1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopNestAnalysis.h" 23 #include "llvm/Analysis/LoopPass.h" 24 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 25 #include "llvm/Analysis/ScalarEvolution.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/IRBuilder.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/LoopUtils.h" 50 #include <cassert> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "loop-interchange" 57 58 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 59 60 static cl::opt<int> LoopInterchangeCostThreshold( 61 "loop-interchange-threshold", cl::init(0), cl::Hidden, 62 cl::desc("Interchange if you gain more than this number")); 63 64 namespace { 65 66 using LoopVector = SmallVector<Loop *, 8>; 67 68 // TODO: Check if we can use a sparse matrix here. 69 using CharMatrix = std::vector<std::vector<char>>; 70 71 } // end anonymous namespace 72 73 // Maximum number of dependencies that can be handled in the dependency matrix. 74 static const unsigned MaxMemInstrCount = 100; 75 76 // Maximum loop depth supported. 77 static const unsigned MaxLoopNestDepth = 10; 78 79 #ifdef DUMP_DEP_MATRICIES 80 static void printDepMatrix(CharMatrix &DepMatrix) { 81 for (auto &Row : DepMatrix) { 82 for (auto D : Row) 83 LLVM_DEBUG(dbgs() << D << " "); 84 LLVM_DEBUG(dbgs() << "\n"); 85 } 86 } 87 #endif 88 89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 90 Loop *L, DependenceInfo *DI) { 91 using ValueVector = SmallVector<Value *, 16>; 92 93 ValueVector MemInstr; 94 95 // For each block. 96 for (BasicBlock *BB : L->blocks()) { 97 // Scan the BB and collect legal loads and stores. 98 for (Instruction &I : *BB) { 99 if (!isa<Instruction>(I)) 100 return false; 101 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 102 if (!Ld->isSimple()) 103 return false; 104 MemInstr.push_back(&I); 105 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 106 if (!St->isSimple()) 107 return false; 108 MemInstr.push_back(&I); 109 } 110 } 111 } 112 113 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 114 << " Loads and Stores to analyze\n"); 115 116 ValueVector::iterator I, IE, J, JE; 117 118 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 119 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 120 std::vector<char> Dep; 121 Instruction *Src = cast<Instruction>(*I); 122 Instruction *Dst = cast<Instruction>(*J); 123 if (Src == Dst) 124 continue; 125 // Ignore Input dependencies. 126 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 127 continue; 128 // Track Output, Flow, and Anti dependencies. 129 if (auto D = DI->depends(Src, Dst, true)) { 130 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 131 LLVM_DEBUG(StringRef DepType = 132 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 133 dbgs() << "Found " << DepType 134 << " dependency between Src and Dst\n" 135 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 136 unsigned Levels = D->getLevels(); 137 char Direction; 138 for (unsigned II = 1; II <= Levels; ++II) { 139 const SCEV *Distance = D->getDistance(II); 140 const SCEVConstant *SCEVConst = 141 dyn_cast_or_null<SCEVConstant>(Distance); 142 if (SCEVConst) { 143 const ConstantInt *CI = SCEVConst->getValue(); 144 if (CI->isNegative()) 145 Direction = '<'; 146 else if (CI->isZero()) 147 Direction = '='; 148 else 149 Direction = '>'; 150 Dep.push_back(Direction); 151 } else if (D->isScalar(II)) { 152 Direction = 'S'; 153 Dep.push_back(Direction); 154 } else { 155 unsigned Dir = D->getDirection(II); 156 if (Dir == Dependence::DVEntry::LT || 157 Dir == Dependence::DVEntry::LE) 158 Direction = '<'; 159 else if (Dir == Dependence::DVEntry::GT || 160 Dir == Dependence::DVEntry::GE) 161 Direction = '>'; 162 else if (Dir == Dependence::DVEntry::EQ) 163 Direction = '='; 164 else 165 Direction = '*'; 166 Dep.push_back(Direction); 167 } 168 } 169 while (Dep.size() != Level) { 170 Dep.push_back('I'); 171 } 172 173 DepMatrix.push_back(Dep); 174 if (DepMatrix.size() > MaxMemInstrCount) { 175 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 176 << " dependencies inside loop\n"); 177 return false; 178 } 179 } 180 } 181 } 182 183 return true; 184 } 185 186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 187 // matrix by exchanging the two columns. 188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 189 unsigned ToIndx) { 190 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 191 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 192 } 193 194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 195 // '>' 196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 197 unsigned Column) { 198 for (unsigned i = 0; i <= Column; ++i) { 199 if (DepMatrix[Row][i] == '<') 200 return false; 201 if (DepMatrix[Row][i] == '>') 202 return true; 203 } 204 // All dependencies were '=','S' or 'I' 205 return false; 206 } 207 208 // Checks if no dependence exist in the dependency matrix in Row before Column. 209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 210 unsigned Column) { 211 for (unsigned i = 0; i < Column; ++i) { 212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 213 DepMatrix[Row][i] != 'I') 214 return false; 215 } 216 return true; 217 } 218 219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 220 unsigned OuterLoopId, char InnerDep, 221 char OuterDep) { 222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 223 return false; 224 225 if (InnerDep == OuterDep) 226 return true; 227 228 // It is legal to interchange if and only if after interchange no row has a 229 // '>' direction as the leftmost non-'='. 230 231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 232 return true; 233 234 if (InnerDep == '<') 235 return true; 236 237 if (InnerDep == '>') { 238 // If OuterLoopId represents outermost loop then interchanging will make the 239 // 1st dependency as '>' 240 if (OuterLoopId == 0) 241 return false; 242 243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 244 // interchanging will result in this row having an outermost non '=' 245 // dependency of '>' 246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 247 return true; 248 } 249 250 return false; 251 } 252 253 // Checks if it is legal to interchange 2 loops. 254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 255 // if the direction matrix, after the same permutation is applied to its 256 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 258 unsigned InnerLoopId, 259 unsigned OuterLoopId) { 260 unsigned NumRows = DepMatrix.size(); 261 // For each row check if it is valid to interchange. 262 for (unsigned Row = 0; Row < NumRows; ++Row) { 263 char InnerDep = DepMatrix[Row][InnerLoopId]; 264 char OuterDep = DepMatrix[Row][OuterLoopId]; 265 if (InnerDep == '*' || OuterDep == '*') 266 return false; 267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 268 return false; 269 } 270 return true; 271 } 272 273 static LoopVector populateWorklist(Loop &L) { 274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 275 << L.getHeader()->getParent()->getName() << " Loop: %" 276 << L.getHeader()->getName() << '\n'); 277 LoopVector LoopList; 278 Loop *CurrentLoop = &L; 279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 280 while (!Vec->empty()) { 281 // The current loop has multiple subloops in it hence it is not tightly 282 // nested. 283 // Discard all loops above it added into Worklist. 284 if (Vec->size() != 1) 285 return {}; 286 287 LoopList.push_back(CurrentLoop); 288 CurrentLoop = Vec->front(); 289 Vec = &CurrentLoop->getSubLoops(); 290 } 291 LoopList.push_back(CurrentLoop); 292 return LoopList; 293 } 294 295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 297 if (InnerIndexVar) 298 return InnerIndexVar; 299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 300 return nullptr; 301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 302 PHINode *PhiVar = cast<PHINode>(I); 303 Type *PhiTy = PhiVar->getType(); 304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 305 !PhiTy->isPointerTy()) 306 return nullptr; 307 const SCEVAddRecExpr *AddRec = 308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 309 if (!AddRec || !AddRec->isAffine()) 310 continue; 311 const SCEV *Step = AddRec->getStepRecurrence(*SE); 312 if (!isa<SCEVConstant>(Step)) 313 continue; 314 // Found the induction variable. 315 // FIXME: Handle loops with more than one induction variable. Note that, 316 // currently, legality makes sure we have only one induction variable. 317 return PhiVar; 318 } 319 return nullptr; 320 } 321 322 namespace { 323 324 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 325 class LoopInterchangeLegality { 326 public: 327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 328 OptimizationRemarkEmitter *ORE) 329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 330 331 /// Check if the loops can be interchanged. 332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 333 CharMatrix &DepMatrix); 334 335 /// Check if the loop structure is understood. We do not handle triangular 336 /// loops for now. 337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 338 339 bool currentLimitations(); 340 341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 342 return OuterInnerReductions; 343 } 344 345 private: 346 bool tightlyNested(Loop *Outer, Loop *Inner); 347 bool containsUnsafeInstructions(BasicBlock *BB); 348 349 /// Discover induction and reduction PHIs in the header of \p L. Induction 350 /// PHIs are added to \p Inductions, reductions are added to 351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 352 /// to be passed as \p InnerLoop. 353 bool findInductionAndReductions(Loop *L, 354 SmallVector<PHINode *, 8> &Inductions, 355 Loop *InnerLoop); 356 357 Loop *OuterLoop; 358 Loop *InnerLoop; 359 360 ScalarEvolution *SE; 361 362 /// Interface to emit optimization remarks. 363 OptimizationRemarkEmitter *ORE; 364 365 /// Set of reduction PHIs taking part of a reduction across the inner and 366 /// outer loop. 367 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 368 }; 369 370 /// LoopInterchangeProfitability checks if it is profitable to interchange the 371 /// loop. 372 class LoopInterchangeProfitability { 373 public: 374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 375 OptimizationRemarkEmitter *ORE) 376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 377 378 /// Check if the loop interchange is profitable. 379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 380 CharMatrix &DepMatrix); 381 382 private: 383 int getInstrOrderCost(); 384 385 Loop *OuterLoop; 386 Loop *InnerLoop; 387 388 /// Scev analysis. 389 ScalarEvolution *SE; 390 391 /// Interface to emit optimization remarks. 392 OptimizationRemarkEmitter *ORE; 393 }; 394 395 /// LoopInterchangeTransform interchanges the loop. 396 class LoopInterchangeTransform { 397 public: 398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 399 LoopInfo *LI, DominatorTree *DT, 400 const LoopInterchangeLegality &LIL) 401 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 402 403 /// Interchange OuterLoop and InnerLoop. 404 bool transform(); 405 void restructureLoops(Loop *NewInner, Loop *NewOuter, 406 BasicBlock *OrigInnerPreHeader, 407 BasicBlock *OrigOuterPreHeader); 408 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 409 410 private: 411 bool adjustLoopLinks(); 412 bool adjustLoopBranches(); 413 414 Loop *OuterLoop; 415 Loop *InnerLoop; 416 417 /// Scev analysis. 418 ScalarEvolution *SE; 419 420 LoopInfo *LI; 421 DominatorTree *DT; 422 423 const LoopInterchangeLegality &LIL; 424 }; 425 426 struct LoopInterchange { 427 ScalarEvolution *SE = nullptr; 428 LoopInfo *LI = nullptr; 429 DependenceInfo *DI = nullptr; 430 DominatorTree *DT = nullptr; 431 432 /// Interface to emit optimization remarks. 433 OptimizationRemarkEmitter *ORE; 434 435 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 436 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 437 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 438 439 bool run(Loop *L) { 440 if (L->getParentLoop()) 441 return false; 442 443 return processLoopList(populateWorklist(*L)); 444 } 445 446 bool run(LoopNest &LN) { 447 const auto &LoopList = LN.getLoops(); 448 for (unsigned I = 1; I < LoopList.size(); ++I) 449 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 450 return false; 451 return processLoopList(LoopList); 452 } 453 454 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 455 for (Loop *L : LoopList) { 456 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 457 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 458 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 459 return false; 460 } 461 if (L->getNumBackEdges() != 1) { 462 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 463 return false; 464 } 465 if (!L->getExitingBlock()) { 466 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 467 return false; 468 } 469 } 470 return true; 471 } 472 473 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 474 // TODO: Add a better heuristic to select the loop to be interchanged based 475 // on the dependence matrix. Currently we select the innermost loop. 476 return LoopList.size() - 1; 477 } 478 479 bool processLoopList(ArrayRef<Loop *> LoopList) { 480 bool Changed = false; 481 unsigned LoopNestDepth = LoopList.size(); 482 if (LoopNestDepth < 2) { 483 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 484 return false; 485 } 486 if (LoopNestDepth > MaxLoopNestDepth) { 487 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 488 << MaxLoopNestDepth << "\n"); 489 return false; 490 } 491 if (!isComputableLoopNest(LoopList)) { 492 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 493 return false; 494 } 495 496 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 497 << "\n"); 498 499 CharMatrix DependencyMatrix; 500 Loop *OuterMostLoop = *(LoopList.begin()); 501 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 502 OuterMostLoop, DI)) { 503 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 504 return false; 505 } 506 #ifdef DUMP_DEP_MATRICIES 507 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 508 printDepMatrix(DependencyMatrix); 509 #endif 510 511 // Get the Outermost loop exit. 512 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 513 if (!LoopNestExit) { 514 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 515 return false; 516 } 517 518 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 519 // Move the selected loop outwards to the best possible position. 520 Loop *LoopToBeInterchanged = LoopList[SelecLoopId]; 521 for (unsigned i = SelecLoopId; i > 0; i--) { 522 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i, 523 i - 1, DependencyMatrix); 524 if (!Interchanged) 525 return Changed; 526 // Update the DependencyMatrix 527 interChangeDependencies(DependencyMatrix, i, i - 1); 528 #ifdef DUMP_DEP_MATRICIES 529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 530 printDepMatrix(DependencyMatrix); 531 #endif 532 Changed |= Interchanged; 533 } 534 return Changed; 535 } 536 537 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 538 unsigned OuterLoopId, 539 std::vector<std::vector<char>> &DependencyMatrix) { 540 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 541 << " and OuterLoopId = " << OuterLoopId << "\n"); 542 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 543 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 544 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 545 return false; 546 } 547 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 548 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 549 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 550 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 551 return false; 552 } 553 554 ORE->emit([&]() { 555 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 556 InnerLoop->getStartLoc(), 557 InnerLoop->getHeader()) 558 << "Loop interchanged with enclosing loop."; 559 }); 560 561 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 562 LIT.transform(); 563 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 564 LoopsInterchanged++; 565 566 assert(InnerLoop->isLCSSAForm(*DT) && 567 "Inner loop not left in LCSSA form after loop interchange!"); 568 assert(OuterLoop->isLCSSAForm(*DT) && 569 "Outer loop not left in LCSSA form after loop interchange!"); 570 571 return true; 572 } 573 }; 574 575 } // end anonymous namespace 576 577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 578 return any_of(*BB, [](const Instruction &I) { 579 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 580 }); 581 } 582 583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 584 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 585 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 586 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 587 588 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 589 590 // A perfectly nested loop will not have any branch in between the outer and 591 // inner block i.e. outer header will branch to either inner preheader and 592 // outerloop latch. 593 BranchInst *OuterLoopHeaderBI = 594 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 595 if (!OuterLoopHeaderBI) 596 return false; 597 598 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 599 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 600 Succ != OuterLoopLatch) 601 return false; 602 603 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 604 // We do not have any basic block in between now make sure the outer header 605 // and outer loop latch doesn't contain any unsafe instructions. 606 if (containsUnsafeInstructions(OuterLoopHeader) || 607 containsUnsafeInstructions(OuterLoopLatch)) 608 return false; 609 610 // Also make sure the inner loop preheader does not contain any unsafe 611 // instructions. Note that all instructions in the preheader will be moved to 612 // the outer loop header when interchanging. 613 if (InnerLoopPreHeader != OuterLoopHeader && 614 containsUnsafeInstructions(InnerLoopPreHeader)) 615 return false; 616 617 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 618 // Ensure the inner loop exit block flows to the outer loop latch possibly 619 // through empty blocks. 620 const BasicBlock &SuccInner = 621 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 622 if (&SuccInner != OuterLoopLatch) { 623 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 624 << " does not lead to the outer loop latch.\n";); 625 return false; 626 } 627 // The inner loop exit block does flow to the outer loop latch and not some 628 // other BBs, now make sure it contains safe instructions, since it will be 629 // moved into the (new) inner loop after interchange. 630 if (containsUnsafeInstructions(InnerLoopExit)) 631 return false; 632 633 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 634 // We have a perfect loop nest. 635 return true; 636 } 637 638 bool LoopInterchangeLegality::isLoopStructureUnderstood( 639 PHINode *InnerInduction) { 640 unsigned Num = InnerInduction->getNumOperands(); 641 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 642 for (unsigned i = 0; i < Num; ++i) { 643 Value *Val = InnerInduction->getOperand(i); 644 if (isa<Constant>(Val)) 645 continue; 646 Instruction *I = dyn_cast<Instruction>(Val); 647 if (!I) 648 return false; 649 // TODO: Handle triangular loops. 650 // e.g. for(int i=0;i<N;i++) 651 // for(int j=i;j<N;j++) 652 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 653 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 654 InnerLoopPreheader && 655 !OuterLoop->isLoopInvariant(I)) { 656 return false; 657 } 658 } 659 return true; 660 } 661 662 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 663 // value. 664 static Value *followLCSSA(Value *SV) { 665 PHINode *PHI = dyn_cast<PHINode>(SV); 666 if (!PHI) 667 return SV; 668 669 if (PHI->getNumIncomingValues() != 1) 670 return SV; 671 return followLCSSA(PHI->getIncomingValue(0)); 672 } 673 674 // Check V's users to see if it is involved in a reduction in L. 675 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 676 // Reduction variables cannot be constants. 677 if (isa<Constant>(V)) 678 return nullptr; 679 680 for (Value *User : V->users()) { 681 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 682 if (PHI->getNumIncomingValues() == 1) 683 continue; 684 RecurrenceDescriptor RD; 685 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 686 return PHI; 687 return nullptr; 688 } 689 } 690 691 return nullptr; 692 } 693 694 bool LoopInterchangeLegality::findInductionAndReductions( 695 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 696 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 697 return false; 698 for (PHINode &PHI : L->getHeader()->phis()) { 699 RecurrenceDescriptor RD; 700 InductionDescriptor ID; 701 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 702 Inductions.push_back(&PHI); 703 else { 704 // PHIs in inner loops need to be part of a reduction in the outer loop, 705 // discovered when checking the PHIs of the outer loop earlier. 706 if (!InnerLoop) { 707 if (!OuterInnerReductions.count(&PHI)) { 708 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 709 "across the outer loop.\n"); 710 return false; 711 } 712 } else { 713 assert(PHI.getNumIncomingValues() == 2 && 714 "Phis in loop header should have exactly 2 incoming values"); 715 // Check if we have a PHI node in the outer loop that has a reduction 716 // result from the inner loop as an incoming value. 717 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 718 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 719 if (!InnerRedPhi || 720 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 721 LLVM_DEBUG( 722 dbgs() 723 << "Failed to recognize PHI as an induction or reduction.\n"); 724 return false; 725 } 726 OuterInnerReductions.insert(&PHI); 727 OuterInnerReductions.insert(InnerRedPhi); 728 } 729 } 730 } 731 return true; 732 } 733 734 // This function indicates the current limitations in the transform as a result 735 // of which we do not proceed. 736 bool LoopInterchangeLegality::currentLimitations() { 737 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 738 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 739 740 // transform currently expects the loop latches to also be the exiting 741 // blocks. 742 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 743 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 744 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 745 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 746 LLVM_DEBUG( 747 dbgs() << "Loops where the latch is not the exiting block are not" 748 << " supported currently.\n"); 749 ORE->emit([&]() { 750 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 751 OuterLoop->getStartLoc(), 752 OuterLoop->getHeader()) 753 << "Loops where the latch is not the exiting block cannot be" 754 " interchange currently."; 755 }); 756 return true; 757 } 758 759 PHINode *InnerInductionVar; 760 SmallVector<PHINode *, 8> Inductions; 761 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 762 LLVM_DEBUG( 763 dbgs() << "Only outer loops with induction or reduction PHI nodes " 764 << "are supported currently.\n"); 765 ORE->emit([&]() { 766 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 767 OuterLoop->getStartLoc(), 768 OuterLoop->getHeader()) 769 << "Only outer loops with induction or reduction PHI nodes can be" 770 " interchanged currently."; 771 }); 772 return true; 773 } 774 775 // TODO: Currently we handle only loops with 1 induction variable. 776 if (Inductions.size() != 1) { 777 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 778 << "supported currently.\n"); 779 ORE->emit([&]() { 780 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 781 OuterLoop->getStartLoc(), 782 OuterLoop->getHeader()) 783 << "Only outer loops with 1 induction variable can be " 784 "interchanged currently."; 785 }); 786 return true; 787 } 788 789 Inductions.clear(); 790 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 791 LLVM_DEBUG( 792 dbgs() << "Only inner loops with induction or reduction PHI nodes " 793 << "are supported currently.\n"); 794 ORE->emit([&]() { 795 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 796 InnerLoop->getStartLoc(), 797 InnerLoop->getHeader()) 798 << "Only inner loops with induction or reduction PHI nodes can be" 799 " interchange currently."; 800 }); 801 return true; 802 } 803 804 // TODO: Currently we handle only loops with 1 induction variable. 805 if (Inductions.size() != 1) { 806 LLVM_DEBUG( 807 dbgs() << "We currently only support loops with 1 induction variable." 808 << "Failed to interchange due to current limitation\n"); 809 ORE->emit([&]() { 810 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 811 InnerLoop->getStartLoc(), 812 InnerLoop->getHeader()) 813 << "Only inner loops with 1 induction variable can be " 814 "interchanged currently."; 815 }); 816 return true; 817 } 818 InnerInductionVar = Inductions.pop_back_val(); 819 820 // TODO: Triangular loops are not handled for now. 821 if (!isLoopStructureUnderstood(InnerInductionVar)) { 822 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 823 ORE->emit([&]() { 824 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 825 InnerLoop->getStartLoc(), 826 InnerLoop->getHeader()) 827 << "Inner loop structure not understood currently."; 828 }); 829 return true; 830 } 831 832 // TODO: Current limitation: Since we split the inner loop latch at the point 833 // were induction variable is incremented (induction.next); We cannot have 834 // more than 1 user of induction.next since it would result in broken code 835 // after split. 836 // e.g. 837 // for(i=0;i<N;i++) { 838 // for(j = 0;j<M;j++) { 839 // A[j+1][i+2] = A[j][i]+k; 840 // } 841 // } 842 Instruction *InnerIndexVarInc = nullptr; 843 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 844 InnerIndexVarInc = 845 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 846 else 847 InnerIndexVarInc = 848 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 849 850 if (!InnerIndexVarInc) { 851 LLVM_DEBUG( 852 dbgs() << "Did not find an instruction to increment the induction " 853 << "variable.\n"); 854 ORE->emit([&]() { 855 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 856 InnerLoop->getStartLoc(), 857 InnerLoop->getHeader()) 858 << "The inner loop does not increment the induction variable."; 859 }); 860 return true; 861 } 862 863 // Since we split the inner loop latch on this induction variable. Make sure 864 // we do not have any instruction between the induction variable and branch 865 // instruction. 866 867 bool FoundInduction = false; 868 for (const Instruction &I : 869 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 870 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 871 isa<ZExtInst>(I)) 872 continue; 873 874 // We found an instruction. If this is not induction variable then it is not 875 // safe to split this loop latch. 876 if (!I.isIdenticalTo(InnerIndexVarInc)) { 877 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 878 << "variable increment and branch.\n"); 879 ORE->emit([&]() { 880 return OptimizationRemarkMissed( 881 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 882 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 883 << "Found unsupported instruction between induction variable " 884 "increment and branch."; 885 }); 886 return true; 887 } 888 889 FoundInduction = true; 890 break; 891 } 892 // The loop latch ended and we didn't find the induction variable return as 893 // current limitation. 894 if (!FoundInduction) { 895 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 896 ORE->emit([&]() { 897 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 898 InnerLoop->getStartLoc(), 899 InnerLoop->getHeader()) 900 << "Did not find the induction variable."; 901 }); 902 return true; 903 } 904 return false; 905 } 906 907 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 908 // users are either reduction PHIs or PHIs outside the outer loop (which means 909 // the we are only interested in the final value after the loop). 910 static bool 911 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 912 SmallPtrSetImpl<PHINode *> &Reductions) { 913 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 914 for (PHINode &PHI : InnerExit->phis()) { 915 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 916 if (PHI.getNumIncomingValues() > 1) 917 return false; 918 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 919 PHINode *PN = dyn_cast<PHINode>(U); 920 return !PN || 921 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 922 })) { 923 return false; 924 } 925 } 926 return true; 927 } 928 929 // We currently support LCSSA PHI nodes in the outer loop exit, if their 930 // incoming values do not come from the outer loop latch or if the 931 // outer loop latch has a single predecessor. In that case, the value will 932 // be available if both the inner and outer loop conditions are true, which 933 // will still be true after interchanging. If we have multiple predecessor, 934 // that may not be the case, e.g. because the outer loop latch may be executed 935 // if the inner loop is not executed. 936 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 937 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 938 for (PHINode &PHI : LoopNestExit->phis()) { 939 // FIXME: We currently are not able to detect floating point reductions 940 // and have to use floating point PHIs as a proxy to prevent 941 // interchanging in the presence of floating point reductions. 942 if (PHI.getType()->isFloatingPointTy()) 943 return false; 944 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 945 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 946 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 947 continue; 948 949 // The incoming value is defined in the outer loop latch. Currently we 950 // only support that in case the outer loop latch has a single predecessor. 951 // This guarantees that the outer loop latch is executed if and only if 952 // the inner loop is executed (because tightlyNested() guarantees that the 953 // outer loop header only branches to the inner loop or the outer loop 954 // latch). 955 // FIXME: We could weaken this logic and allow multiple predecessors, 956 // if the values are produced outside the loop latch. We would need 957 // additional logic to update the PHI nodes in the exit block as 958 // well. 959 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 960 return false; 961 } 962 } 963 return true; 964 } 965 966 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 967 unsigned OuterLoopId, 968 CharMatrix &DepMatrix) { 969 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 970 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 971 << " and OuterLoopId = " << OuterLoopId 972 << " due to dependence\n"); 973 ORE->emit([&]() { 974 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 975 InnerLoop->getStartLoc(), 976 InnerLoop->getHeader()) 977 << "Cannot interchange loops due to dependences."; 978 }); 979 return false; 980 } 981 // Check if outer and inner loop contain legal instructions only. 982 for (auto *BB : OuterLoop->blocks()) 983 for (Instruction &I : BB->instructionsWithoutDebug()) 984 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 985 // readnone functions do not prevent interchanging. 986 if (CI->doesNotReadMemory()) 987 continue; 988 LLVM_DEBUG( 989 dbgs() << "Loops with call instructions cannot be interchanged " 990 << "safely."); 991 ORE->emit([&]() { 992 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 993 CI->getDebugLoc(), 994 CI->getParent()) 995 << "Cannot interchange loops due to call instruction."; 996 }); 997 998 return false; 999 } 1000 1001 // TODO: The loops could not be interchanged due to current limitations in the 1002 // transform module. 1003 if (currentLimitations()) { 1004 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1005 return false; 1006 } 1007 1008 // Check if the loops are tightly nested. 1009 if (!tightlyNested(OuterLoop, InnerLoop)) { 1010 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1011 ORE->emit([&]() { 1012 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1013 InnerLoop->getStartLoc(), 1014 InnerLoop->getHeader()) 1015 << "Cannot interchange loops because they are not tightly " 1016 "nested."; 1017 }); 1018 return false; 1019 } 1020 1021 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1022 OuterInnerReductions)) { 1023 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1024 ORE->emit([&]() { 1025 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1026 InnerLoop->getStartLoc(), 1027 InnerLoop->getHeader()) 1028 << "Found unsupported PHI node in loop exit."; 1029 }); 1030 return false; 1031 } 1032 1033 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1034 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1035 ORE->emit([&]() { 1036 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1037 OuterLoop->getStartLoc(), 1038 OuterLoop->getHeader()) 1039 << "Found unsupported PHI node in loop exit."; 1040 }); 1041 return false; 1042 } 1043 1044 return true; 1045 } 1046 1047 int LoopInterchangeProfitability::getInstrOrderCost() { 1048 unsigned GoodOrder, BadOrder; 1049 BadOrder = GoodOrder = 0; 1050 for (BasicBlock *BB : InnerLoop->blocks()) { 1051 for (Instruction &Ins : *BB) { 1052 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1053 unsigned NumOp = GEP->getNumOperands(); 1054 bool FoundInnerInduction = false; 1055 bool FoundOuterInduction = false; 1056 for (unsigned i = 0; i < NumOp; ++i) { 1057 // Skip operands that are not SCEV-able. 1058 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1059 continue; 1060 1061 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1063 if (!AR) 1064 continue; 1065 1066 // If we find the inner induction after an outer induction e.g. 1067 // for(int i=0;i<N;i++) 1068 // for(int j=0;j<N;j++) 1069 // A[i][j] = A[i-1][j-1]+k; 1070 // then it is a good order. 1071 if (AR->getLoop() == InnerLoop) { 1072 // We found an InnerLoop induction after OuterLoop induction. It is 1073 // a good order. 1074 FoundInnerInduction = true; 1075 if (FoundOuterInduction) { 1076 GoodOrder++; 1077 break; 1078 } 1079 } 1080 // If we find the outer induction after an inner induction e.g. 1081 // for(int i=0;i<N;i++) 1082 // for(int j=0;j<N;j++) 1083 // A[j][i] = A[j-1][i-1]+k; 1084 // then it is a bad order. 1085 if (AR->getLoop() == OuterLoop) { 1086 // We found an OuterLoop induction after InnerLoop induction. It is 1087 // a bad order. 1088 FoundOuterInduction = true; 1089 if (FoundInnerInduction) { 1090 BadOrder++; 1091 break; 1092 } 1093 } 1094 } 1095 } 1096 } 1097 } 1098 return GoodOrder - BadOrder; 1099 } 1100 1101 static bool isProfitableForVectorization(unsigned InnerLoopId, 1102 unsigned OuterLoopId, 1103 CharMatrix &DepMatrix) { 1104 // TODO: Improve this heuristic to catch more cases. 1105 // If the inner loop is loop independent or doesn't carry any dependency it is 1106 // profitable to move this to outer position. 1107 for (auto &Row : DepMatrix) { 1108 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1109 return false; 1110 // TODO: We need to improve this heuristic. 1111 if (Row[OuterLoopId] != '=') 1112 return false; 1113 } 1114 // If outer loop has dependence and inner loop is loop independent then it is 1115 // profitable to interchange to enable parallelism. 1116 // If there are no dependences, interchanging will not improve anything. 1117 return !DepMatrix.empty(); 1118 } 1119 1120 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1121 unsigned OuterLoopId, 1122 CharMatrix &DepMatrix) { 1123 // TODO: Add better profitability checks. 1124 // e.g 1125 // 1) Construct dependency matrix and move the one with no loop carried dep 1126 // inside to enable vectorization. 1127 1128 // This is rough cost estimation algorithm. It counts the good and bad order 1129 // of induction variables in the instruction and allows reordering if number 1130 // of bad orders is more than good. 1131 int Cost = getInstrOrderCost(); 1132 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1133 if (Cost < -LoopInterchangeCostThreshold) 1134 return true; 1135 1136 // It is not profitable as per current cache profitability model. But check if 1137 // we can move this loop outside to improve parallelism. 1138 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1139 return true; 1140 1141 ORE->emit([&]() { 1142 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1143 InnerLoop->getStartLoc(), 1144 InnerLoop->getHeader()) 1145 << "Interchanging loops is too costly (cost=" 1146 << ore::NV("Cost", Cost) << ", threshold=" 1147 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1148 << ") and it does not improve parallelism."; 1149 }); 1150 return false; 1151 } 1152 1153 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1154 Loop *InnerLoop) { 1155 for (Loop *L : *OuterLoop) 1156 if (L == InnerLoop) { 1157 OuterLoop->removeChildLoop(L); 1158 return; 1159 } 1160 llvm_unreachable("Couldn't find loop"); 1161 } 1162 1163 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1164 /// new inner and outer loop after interchanging: NewInner is the original 1165 /// outer loop and NewOuter is the original inner loop. 1166 /// 1167 /// Before interchanging, we have the following structure 1168 /// Outer preheader 1169 // Outer header 1170 // Inner preheader 1171 // Inner header 1172 // Inner body 1173 // Inner latch 1174 // outer bbs 1175 // Outer latch 1176 // 1177 // After interchanging: 1178 // Inner preheader 1179 // Inner header 1180 // Outer preheader 1181 // Outer header 1182 // Inner body 1183 // outer bbs 1184 // Outer latch 1185 // Inner latch 1186 void LoopInterchangeTransform::restructureLoops( 1187 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1188 BasicBlock *OrigOuterPreHeader) { 1189 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1190 // The original inner loop preheader moves from the new inner loop to 1191 // the parent loop, if there is one. 1192 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1193 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1194 1195 // Switch the loop levels. 1196 if (OuterLoopParent) { 1197 // Remove the loop from its parent loop. 1198 removeChildLoop(OuterLoopParent, NewInner); 1199 removeChildLoop(NewInner, NewOuter); 1200 OuterLoopParent->addChildLoop(NewOuter); 1201 } else { 1202 removeChildLoop(NewInner, NewOuter); 1203 LI->changeTopLevelLoop(NewInner, NewOuter); 1204 } 1205 while (!NewOuter->isInnermost()) 1206 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1207 NewOuter->addChildLoop(NewInner); 1208 1209 // BBs from the original inner loop. 1210 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1211 1212 // Add BBs from the original outer loop to the original inner loop (excluding 1213 // BBs already in inner loop) 1214 for (BasicBlock *BB : NewInner->blocks()) 1215 if (LI->getLoopFor(BB) == NewInner) 1216 NewOuter->addBlockEntry(BB); 1217 1218 // Now remove inner loop header and latch from the new inner loop and move 1219 // other BBs (the loop body) to the new inner loop. 1220 BasicBlock *OuterHeader = NewOuter->getHeader(); 1221 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1222 for (BasicBlock *BB : OrigInnerBBs) { 1223 // Nothing will change for BBs in child loops. 1224 if (LI->getLoopFor(BB) != NewOuter) 1225 continue; 1226 // Remove the new outer loop header and latch from the new inner loop. 1227 if (BB == OuterHeader || BB == OuterLatch) 1228 NewInner->removeBlockFromLoop(BB); 1229 else 1230 LI->changeLoopFor(BB, NewInner); 1231 } 1232 1233 // The preheader of the original outer loop becomes part of the new 1234 // outer loop. 1235 NewOuter->addBlockEntry(OrigOuterPreHeader); 1236 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1237 1238 // Tell SE that we move the loops around. 1239 SE->forgetLoop(NewOuter); 1240 SE->forgetLoop(NewInner); 1241 } 1242 1243 bool LoopInterchangeTransform::transform() { 1244 bool Transformed = false; 1245 Instruction *InnerIndexVar; 1246 1247 if (InnerLoop->getSubLoops().empty()) { 1248 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1249 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1250 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1251 if (!InductionPHI) { 1252 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1253 return false; 1254 } 1255 1256 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1257 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1258 else 1259 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1260 1261 // Ensure that InductionPHI is the first Phi node. 1262 if (&InductionPHI->getParent()->front() != InductionPHI) 1263 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1264 1265 // Create a new latch block for the inner loop. We split at the 1266 // current latch's terminator and then move the condition and all 1267 // operands that are not either loop-invariant or the induction PHI into the 1268 // new latch block. 1269 BasicBlock *NewLatch = 1270 SplitBlock(InnerLoop->getLoopLatch(), 1271 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1272 1273 SmallSetVector<Instruction *, 4> WorkList; 1274 unsigned i = 0; 1275 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1276 for (; i < WorkList.size(); i++) { 1277 // Duplicate instruction and move it the new latch. Update uses that 1278 // have been moved. 1279 Instruction *NewI = WorkList[i]->clone(); 1280 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1281 assert(!NewI->mayHaveSideEffects() && 1282 "Moving instructions with side-effects may change behavior of " 1283 "the loop nest!"); 1284 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1285 Instruction *UserI = cast<Instruction>(U.getUser()); 1286 if (!InnerLoop->contains(UserI->getParent()) || 1287 UserI->getParent() == NewLatch || UserI == InductionPHI) 1288 U.set(NewI); 1289 } 1290 // Add operands of moved instruction to the worklist, except if they are 1291 // outside the inner loop or are the induction PHI. 1292 for (Value *Op : WorkList[i]->operands()) { 1293 Instruction *OpI = dyn_cast<Instruction>(Op); 1294 if (!OpI || 1295 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1296 OpI == InductionPHI) 1297 continue; 1298 WorkList.insert(OpI); 1299 } 1300 } 1301 }; 1302 1303 // FIXME: Should we interchange when we have a constant condition? 1304 Instruction *CondI = dyn_cast<Instruction>( 1305 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1306 ->getCondition()); 1307 if (CondI) 1308 WorkList.insert(CondI); 1309 MoveInstructions(); 1310 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1311 MoveInstructions(); 1312 1313 // Splits the inner loops phi nodes out into a separate basic block. 1314 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1315 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1316 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1317 } 1318 1319 // Instructions in the original inner loop preheader may depend on values 1320 // defined in the outer loop header. Move them there, because the original 1321 // inner loop preheader will become the entry into the interchanged loop nest. 1322 // Currently we move all instructions and rely on LICM to move invariant 1323 // instructions outside the loop nest. 1324 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1325 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1326 if (InnerLoopPreHeader != OuterLoopHeader) { 1327 SmallPtrSet<Instruction *, 4> NeedsMoving; 1328 for (Instruction &I : 1329 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1330 std::prev(InnerLoopPreHeader->end())))) 1331 I.moveBefore(OuterLoopHeader->getTerminator()); 1332 } 1333 1334 Transformed |= adjustLoopLinks(); 1335 if (!Transformed) { 1336 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1337 return false; 1338 } 1339 1340 return true; 1341 } 1342 1343 /// \brief Move all instructions except the terminator from FromBB right before 1344 /// InsertBefore 1345 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1346 auto &ToList = InsertBefore->getParent()->getInstList(); 1347 auto &FromList = FromBB->getInstList(); 1348 1349 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1350 FromBB->getTerminator()->getIterator()); 1351 } 1352 1353 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1354 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1355 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1356 // from BB1 afterwards. 1357 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1358 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1359 for (Instruction *I : TempInstrs) 1360 I->removeFromParent(); 1361 1362 // Move instructions from BB2 to BB1. 1363 moveBBContents(BB2, BB1->getTerminator()); 1364 1365 // Move instructions from TempInstrs to BB2. 1366 for (Instruction *I : TempInstrs) 1367 I->insertBefore(BB2->getTerminator()); 1368 } 1369 1370 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1371 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1372 // \p OldBB is exactly once in BI's successor list. 1373 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1374 BasicBlock *NewBB, 1375 std::vector<DominatorTree::UpdateType> &DTUpdates, 1376 bool MustUpdateOnce = true) { 1377 assert((!MustUpdateOnce || 1378 llvm::count_if(successors(BI), 1379 [OldBB](BasicBlock *BB) { 1380 return BB == OldBB; 1381 }) == 1) && "BI must jump to OldBB exactly once."); 1382 bool Changed = false; 1383 for (Use &Op : BI->operands()) 1384 if (Op == OldBB) { 1385 Op.set(NewBB); 1386 Changed = true; 1387 } 1388 1389 if (Changed) { 1390 DTUpdates.push_back( 1391 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1392 DTUpdates.push_back( 1393 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1394 } 1395 assert(Changed && "Expected a successor to be updated"); 1396 } 1397 1398 // Move Lcssa PHIs to the right place. 1399 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1400 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1401 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1402 Loop *InnerLoop, LoopInfo *LI) { 1403 1404 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1405 // defined either in the header or latch. Those blocks will become header and 1406 // latch of the new outer loop, and the only possible users can PHI nodes 1407 // in the exit block of the loop nest or the outer loop header (reduction 1408 // PHIs, in that case, the incoming value must be defined in the inner loop 1409 // header). We can just substitute the user with the incoming value and remove 1410 // the PHI. 1411 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1412 assert(P.getNumIncomingValues() == 1 && 1413 "Only loops with a single exit are supported!"); 1414 1415 // Incoming values are guaranteed be instructions currently. 1416 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1417 // Skip phis with incoming values from the inner loop body, excluding the 1418 // header and latch. 1419 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1420 continue; 1421 1422 assert(all_of(P.users(), 1423 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1424 return (cast<PHINode>(U)->getParent() == OuterHeader && 1425 IncI->getParent() == InnerHeader) || 1426 cast<PHINode>(U)->getParent() == OuterExit; 1427 }) && 1428 "Can only replace phis iff the uses are in the loop nest exit or " 1429 "the incoming value is defined in the inner header (it will " 1430 "dominate all loop blocks after interchanging)"); 1431 P.replaceAllUsesWith(IncI); 1432 P.eraseFromParent(); 1433 } 1434 1435 SmallVector<PHINode *, 8> LcssaInnerExit; 1436 for (PHINode &P : InnerExit->phis()) 1437 LcssaInnerExit.push_back(&P); 1438 1439 SmallVector<PHINode *, 8> LcssaInnerLatch; 1440 for (PHINode &P : InnerLatch->phis()) 1441 LcssaInnerLatch.push_back(&P); 1442 1443 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1444 // If a PHI node has users outside of InnerExit, it has a use outside the 1445 // interchanged loop and we have to preserve it. We move these to 1446 // InnerLatch, which will become the new exit block for the innermost 1447 // loop after interchanging. 1448 for (PHINode *P : LcssaInnerExit) 1449 P->moveBefore(InnerLatch->getFirstNonPHI()); 1450 1451 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1452 // and we have to move them to the new inner latch. 1453 for (PHINode *P : LcssaInnerLatch) 1454 P->moveBefore(InnerExit->getFirstNonPHI()); 1455 1456 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1457 // incoming values defined in the outer loop, we have to add a new PHI 1458 // in the inner loop latch, which became the exit block of the outer loop, 1459 // after interchanging. 1460 if (OuterExit) { 1461 for (PHINode &P : OuterExit->phis()) { 1462 if (P.getNumIncomingValues() != 1) 1463 continue; 1464 // Skip Phis with incoming values defined in the inner loop. Those should 1465 // already have been updated. 1466 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1467 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1468 continue; 1469 1470 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1471 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1472 NewPhi->setIncomingBlock(0, OuterLatch); 1473 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1474 P.setIncomingValue(0, NewPhi); 1475 } 1476 } 1477 1478 // Now adjust the incoming blocks for the LCSSA PHIs. 1479 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1480 // with the new latch. 1481 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1482 } 1483 1484 bool LoopInterchangeTransform::adjustLoopBranches() { 1485 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1486 std::vector<DominatorTree::UpdateType> DTUpdates; 1487 1488 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1489 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1490 1491 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1492 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1493 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1494 // Ensure that both preheaders do not contain PHI nodes and have single 1495 // predecessors. This allows us to move them easily. We use 1496 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1497 // preheaders do not satisfy those conditions. 1498 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1499 !OuterLoopPreHeader->getUniquePredecessor()) 1500 OuterLoopPreHeader = 1501 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1502 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1503 InnerLoopPreHeader = 1504 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1505 1506 // Adjust the loop preheader 1507 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1508 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1509 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1510 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1511 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1512 BasicBlock *InnerLoopLatchPredecessor = 1513 InnerLoopLatch->getUniquePredecessor(); 1514 BasicBlock *InnerLoopLatchSuccessor; 1515 BasicBlock *OuterLoopLatchSuccessor; 1516 1517 BranchInst *OuterLoopLatchBI = 1518 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1519 BranchInst *InnerLoopLatchBI = 1520 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1521 BranchInst *OuterLoopHeaderBI = 1522 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1523 BranchInst *InnerLoopHeaderBI = 1524 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1525 1526 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1527 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1528 !InnerLoopHeaderBI) 1529 return false; 1530 1531 BranchInst *InnerLoopLatchPredecessorBI = 1532 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1533 BranchInst *OuterLoopPredecessorBI = 1534 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1535 1536 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1537 return false; 1538 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1539 if (!InnerLoopHeaderSuccessor) 1540 return false; 1541 1542 // Adjust Loop Preheader and headers. 1543 // The branches in the outer loop predecessor and the outer loop header can 1544 // be unconditional branches or conditional branches with duplicates. Consider 1545 // this when updating the successors. 1546 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1547 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1548 // The outer loop header might or might not branch to the outer latch. 1549 // We are guaranteed to branch to the inner loop preheader. 1550 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1551 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1552 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1553 DTUpdates, 1554 /*MustUpdateOnce=*/false); 1555 } 1556 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1557 InnerLoopHeaderSuccessor, DTUpdates, 1558 /*MustUpdateOnce=*/false); 1559 1560 // Adjust reduction PHI's now that the incoming block has changed. 1561 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1562 OuterLoopHeader); 1563 1564 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1565 OuterLoopPreHeader, DTUpdates); 1566 1567 // -------------Adjust loop latches----------- 1568 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1569 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1570 else 1571 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1572 1573 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1574 InnerLoopLatchSuccessor, DTUpdates); 1575 1576 1577 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1578 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1579 else 1580 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1581 1582 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1583 OuterLoopLatchSuccessor, DTUpdates); 1584 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1585 DTUpdates); 1586 1587 DT->applyUpdates(DTUpdates); 1588 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1589 OuterLoopPreHeader); 1590 1591 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1592 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1593 InnerLoop, LI); 1594 // For PHIs in the exit block of the outer loop, outer's latch has been 1595 // replaced by Inners'. 1596 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1597 1598 // Now update the reduction PHIs in the inner and outer loop headers. 1599 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1600 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1601 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1602 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1603 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1604 1605 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1606 (void)OuterInnerReductions; 1607 1608 // Now move the remaining reduction PHIs from outer to inner loop header and 1609 // vice versa. The PHI nodes must be part of a reduction across the inner and 1610 // outer loop and all the remains to do is and updating the incoming blocks. 1611 for (PHINode *PHI : OuterLoopPHIs) { 1612 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1613 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1614 } 1615 for (PHINode *PHI : InnerLoopPHIs) { 1616 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1617 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1618 } 1619 1620 // Update the incoming blocks for moved PHI nodes. 1621 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1622 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1623 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1624 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1625 1626 // Values defined in the outer loop header could be used in the inner loop 1627 // latch. In that case, we need to create LCSSA phis for them, because after 1628 // interchanging they will be defined in the new inner loop and used in the 1629 // new outer loop. 1630 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1631 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1632 for (Instruction &I : 1633 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1634 MayNeedLCSSAPhis.push_back(&I); 1635 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1636 1637 return true; 1638 } 1639 1640 bool LoopInterchangeTransform::adjustLoopLinks() { 1641 // Adjust all branches in the inner and outer loop. 1642 bool Changed = adjustLoopBranches(); 1643 if (Changed) { 1644 // We have interchanged the preheaders so we need to interchange the data in 1645 // the preheaders as well. This is because the content of the inner 1646 // preheader was previously executed inside the outer loop. 1647 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1648 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1649 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1650 } 1651 return Changed; 1652 } 1653 1654 /// Main LoopInterchange Pass. 1655 struct LoopInterchangeLegacyPass : public LoopPass { 1656 static char ID; 1657 1658 LoopInterchangeLegacyPass() : LoopPass(ID) { 1659 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1660 } 1661 1662 void getAnalysisUsage(AnalysisUsage &AU) const override { 1663 AU.addRequired<DependenceAnalysisWrapperPass>(); 1664 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1665 1666 getLoopAnalysisUsage(AU); 1667 } 1668 1669 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1670 if (skipLoop(L)) 1671 return false; 1672 1673 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1674 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1675 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1676 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1677 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1678 1679 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1680 } 1681 }; 1682 1683 char LoopInterchangeLegacyPass::ID = 0; 1684 1685 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1686 "Interchanges loops for cache reuse", false, false) 1687 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1688 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1689 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1690 1691 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1692 "Interchanges loops for cache reuse", false, false) 1693 1694 Pass *llvm::createLoopInterchangePass() { 1695 return new LoopInterchangeLegacyPass(); 1696 } 1697 1698 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1699 LoopAnalysisManager &AM, 1700 LoopStandardAnalysisResults &AR, 1701 LPMUpdater &U) { 1702 Function &F = *LN.getParent(); 1703 1704 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1705 OptimizationRemarkEmitter ORE(&F); 1706 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN)) 1707 return PreservedAnalyses::all(); 1708 return getLoopPassPreservedAnalyses(); 1709 } 1710