1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 if (Src == Dst) 123 continue; 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 const SCEV *Distance = D->getDistance(II); 139 const SCEVConstant *SCEVConst = 140 dyn_cast_or_null<SCEVConstant>(Distance); 141 if (SCEVConst) { 142 const ConstantInt *CI = SCEVConst->getValue(); 143 if (CI->isNegative()) 144 Direction = '<'; 145 else if (CI->isZero()) 146 Direction = '='; 147 else 148 Direction = '>'; 149 Dep.push_back(Direction); 150 } else if (D->isScalar(II)) { 151 Direction = 'S'; 152 Dep.push_back(Direction); 153 } else { 154 unsigned Dir = D->getDirection(II); 155 if (Dir == Dependence::DVEntry::LT || 156 Dir == Dependence::DVEntry::LE) 157 Direction = '<'; 158 else if (Dir == Dependence::DVEntry::GT || 159 Dir == Dependence::DVEntry::GE) 160 Direction = '>'; 161 else if (Dir == Dependence::DVEntry::EQ) 162 Direction = '='; 163 else 164 Direction = '*'; 165 Dep.push_back(Direction); 166 } 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 DepMatrix.push_back(Dep); 173 if (DepMatrix.size() > MaxMemInstrCount) { 174 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 175 << " dependencies inside loop\n"); 176 return false; 177 } 178 } 179 } 180 } 181 182 return true; 183 } 184 185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 186 // matrix by exchanging the two columns. 187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 188 unsigned ToIndx) { 189 unsigned numRows = DepMatrix.size(); 190 for (unsigned i = 0; i < numRows; ++i) { 191 char TmpVal = DepMatrix[i][ToIndx]; 192 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 193 DepMatrix[i][FromIndx] = TmpVal; 194 } 195 } 196 197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 198 // '>' 199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 200 unsigned Column) { 201 for (unsigned i = 0; i <= Column; ++i) { 202 if (DepMatrix[Row][i] == '<') 203 return false; 204 if (DepMatrix[Row][i] == '>') 205 return true; 206 } 207 // All dependencies were '=','S' or 'I' 208 return false; 209 } 210 211 // Checks if no dependence exist in the dependency matrix in Row before Column. 212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 213 unsigned Column) { 214 for (unsigned i = 0; i < Column; ++i) { 215 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 216 DepMatrix[Row][i] != 'I') 217 return false; 218 } 219 return true; 220 } 221 222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 223 unsigned OuterLoopId, char InnerDep, 224 char OuterDep) { 225 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 226 return false; 227 228 if (InnerDep == OuterDep) 229 return true; 230 231 // It is legal to interchange if and only if after interchange no row has a 232 // '>' direction as the leftmost non-'='. 233 234 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 235 return true; 236 237 if (InnerDep == '<') 238 return true; 239 240 if (InnerDep == '>') { 241 // If OuterLoopId represents outermost loop then interchanging will make the 242 // 1st dependency as '>' 243 if (OuterLoopId == 0) 244 return false; 245 246 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 247 // interchanging will result in this row having an outermost non '=' 248 // dependency of '>' 249 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 250 return true; 251 } 252 253 return false; 254 } 255 256 // Checks if it is legal to interchange 2 loops. 257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 258 // if the direction matrix, after the same permutation is applied to its 259 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 260 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 261 unsigned InnerLoopId, 262 unsigned OuterLoopId) { 263 unsigned NumRows = DepMatrix.size(); 264 // For each row check if it is valid to interchange. 265 for (unsigned Row = 0; Row < NumRows; ++Row) { 266 char InnerDep = DepMatrix[Row][InnerLoopId]; 267 char OuterDep = DepMatrix[Row][OuterLoopId]; 268 if (InnerDep == '*' || OuterDep == '*') 269 return false; 270 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 271 return false; 272 } 273 return true; 274 } 275 276 static LoopVector populateWorklist(Loop &L) { 277 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 278 << L.getHeader()->getParent()->getName() << " Loop: %" 279 << L.getHeader()->getName() << '\n'); 280 LoopVector LoopList; 281 Loop *CurrentLoop = &L; 282 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 283 while (!Vec->empty()) { 284 // The current loop has multiple subloops in it hence it is not tightly 285 // nested. 286 // Discard all loops above it added into Worklist. 287 if (Vec->size() != 1) 288 return {}; 289 290 LoopList.push_back(CurrentLoop); 291 CurrentLoop = Vec->front(); 292 Vec = &CurrentLoop->getSubLoops(); 293 } 294 LoopList.push_back(CurrentLoop); 295 return LoopList; 296 } 297 298 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 299 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 300 if (InnerIndexVar) 301 return InnerIndexVar; 302 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 303 return nullptr; 304 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 305 PHINode *PhiVar = cast<PHINode>(I); 306 Type *PhiTy = PhiVar->getType(); 307 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 308 !PhiTy->isPointerTy()) 309 return nullptr; 310 const SCEVAddRecExpr *AddRec = 311 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 312 if (!AddRec || !AddRec->isAffine()) 313 continue; 314 const SCEV *Step = AddRec->getStepRecurrence(*SE); 315 if (!isa<SCEVConstant>(Step)) 316 continue; 317 // Found the induction variable. 318 // FIXME: Handle loops with more than one induction variable. Note that, 319 // currently, legality makes sure we have only one induction variable. 320 return PhiVar; 321 } 322 return nullptr; 323 } 324 325 namespace { 326 327 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 328 class LoopInterchangeLegality { 329 public: 330 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 331 OptimizationRemarkEmitter *ORE) 332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 333 334 /// Check if the loops can be interchanged. 335 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 336 CharMatrix &DepMatrix); 337 338 /// Check if the loop structure is understood. We do not handle triangular 339 /// loops for now. 340 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 341 342 bool currentLimitations(); 343 344 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 345 return OuterInnerReductions; 346 } 347 348 private: 349 bool tightlyNested(Loop *Outer, Loop *Inner); 350 bool containsUnsafeInstructions(BasicBlock *BB); 351 352 /// Discover induction and reduction PHIs in the header of \p L. Induction 353 /// PHIs are added to \p Inductions, reductions are added to 354 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 355 /// to be passed as \p InnerLoop. 356 bool findInductionAndReductions(Loop *L, 357 SmallVector<PHINode *, 8> &Inductions, 358 Loop *InnerLoop); 359 360 Loop *OuterLoop; 361 Loop *InnerLoop; 362 363 ScalarEvolution *SE; 364 365 /// Interface to emit optimization remarks. 366 OptimizationRemarkEmitter *ORE; 367 368 /// Set of reduction PHIs taking part of a reduction across the inner and 369 /// outer loop. 370 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 371 }; 372 373 /// LoopInterchangeProfitability checks if it is profitable to interchange the 374 /// loop. 375 class LoopInterchangeProfitability { 376 public: 377 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 378 OptimizationRemarkEmitter *ORE) 379 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 380 381 /// Check if the loop interchange is profitable. 382 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 383 CharMatrix &DepMatrix); 384 385 private: 386 int getInstrOrderCost(); 387 388 Loop *OuterLoop; 389 Loop *InnerLoop; 390 391 /// Scev analysis. 392 ScalarEvolution *SE; 393 394 /// Interface to emit optimization remarks. 395 OptimizationRemarkEmitter *ORE; 396 }; 397 398 /// LoopInterchangeTransform interchanges the loop. 399 class LoopInterchangeTransform { 400 public: 401 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 402 LoopInfo *LI, DominatorTree *DT, 403 BasicBlock *LoopNestExit, 404 const LoopInterchangeLegality &LIL) 405 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 406 LoopExit(LoopNestExit), LIL(LIL) {} 407 408 /// Interchange OuterLoop and InnerLoop. 409 bool transform(); 410 void restructureLoops(Loop *NewInner, Loop *NewOuter, 411 BasicBlock *OrigInnerPreHeader, 412 BasicBlock *OrigOuterPreHeader); 413 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 414 415 private: 416 bool adjustLoopLinks(); 417 bool adjustLoopBranches(); 418 419 Loop *OuterLoop; 420 Loop *InnerLoop; 421 422 /// Scev analysis. 423 ScalarEvolution *SE; 424 425 LoopInfo *LI; 426 DominatorTree *DT; 427 BasicBlock *LoopExit; 428 429 const LoopInterchangeLegality &LIL; 430 }; 431 432 struct LoopInterchange { 433 ScalarEvolution *SE = nullptr; 434 LoopInfo *LI = nullptr; 435 DependenceInfo *DI = nullptr; 436 DominatorTree *DT = nullptr; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 442 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 443 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 444 445 bool run(Loop *L) { 446 if (L->getParentLoop()) 447 return false; 448 449 return processLoopList(populateWorklist(*L)); 450 } 451 452 bool isComputableLoopNest(LoopVector LoopList) { 453 for (Loop *L : LoopList) { 454 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 455 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 456 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 457 return false; 458 } 459 if (L->getNumBackEdges() != 1) { 460 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 461 return false; 462 } 463 if (!L->getExitingBlock()) { 464 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 465 return false; 466 } 467 } 468 return true; 469 } 470 471 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 472 // TODO: Add a better heuristic to select the loop to be interchanged based 473 // on the dependence matrix. Currently we select the innermost loop. 474 return LoopList.size() - 1; 475 } 476 477 bool processLoopList(LoopVector LoopList) { 478 bool Changed = false; 479 unsigned LoopNestDepth = LoopList.size(); 480 if (LoopNestDepth < 2) { 481 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 482 return false; 483 } 484 if (LoopNestDepth > MaxLoopNestDepth) { 485 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 486 << MaxLoopNestDepth << "\n"); 487 return false; 488 } 489 if (!isComputableLoopNest(LoopList)) { 490 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 491 return false; 492 } 493 494 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 495 << "\n"); 496 497 CharMatrix DependencyMatrix; 498 Loop *OuterMostLoop = *(LoopList.begin()); 499 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 500 OuterMostLoop, DI)) { 501 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 502 return false; 503 } 504 #ifdef DUMP_DEP_MATRICIES 505 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 506 printDepMatrix(DependencyMatrix); 507 #endif 508 509 // Get the Outermost loop exit. 510 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 511 if (!LoopNestExit) { 512 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 513 return false; 514 } 515 516 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 517 // Move the selected loop outwards to the best possible position. 518 for (unsigned i = SelecLoopId; i > 0; i--) { 519 bool Interchanged = 520 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 521 if (!Interchanged) 522 return Changed; 523 // Loops interchanged reflect the same in LoopList 524 std::swap(LoopList[i - 1], LoopList[i]); 525 526 // Update the DependencyMatrix 527 interChangeDependencies(DependencyMatrix, i, i - 1); 528 #ifdef DUMP_DEP_MATRICIES 529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 530 printDepMatrix(DependencyMatrix); 531 #endif 532 Changed |= Interchanged; 533 } 534 return Changed; 535 } 536 537 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 538 unsigned OuterLoopId, BasicBlock *LoopNestExit, 539 std::vector<std::vector<char>> &DependencyMatrix) { 540 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 541 << " and OuterLoopId = " << OuterLoopId << "\n"); 542 Loop *InnerLoop = LoopList[InnerLoopId]; 543 Loop *OuterLoop = LoopList[OuterLoopId]; 544 545 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 546 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 547 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 548 return false; 549 } 550 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 551 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 552 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 553 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 554 return false; 555 } 556 557 ORE->emit([&]() { 558 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 559 InnerLoop->getStartLoc(), 560 InnerLoop->getHeader()) 561 << "Loop interchanged with enclosing loop."; 562 }); 563 564 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 565 LIL); 566 LIT.transform(); 567 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 568 LoopsInterchanged++; 569 570 assert(InnerLoop->isLCSSAForm(*DT) && 571 "Inner loop not left in LCSSA form after loop interchange!"); 572 assert(OuterLoop->isLCSSAForm(*DT) && 573 "Outer loop not left in LCSSA form after loop interchange!"); 574 575 return true; 576 } 577 }; 578 579 } // end anonymous namespace 580 581 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 582 return any_of(*BB, [](const Instruction &I) { 583 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 584 }); 585 } 586 587 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 588 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 589 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 590 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 591 592 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 593 594 // A perfectly nested loop will not have any branch in between the outer and 595 // inner block i.e. outer header will branch to either inner preheader and 596 // outerloop latch. 597 BranchInst *OuterLoopHeaderBI = 598 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 599 if (!OuterLoopHeaderBI) 600 return false; 601 602 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 603 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 604 Succ != OuterLoopLatch) 605 return false; 606 607 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 608 // We do not have any basic block in between now make sure the outer header 609 // and outer loop latch doesn't contain any unsafe instructions. 610 if (containsUnsafeInstructions(OuterLoopHeader) || 611 containsUnsafeInstructions(OuterLoopLatch)) 612 return false; 613 614 // Also make sure the inner loop preheader does not contain any unsafe 615 // instructions. Note that all instructions in the preheader will be moved to 616 // the outer loop header when interchanging. 617 if (InnerLoopPreHeader != OuterLoopHeader && 618 containsUnsafeInstructions(InnerLoopPreHeader)) 619 return false; 620 621 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 622 // We have a perfect loop nest. 623 return true; 624 } 625 626 bool LoopInterchangeLegality::isLoopStructureUnderstood( 627 PHINode *InnerInduction) { 628 unsigned Num = InnerInduction->getNumOperands(); 629 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 630 for (unsigned i = 0; i < Num; ++i) { 631 Value *Val = InnerInduction->getOperand(i); 632 if (isa<Constant>(Val)) 633 continue; 634 Instruction *I = dyn_cast<Instruction>(Val); 635 if (!I) 636 return false; 637 // TODO: Handle triangular loops. 638 // e.g. for(int i=0;i<N;i++) 639 // for(int j=i;j<N;j++) 640 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 641 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 642 InnerLoopPreheader && 643 !OuterLoop->isLoopInvariant(I)) { 644 return false; 645 } 646 } 647 return true; 648 } 649 650 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 651 // value. 652 static Value *followLCSSA(Value *SV) { 653 PHINode *PHI = dyn_cast<PHINode>(SV); 654 if (!PHI) 655 return SV; 656 657 if (PHI->getNumIncomingValues() != 1) 658 return SV; 659 return followLCSSA(PHI->getIncomingValue(0)); 660 } 661 662 // Check V's users to see if it is involved in a reduction in L. 663 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 664 for (Value *User : V->users()) { 665 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 666 if (PHI->getNumIncomingValues() == 1) 667 continue; 668 RecurrenceDescriptor RD; 669 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 670 return PHI; 671 return nullptr; 672 } 673 } 674 675 return nullptr; 676 } 677 678 bool LoopInterchangeLegality::findInductionAndReductions( 679 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 680 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 681 return false; 682 for (PHINode &PHI : L->getHeader()->phis()) { 683 RecurrenceDescriptor RD; 684 InductionDescriptor ID; 685 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 686 Inductions.push_back(&PHI); 687 else { 688 // PHIs in inner loops need to be part of a reduction in the outer loop, 689 // discovered when checking the PHIs of the outer loop earlier. 690 if (!InnerLoop) { 691 if (!OuterInnerReductions.count(&PHI)) { 692 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 693 "across the outer loop.\n"); 694 return false; 695 } 696 } else { 697 assert(PHI.getNumIncomingValues() == 2 && 698 "Phis in loop header should have exactly 2 incoming values"); 699 // Check if we have a PHI node in the outer loop that has a reduction 700 // result from the inner loop as an incoming value. 701 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 702 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 703 if (!InnerRedPhi || 704 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 705 LLVM_DEBUG( 706 dbgs() 707 << "Failed to recognize PHI as an induction or reduction.\n"); 708 return false; 709 } 710 OuterInnerReductions.insert(&PHI); 711 OuterInnerReductions.insert(InnerRedPhi); 712 } 713 } 714 } 715 return true; 716 } 717 718 // This function indicates the current limitations in the transform as a result 719 // of which we do not proceed. 720 bool LoopInterchangeLegality::currentLimitations() { 721 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 722 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 723 724 // transform currently expects the loop latches to also be the exiting 725 // blocks. 726 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 727 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 728 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 729 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 730 LLVM_DEBUG( 731 dbgs() << "Loops where the latch is not the exiting block are not" 732 << " supported currently.\n"); 733 ORE->emit([&]() { 734 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 735 OuterLoop->getStartLoc(), 736 OuterLoop->getHeader()) 737 << "Loops where the latch is not the exiting block cannot be" 738 " interchange currently."; 739 }); 740 return true; 741 } 742 743 PHINode *InnerInductionVar; 744 SmallVector<PHINode *, 8> Inductions; 745 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 746 LLVM_DEBUG( 747 dbgs() << "Only outer loops with induction or reduction PHI nodes " 748 << "are supported currently.\n"); 749 ORE->emit([&]() { 750 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 751 OuterLoop->getStartLoc(), 752 OuterLoop->getHeader()) 753 << "Only outer loops with induction or reduction PHI nodes can be" 754 " interchanged currently."; 755 }); 756 return true; 757 } 758 759 // TODO: Currently we handle only loops with 1 induction variable. 760 if (Inductions.size() != 1) { 761 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 762 << "supported currently.\n"); 763 ORE->emit([&]() { 764 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 765 OuterLoop->getStartLoc(), 766 OuterLoop->getHeader()) 767 << "Only outer loops with 1 induction variable can be " 768 "interchanged currently."; 769 }); 770 return true; 771 } 772 773 Inductions.clear(); 774 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 775 LLVM_DEBUG( 776 dbgs() << "Only inner loops with induction or reduction PHI nodes " 777 << "are supported currently.\n"); 778 ORE->emit([&]() { 779 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 780 InnerLoop->getStartLoc(), 781 InnerLoop->getHeader()) 782 << "Only inner loops with induction or reduction PHI nodes can be" 783 " interchange currently."; 784 }); 785 return true; 786 } 787 788 // TODO: Currently we handle only loops with 1 induction variable. 789 if (Inductions.size() != 1) { 790 LLVM_DEBUG( 791 dbgs() << "We currently only support loops with 1 induction variable." 792 << "Failed to interchange due to current limitation\n"); 793 ORE->emit([&]() { 794 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 795 InnerLoop->getStartLoc(), 796 InnerLoop->getHeader()) 797 << "Only inner loops with 1 induction variable can be " 798 "interchanged currently."; 799 }); 800 return true; 801 } 802 InnerInductionVar = Inductions.pop_back_val(); 803 804 // TODO: Triangular loops are not handled for now. 805 if (!isLoopStructureUnderstood(InnerInductionVar)) { 806 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 807 ORE->emit([&]() { 808 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 809 InnerLoop->getStartLoc(), 810 InnerLoop->getHeader()) 811 << "Inner loop structure not understood currently."; 812 }); 813 return true; 814 } 815 816 // TODO: Current limitation: Since we split the inner loop latch at the point 817 // were induction variable is incremented (induction.next); We cannot have 818 // more than 1 user of induction.next since it would result in broken code 819 // after split. 820 // e.g. 821 // for(i=0;i<N;i++) { 822 // for(j = 0;j<M;j++) { 823 // A[j+1][i+2] = A[j][i]+k; 824 // } 825 // } 826 Instruction *InnerIndexVarInc = nullptr; 827 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 828 InnerIndexVarInc = 829 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 830 else 831 InnerIndexVarInc = 832 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 833 834 if (!InnerIndexVarInc) { 835 LLVM_DEBUG( 836 dbgs() << "Did not find an instruction to increment the induction " 837 << "variable.\n"); 838 ORE->emit([&]() { 839 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 840 InnerLoop->getStartLoc(), 841 InnerLoop->getHeader()) 842 << "The inner loop does not increment the induction variable."; 843 }); 844 return true; 845 } 846 847 // Since we split the inner loop latch on this induction variable. Make sure 848 // we do not have any instruction between the induction variable and branch 849 // instruction. 850 851 bool FoundInduction = false; 852 for (const Instruction &I : 853 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 854 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 855 isa<ZExtInst>(I)) 856 continue; 857 858 // We found an instruction. If this is not induction variable then it is not 859 // safe to split this loop latch. 860 if (!I.isIdenticalTo(InnerIndexVarInc)) { 861 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 862 << "variable increment and branch.\n"); 863 ORE->emit([&]() { 864 return OptimizationRemarkMissed( 865 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 866 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 867 << "Found unsupported instruction between induction variable " 868 "increment and branch."; 869 }); 870 return true; 871 } 872 873 FoundInduction = true; 874 break; 875 } 876 // The loop latch ended and we didn't find the induction variable return as 877 // current limitation. 878 if (!FoundInduction) { 879 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 880 ORE->emit([&]() { 881 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 882 InnerLoop->getStartLoc(), 883 InnerLoop->getHeader()) 884 << "Did not find the induction variable."; 885 }); 886 return true; 887 } 888 return false; 889 } 890 891 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 892 // users are either reduction PHIs or PHIs outside the outer loop (which means 893 // the we are only interested in the final value after the loop). 894 static bool 895 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 896 SmallPtrSetImpl<PHINode *> &Reductions) { 897 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 898 for (PHINode &PHI : InnerExit->phis()) { 899 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 900 if (PHI.getNumIncomingValues() > 1) 901 return false; 902 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 903 PHINode *PN = dyn_cast<PHINode>(U); 904 return !PN || 905 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 906 })) { 907 return false; 908 } 909 } 910 return true; 911 } 912 913 // We currently support LCSSA PHI nodes in the outer loop exit, if their 914 // incoming values do not come from the outer loop latch or if the 915 // outer loop latch has a single predecessor. In that case, the value will 916 // be available if both the inner and outer loop conditions are true, which 917 // will still be true after interchanging. If we have multiple predecessor, 918 // that may not be the case, e.g. because the outer loop latch may be executed 919 // if the inner loop is not executed. 920 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 921 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 922 for (PHINode &PHI : LoopNestExit->phis()) { 923 // FIXME: We currently are not able to detect floating point reductions 924 // and have to use floating point PHIs as a proxy to prevent 925 // interchanging in the presence of floating point reductions. 926 if (PHI.getType()->isFloatingPointTy()) 927 return false; 928 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 929 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 930 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 931 continue; 932 933 // The incoming value is defined in the outer loop latch. Currently we 934 // only support that in case the outer loop latch has a single predecessor. 935 // This guarantees that the outer loop latch is executed if and only if 936 // the inner loop is executed (because tightlyNested() guarantees that the 937 // outer loop header only branches to the inner loop or the outer loop 938 // latch). 939 // FIXME: We could weaken this logic and allow multiple predecessors, 940 // if the values are produced outside the loop latch. We would need 941 // additional logic to update the PHI nodes in the exit block as 942 // well. 943 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 944 return false; 945 } 946 } 947 return true; 948 } 949 950 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 951 unsigned OuterLoopId, 952 CharMatrix &DepMatrix) { 953 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 954 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 955 << " and OuterLoopId = " << OuterLoopId 956 << " due to dependence\n"); 957 ORE->emit([&]() { 958 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 959 InnerLoop->getStartLoc(), 960 InnerLoop->getHeader()) 961 << "Cannot interchange loops due to dependences."; 962 }); 963 return false; 964 } 965 // Check if outer and inner loop contain legal instructions only. 966 for (auto *BB : OuterLoop->blocks()) 967 for (Instruction &I : BB->instructionsWithoutDebug()) 968 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 969 // readnone functions do not prevent interchanging. 970 if (CI->doesNotReadMemory()) 971 continue; 972 LLVM_DEBUG( 973 dbgs() << "Loops with call instructions cannot be interchanged " 974 << "safely."); 975 ORE->emit([&]() { 976 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 977 CI->getDebugLoc(), 978 CI->getParent()) 979 << "Cannot interchange loops due to call instruction."; 980 }); 981 982 return false; 983 } 984 985 // TODO: The loops could not be interchanged due to current limitations in the 986 // transform module. 987 if (currentLimitations()) { 988 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 989 return false; 990 } 991 992 // Check if the loops are tightly nested. 993 if (!tightlyNested(OuterLoop, InnerLoop)) { 994 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 995 ORE->emit([&]() { 996 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 997 InnerLoop->getStartLoc(), 998 InnerLoop->getHeader()) 999 << "Cannot interchange loops because they are not tightly " 1000 "nested."; 1001 }); 1002 return false; 1003 } 1004 1005 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1006 OuterInnerReductions)) { 1007 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1008 ORE->emit([&]() { 1009 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1010 InnerLoop->getStartLoc(), 1011 InnerLoop->getHeader()) 1012 << "Found unsupported PHI node in loop exit."; 1013 }); 1014 return false; 1015 } 1016 1017 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1018 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1019 ORE->emit([&]() { 1020 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1021 OuterLoop->getStartLoc(), 1022 OuterLoop->getHeader()) 1023 << "Found unsupported PHI node in loop exit."; 1024 }); 1025 return false; 1026 } 1027 1028 return true; 1029 } 1030 1031 int LoopInterchangeProfitability::getInstrOrderCost() { 1032 unsigned GoodOrder, BadOrder; 1033 BadOrder = GoodOrder = 0; 1034 for (BasicBlock *BB : InnerLoop->blocks()) { 1035 for (Instruction &Ins : *BB) { 1036 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1037 unsigned NumOp = GEP->getNumOperands(); 1038 bool FoundInnerInduction = false; 1039 bool FoundOuterInduction = false; 1040 for (unsigned i = 0; i < NumOp; ++i) { 1041 // Skip operands that are not SCEV-able. 1042 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1043 continue; 1044 1045 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1046 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1047 if (!AR) 1048 continue; 1049 1050 // If we find the inner induction after an outer induction e.g. 1051 // for(int i=0;i<N;i++) 1052 // for(int j=0;j<N;j++) 1053 // A[i][j] = A[i-1][j-1]+k; 1054 // then it is a good order. 1055 if (AR->getLoop() == InnerLoop) { 1056 // We found an InnerLoop induction after OuterLoop induction. It is 1057 // a good order. 1058 FoundInnerInduction = true; 1059 if (FoundOuterInduction) { 1060 GoodOrder++; 1061 break; 1062 } 1063 } 1064 // If we find the outer induction after an inner induction e.g. 1065 // for(int i=0;i<N;i++) 1066 // for(int j=0;j<N;j++) 1067 // A[j][i] = A[j-1][i-1]+k; 1068 // then it is a bad order. 1069 if (AR->getLoop() == OuterLoop) { 1070 // We found an OuterLoop induction after InnerLoop induction. It is 1071 // a bad order. 1072 FoundOuterInduction = true; 1073 if (FoundInnerInduction) { 1074 BadOrder++; 1075 break; 1076 } 1077 } 1078 } 1079 } 1080 } 1081 } 1082 return GoodOrder - BadOrder; 1083 } 1084 1085 static bool isProfitableForVectorization(unsigned InnerLoopId, 1086 unsigned OuterLoopId, 1087 CharMatrix &DepMatrix) { 1088 // TODO: Improve this heuristic to catch more cases. 1089 // If the inner loop is loop independent or doesn't carry any dependency it is 1090 // profitable to move this to outer position. 1091 for (auto &Row : DepMatrix) { 1092 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1093 return false; 1094 // TODO: We need to improve this heuristic. 1095 if (Row[OuterLoopId] != '=') 1096 return false; 1097 } 1098 // If outer loop has dependence and inner loop is loop independent then it is 1099 // profitable to interchange to enable parallelism. 1100 // If there are no dependences, interchanging will not improve anything. 1101 return !DepMatrix.empty(); 1102 } 1103 1104 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1105 unsigned OuterLoopId, 1106 CharMatrix &DepMatrix) { 1107 // TODO: Add better profitability checks. 1108 // e.g 1109 // 1) Construct dependency matrix and move the one with no loop carried dep 1110 // inside to enable vectorization. 1111 1112 // This is rough cost estimation algorithm. It counts the good and bad order 1113 // of induction variables in the instruction and allows reordering if number 1114 // of bad orders is more than good. 1115 int Cost = getInstrOrderCost(); 1116 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1117 if (Cost < -LoopInterchangeCostThreshold) 1118 return true; 1119 1120 // It is not profitable as per current cache profitability model. But check if 1121 // we can move this loop outside to improve parallelism. 1122 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1123 return true; 1124 1125 ORE->emit([&]() { 1126 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1127 InnerLoop->getStartLoc(), 1128 InnerLoop->getHeader()) 1129 << "Interchanging loops is too costly (cost=" 1130 << ore::NV("Cost", Cost) << ", threshold=" 1131 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1132 << ") and it does not improve parallelism."; 1133 }); 1134 return false; 1135 } 1136 1137 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1138 Loop *InnerLoop) { 1139 for (Loop *L : *OuterLoop) 1140 if (L == InnerLoop) { 1141 OuterLoop->removeChildLoop(L); 1142 return; 1143 } 1144 llvm_unreachable("Couldn't find loop"); 1145 } 1146 1147 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1148 /// new inner and outer loop after interchanging: NewInner is the original 1149 /// outer loop and NewOuter is the original inner loop. 1150 /// 1151 /// Before interchanging, we have the following structure 1152 /// Outer preheader 1153 // Outer header 1154 // Inner preheader 1155 // Inner header 1156 // Inner body 1157 // Inner latch 1158 // outer bbs 1159 // Outer latch 1160 // 1161 // After interchanging: 1162 // Inner preheader 1163 // Inner header 1164 // Outer preheader 1165 // Outer header 1166 // Inner body 1167 // outer bbs 1168 // Outer latch 1169 // Inner latch 1170 void LoopInterchangeTransform::restructureLoops( 1171 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1172 BasicBlock *OrigOuterPreHeader) { 1173 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1174 // The original inner loop preheader moves from the new inner loop to 1175 // the parent loop, if there is one. 1176 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1177 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1178 1179 // Switch the loop levels. 1180 if (OuterLoopParent) { 1181 // Remove the loop from its parent loop. 1182 removeChildLoop(OuterLoopParent, NewInner); 1183 removeChildLoop(NewInner, NewOuter); 1184 OuterLoopParent->addChildLoop(NewOuter); 1185 } else { 1186 removeChildLoop(NewInner, NewOuter); 1187 LI->changeTopLevelLoop(NewInner, NewOuter); 1188 } 1189 while (!NewOuter->isInnermost()) 1190 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1191 NewOuter->addChildLoop(NewInner); 1192 1193 // BBs from the original inner loop. 1194 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1195 1196 // Add BBs from the original outer loop to the original inner loop (excluding 1197 // BBs already in inner loop) 1198 for (BasicBlock *BB : NewInner->blocks()) 1199 if (LI->getLoopFor(BB) == NewInner) 1200 NewOuter->addBlockEntry(BB); 1201 1202 // Now remove inner loop header and latch from the new inner loop and move 1203 // other BBs (the loop body) to the new inner loop. 1204 BasicBlock *OuterHeader = NewOuter->getHeader(); 1205 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1206 for (BasicBlock *BB : OrigInnerBBs) { 1207 // Nothing will change for BBs in child loops. 1208 if (LI->getLoopFor(BB) != NewOuter) 1209 continue; 1210 // Remove the new outer loop header and latch from the new inner loop. 1211 if (BB == OuterHeader || BB == OuterLatch) 1212 NewInner->removeBlockFromLoop(BB); 1213 else 1214 LI->changeLoopFor(BB, NewInner); 1215 } 1216 1217 // The preheader of the original outer loop becomes part of the new 1218 // outer loop. 1219 NewOuter->addBlockEntry(OrigOuterPreHeader); 1220 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1221 1222 // Tell SE that we move the loops around. 1223 SE->forgetLoop(NewOuter); 1224 SE->forgetLoop(NewInner); 1225 } 1226 1227 bool LoopInterchangeTransform::transform() { 1228 bool Transformed = false; 1229 Instruction *InnerIndexVar; 1230 1231 if (InnerLoop->getSubLoops().empty()) { 1232 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1233 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1234 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1235 if (!InductionPHI) { 1236 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1237 return false; 1238 } 1239 1240 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1241 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1242 else 1243 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1244 1245 // Ensure that InductionPHI is the first Phi node. 1246 if (&InductionPHI->getParent()->front() != InductionPHI) 1247 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1248 1249 // Create a new latch block for the inner loop. We split at the 1250 // current latch's terminator and then move the condition and all 1251 // operands that are not either loop-invariant or the induction PHI into the 1252 // new latch block. 1253 BasicBlock *NewLatch = 1254 SplitBlock(InnerLoop->getLoopLatch(), 1255 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1256 1257 SmallSetVector<Instruction *, 4> WorkList; 1258 unsigned i = 0; 1259 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1260 for (; i < WorkList.size(); i++) { 1261 // Duplicate instruction and move it the new latch. Update uses that 1262 // have been moved. 1263 Instruction *NewI = WorkList[i]->clone(); 1264 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1265 assert(!NewI->mayHaveSideEffects() && 1266 "Moving instructions with side-effects may change behavior of " 1267 "the loop nest!"); 1268 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1269 UI != UE;) { 1270 Use &U = *UI++; 1271 Instruction *UserI = cast<Instruction>(U.getUser()); 1272 if (!InnerLoop->contains(UserI->getParent()) || 1273 UserI->getParent() == NewLatch || UserI == InductionPHI) 1274 U.set(NewI); 1275 } 1276 // Add operands of moved instruction to the worklist, except if they are 1277 // outside the inner loop or are the induction PHI. 1278 for (Value *Op : WorkList[i]->operands()) { 1279 Instruction *OpI = dyn_cast<Instruction>(Op); 1280 if (!OpI || 1281 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1282 OpI == InductionPHI) 1283 continue; 1284 WorkList.insert(OpI); 1285 } 1286 } 1287 }; 1288 1289 // FIXME: Should we interchange when we have a constant condition? 1290 Instruction *CondI = dyn_cast<Instruction>( 1291 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1292 ->getCondition()); 1293 if (CondI) 1294 WorkList.insert(CondI); 1295 MoveInstructions(); 1296 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1297 MoveInstructions(); 1298 1299 // Splits the inner loops phi nodes out into a separate basic block. 1300 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1301 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1302 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1303 } 1304 1305 // Instructions in the original inner loop preheader may depend on values 1306 // defined in the outer loop header. Move them there, because the original 1307 // inner loop preheader will become the entry into the interchanged loop nest. 1308 // Currently we move all instructions and rely on LICM to move invariant 1309 // instructions outside the loop nest. 1310 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1311 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1312 if (InnerLoopPreHeader != OuterLoopHeader) { 1313 SmallPtrSet<Instruction *, 4> NeedsMoving; 1314 for (Instruction &I : 1315 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1316 std::prev(InnerLoopPreHeader->end())))) 1317 I.moveBefore(OuterLoopHeader->getTerminator()); 1318 } 1319 1320 Transformed |= adjustLoopLinks(); 1321 if (!Transformed) { 1322 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1323 return false; 1324 } 1325 1326 return true; 1327 } 1328 1329 /// \brief Move all instructions except the terminator from FromBB right before 1330 /// InsertBefore 1331 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1332 auto &ToList = InsertBefore->getParent()->getInstList(); 1333 auto &FromList = FromBB->getInstList(); 1334 1335 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1336 FromBB->getTerminator()->getIterator()); 1337 } 1338 1339 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1340 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1341 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1342 // from BB1 afterwards. 1343 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1344 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1345 for (Instruction *I : TempInstrs) 1346 I->removeFromParent(); 1347 1348 // Move instructions from BB2 to BB1. 1349 moveBBContents(BB2, BB1->getTerminator()); 1350 1351 // Move instructions from TempInstrs to BB2. 1352 for (Instruction *I : TempInstrs) 1353 I->insertBefore(BB2->getTerminator()); 1354 } 1355 1356 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1357 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1358 // \p OldBB is exactly once in BI's successor list. 1359 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1360 BasicBlock *NewBB, 1361 std::vector<DominatorTree::UpdateType> &DTUpdates, 1362 bool MustUpdateOnce = true) { 1363 assert((!MustUpdateOnce || 1364 llvm::count_if(successors(BI), 1365 [OldBB](BasicBlock *BB) { 1366 return BB == OldBB; 1367 }) == 1) && "BI must jump to OldBB exactly once."); 1368 bool Changed = false; 1369 for (Use &Op : BI->operands()) 1370 if (Op == OldBB) { 1371 Op.set(NewBB); 1372 Changed = true; 1373 } 1374 1375 if (Changed) { 1376 DTUpdates.push_back( 1377 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1378 DTUpdates.push_back( 1379 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1380 } 1381 assert(Changed && "Expected a successor to be updated"); 1382 } 1383 1384 // Move Lcssa PHIs to the right place. 1385 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1386 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1387 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1388 Loop *InnerLoop, LoopInfo *LI) { 1389 1390 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1391 // defined either in the header or latch. Those blocks will become header and 1392 // latch of the new outer loop, and the only possible users can PHI nodes 1393 // in the exit block of the loop nest or the outer loop header (reduction 1394 // PHIs, in that case, the incoming value must be defined in the inner loop 1395 // header). We can just substitute the user with the incoming value and remove 1396 // the PHI. 1397 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1398 assert(P.getNumIncomingValues() == 1 && 1399 "Only loops with a single exit are supported!"); 1400 1401 // Incoming values are guaranteed be instructions currently. 1402 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1403 // Skip phis with incoming values from the inner loop body, excluding the 1404 // header and latch. 1405 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1406 continue; 1407 1408 assert(all_of(P.users(), 1409 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1410 return (cast<PHINode>(U)->getParent() == OuterHeader && 1411 IncI->getParent() == InnerHeader) || 1412 cast<PHINode>(U)->getParent() == OuterExit; 1413 }) && 1414 "Can only replace phis iff the uses are in the loop nest exit or " 1415 "the incoming value is defined in the inner header (it will " 1416 "dominate all loop blocks after interchanging)"); 1417 P.replaceAllUsesWith(IncI); 1418 P.eraseFromParent(); 1419 } 1420 1421 SmallVector<PHINode *, 8> LcssaInnerExit; 1422 for (PHINode &P : InnerExit->phis()) 1423 LcssaInnerExit.push_back(&P); 1424 1425 SmallVector<PHINode *, 8> LcssaInnerLatch; 1426 for (PHINode &P : InnerLatch->phis()) 1427 LcssaInnerLatch.push_back(&P); 1428 1429 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1430 // If a PHI node has users outside of InnerExit, it has a use outside the 1431 // interchanged loop and we have to preserve it. We move these to 1432 // InnerLatch, which will become the new exit block for the innermost 1433 // loop after interchanging. 1434 for (PHINode *P : LcssaInnerExit) 1435 P->moveBefore(InnerLatch->getFirstNonPHI()); 1436 1437 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1438 // and we have to move them to the new inner latch. 1439 for (PHINode *P : LcssaInnerLatch) 1440 P->moveBefore(InnerExit->getFirstNonPHI()); 1441 1442 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1443 // incoming values defined in the outer loop, we have to add a new PHI 1444 // in the inner loop latch, which became the exit block of the outer loop, 1445 // after interchanging. 1446 if (OuterExit) { 1447 for (PHINode &P : OuterExit->phis()) { 1448 if (P.getNumIncomingValues() != 1) 1449 continue; 1450 // Skip Phis with incoming values defined in the inner loop. Those should 1451 // already have been updated. 1452 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1453 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1454 continue; 1455 1456 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1457 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1458 NewPhi->setIncomingBlock(0, OuterLatch); 1459 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1460 P.setIncomingValue(0, NewPhi); 1461 } 1462 } 1463 1464 // Now adjust the incoming blocks for the LCSSA PHIs. 1465 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1466 // with the new latch. 1467 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1468 } 1469 1470 bool LoopInterchangeTransform::adjustLoopBranches() { 1471 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1472 std::vector<DominatorTree::UpdateType> DTUpdates; 1473 1474 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1475 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1476 1477 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1478 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1479 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1480 // Ensure that both preheaders do not contain PHI nodes and have single 1481 // predecessors. This allows us to move them easily. We use 1482 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1483 // preheaders do not satisfy those conditions. 1484 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1485 !OuterLoopPreHeader->getUniquePredecessor()) 1486 OuterLoopPreHeader = 1487 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1488 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1489 InnerLoopPreHeader = 1490 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1491 1492 // Adjust the loop preheader 1493 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1494 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1495 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1496 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1497 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1498 BasicBlock *InnerLoopLatchPredecessor = 1499 InnerLoopLatch->getUniquePredecessor(); 1500 BasicBlock *InnerLoopLatchSuccessor; 1501 BasicBlock *OuterLoopLatchSuccessor; 1502 1503 BranchInst *OuterLoopLatchBI = 1504 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1505 BranchInst *InnerLoopLatchBI = 1506 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1507 BranchInst *OuterLoopHeaderBI = 1508 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1509 BranchInst *InnerLoopHeaderBI = 1510 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1511 1512 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1513 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1514 !InnerLoopHeaderBI) 1515 return false; 1516 1517 BranchInst *InnerLoopLatchPredecessorBI = 1518 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1519 BranchInst *OuterLoopPredecessorBI = 1520 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1521 1522 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1523 return false; 1524 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1525 if (!InnerLoopHeaderSuccessor) 1526 return false; 1527 1528 // Adjust Loop Preheader and headers. 1529 // The branches in the outer loop predecessor and the outer loop header can 1530 // be unconditional branches or conditional branches with duplicates. Consider 1531 // this when updating the successors. 1532 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1533 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1534 // The outer loop header might or might not branch to the outer latch. 1535 // We are guaranteed to branch to the inner loop preheader. 1536 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1537 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1538 /*MustUpdateOnce=*/false); 1539 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1540 InnerLoopHeaderSuccessor, DTUpdates, 1541 /*MustUpdateOnce=*/false); 1542 1543 // Adjust reduction PHI's now that the incoming block has changed. 1544 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1545 OuterLoopHeader); 1546 1547 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1548 OuterLoopPreHeader, DTUpdates); 1549 1550 // -------------Adjust loop latches----------- 1551 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1552 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1553 else 1554 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1555 1556 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1557 InnerLoopLatchSuccessor, DTUpdates); 1558 1559 1560 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1561 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1562 else 1563 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1564 1565 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1566 OuterLoopLatchSuccessor, DTUpdates); 1567 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1568 DTUpdates); 1569 1570 DT->applyUpdates(DTUpdates); 1571 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1572 OuterLoopPreHeader); 1573 1574 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1575 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1576 InnerLoop, LI); 1577 // For PHIs in the exit block of the outer loop, outer's latch has been 1578 // replaced by Inners'. 1579 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1580 1581 // Now update the reduction PHIs in the inner and outer loop headers. 1582 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1583 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1584 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1585 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1586 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1587 1588 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1589 (void)OuterInnerReductions; 1590 1591 // Now move the remaining reduction PHIs from outer to inner loop header and 1592 // vice versa. The PHI nodes must be part of a reduction across the inner and 1593 // outer loop and all the remains to do is and updating the incoming blocks. 1594 for (PHINode *PHI : OuterLoopPHIs) { 1595 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1596 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1597 } 1598 for (PHINode *PHI : InnerLoopPHIs) { 1599 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1600 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1601 } 1602 1603 // Update the incoming blocks for moved PHI nodes. 1604 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1605 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1606 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1607 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1608 1609 // Values defined in the outer loop header could be used in the inner loop 1610 // latch. In that case, we need to create LCSSA phis for them, because after 1611 // interchanging they will be defined in the new inner loop and used in the 1612 // new outer loop. 1613 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1614 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1615 for (Instruction &I : 1616 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1617 MayNeedLCSSAPhis.push_back(&I); 1618 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1619 1620 return true; 1621 } 1622 1623 bool LoopInterchangeTransform::adjustLoopLinks() { 1624 // Adjust all branches in the inner and outer loop. 1625 bool Changed = adjustLoopBranches(); 1626 if (Changed) { 1627 // We have interchanged the preheaders so we need to interchange the data in 1628 // the preheaders as well. This is because the content of the inner 1629 // preheader was previously executed inside the outer loop. 1630 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1631 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1632 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1633 } 1634 return Changed; 1635 } 1636 1637 /// Main LoopInterchange Pass. 1638 struct LoopInterchangeLegacyPass : public LoopPass { 1639 static char ID; 1640 1641 LoopInterchangeLegacyPass() : LoopPass(ID) { 1642 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1643 } 1644 1645 void getAnalysisUsage(AnalysisUsage &AU) const override { 1646 AU.addRequired<DependenceAnalysisWrapperPass>(); 1647 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1648 1649 getLoopAnalysisUsage(AU); 1650 } 1651 1652 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1653 if (skipLoop(L)) 1654 return false; 1655 1656 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1657 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1658 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1659 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1660 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1661 1662 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1663 } 1664 }; 1665 1666 char LoopInterchangeLegacyPass::ID = 0; 1667 1668 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1669 "Interchanges loops for cache reuse", false, false) 1670 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1671 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1672 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1673 1674 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1675 "Interchanges loops for cache reuse", false, false) 1676 1677 Pass *llvm::createLoopInterchangePass() { 1678 return new LoopInterchangeLegacyPass(); 1679 } 1680 1681 PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM, 1682 LoopStandardAnalysisResults &AR, 1683 LPMUpdater &U) { 1684 Function &F = *L.getHeader()->getParent(); 1685 1686 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1687 OptimizationRemarkEmitter ORE(&F); 1688 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L)) 1689 return PreservedAnalyses::all(); 1690 return getLoopPassPreservedAnalyses(); 1691 } 1692