1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "loop-interchange"
57 
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
59 
60 static cl::opt<int> LoopInterchangeCostThreshold(
61     "loop-interchange-threshold", cl::init(0), cl::Hidden,
62     cl::desc("Interchange if you gain more than this number"));
63 
64 namespace {
65 
66 using LoopVector = SmallVector<Loop *, 8>;
67 
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
70 
71 } // end anonymous namespace
72 
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
75 
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
78 
79 #ifdef DUMP_DEP_MATRICIES
80 static void printDepMatrix(CharMatrix &DepMatrix) {
81   for (auto &Row : DepMatrix) {
82     for (auto D : Row)
83       LLVM_DEBUG(dbgs() << D << " ");
84     LLVM_DEBUG(dbgs() << "\n");
85   }
86 }
87 #endif
88 
89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90                                      Loop *L, DependenceInfo *DI) {
91   using ValueVector = SmallVector<Value *, 16>;
92 
93   ValueVector MemInstr;
94 
95   // For each block.
96   for (BasicBlock *BB : L->blocks()) {
97     // Scan the BB and collect legal loads and stores.
98     for (Instruction &I : *BB) {
99       if (!isa<Instruction>(I))
100         return false;
101       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
102         if (!Ld->isSimple())
103           return false;
104         MemInstr.push_back(&I);
105       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
106         if (!St->isSimple())
107           return false;
108         MemInstr.push_back(&I);
109       }
110     }
111   }
112 
113   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
114                     << " Loads and Stores to analyze\n");
115 
116   ValueVector::iterator I, IE, J, JE;
117 
118   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
119     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
120       std::vector<char> Dep;
121       Instruction *Src = cast<Instruction>(*I);
122       Instruction *Dst = cast<Instruction>(*J);
123       if (Src == Dst)
124         continue;
125       // Ignore Input dependencies.
126       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
127         continue;
128       // Track Output, Flow, and Anti dependencies.
129       if (auto D = DI->depends(Src, Dst, true)) {
130         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
131         LLVM_DEBUG(StringRef DepType =
132                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
133                    dbgs() << "Found " << DepType
134                           << " dependency between Src and Dst\n"
135                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
136         unsigned Levels = D->getLevels();
137         char Direction;
138         for (unsigned II = 1; II <= Levels; ++II) {
139           const SCEV *Distance = D->getDistance(II);
140           const SCEVConstant *SCEVConst =
141               dyn_cast_or_null<SCEVConstant>(Distance);
142           if (SCEVConst) {
143             const ConstantInt *CI = SCEVConst->getValue();
144             if (CI->isNegative())
145               Direction = '<';
146             else if (CI->isZero())
147               Direction = '=';
148             else
149               Direction = '>';
150             Dep.push_back(Direction);
151           } else if (D->isScalar(II)) {
152             Direction = 'S';
153             Dep.push_back(Direction);
154           } else {
155             unsigned Dir = D->getDirection(II);
156             if (Dir == Dependence::DVEntry::LT ||
157                 Dir == Dependence::DVEntry::LE)
158               Direction = '<';
159             else if (Dir == Dependence::DVEntry::GT ||
160                      Dir == Dependence::DVEntry::GE)
161               Direction = '>';
162             else if (Dir == Dependence::DVEntry::EQ)
163               Direction = '=';
164             else
165               Direction = '*';
166             Dep.push_back(Direction);
167           }
168         }
169         while (Dep.size() != Level) {
170           Dep.push_back('I');
171         }
172 
173         DepMatrix.push_back(Dep);
174         if (DepMatrix.size() > MaxMemInstrCount) {
175           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
176                             << " dependencies inside loop\n");
177           return false;
178         }
179       }
180     }
181   }
182 
183   return true;
184 }
185 
186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
187 // matrix by exchanging the two columns.
188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
189                                     unsigned ToIndx) {
190   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
191     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
192 }
193 
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197                                    unsigned Column) {
198   for (unsigned i = 0; i <= Column; ++i) {
199     if (DepMatrix[Row][i] == '<')
200       return false;
201     if (DepMatrix[Row][i] == '>')
202       return true;
203   }
204   // All dependencies were '=','S' or 'I'
205   return false;
206 }
207 
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210                                  unsigned Column) {
211   for (unsigned i = 0; i < Column; ++i) {
212     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213         DepMatrix[Row][i] != 'I')
214       return false;
215   }
216   return true;
217 }
218 
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220                                 unsigned OuterLoopId, char InnerDep,
221                                 char OuterDep) {
222   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223     return false;
224 
225   if (InnerDep == OuterDep)
226     return true;
227 
228   // It is legal to interchange if and only if after interchange no row has a
229   // '>' direction as the leftmost non-'='.
230 
231   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232     return true;
233 
234   if (InnerDep == '<')
235     return true;
236 
237   if (InnerDep == '>') {
238     // If OuterLoopId represents outermost loop then interchanging will make the
239     // 1st dependency as '>'
240     if (OuterLoopId == 0)
241       return false;
242 
243     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244     // interchanging will result in this row having an outermost non '='
245     // dependency of '>'
246     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247       return true;
248   }
249 
250   return false;
251 }
252 
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258                                       unsigned InnerLoopId,
259                                       unsigned OuterLoopId) {
260   unsigned NumRows = DepMatrix.size();
261   // For each row check if it is valid to interchange.
262   for (unsigned Row = 0; Row < NumRows; ++Row) {
263     char InnerDep = DepMatrix[Row][InnerLoopId];
264     char OuterDep = DepMatrix[Row][OuterLoopId];
265     if (InnerDep == '*' || OuterDep == '*')
266       return false;
267     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268       return false;
269   }
270   return true;
271 }
272 
273 static LoopVector populateWorklist(Loop &L) {
274   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275                     << L.getHeader()->getParent()->getName() << " Loop: %"
276                     << L.getHeader()->getName() << '\n');
277   LoopVector LoopList;
278   Loop *CurrentLoop = &L;
279   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280   while (!Vec->empty()) {
281     // The current loop has multiple subloops in it hence it is not tightly
282     // nested.
283     // Discard all loops above it added into Worklist.
284     if (Vec->size() != 1)
285       return {};
286 
287     LoopList.push_back(CurrentLoop);
288     CurrentLoop = Vec->front();
289     Vec = &CurrentLoop->getSubLoops();
290   }
291   LoopList.push_back(CurrentLoop);
292   return LoopList;
293 }
294 
295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297   if (InnerIndexVar)
298     return InnerIndexVar;
299   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300     return nullptr;
301   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302     PHINode *PhiVar = cast<PHINode>(I);
303     Type *PhiTy = PhiVar->getType();
304     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305         !PhiTy->isPointerTy())
306       return nullptr;
307     const SCEVAddRecExpr *AddRec =
308         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309     if (!AddRec || !AddRec->isAffine())
310       continue;
311     const SCEV *Step = AddRec->getStepRecurrence(*SE);
312     if (!isa<SCEVConstant>(Step))
313       continue;
314     // Found the induction variable.
315     // FIXME: Handle loops with more than one induction variable. Note that,
316     // currently, legality makes sure we have only one induction variable.
317     return PhiVar;
318   }
319   return nullptr;
320 }
321 
322 namespace {
323 
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
327   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328                           OptimizationRemarkEmitter *ORE)
329       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
330 
331   /// Check if the loops can be interchanged.
332   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333                            CharMatrix &DepMatrix);
334 
335   /// Check if the loop structure is understood. We do not handle triangular
336   /// loops for now.
337   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
338 
339   bool currentLimitations();
340 
341   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342     return OuterInnerReductions;
343   }
344 
345 private:
346   bool tightlyNested(Loop *Outer, Loop *Inner);
347   bool containsUnsafeInstructions(BasicBlock *BB);
348 
349   /// Discover induction and reduction PHIs in the header of \p L. Induction
350   /// PHIs are added to \p Inductions, reductions are added to
351   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352   /// to be passed as \p InnerLoop.
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   Loop *InnerLoop);
356 
357   Loop *OuterLoop;
358   Loop *InnerLoop;
359 
360   ScalarEvolution *SE;
361 
362   /// Interface to emit optimization remarks.
363   OptimizationRemarkEmitter *ORE;
364 
365   /// Set of reduction PHIs taking part of a reduction across the inner and
366   /// outer loop.
367   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
368 };
369 
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375                                OptimizationRemarkEmitter *ORE)
376       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377 
378   /// Check if the loop interchange is profitable.
379   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380                     CharMatrix &DepMatrix);
381 
382 private:
383   int getInstrOrderCost();
384 
385   Loop *OuterLoop;
386   Loop *InnerLoop;
387 
388   /// Scev analysis.
389   ScalarEvolution *SE;
390 
391   /// Interface to emit optimization remarks.
392   OptimizationRemarkEmitter *ORE;
393 };
394 
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399                            LoopInfo *LI, DominatorTree *DT,
400                            const LoopInterchangeLegality &LIL)
401       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
402 
403   /// Interchange OuterLoop and InnerLoop.
404   bool transform();
405   void restructureLoops(Loop *NewInner, Loop *NewOuter,
406                         BasicBlock *OrigInnerPreHeader,
407                         BasicBlock *OrigOuterPreHeader);
408   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
409 
410 private:
411   bool adjustLoopLinks();
412   bool adjustLoopBranches();
413 
414   Loop *OuterLoop;
415   Loop *InnerLoop;
416 
417   /// Scev analysis.
418   ScalarEvolution *SE;
419 
420   LoopInfo *LI;
421   DominatorTree *DT;
422 
423   const LoopInterchangeLegality &LIL;
424 };
425 
426 struct LoopInterchange {
427   ScalarEvolution *SE = nullptr;
428   LoopInfo *LI = nullptr;
429   DependenceInfo *DI = nullptr;
430   DominatorTree *DT = nullptr;
431 
432   /// Interface to emit optimization remarks.
433   OptimizationRemarkEmitter *ORE;
434 
435   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
436                   DominatorTree *DT, OptimizationRemarkEmitter *ORE)
437       : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
438 
439   bool run(Loop *L) {
440     if (L->getParentLoop())
441       return false;
442 
443     return processLoopList(populateWorklist(*L));
444   }
445 
446   bool run(LoopNest &LN) {
447     const auto &LoopList = LN.getLoops();
448     for (unsigned I = 1; I < LoopList.size(); ++I)
449       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
450         return false;
451     return processLoopList(LoopList);
452   }
453 
454   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
455     for (Loop *L : LoopList) {
456       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
457       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
458         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
459         return false;
460       }
461       if (L->getNumBackEdges() != 1) {
462         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
463         return false;
464       }
465       if (!L->getExitingBlock()) {
466         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
467         return false;
468       }
469     }
470     return true;
471   }
472 
473   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
474     // TODO: Add a better heuristic to select the loop to be interchanged based
475     // on the dependence matrix. Currently we select the innermost loop.
476     return LoopList.size() - 1;
477   }
478 
479   bool processLoopList(ArrayRef<Loop *> LoopList) {
480     bool Changed = false;
481     unsigned LoopNestDepth = LoopList.size();
482     if (LoopNestDepth < 2) {
483       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
484       return false;
485     }
486     if (LoopNestDepth > MaxLoopNestDepth) {
487       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
488                         << MaxLoopNestDepth << "\n");
489       return false;
490     }
491     if (!isComputableLoopNest(LoopList)) {
492       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
493       return false;
494     }
495 
496     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
497                       << "\n");
498 
499     CharMatrix DependencyMatrix;
500     Loop *OuterMostLoop = *(LoopList.begin());
501     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
502                                   OuterMostLoop, DI)) {
503       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
504       return false;
505     }
506 #ifdef DUMP_DEP_MATRICIES
507     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
508     printDepMatrix(DependencyMatrix);
509 #endif
510 
511     // Get the Outermost loop exit.
512     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
513     if (!LoopNestExit) {
514       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
515       return false;
516     }
517 
518     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
519     // Move the selected loop outwards to the best possible position.
520     Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
521     for (unsigned i = SelecLoopId; i > 0; i--) {
522       bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
523                                       i - 1, DependencyMatrix);
524       if (!Interchanged)
525         return Changed;
526       // Update the DependencyMatrix
527       interChangeDependencies(DependencyMatrix, i, i - 1);
528 #ifdef DUMP_DEP_MATRICIES
529       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
530       printDepMatrix(DependencyMatrix);
531 #endif
532       Changed |= Interchanged;
533     }
534     return Changed;
535   }
536 
537   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
538                    unsigned OuterLoopId,
539                    std::vector<std::vector<char>> &DependencyMatrix) {
540     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
541                       << " and OuterLoopId = " << OuterLoopId << "\n");
542     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
543     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
544       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
545       return false;
546     }
547     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
548     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
549     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
550       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
551       return false;
552     }
553 
554     ORE->emit([&]() {
555       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
556                                 InnerLoop->getStartLoc(),
557                                 InnerLoop->getHeader())
558              << "Loop interchanged with enclosing loop.";
559     });
560 
561     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
562     LIT.transform();
563     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
564     LoopsInterchanged++;
565 
566     assert(InnerLoop->isLCSSAForm(*DT) &&
567            "Inner loop not left in LCSSA form after loop interchange!");
568     assert(OuterLoop->isLCSSAForm(*DT) &&
569            "Outer loop not left in LCSSA form after loop interchange!");
570 
571     return true;
572   }
573 };
574 
575 } // end anonymous namespace
576 
577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
578   return any_of(*BB, [](const Instruction &I) {
579     return I.mayHaveSideEffects() || I.mayReadFromMemory();
580   });
581 }
582 
583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
584   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
585   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
586   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
587 
588   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
589 
590   // A perfectly nested loop will not have any branch in between the outer and
591   // inner block i.e. outer header will branch to either inner preheader and
592   // outerloop latch.
593   BranchInst *OuterLoopHeaderBI =
594       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
595   if (!OuterLoopHeaderBI)
596     return false;
597 
598   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
599     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
600         Succ != OuterLoopLatch)
601       return false;
602 
603   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
604   // We do not have any basic block in between now make sure the outer header
605   // and outer loop latch doesn't contain any unsafe instructions.
606   if (containsUnsafeInstructions(OuterLoopHeader) ||
607       containsUnsafeInstructions(OuterLoopLatch))
608     return false;
609 
610   // Also make sure the inner loop preheader does not contain any unsafe
611   // instructions. Note that all instructions in the preheader will be moved to
612   // the outer loop header when interchanging.
613   if (InnerLoopPreHeader != OuterLoopHeader &&
614       containsUnsafeInstructions(InnerLoopPreHeader))
615     return false;
616 
617   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
618   // Ensure the inner loop exit block flows to the outer loop latch possibly
619   // through empty blocks.
620   const BasicBlock &SuccInner =
621       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
622   if (&SuccInner != OuterLoopLatch) {
623     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
624                       << " does not lead to the outer loop latch.\n";);
625     return false;
626   }
627   // The inner loop exit block does flow to the outer loop latch and not some
628   // other BBs, now make sure it contains safe instructions, since it will be
629   // moved into the (new) inner loop after interchange.
630   if (containsUnsafeInstructions(InnerLoopExit))
631     return false;
632 
633   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
634   // We have a perfect loop nest.
635   return true;
636 }
637 
638 bool LoopInterchangeLegality::isLoopStructureUnderstood(
639     PHINode *InnerInduction) {
640   unsigned Num = InnerInduction->getNumOperands();
641   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
642   for (unsigned i = 0; i < Num; ++i) {
643     Value *Val = InnerInduction->getOperand(i);
644     if (isa<Constant>(Val))
645       continue;
646     Instruction *I = dyn_cast<Instruction>(Val);
647     if (!I)
648       return false;
649     // TODO: Handle triangular loops.
650     // e.g. for(int i=0;i<N;i++)
651     //        for(int j=i;j<N;j++)
652     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
653     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
654             InnerLoopPreheader &&
655         !OuterLoop->isLoopInvariant(I)) {
656       return false;
657     }
658   }
659   return true;
660 }
661 
662 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
663 // value.
664 static Value *followLCSSA(Value *SV) {
665   PHINode *PHI = dyn_cast<PHINode>(SV);
666   if (!PHI)
667     return SV;
668 
669   if (PHI->getNumIncomingValues() != 1)
670     return SV;
671   return followLCSSA(PHI->getIncomingValue(0));
672 }
673 
674 // Check V's users to see if it is involved in a reduction in L.
675 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
676   // Reduction variables cannot be constants.
677   if (isa<Constant>(V))
678     return nullptr;
679 
680   for (Value *User : V->users()) {
681     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
682       if (PHI->getNumIncomingValues() == 1)
683         continue;
684       RecurrenceDescriptor RD;
685       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
686         return PHI;
687       return nullptr;
688     }
689   }
690 
691   return nullptr;
692 }
693 
694 bool LoopInterchangeLegality::findInductionAndReductions(
695     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
696   if (!L->getLoopLatch() || !L->getLoopPredecessor())
697     return false;
698   for (PHINode &PHI : L->getHeader()->phis()) {
699     RecurrenceDescriptor RD;
700     InductionDescriptor ID;
701     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
702       Inductions.push_back(&PHI);
703     else {
704       // PHIs in inner loops need to be part of a reduction in the outer loop,
705       // discovered when checking the PHIs of the outer loop earlier.
706       if (!InnerLoop) {
707         if (!OuterInnerReductions.count(&PHI)) {
708           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
709                                "across the outer loop.\n");
710           return false;
711         }
712       } else {
713         assert(PHI.getNumIncomingValues() == 2 &&
714                "Phis in loop header should have exactly 2 incoming values");
715         // Check if we have a PHI node in the outer loop that has a reduction
716         // result from the inner loop as an incoming value.
717         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
718         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
719         if (!InnerRedPhi ||
720             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
721           LLVM_DEBUG(
722               dbgs()
723               << "Failed to recognize PHI as an induction or reduction.\n");
724           return false;
725         }
726         OuterInnerReductions.insert(&PHI);
727         OuterInnerReductions.insert(InnerRedPhi);
728       }
729     }
730   }
731   return true;
732 }
733 
734 // This function indicates the current limitations in the transform as a result
735 // of which we do not proceed.
736 bool LoopInterchangeLegality::currentLimitations() {
737   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
738   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
739 
740   // transform currently expects the loop latches to also be the exiting
741   // blocks.
742   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
743       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
744       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
745       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
746     LLVM_DEBUG(
747         dbgs() << "Loops where the latch is not the exiting block are not"
748                << " supported currently.\n");
749     ORE->emit([&]() {
750       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
751                                       OuterLoop->getStartLoc(),
752                                       OuterLoop->getHeader())
753              << "Loops where the latch is not the exiting block cannot be"
754                 " interchange currently.";
755     });
756     return true;
757   }
758 
759   PHINode *InnerInductionVar;
760   SmallVector<PHINode *, 8> Inductions;
761   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
762     LLVM_DEBUG(
763         dbgs() << "Only outer loops with induction or reduction PHI nodes "
764                << "are supported currently.\n");
765     ORE->emit([&]() {
766       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
767                                       OuterLoop->getStartLoc(),
768                                       OuterLoop->getHeader())
769              << "Only outer loops with induction or reduction PHI nodes can be"
770                 " interchanged currently.";
771     });
772     return true;
773   }
774 
775   // TODO: Currently we handle only loops with 1 induction variable.
776   if (Inductions.size() != 1) {
777     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
778                       << "supported currently.\n");
779     ORE->emit([&]() {
780       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
781                                       OuterLoop->getStartLoc(),
782                                       OuterLoop->getHeader())
783              << "Only outer loops with 1 induction variable can be "
784                 "interchanged currently.";
785     });
786     return true;
787   }
788 
789   Inductions.clear();
790   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
791     LLVM_DEBUG(
792         dbgs() << "Only inner loops with induction or reduction PHI nodes "
793                << "are supported currently.\n");
794     ORE->emit([&]() {
795       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
796                                       InnerLoop->getStartLoc(),
797                                       InnerLoop->getHeader())
798              << "Only inner loops with induction or reduction PHI nodes can be"
799                 " interchange currently.";
800     });
801     return true;
802   }
803 
804   // TODO: Currently we handle only loops with 1 induction variable.
805   if (Inductions.size() != 1) {
806     LLVM_DEBUG(
807         dbgs() << "We currently only support loops with 1 induction variable."
808                << "Failed to interchange due to current limitation\n");
809     ORE->emit([&]() {
810       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
811                                       InnerLoop->getStartLoc(),
812                                       InnerLoop->getHeader())
813              << "Only inner loops with 1 induction variable can be "
814                 "interchanged currently.";
815     });
816     return true;
817   }
818   InnerInductionVar = Inductions.pop_back_val();
819 
820   // TODO: Triangular loops are not handled for now.
821   if (!isLoopStructureUnderstood(InnerInductionVar)) {
822     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
823     ORE->emit([&]() {
824       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
825                                       InnerLoop->getStartLoc(),
826                                       InnerLoop->getHeader())
827              << "Inner loop structure not understood currently.";
828     });
829     return true;
830   }
831 
832   // TODO: Current limitation: Since we split the inner loop latch at the point
833   // were induction variable is incremented (induction.next); We cannot have
834   // more than 1 user of induction.next since it would result in broken code
835   // after split.
836   // e.g.
837   // for(i=0;i<N;i++) {
838   //    for(j = 0;j<M;j++) {
839   //      A[j+1][i+2] = A[j][i]+k;
840   //  }
841   // }
842   Instruction *InnerIndexVarInc = nullptr;
843   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
844     InnerIndexVarInc =
845         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
846   else
847     InnerIndexVarInc =
848         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
849 
850   if (!InnerIndexVarInc) {
851     LLVM_DEBUG(
852         dbgs() << "Did not find an instruction to increment the induction "
853                << "variable.\n");
854     ORE->emit([&]() {
855       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
856                                       InnerLoop->getStartLoc(),
857                                       InnerLoop->getHeader())
858              << "The inner loop does not increment the induction variable.";
859     });
860     return true;
861   }
862 
863   // Since we split the inner loop latch on this induction variable. Make sure
864   // we do not have any instruction between the induction variable and branch
865   // instruction.
866 
867   bool FoundInduction = false;
868   for (const Instruction &I :
869        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
870     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
871         isa<ZExtInst>(I))
872       continue;
873 
874     // We found an instruction. If this is not induction variable then it is not
875     // safe to split this loop latch.
876     if (!I.isIdenticalTo(InnerIndexVarInc)) {
877       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
878                         << "variable increment and branch.\n");
879       ORE->emit([&]() {
880         return OptimizationRemarkMissed(
881                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
882                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
883                << "Found unsupported instruction between induction variable "
884                   "increment and branch.";
885       });
886       return true;
887     }
888 
889     FoundInduction = true;
890     break;
891   }
892   // The loop latch ended and we didn't find the induction variable return as
893   // current limitation.
894   if (!FoundInduction) {
895     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
896     ORE->emit([&]() {
897       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
898                                       InnerLoop->getStartLoc(),
899                                       InnerLoop->getHeader())
900              << "Did not find the induction variable.";
901     });
902     return true;
903   }
904   return false;
905 }
906 
907 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
908 // users are either reduction PHIs or PHIs outside the outer loop (which means
909 // the we are only interested in the final value after the loop).
910 static bool
911 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
912                               SmallPtrSetImpl<PHINode *> &Reductions) {
913   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
914   for (PHINode &PHI : InnerExit->phis()) {
915     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
916     if (PHI.getNumIncomingValues() > 1)
917       return false;
918     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
919           PHINode *PN = dyn_cast<PHINode>(U);
920           return !PN ||
921                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
922         })) {
923       return false;
924     }
925   }
926   return true;
927 }
928 
929 // We currently support LCSSA PHI nodes in the outer loop exit, if their
930 // incoming values do not come from the outer loop latch or if the
931 // outer loop latch has a single predecessor. In that case, the value will
932 // be available if both the inner and outer loop conditions are true, which
933 // will still be true after interchanging. If we have multiple predecessor,
934 // that may not be the case, e.g. because the outer loop latch may be executed
935 // if the inner loop is not executed.
936 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
937   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
938   for (PHINode &PHI : LoopNestExit->phis()) {
939     //  FIXME: We currently are not able to detect floating point reductions
940     //         and have to use floating point PHIs as a proxy to prevent
941     //         interchanging in the presence of floating point reductions.
942     if (PHI.getType()->isFloatingPointTy())
943       return false;
944     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
945      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
946      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
947        continue;
948 
949      // The incoming value is defined in the outer loop latch. Currently we
950      // only support that in case the outer loop latch has a single predecessor.
951      // This guarantees that the outer loop latch is executed if and only if
952      // the inner loop is executed (because tightlyNested() guarantees that the
953      // outer loop header only branches to the inner loop or the outer loop
954      // latch).
955      // FIXME: We could weaken this logic and allow multiple predecessors,
956      //        if the values are produced outside the loop latch. We would need
957      //        additional logic to update the PHI nodes in the exit block as
958      //        well.
959      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
960        return false;
961     }
962   }
963   return true;
964 }
965 
966 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
967                                                   unsigned OuterLoopId,
968                                                   CharMatrix &DepMatrix) {
969   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
970     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
971                       << " and OuterLoopId = " << OuterLoopId
972                       << " due to dependence\n");
973     ORE->emit([&]() {
974       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
975                                       InnerLoop->getStartLoc(),
976                                       InnerLoop->getHeader())
977              << "Cannot interchange loops due to dependences.";
978     });
979     return false;
980   }
981   // Check if outer and inner loop contain legal instructions only.
982   for (auto *BB : OuterLoop->blocks())
983     for (Instruction &I : BB->instructionsWithoutDebug())
984       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
985         // readnone functions do not prevent interchanging.
986         if (CI->doesNotReadMemory())
987           continue;
988         LLVM_DEBUG(
989             dbgs() << "Loops with call instructions cannot be interchanged "
990                    << "safely.");
991         ORE->emit([&]() {
992           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
993                                           CI->getDebugLoc(),
994                                           CI->getParent())
995                  << "Cannot interchange loops due to call instruction.";
996         });
997 
998         return false;
999       }
1000 
1001   // TODO: The loops could not be interchanged due to current limitations in the
1002   // transform module.
1003   if (currentLimitations()) {
1004     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1005     return false;
1006   }
1007 
1008   // Check if the loops are tightly nested.
1009   if (!tightlyNested(OuterLoop, InnerLoop)) {
1010     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1011     ORE->emit([&]() {
1012       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1013                                       InnerLoop->getStartLoc(),
1014                                       InnerLoop->getHeader())
1015              << "Cannot interchange loops because they are not tightly "
1016                 "nested.";
1017     });
1018     return false;
1019   }
1020 
1021   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1022                                      OuterInnerReductions)) {
1023     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1024     ORE->emit([&]() {
1025       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1026                                       InnerLoop->getStartLoc(),
1027                                       InnerLoop->getHeader())
1028              << "Found unsupported PHI node in loop exit.";
1029     });
1030     return false;
1031   }
1032 
1033   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1034     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1035     ORE->emit([&]() {
1036       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1037                                       OuterLoop->getStartLoc(),
1038                                       OuterLoop->getHeader())
1039              << "Found unsupported PHI node in loop exit.";
1040     });
1041     return false;
1042   }
1043 
1044   return true;
1045 }
1046 
1047 int LoopInterchangeProfitability::getInstrOrderCost() {
1048   unsigned GoodOrder, BadOrder;
1049   BadOrder = GoodOrder = 0;
1050   for (BasicBlock *BB : InnerLoop->blocks()) {
1051     for (Instruction &Ins : *BB) {
1052       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1053         unsigned NumOp = GEP->getNumOperands();
1054         bool FoundInnerInduction = false;
1055         bool FoundOuterInduction = false;
1056         for (unsigned i = 0; i < NumOp; ++i) {
1057           // Skip operands that are not SCEV-able.
1058           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1059             continue;
1060 
1061           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1062           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1063           if (!AR)
1064             continue;
1065 
1066           // If we find the inner induction after an outer induction e.g.
1067           // for(int i=0;i<N;i++)
1068           //   for(int j=0;j<N;j++)
1069           //     A[i][j] = A[i-1][j-1]+k;
1070           // then it is a good order.
1071           if (AR->getLoop() == InnerLoop) {
1072             // We found an InnerLoop induction after OuterLoop induction. It is
1073             // a good order.
1074             FoundInnerInduction = true;
1075             if (FoundOuterInduction) {
1076               GoodOrder++;
1077               break;
1078             }
1079           }
1080           // If we find the outer induction after an inner induction e.g.
1081           // for(int i=0;i<N;i++)
1082           //   for(int j=0;j<N;j++)
1083           //     A[j][i] = A[j-1][i-1]+k;
1084           // then it is a bad order.
1085           if (AR->getLoop() == OuterLoop) {
1086             // We found an OuterLoop induction after InnerLoop induction. It is
1087             // a bad order.
1088             FoundOuterInduction = true;
1089             if (FoundInnerInduction) {
1090               BadOrder++;
1091               break;
1092             }
1093           }
1094         }
1095       }
1096     }
1097   }
1098   return GoodOrder - BadOrder;
1099 }
1100 
1101 static bool isProfitableForVectorization(unsigned InnerLoopId,
1102                                          unsigned OuterLoopId,
1103                                          CharMatrix &DepMatrix) {
1104   // TODO: Improve this heuristic to catch more cases.
1105   // If the inner loop is loop independent or doesn't carry any dependency it is
1106   // profitable to move this to outer position.
1107   for (auto &Row : DepMatrix) {
1108     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1109       return false;
1110     // TODO: We need to improve this heuristic.
1111     if (Row[OuterLoopId] != '=')
1112       return false;
1113   }
1114   // If outer loop has dependence and inner loop is loop independent then it is
1115   // profitable to interchange to enable parallelism.
1116   // If there are no dependences, interchanging will not improve anything.
1117   return !DepMatrix.empty();
1118 }
1119 
1120 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1121                                                 unsigned OuterLoopId,
1122                                                 CharMatrix &DepMatrix) {
1123   // TODO: Add better profitability checks.
1124   // e.g
1125   // 1) Construct dependency matrix and move the one with no loop carried dep
1126   //    inside to enable vectorization.
1127 
1128   // This is rough cost estimation algorithm. It counts the good and bad order
1129   // of induction variables in the instruction and allows reordering if number
1130   // of bad orders is more than good.
1131   int Cost = getInstrOrderCost();
1132   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1133   if (Cost < -LoopInterchangeCostThreshold)
1134     return true;
1135 
1136   // It is not profitable as per current cache profitability model. But check if
1137   // we can move this loop outside to improve parallelism.
1138   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1139     return true;
1140 
1141   ORE->emit([&]() {
1142     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1143                                     InnerLoop->getStartLoc(),
1144                                     InnerLoop->getHeader())
1145            << "Interchanging loops is too costly (cost="
1146            << ore::NV("Cost", Cost) << ", threshold="
1147            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1148            << ") and it does not improve parallelism.";
1149   });
1150   return false;
1151 }
1152 
1153 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1154                                                Loop *InnerLoop) {
1155   for (Loop *L : *OuterLoop)
1156     if (L == InnerLoop) {
1157       OuterLoop->removeChildLoop(L);
1158       return;
1159     }
1160   llvm_unreachable("Couldn't find loop");
1161 }
1162 
1163 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1164 /// new inner and outer loop after interchanging: NewInner is the original
1165 /// outer loop and NewOuter is the original inner loop.
1166 ///
1167 /// Before interchanging, we have the following structure
1168 /// Outer preheader
1169 //  Outer header
1170 //    Inner preheader
1171 //    Inner header
1172 //      Inner body
1173 //      Inner latch
1174 //   outer bbs
1175 //   Outer latch
1176 //
1177 // After interchanging:
1178 // Inner preheader
1179 // Inner header
1180 //   Outer preheader
1181 //   Outer header
1182 //     Inner body
1183 //     outer bbs
1184 //     Outer latch
1185 //   Inner latch
1186 void LoopInterchangeTransform::restructureLoops(
1187     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1188     BasicBlock *OrigOuterPreHeader) {
1189   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1190   // The original inner loop preheader moves from the new inner loop to
1191   // the parent loop, if there is one.
1192   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1193   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1194 
1195   // Switch the loop levels.
1196   if (OuterLoopParent) {
1197     // Remove the loop from its parent loop.
1198     removeChildLoop(OuterLoopParent, NewInner);
1199     removeChildLoop(NewInner, NewOuter);
1200     OuterLoopParent->addChildLoop(NewOuter);
1201   } else {
1202     removeChildLoop(NewInner, NewOuter);
1203     LI->changeTopLevelLoop(NewInner, NewOuter);
1204   }
1205   while (!NewOuter->isInnermost())
1206     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1207   NewOuter->addChildLoop(NewInner);
1208 
1209   // BBs from the original inner loop.
1210   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1211 
1212   // Add BBs from the original outer loop to the original inner loop (excluding
1213   // BBs already in inner loop)
1214   for (BasicBlock *BB : NewInner->blocks())
1215     if (LI->getLoopFor(BB) == NewInner)
1216       NewOuter->addBlockEntry(BB);
1217 
1218   // Now remove inner loop header and latch from the new inner loop and move
1219   // other BBs (the loop body) to the new inner loop.
1220   BasicBlock *OuterHeader = NewOuter->getHeader();
1221   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1222   for (BasicBlock *BB : OrigInnerBBs) {
1223     // Nothing will change for BBs in child loops.
1224     if (LI->getLoopFor(BB) != NewOuter)
1225       continue;
1226     // Remove the new outer loop header and latch from the new inner loop.
1227     if (BB == OuterHeader || BB == OuterLatch)
1228       NewInner->removeBlockFromLoop(BB);
1229     else
1230       LI->changeLoopFor(BB, NewInner);
1231   }
1232 
1233   // The preheader of the original outer loop becomes part of the new
1234   // outer loop.
1235   NewOuter->addBlockEntry(OrigOuterPreHeader);
1236   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1237 
1238   // Tell SE that we move the loops around.
1239   SE->forgetLoop(NewOuter);
1240   SE->forgetLoop(NewInner);
1241 }
1242 
1243 bool LoopInterchangeTransform::transform() {
1244   bool Transformed = false;
1245   Instruction *InnerIndexVar;
1246 
1247   if (InnerLoop->getSubLoops().empty()) {
1248     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1249     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1250     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1251     if (!InductionPHI) {
1252       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1253       return false;
1254     }
1255 
1256     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1257       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1258     else
1259       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1260 
1261     // Ensure that InductionPHI is the first Phi node.
1262     if (&InductionPHI->getParent()->front() != InductionPHI)
1263       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1264 
1265     // Create a new latch block for the inner loop. We split at the
1266     // current latch's terminator and then move the condition and all
1267     // operands that are not either loop-invariant or the induction PHI into the
1268     // new latch block.
1269     BasicBlock *NewLatch =
1270         SplitBlock(InnerLoop->getLoopLatch(),
1271                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1272 
1273     SmallSetVector<Instruction *, 4> WorkList;
1274     unsigned i = 0;
1275     auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1276       for (; i < WorkList.size(); i++) {
1277         // Duplicate instruction and move it the new latch. Update uses that
1278         // have been moved.
1279         Instruction *NewI = WorkList[i]->clone();
1280         NewI->insertBefore(NewLatch->getFirstNonPHI());
1281         assert(!NewI->mayHaveSideEffects() &&
1282                "Moving instructions with side-effects may change behavior of "
1283                "the loop nest!");
1284         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1285           Instruction *UserI = cast<Instruction>(U.getUser());
1286           if (!InnerLoop->contains(UserI->getParent()) ||
1287               UserI->getParent() == NewLatch || UserI == InductionPHI)
1288             U.set(NewI);
1289         }
1290         // Add operands of moved instruction to the worklist, except if they are
1291         // outside the inner loop or are the induction PHI.
1292         for (Value *Op : WorkList[i]->operands()) {
1293           Instruction *OpI = dyn_cast<Instruction>(Op);
1294           if (!OpI ||
1295               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1296               OpI == InductionPHI)
1297             continue;
1298           WorkList.insert(OpI);
1299         }
1300       }
1301     };
1302 
1303     // FIXME: Should we interchange when we have a constant condition?
1304     Instruction *CondI = dyn_cast<Instruction>(
1305         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1306             ->getCondition());
1307     if (CondI)
1308       WorkList.insert(CondI);
1309     MoveInstructions();
1310     WorkList.insert(cast<Instruction>(InnerIndexVar));
1311     MoveInstructions();
1312 
1313     // Splits the inner loops phi nodes out into a separate basic block.
1314     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1315     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1316     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1317   }
1318 
1319   // Instructions in the original inner loop preheader may depend on values
1320   // defined in the outer loop header. Move them there, because the original
1321   // inner loop preheader will become the entry into the interchanged loop nest.
1322   // Currently we move all instructions and rely on LICM to move invariant
1323   // instructions outside the loop nest.
1324   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1325   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1326   if (InnerLoopPreHeader != OuterLoopHeader) {
1327     SmallPtrSet<Instruction *, 4> NeedsMoving;
1328     for (Instruction &I :
1329          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1330                                          std::prev(InnerLoopPreHeader->end()))))
1331       I.moveBefore(OuterLoopHeader->getTerminator());
1332   }
1333 
1334   Transformed |= adjustLoopLinks();
1335   if (!Transformed) {
1336     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1337     return false;
1338   }
1339 
1340   return true;
1341 }
1342 
1343 /// \brief Move all instructions except the terminator from FromBB right before
1344 /// InsertBefore
1345 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1346   auto &ToList = InsertBefore->getParent()->getInstList();
1347   auto &FromList = FromBB->getInstList();
1348 
1349   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1350                 FromBB->getTerminator()->getIterator());
1351 }
1352 
1353 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1354 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1355   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1356   // from BB1 afterwards.
1357   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1358   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1359   for (Instruction *I : TempInstrs)
1360     I->removeFromParent();
1361 
1362   // Move instructions from BB2 to BB1.
1363   moveBBContents(BB2, BB1->getTerminator());
1364 
1365   // Move instructions from TempInstrs to BB2.
1366   for (Instruction *I : TempInstrs)
1367     I->insertBefore(BB2->getTerminator());
1368 }
1369 
1370 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1371 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1372 // \p OldBB  is exactly once in BI's successor list.
1373 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1374                             BasicBlock *NewBB,
1375                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1376                             bool MustUpdateOnce = true) {
1377   assert((!MustUpdateOnce ||
1378           llvm::count_if(successors(BI),
1379                          [OldBB](BasicBlock *BB) {
1380                            return BB == OldBB;
1381                          }) == 1) && "BI must jump to OldBB exactly once.");
1382   bool Changed = false;
1383   for (Use &Op : BI->operands())
1384     if (Op == OldBB) {
1385       Op.set(NewBB);
1386       Changed = true;
1387     }
1388 
1389   if (Changed) {
1390     DTUpdates.push_back(
1391         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1392     DTUpdates.push_back(
1393         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1394   }
1395   assert(Changed && "Expected a successor to be updated");
1396 }
1397 
1398 // Move Lcssa PHIs to the right place.
1399 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1400                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1401                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1402                           Loop *InnerLoop, LoopInfo *LI) {
1403 
1404   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1405   // defined either in the header or latch. Those blocks will become header and
1406   // latch of the new outer loop, and the only possible users can PHI nodes
1407   // in the exit block of the loop nest or the outer loop header (reduction
1408   // PHIs, in that case, the incoming value must be defined in the inner loop
1409   // header). We can just substitute the user with the incoming value and remove
1410   // the PHI.
1411   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1412     assert(P.getNumIncomingValues() == 1 &&
1413            "Only loops with a single exit are supported!");
1414 
1415     // Incoming values are guaranteed be instructions currently.
1416     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1417     // Skip phis with incoming values from the inner loop body, excluding the
1418     // header and latch.
1419     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1420       continue;
1421 
1422     assert(all_of(P.users(),
1423                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1424                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1425                             IncI->getParent() == InnerHeader) ||
1426                            cast<PHINode>(U)->getParent() == OuterExit;
1427                   }) &&
1428            "Can only replace phis iff the uses are in the loop nest exit or "
1429            "the incoming value is defined in the inner header (it will "
1430            "dominate all loop blocks after interchanging)");
1431     P.replaceAllUsesWith(IncI);
1432     P.eraseFromParent();
1433   }
1434 
1435   SmallVector<PHINode *, 8> LcssaInnerExit;
1436   for (PHINode &P : InnerExit->phis())
1437     LcssaInnerExit.push_back(&P);
1438 
1439   SmallVector<PHINode *, 8> LcssaInnerLatch;
1440   for (PHINode &P : InnerLatch->phis())
1441     LcssaInnerLatch.push_back(&P);
1442 
1443   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1444   // If a PHI node has users outside of InnerExit, it has a use outside the
1445   // interchanged loop and we have to preserve it. We move these to
1446   // InnerLatch, which will become the new exit block for the innermost
1447   // loop after interchanging.
1448   for (PHINode *P : LcssaInnerExit)
1449     P->moveBefore(InnerLatch->getFirstNonPHI());
1450 
1451   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1452   // and we have to move them to the new inner latch.
1453   for (PHINode *P : LcssaInnerLatch)
1454     P->moveBefore(InnerExit->getFirstNonPHI());
1455 
1456   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1457   // incoming values defined in the outer loop, we have to add a new PHI
1458   // in the inner loop latch, which became the exit block of the outer loop,
1459   // after interchanging.
1460   if (OuterExit) {
1461     for (PHINode &P : OuterExit->phis()) {
1462       if (P.getNumIncomingValues() != 1)
1463         continue;
1464       // Skip Phis with incoming values defined in the inner loop. Those should
1465       // already have been updated.
1466       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1467       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1468         continue;
1469 
1470       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1471       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1472       NewPhi->setIncomingBlock(0, OuterLatch);
1473       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1474       P.setIncomingValue(0, NewPhi);
1475     }
1476   }
1477 
1478   // Now adjust the incoming blocks for the LCSSA PHIs.
1479   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1480   // with the new latch.
1481   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1482 }
1483 
1484 bool LoopInterchangeTransform::adjustLoopBranches() {
1485   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1486   std::vector<DominatorTree::UpdateType> DTUpdates;
1487 
1488   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1489   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1490 
1491   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1492          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1493          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1494   // Ensure that both preheaders do not contain PHI nodes and have single
1495   // predecessors. This allows us to move them easily. We use
1496   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1497   // preheaders do not satisfy those conditions.
1498   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1499       !OuterLoopPreHeader->getUniquePredecessor())
1500     OuterLoopPreHeader =
1501         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1502   if (InnerLoopPreHeader == OuterLoop->getHeader())
1503     InnerLoopPreHeader =
1504         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1505 
1506   // Adjust the loop preheader
1507   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1508   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1509   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1510   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1511   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1512   BasicBlock *InnerLoopLatchPredecessor =
1513       InnerLoopLatch->getUniquePredecessor();
1514   BasicBlock *InnerLoopLatchSuccessor;
1515   BasicBlock *OuterLoopLatchSuccessor;
1516 
1517   BranchInst *OuterLoopLatchBI =
1518       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1519   BranchInst *InnerLoopLatchBI =
1520       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1521   BranchInst *OuterLoopHeaderBI =
1522       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1523   BranchInst *InnerLoopHeaderBI =
1524       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1525 
1526   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1527       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1528       !InnerLoopHeaderBI)
1529     return false;
1530 
1531   BranchInst *InnerLoopLatchPredecessorBI =
1532       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1533   BranchInst *OuterLoopPredecessorBI =
1534       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1535 
1536   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1537     return false;
1538   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1539   if (!InnerLoopHeaderSuccessor)
1540     return false;
1541 
1542   // Adjust Loop Preheader and headers.
1543   // The branches in the outer loop predecessor and the outer loop header can
1544   // be unconditional branches or conditional branches with duplicates. Consider
1545   // this when updating the successors.
1546   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1547                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1548   // The outer loop header might or might not branch to the outer latch.
1549   // We are guaranteed to branch to the inner loop preheader.
1550   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1551     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1552     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1553                     DTUpdates,
1554                     /*MustUpdateOnce=*/false);
1555   }
1556   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1557                   InnerLoopHeaderSuccessor, DTUpdates,
1558                   /*MustUpdateOnce=*/false);
1559 
1560   // Adjust reduction PHI's now that the incoming block has changed.
1561   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1562                                                OuterLoopHeader);
1563 
1564   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1565                   OuterLoopPreHeader, DTUpdates);
1566 
1567   // -------------Adjust loop latches-----------
1568   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1569     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1570   else
1571     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1572 
1573   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1574                   InnerLoopLatchSuccessor, DTUpdates);
1575 
1576 
1577   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1578     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1579   else
1580     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1581 
1582   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1583                   OuterLoopLatchSuccessor, DTUpdates);
1584   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1585                   DTUpdates);
1586 
1587   DT->applyUpdates(DTUpdates);
1588   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1589                    OuterLoopPreHeader);
1590 
1591   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1592                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1593                 InnerLoop, LI);
1594   // For PHIs in the exit block of the outer loop, outer's latch has been
1595   // replaced by Inners'.
1596   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1597 
1598   // Now update the reduction PHIs in the inner and outer loop headers.
1599   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1600   for (PHINode &PHI : drop_begin(InnerLoopHeader->phis()))
1601     InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1602   for (PHINode &PHI : drop_begin(OuterLoopHeader->phis()))
1603     OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1604 
1605   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1606   (void)OuterInnerReductions;
1607 
1608   // Now move the remaining reduction PHIs from outer to inner loop header and
1609   // vice versa. The PHI nodes must be part of a reduction across the inner and
1610   // outer loop and all the remains to do is and updating the incoming blocks.
1611   for (PHINode *PHI : OuterLoopPHIs) {
1612     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1613     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1614   }
1615   for (PHINode *PHI : InnerLoopPHIs) {
1616     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1617     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1618   }
1619 
1620   // Update the incoming blocks for moved PHI nodes.
1621   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1622   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1623   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1624   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1625 
1626   // Values defined in the outer loop header could be used in the inner loop
1627   // latch. In that case, we need to create LCSSA phis for them, because after
1628   // interchanging they will be defined in the new inner loop and used in the
1629   // new outer loop.
1630   IRBuilder<> Builder(OuterLoopHeader->getContext());
1631   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1632   for (Instruction &I :
1633        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1634     MayNeedLCSSAPhis.push_back(&I);
1635   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1636 
1637   return true;
1638 }
1639 
1640 bool LoopInterchangeTransform::adjustLoopLinks() {
1641   // Adjust all branches in the inner and outer loop.
1642   bool Changed = adjustLoopBranches();
1643   if (Changed) {
1644     // We have interchanged the preheaders so we need to interchange the data in
1645     // the preheaders as well. This is because the content of the inner
1646     // preheader was previously executed inside the outer loop.
1647     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1648     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1649     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1650   }
1651   return Changed;
1652 }
1653 
1654 /// Main LoopInterchange Pass.
1655 struct LoopInterchangeLegacyPass : public LoopPass {
1656   static char ID;
1657 
1658   LoopInterchangeLegacyPass() : LoopPass(ID) {
1659     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1660   }
1661 
1662   void getAnalysisUsage(AnalysisUsage &AU) const override {
1663     AU.addRequired<DependenceAnalysisWrapperPass>();
1664     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1665 
1666     getLoopAnalysisUsage(AU);
1667   }
1668 
1669   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1670     if (skipLoop(L))
1671       return false;
1672 
1673     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1674     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1675     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1676     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1677     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1678 
1679     return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1680   }
1681 };
1682 
1683 char LoopInterchangeLegacyPass::ID = 0;
1684 
1685 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1686                       "Interchanges loops for cache reuse", false, false)
1687 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1688 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1689 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1690 
1691 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1692                     "Interchanges loops for cache reuse", false, false)
1693 
1694 Pass *llvm::createLoopInterchangePass() {
1695   return new LoopInterchangeLegacyPass();
1696 }
1697 
1698 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1699                                            LoopAnalysisManager &AM,
1700                                            LoopStandardAnalysisResults &AR,
1701                                            LPMUpdater &U) {
1702   Function &F = *LN.getParent();
1703 
1704   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1705   OptimizationRemarkEmitter ORE(&F);
1706   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1707     return PreservedAnalyses::all();
1708   return getLoopPassPreservedAnalyses();
1709 }
1710