; ++i) { 634 Value *Val = InnerInduction->getOperand(i); 635 if (isa<Constant>(Val)) 636 continue; 637 Instruction *I = dyn_cast<Instruction>(Val); 638 if (!I) 639 return false; 640 // TODO: Handle triangular loops. 641 // e.g. for(int i=0;i<N;i++) 642 // for(int j=i;j<N;j++) 643 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 644 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 645 InnerLoopPreheader && 646 !OuterLoop->isLoopInvariant(I)) { 647 return false; 648 } 649 } 650 return true; 651 } 652 653 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 654 // value. 655 static Value *followLCSSA(Value *SV) { 656 PHINode *PHI = dyn_cast<PHINode>(SV); 657 if (!PHI) 658 return SV; 659 660 if (PHI->getNumIncomingValues() != 1) 661 return SV; 662 return followLCSSA(PHI->getIncomingValue(0)); 663 } 664 665 // Check V's users to see if it is involved in a reduction in L. 666 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 667 for (Value *User : V->users()) { 668 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 669 if (PHI->getNumIncomingValues() == 1) 670 continue; 671 RecurrenceDescriptor RD; 672 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 673 return PHI; 674 return nullptr; 675 } 676 } 677 678 return nullptr; 679 } 680 681 bool LoopInterchangeLegality::findInductionAndReductions( 682 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 683 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 684 return false; 685 for (PHINode &PHI : L->getHeader()->phis()) { 686 RecurrenceDescriptor RD; 687 InductionDescriptor ID; 688 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 689 Inductions.push_back(&PHI); 690 else { 691 // PHIs in inner loops need to be part of a reduction in the outer loop, 692 // discovered when checking the PHIs of the outer loop earlier. 693 if (!InnerLoop) { 694 if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) { 695 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 696 "across the outer loop.\n"); 697 return false; 698 } 699 } else { 700 assert(PHI.getNumIncomingValues() == 2 && 701 "Phis in loop header should have exactly 2 incoming values"); 702 // Check if we have a PHI node in the outer loop that has a reduction 703 // result from the inner loop as an incoming value. 704 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 705 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 706 if (!InnerRedPhi || 707 !llvm::any_of(InnerRedPhi->incoming_values(), 708 [&PHI](Value *V) { return V == &PHI; })) { 709 LLVM_DEBUG( 710 dbgs() 711 << "Failed to recognize PHI as an induction or reduction.\n"); 712 return false; 713 } 714 OuterInnerReductions.insert(&PHI); 715 OuterInnerReductions.insert(InnerRedPhi); 716 } 717 } 718 } 719 return true; 720 } 721 722 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { 723 for (PHINode &PHI : Block->phis()) { 724 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 725 if (PHI.getNumIncomingValues() > 1) 726 return false; 727 Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0)); 728 if (!Ins) 729 return false; 730 // Incoming value for lcssa phi's in outer loop exit can only be inner loop 731 // exits lcssa phi else it would not be tightly nested. 732 if (!isa<PHINode>(Ins) && isOuterLoopExitBlock) 733 return false; 734 } 735 return true; 736 } 737 738 // This function indicates the current limitations in the transform as a result 739 // of which we do not proceed. 740 bool LoopInterchangeLegality::currentLimitations() { 741 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 742 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 743 744 // transform currently expects the loop latches to also be the exiting 745 // blocks. 746 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 747 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 748 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 749 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 750 LLVM_DEBUG( 751 dbgs() << "Loops where the latch is not the exiting block are not" 752 << " supported currently.\n"); 753 ORE->emit([&]() { 754 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 755 OuterLoop->getStartLoc(), 756 OuterLoop->getHeader()) 757 << "Loops where the latch is not the exiting block cannot be" 758 " interchange currently."; 759 }); 760 return true; 761 } 762 763 PHINode *InnerInductionVar; 764 SmallVector<PHINode *, 8> Inductions; 765 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 766 LLVM_DEBUG( 767 dbgs() << "Only outer loops with induction or reduction PHI nodes " 768 << "are supported currently.\n"); 769 ORE->emit([&]() { 770 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 771 OuterLoop->getStartLoc(), 772 OuterLoop->getHeader()) 773 << "Only outer loops with induction or reduction PHI nodes can be" 774 " interchanged currently."; 775 }); 776 return true; 777 } 778 779 // TODO: Currently we handle only loops with 1 induction variable. 780 if (Inductions.size() != 1) { 781 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 782 << "supported currently.\n"); 783 ORE->emit([&]() { 784 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 785 OuterLoop->getStartLoc(), 786 OuterLoop->getHeader()) 787 << "Only outer loops with 1 induction variable can be " 788 "interchanged currently."; 789 }); 790 return true; 791 } 792 793 Inductions.clear(); 794 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 795 LLVM_DEBUG( 796 dbgs() << "Only inner loops with induction or reduction PHI nodes " 797 << "are supported currently.\n"); 798 ORE->emit([&]() { 799 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 800 InnerLoop->getStartLoc(), 801 InnerLoop->getHeader()) 802 << "Only inner loops with induction or reduction PHI nodes can be" 803 " interchange currently."; 804 }); 805 return true; 806 } 807 808 // TODO: Currently we handle only loops with 1 induction variable. 809 if (Inductions.size() != 1) { 810 LLVM_DEBUG( 811 dbgs() << "We currently only support loops with 1 induction variable." 812 << "Failed to interchange due to current limitation\n"); 813 ORE->emit([&]() { 814 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 815 InnerLoop->getStartLoc(), 816 InnerLoop->getHeader()) 817 << "Only inner loops with 1 induction variable can be " 818 "interchanged currently."; 819 }); 820 return true; 821 } 822 InnerInductionVar = Inductions.pop_back_val(); 823 824 // TODO: Triangular loops are not handled for now. 825 if (!isLoopStructureUnderstood(InnerInductionVar)) { 826 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 827 ORE->emit([&]() { 828 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 829 InnerLoop->getStartLoc(), 830 InnerLoop->getHeader()) 831 << "Inner loop structure not understood currently."; 832 }); 833 return true; 834 } 835 836 // TODO: We only handle LCSSA PHI's corresponding to reduction for now. 837 BasicBlock *InnerExit = InnerLoop->getExitBlock(); 838 if (!containsSafePHI(InnerExit, false)) { 839 LLVM_DEBUG( 840 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n"); 841 ORE->emit([&]() { 842 return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner", 843 InnerLoop->getStartLoc(), 844 InnerLoop->getHeader()) 845 << "Only inner loops with LCSSA PHIs can be interchange " 846 "currently."; 847 }); 848 return true; 849 } 850 851 // TODO: Current limitation: Since we split the inner loop latch at the point 852 // were induction variable is incremented (induction.next); We cannot have 853 // more than 1 user of induction.next since it would result in broken code 854 // after split. 855 // e.g. 856 // for(i=0;i<N;i++) { 857 // for(j = 0;j<M;j++) { 858 // A[j+1][i+2] = A[j][i]+k; 859 // } 860 // } 861 Instruction *InnerIndexVarInc = nullptr; 862 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 863 InnerIndexVarInc = 864 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 865 else 866 InnerIndexVarInc = 867 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 868 869 if (!InnerIndexVarInc) { 870 LLVM_DEBUG( 871 dbgs() << "Did not find an instruction to increment the induction " 872 << "variable.\n"); 873 ORE->emit([&]() { 874 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 875 InnerLoop->getStartLoc(), 876 InnerLoop->getHeader()) 877 << "The inner loop does not increment the induction variable."; 878 }); 879 return true; 880 } 881 882 // Since we split the inner loop latch on this induction variable. Make sure 883 // we do not have any instruction between the induction variable and branch 884 // instruction. 885 886 bool FoundInduction = false; 887 for (const Instruction &I : 888 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 889 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 890 isa<ZExtInst>(I)) 891 continue; 892 893 // We found an instruction. If this is not induction variable then it is not 894 // safe to split this loop latch. 895 if (!I.isIdenticalTo(InnerIndexVarInc)) { 896 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 897 << "variable increment and branch.\n"); 898 ORE->emit([&]() { 899 return OptimizationRemarkMissed( 900 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 901 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 902 << "Found unsupported instruction between induction variable " 903 "increment and branch."; 904 }); 905 return true; 906 } 907 908 FoundInduction = true; 909 break; 910 } 911 // The loop latch ended and we didn't find the induction variable return as 912 // current limitation. 913 if (!FoundInduction) { 914 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 915 ORE->emit([&]() { 916 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 917 InnerLoop->getStartLoc(), 918 InnerLoop->getHeader()) 919 << "Did not find the induction variable."; 920 }); 921 return true; 922 } 923 return false; 924 } 925 926 // We currently support LCSSA PHI nodes in the outer loop exit, if their 927 // incoming values do not come from the outer loop latch or if the 928 // outer loop latch has a single predecessor. In that case, the value will 929 // be available if both the inner and outer loop conditions are true, which 930 // will still be true after interchanging. If we have multiple predecessor, 931 // that may not be the case, e.g. because the outer loop latch may be executed 932 // if the inner loop is not executed. 933 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 934 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 935 for (PHINode &PHI : LoopNestExit->phis()) { 936 // FIXME: We currently are not able to detect floating point reductions 937 // and have to use floating point PHIs as a proxy to prevent 938 // interchanging in the presence of floating point reductions. 939 if (PHI.getType()->isFloatingPointTy()) 940 return false; 941 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 942 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 943 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 944 continue; 945 946 // The incoming value is defined in the outer loop latch. Currently we 947 // only support that in case the outer loop latch has a single predecessor. 948 // This guarantees that the outer loop latch is executed if and only if 949 // the inner loop is executed (because tightlyNested() guarantees that the 950 // outer loop header only branches to the inner loop or the outer loop 951 // latch). 952 // FIXME: We could weaken this logic and allow multiple predecessors, 953 // if the values are produced outside the loop latch. We would need 954 // additional logic to update the PHI nodes in the exit block as 955 // well. 956 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 957 return false; 958 } 959 } 960 return true; 961 } 962 963 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 964 unsigned OuterLoopId, 965 CharMatrix &DepMatrix) { 966 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 967 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 968 << " and OuterLoopId = " << OuterLoopId 969 << " due to dependence\n"); 970 ORE->emit([&]() { 971 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 972 InnerLoop->getStartLoc(), 973 InnerLoop->getHeader()) 974 << "Cannot interchange loops due to dependences."; 975 }); 976 return false; 977 } 978 // Check if outer and inner loop contain legal instructions only. 979 for (auto *BB : OuterLoop->blocks()) 980 for (Instruction &I : BB->instructionsWithoutDebug()) 981 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 982 // readnone functions do not prevent interchanging. 983 if (CI->doesNotReadMemory()) 984 continue; 985 LLVM_DEBUG( 986 dbgs() << "Loops with call instructions cannot be interchanged " 987 << "safely."); 988 ORE->emit([&]() { 989 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 990 CI->getDebugLoc(), 991 CI->getParent()) 992 << "Cannot interchange loops due to call instruction."; 993 }); 994 995 return false; 996 } 997 998 // TODO: The loops could not be interchanged due to current limitations in the 999 // transform module. 1000 if (currentLimitations()) { 1001 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1002 return false; 1003 } 1004 1005 // Check if the loops are tightly nested. 1006 if (!tightlyNested(OuterLoop, InnerLoop)) { 1007 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1008 ORE->emit([&]() { 1009 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1010 InnerLoop->getStartLoc(), 1011 InnerLoop->getHeader()) 1012 << "Cannot interchange loops because they are not tightly " 1013 "nested."; 1014 }); 1015 return false; 1016 } 1017 1018 if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1019 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1020 ORE->emit([&]() { 1021 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1022 OuterLoop->getStartLoc(), 1023 OuterLoop->getHeader()) 1024 << "Found unsupported PHI node in loop exit."; 1025 }); 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 1032 int LoopInterchangeProfitability::getInstrOrderCost() { 1033 unsigned GoodOrder, BadOrder; 1034 BadOrder = GoodOrder = 0; 1035 for (BasicBlock *BB : InnerLoop->blocks()) { 1036 for (Instruction &Ins : *BB) { 1037 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1038 unsigned NumOp = GEP->getNumOperands(); 1039 bool FoundInnerInduction = false; 1040 bool FoundOuterInduction = false; 1041 for (unsigned i = 0; i < NumOp; ++i) { 1042 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1043 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1044 if (!AR) 1045 continue; 1046 1047 // If we find the inner induction after an outer induction e.g. 1048 // for(int i=0;i<N;i++) 1049 // for(int j=0;j<N;j++) 1050 // A[i][j] = A[i-1][j-1]+k; 1051 // then it is a good order. 1052 if (AR->getLoop() == InnerLoop) { 1053 // We found an InnerLoop induction after OuterLoop induction. It is 1054 // a good order. 1055 FoundInnerInduction = true; 1056 if (FoundOuterInduction) { 1057 GoodOrder++; 1058 break; 1059 } 1060 } 1061 // If we find the outer induction after an inner induction e.g. 1062 // for(int i=0;i<N;i++) 1063 // for(int j=0;j<N;j++) 1064 // A[j][i] = A[j-1][i-1]+k; 1065 // then it is a bad order. 1066 if (AR->getLoop() == OuterLoop) { 1067 // We found an OuterLoop induction after InnerLoop induction. It is 1068 // a bad order. 1069 FoundOuterInduction = true; 1070 if (FoundInnerInduction) { 1071 BadOrder++; 1072 break; 1073 } 1074 } 1075 } 1076 } 1077 } 1078 } 1079 return GoodOrder - BadOrder; 1080 } 1081 1082 static bool isProfitableForVectorization(unsigned InnerLoopId, 1083 unsigned OuterLoopId, 1084 CharMatrix &DepMatrix) { 1085 // TODO: Improve this heuristic to catch more cases. 1086 // If the inner loop is loop independent or doesn't carry any dependency it is 1087 // profitable to move this to outer position. 1088 for (auto &Row : DepMatrix) { 1089 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1090 return false; 1091 // TODO: We need to improve this heuristic. 1092 if (Row[OuterLoopId] != '=') 1093 return false; 1094 } 1095 // If outer loop has dependence and inner loop is loop independent then it is 1096 // profitable to interchange to enable parallelism. 1097 // If there are no dependences, interchanging will not improve anything. 1098 return !DepMatrix.empty(); 1099 } 1100 1101 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1102 unsigned OuterLoopId, 1103 CharMatrix &DepMatrix) { 1104 // TODO: Add better profitability checks. 1105 // e.g 1106 // 1) Construct dependency matrix and move the one with no loop carried dep 1107 // inside to enable vectorization. 1108 1109 // This is rough cost estimation algorithm. It counts the good and bad order 1110 // of induction variables in the instruction and allows reordering if number 1111 // of bad orders is more than good. 1112 int Cost = getInstrOrderCost(); 1113 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1114 if (Cost < -LoopInterchangeCostThreshold) 1115 return true; 1116 1117 // It is not profitable as per current cache profitability model. But check if 1118 // we can move this loop outside to improve parallelism. 1119 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1120 return true; 1121 1122 ORE->emit([&]() { 1123 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1124 InnerLoop->getStartLoc(), 1125 InnerLoop->getHeader()) 1126 << "Interchanging loops is too costly (cost=" 1127 << ore::NV("Cost", Cost) << ", threshold=" 1128 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1129 << ") and it does not improve parallelism."; 1130 }); 1131 return false; 1132 } 1133 1134 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1135 Loop *InnerLoop) { 1136 for (Loop *L : *OuterLoop) 1137 if (L == InnerLoop) { 1138 OuterLoop->removeChildLoop(L); 1139 return; 1140 } 1141 llvm_unreachable("Couldn't find loop"); 1142 } 1143 1144 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1145 /// new inner and outer loop after interchanging: NewInner is the original 1146 /// outer loop and NewOuter is the original inner loop. 1147 /// 1148 /// Before interchanging, we have the following structure 1149 /// Outer preheader 1150 // Outer header 1151 // Inner preheader 1152 // Inner header 1153 // Inner body 1154 // Inner latch 1155 // outer bbs 1156 // Outer latch 1157 // 1158 // After interchanging: 1159 // Inner preheader 1160 // Inner header 1161 // Outer preheader 1162 // Outer header 1163 // Inner body 1164 // outer bbs 1165 // Outer latch 1166 // Inner latch 1167 void LoopInterchangeTransform::restructureLoops( 1168 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1169 BasicBlock *OrigOuterPreHeader) { 1170 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1171 // The original inner loop preheader moves from the new inner loop to 1172 // the parent loop, if there is one. 1173 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1174 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1175 1176 // Switch the loop levels. 1177 if (OuterLoopParent) { 1178 // Remove the loop from its parent loop. 1179 removeChildLoop(OuterLoopParent, NewInner); 1180 removeChildLoop(NewInner, NewOuter); 1181 OuterLoopParent->addChildLoop(NewOuter); 1182 } else { 1183 removeChildLoop(NewInner, NewOuter); 1184 LI->changeTopLevelLoop(NewInner, NewOuter); 1185 } 1186 while (!NewOuter->empty()) 1187 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1188 NewOuter->addChildLoop(NewInner); 1189 1190 // BBs from the original inner loop. 1191 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1192 1193 // Add BBs from the original outer loop to the original inner loop (excluding 1194 // BBs already in inner loop) 1195 for (BasicBlock *BB : NewInner->blocks()) 1196 if (LI->getLoopFor(BB) == NewInner) 1197 NewOuter->addBlockEntry(BB); 1198 1199 // Now remove inner loop header and latch from the new inner loop and move 1200 // other BBs (the loop body) to the new inner loop. 1201 BasicBlock *OuterHeader = NewOuter->getHeader(); 1202 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1203 for (BasicBlock *BB : OrigInnerBBs) { 1204 // Nothing will change for BBs in child loops. 1205 if (LI->getLoopFor(BB) != NewOuter) 1206 continue; 1207 // Remove the new outer loop header and latch from the new inner loop. 1208 if (BB == OuterHeader || BB == OuterLatch) 1209 NewInner->removeBlockFromLoop(BB); 1210 else 1211 LI->changeLoopFor(BB, NewInner); 1212 } 1213 1214 // The preheader of the original outer loop becomes part of the new 1215 // outer loop. 1216 NewOuter->addBlockEntry(OrigOuterPreHeader); 1217 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1218 1219 // Tell SE that we move the loops around. 1220 SE->forgetLoop(NewOuter); 1221 SE->forgetLoop(NewInner); 1222 } 1223 1224 bool LoopInterchangeTransform::transform() { 1225 bool Transformed = false; 1226 Instruction *InnerIndexVar; 1227 1228 if (InnerLoop->getSubLoops().empty()) { 1229 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1230 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n"); 1231 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1232 if (!InductionPHI) { 1233 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1234 return false; 1235 } 1236 1237 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1238 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1239 else 1240 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1241 1242 // Ensure that InductionPHI is the first Phi node. 1243 if (&InductionPHI->getParent()->front() != InductionPHI) 1244 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1245 1246 // Split at the place were the induction variable is 1247 // incremented/decremented. 1248 // TODO: This splitting logic may not work always. Fix this. 1249 splitInnerLoopLatch(InnerIndexVar); 1250 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n"); 1251 1252 // Splits the inner loops phi nodes out into a separate basic block. 1253 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1254 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1255 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1256 } 1257 1258 Transformed |= adjustLoopLinks(); 1259 if (!Transformed) { 1260 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1261 return false; 1262 } 1263 1264 return true; 1265 } 1266 1267 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) { 1268 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1269 BasicBlock *InnerLoopLatchPred = InnerLoopLatch; 1270 InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI); 1271 } 1272 1273 /// \brief Move all instructions except the terminator from FromBB right before 1274 /// InsertBefore 1275 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1276 auto &ToList = InsertBefore->getParent()->getInstList(); 1277 auto &FromList = FromBB->getInstList(); 1278 1279 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1280 FromBB->getTerminator()->getIterator()); 1281 } 1282 1283 static void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred, 1284 BasicBlock *NewPred) { 1285 for (PHINode &PHI : CurrBlock->phis()) { 1286 unsigned Num = PHI.getNumIncomingValues(); 1287 for (unsigned i = 0; i < Num; ++i) { 1288 if (PHI.getIncomingBlock(i) == OldPred) 1289 PHI.setIncomingBlock(i, NewPred); 1290 } 1291 } 1292 } 1293 1294 /// Update BI to jump to NewBB instead of OldBB. Records updates to 1295 /// the dominator tree in DTUpdates, if DT should be preserved. 1296 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1297 BasicBlock *NewBB, 1298 std::vector<DominatorTree::UpdateType> &DTUpdates) { 1299 assert(llvm::count_if(successors(BI), 1300 [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 && 1301 "BI must jump to OldBB at most once."); 1302 for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) { 1303 if (BI->getSuccessor(i) == OldBB) { 1304 BI->setSuccessor(i, NewBB); 1305 1306 DTUpdates.push_back( 1307 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1308 DTUpdates.push_back( 1309 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1310 break; 1311 } 1312 } 1313 } 1314 1315 // Move Lcssa PHIs to the right place. 1316 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerLatch, 1317 BasicBlock *OuterLatch) { 1318 SmallVector<PHINode *, 8> LcssaInnerExit; 1319 for (PHINode &P : InnerExit->phis()) 1320 LcssaInnerExit.push_back(&P); 1321 1322 SmallVector<PHINode *, 8> LcssaInnerLatch; 1323 for (PHINode &P : InnerLatch->phis()) 1324 LcssaInnerLatch.push_back(&P); 1325 1326 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1327 // If a PHI node has users outside of InnerExit, it has a use outside the 1328 // interchanged loop and we have to preserve it. We move these to 1329 // InnerLatch, which will become the new exit block for the innermost 1330 // loop after interchanging. For PHIs only used in InnerExit, we can just 1331 // replace them with the incoming value. 1332 for (PHINode *P : LcssaInnerExit) { 1333 bool hasUsersOutside = false; 1334 for (auto UI = P->use_begin(), E = P->use_end(); UI != E;) { 1335 Use &U = *UI; 1336 ++UI; 1337 auto *Usr = cast<Instruction>(U.getUser()); 1338 if (Usr->getParent() != InnerExit) { 1339 hasUsersOutside = true; 1340 continue; 1341 } 1342 U.set(P->getIncomingValueForBlock(InnerLatch)); 1343 } 1344 if (hasUsersOutside) 1345 P->moveBefore(InnerLatch->getFirstNonPHI()); 1346 else 1347 P->eraseFromParent(); 1348 } 1349 1350 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1351 // and we have to move them to the new inner latch. 1352 for (PHINode *P : LcssaInnerLatch) 1353 P->moveBefore(InnerExit->getFirstNonPHI()); 1354 1355 // Now adjust the incoming blocks for the LCSSA PHIs. 1356 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1357 // with the new latch. 1358 updateIncomingBlock(InnerLatch, InnerLatch, OuterLatch); 1359 } 1360 1361 bool LoopInterchangeTransform::adjustLoopBranches() { 1362 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1363 std::vector<DominatorTree::UpdateType> DTUpdates; 1364 1365 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1366 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1367 1368 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1369 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1370 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1371 // Ensure that both preheaders do not contain PHI nodes and have single 1372 // predecessors. This allows us to move them easily. We use 1373 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1374 // preheaders do not satisfy those conditions. 1375 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1376 !OuterLoopPreHeader->getUniquePredecessor()) 1377 OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, DT, LI, true); 1378 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1379 InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, DT, LI, true); 1380 1381 // Adjust the loop preheader 1382 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1383 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1384 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1385 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1386 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1387 BasicBlock *InnerLoopLatchPredecessor = 1388 InnerLoopLatch->getUniquePredecessor(); 1389 BasicBlock *InnerLoopLatchSuccessor; 1390 BasicBlock *OuterLoopLatchSuccessor; 1391 1392 BranchInst *OuterLoopLatchBI = 1393 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1394 BranchInst *InnerLoopLatchBI = 1395 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1396 BranchInst *OuterLoopHeaderBI = 1397 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1398 BranchInst *InnerLoopHeaderBI = 1399 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1400 1401 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1402 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1403 !InnerLoopHeaderBI) 1404 return false; 1405 1406 BranchInst *InnerLoopLatchPredecessorBI = 1407 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1408 BranchInst *OuterLoopPredecessorBI = 1409 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1410 1411 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1412 return false; 1413 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1414 if (!InnerLoopHeaderSuccessor) 1415 return false; 1416 1417 // Adjust Loop Preheader and headers 1418 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1419 InnerLoopPreHeader, DTUpdates); 1420 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates); 1421 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1422 InnerLoopHeaderSuccessor, DTUpdates); 1423 1424 // Adjust reduction PHI's now that the incoming block has changed. 1425 updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader, 1426 OuterLoopHeader); 1427 1428 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1429 OuterLoopPreHeader, DTUpdates); 1430 1431 // -------------Adjust loop latches----------- 1432 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1433 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1434 else 1435 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1436 1437 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1438 InnerLoopLatchSuccessor, DTUpdates); 1439 1440 1441 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1442 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1443 else 1444 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1445 1446 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1447 OuterLoopLatchSuccessor, DTUpdates); 1448 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1449 DTUpdates); 1450 1451 DT->applyUpdates(DTUpdates); 1452 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1453 OuterLoopPreHeader); 1454 1455 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopLatch, OuterLoopLatch); 1456 // For PHIs in the exit block of the outer loop, outer's latch has been 1457 // replaced by Inners'. 1458 updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch); 1459 1460 // Now update the reduction PHIs in the inner and outer loop headers. 1461 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1462 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1463 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1464 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1465 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1466 1467 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1468 (void)OuterInnerReductions; 1469 1470 // Now move the remaining reduction PHIs from outer to inner loop header and 1471 // vice versa. The PHI nodes must be part of a reduction across the inner and 1472 // outer loop and all the remains to do is and updating the incoming blocks. 1473 for (PHINode *PHI : OuterLoopPHIs) { 1474 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1475 assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && 1476 "Expected a reduction PHI node"); 1477 } 1478 for (PHINode *PHI : InnerLoopPHIs) { 1479 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1480 assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && 1481 "Expected a reduction PHI node"); 1482 } 1483 1484 // Update the incoming blocks for moved PHI nodes. 1485 updateIncomingBlock(OuterLoopHeader, InnerLoopPreHeader, OuterLoopPreHeader); 1486 updateIncomingBlock(OuterLoopHeader, InnerLoopLatch, OuterLoopLatch); 1487 updateIncomingBlock(InnerLoopHeader, OuterLoopPreHeader, InnerLoopPreHeader); 1488 updateIncomingBlock(InnerLoopHeader, OuterLoopLatch, InnerLoopLatch); 1489 1490 return true; 1491 } 1492 1493 void LoopInterchangeTransform::adjustLoopPreheaders() { 1494 // We have interchanged the preheaders so we need to interchange the data in 1495 // the preheader as well. 1496 // This is because the content of inner preheader was previously executed 1497 // inside the outer loop. 1498 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1499 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1500 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1501 BranchInst *InnerTermBI = 1502 cast<BranchInst>(InnerLoopPreHeader->getTerminator()); 1503 1504 // These instructions should now be executed inside the loop. 1505 // Move instruction into a new block after outer header. 1506 moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); 1507 // These instructions were not executed previously in the loop so move them to 1508 // the older inner loop preheader. 1509 moveBBContents(OuterLoopPreHeader, InnerTermBI); 1510 } 1511 1512 bool LoopInterchangeTransform::adjustLoopLinks() { 1513 // Adjust all branches in the inner and outer loop. 1514 bool Changed = adjustLoopBranches(); 1515 if (Changed) 1516 adjustLoopPreheaders(); 1517 return Changed; 1518 } 1519 1520 char LoopInterchange::ID = 0; 1521 1522 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", 1523 "Interchanges loops for cache reuse", false, false) 1524 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1525 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1526 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1527 1528 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", 1529 "Interchanges loops for cache reuse", false, false) 1530 1531 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } 1532