1 //===- LoopInterchange.cpp - Loop interchange pass------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpander.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 using namespace llvm;
44 
45 #define DEBUG_TYPE "loop-interchange"
46 
47 namespace {
48 
49 typedef SmallVector<Loop *, 8> LoopVector;
50 
51 // TODO: Check if we can use a sparse matrix here.
52 typedef std::vector<std::vector<char>> CharMatrix;
53 
54 // Maximum number of dependencies that can be handled in the dependency matrix.
55 static const unsigned MaxMemInstrCount = 100;
56 
57 // Maximum loop depth supported.
58 static const unsigned MaxLoopNestDepth = 10;
59 
60 struct LoopInterchange;
61 
62 #ifdef DUMP_DEP_MATRICIES
63 void printDepMatrix(CharMatrix &DepMatrix) {
64   for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) {
65     std::vector<char> Vec = *I;
66     for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II)
67       DEBUG(dbgs() << *II << " ");
68     DEBUG(dbgs() << "\n");
69   }
70 }
71 #endif
72 
73 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
74                                      Loop *L, DependenceInfo *DI) {
75   typedef SmallVector<Value *, 16> ValueVector;
76   ValueVector MemInstr;
77 
78   if (Level > MaxLoopNestDepth) {
79     DEBUG(dbgs() << "Cannot handle loops of depth greater than "
80                  << MaxLoopNestDepth << "\n");
81     return false;
82   }
83 
84   // For each block.
85   for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end();
86        BB != BE; ++BB) {
87     // Scan the BB and collect legal loads and stores.
88     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E;
89          ++I) {
90       Instruction *Ins = dyn_cast<Instruction>(I);
91       if (!Ins)
92         return false;
93       LoadInst *Ld = dyn_cast<LoadInst>(I);
94       StoreInst *St = dyn_cast<StoreInst>(I);
95       if (!St && !Ld)
96         continue;
97       if (Ld && !Ld->isSimple())
98         return false;
99       if (St && !St->isSimple())
100         return false;
101       MemInstr.push_back(&*I);
102     }
103   }
104 
105   DEBUG(dbgs() << "Found " << MemInstr.size()
106                << " Loads and Stores to analyze\n");
107 
108   ValueVector::iterator I, IE, J, JE;
109 
110   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
111     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
112       std::vector<char> Dep;
113       Instruction *Src = dyn_cast<Instruction>(*I);
114       Instruction *Des = dyn_cast<Instruction>(*J);
115       if (Src == Des)
116         continue;
117       if (isa<LoadInst>(Src) && isa<LoadInst>(Des))
118         continue;
119       if (auto D = DI->depends(Src, Des, true)) {
120         DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des
121                      << "\n");
122         if (D->isFlow()) {
123           // TODO: Handle Flow dependence.Check if it is sufficient to populate
124           // the Dependence Matrix with the direction reversed.
125           DEBUG(dbgs() << "Flow dependence not handled");
126           return false;
127         }
128         if (D->isAnti()) {
129           DEBUG(dbgs() << "Found Anti dependence \n");
130           unsigned Levels = D->getLevels();
131           char Direction;
132           for (unsigned II = 1; II <= Levels; ++II) {
133             const SCEV *Distance = D->getDistance(II);
134             const SCEVConstant *SCEVConst =
135                 dyn_cast_or_null<SCEVConstant>(Distance);
136             if (SCEVConst) {
137               const ConstantInt *CI = SCEVConst->getValue();
138               if (CI->isNegative())
139                 Direction = '<';
140               else if (CI->isZero())
141                 Direction = '=';
142               else
143                 Direction = '>';
144               Dep.push_back(Direction);
145             } else if (D->isScalar(II)) {
146               Direction = 'S';
147               Dep.push_back(Direction);
148             } else {
149               unsigned Dir = D->getDirection(II);
150               if (Dir == Dependence::DVEntry::LT ||
151                   Dir == Dependence::DVEntry::LE)
152                 Direction = '<';
153               else if (Dir == Dependence::DVEntry::GT ||
154                        Dir == Dependence::DVEntry::GE)
155                 Direction = '>';
156               else if (Dir == Dependence::DVEntry::EQ)
157                 Direction = '=';
158               else
159                 Direction = '*';
160               Dep.push_back(Direction);
161             }
162           }
163           while (Dep.size() != Level) {
164             Dep.push_back('I');
165           }
166 
167           DepMatrix.push_back(Dep);
168           if (DepMatrix.size() > MaxMemInstrCount) {
169             DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
170                          << " dependencies inside loop\n");
171             return false;
172           }
173         }
174       }
175     }
176   }
177 
178   // We don't have a DepMatrix to check legality return false.
179   if (DepMatrix.size() == 0)
180     return false;
181   return true;
182 }
183 
184 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
185 // matrix by exchanging the two columns.
186 static void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx,
187                                    unsigned ToIndx) {
188   unsigned numRows = DepMatrix.size();
189   for (unsigned i = 0; i < numRows; ++i) {
190     char TmpVal = DepMatrix[i][ToIndx];
191     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
192     DepMatrix[i][FromIndx] = TmpVal;
193   }
194 }
195 
196 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
197 // '>'
198 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
199                                    unsigned Column) {
200   for (unsigned i = 0; i <= Column; ++i) {
201     if (DepMatrix[Row][i] == '<')
202       return false;
203     if (DepMatrix[Row][i] == '>')
204       return true;
205   }
206   // All dependencies were '=','S' or 'I'
207   return false;
208 }
209 
210 // Checks if no dependence exist in the dependency matrix in Row before Column.
211 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
212                                  unsigned Column) {
213   for (unsigned i = 0; i < Column; ++i) {
214     if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' ||
215         DepMatrix[Row][i] != 'I')
216       return false;
217   }
218   return true;
219 }
220 
221 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
222                                 unsigned OuterLoopId, char InnerDep,
223                                 char OuterDep) {
224 
225   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
226     return false;
227 
228   if (InnerDep == OuterDep)
229     return true;
230 
231   // It is legal to interchange if and only if after interchange no row has a
232   // '>' direction as the leftmost non-'='.
233 
234   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
235     return true;
236 
237   if (InnerDep == '<')
238     return true;
239 
240   if (InnerDep == '>') {
241     // If OuterLoopId represents outermost loop then interchanging will make the
242     // 1st dependency as '>'
243     if (OuterLoopId == 0)
244       return false;
245 
246     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
247     // interchanging will result in this row having an outermost non '='
248     // dependency of '>'
249     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
250       return true;
251   }
252 
253   return false;
254 }
255 
256 // Checks if it is legal to interchange 2 loops.
257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
258 // if
259 // the direction matrix, after the same permutation is applied to its columns,
260 // has no ">" direction as the leftmost non-"=" direction in any row.
261 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
262                                       unsigned InnerLoopId,
263                                       unsigned OuterLoopId) {
264 
265   unsigned NumRows = DepMatrix.size();
266   // For each row check if it is valid to interchange.
267   for (unsigned Row = 0; Row < NumRows; ++Row) {
268     char InnerDep = DepMatrix[Row][InnerLoopId];
269     char OuterDep = DepMatrix[Row][OuterLoopId];
270     if (InnerDep == '*' || OuterDep == '*')
271       return false;
272     else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep,
273                                   OuterDep))
274       return false;
275   }
276   return true;
277 }
278 
279 static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) {
280 
281   DEBUG(dbgs() << "Calling populateWorklist called\n");
282   LoopVector LoopList;
283   Loop *CurrentLoop = &L;
284   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
285   while (!Vec->empty()) {
286     // The current loop has multiple subloops in it hence it is not tightly
287     // nested.
288     // Discard all loops above it added into Worklist.
289     if (Vec->size() != 1) {
290       LoopList.clear();
291       return;
292     }
293     LoopList.push_back(CurrentLoop);
294     CurrentLoop = Vec->front();
295     Vec = &CurrentLoop->getSubLoops();
296   }
297   LoopList.push_back(CurrentLoop);
298   V.push_back(std::move(LoopList));
299 }
300 
301 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
302   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
303   if (InnerIndexVar)
304     return InnerIndexVar;
305   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
306     return nullptr;
307   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
308     PHINode *PhiVar = cast<PHINode>(I);
309     Type *PhiTy = PhiVar->getType();
310     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
311         !PhiTy->isPointerTy())
312       return nullptr;
313     const SCEVAddRecExpr *AddRec =
314         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
315     if (!AddRec || !AddRec->isAffine())
316       continue;
317     const SCEV *Step = AddRec->getStepRecurrence(*SE);
318     const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
319     if (!C)
320       continue;
321     // Found the induction variable.
322     // FIXME: Handle loops with more than one induction variable. Note that,
323     // currently, legality makes sure we have only one induction variable.
324     return PhiVar;
325   }
326   return nullptr;
327 }
328 
329 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
330 class LoopInterchangeLegality {
331 public:
332   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
333                           LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA)
334       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
335         PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {}
336 
337   /// Check if the loops can be interchanged.
338   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
339                            CharMatrix &DepMatrix);
340   /// Check if the loop structure is understood. We do not handle triangular
341   /// loops for now.
342   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
343 
344   bool currentLimitations();
345 
346   bool hasInnerLoopReduction() { return InnerLoopHasReduction; }
347 
348 private:
349   bool tightlyNested(Loop *Outer, Loop *Inner);
350   bool containsUnsafeInstructionsInHeader(BasicBlock *BB);
351   bool areAllUsesReductions(Instruction *Ins, Loop *L);
352   bool containsUnsafeInstructionsInLatch(BasicBlock *BB);
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   SmallVector<PHINode *, 8> &Reductions);
356   Loop *OuterLoop;
357   Loop *InnerLoop;
358 
359   ScalarEvolution *SE;
360   LoopInfo *LI;
361   DominatorTree *DT;
362   bool PreserveLCSSA;
363 
364   bool InnerLoopHasReduction;
365 };
366 
367 /// LoopInterchangeProfitability checks if it is profitable to interchange the
368 /// loop.
369 class LoopInterchangeProfitability {
370 public:
371   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE)
372       : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {}
373 
374   /// Check if the loop interchange is profitable.
375   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
376                     CharMatrix &DepMatrix);
377 
378 private:
379   int getInstrOrderCost();
380 
381   Loop *OuterLoop;
382   Loop *InnerLoop;
383 
384   /// Scev analysis.
385   ScalarEvolution *SE;
386 };
387 
388 /// LoopInterchangeTransform interchanges the loop.
389 class LoopInterchangeTransform {
390 public:
391   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
392                            LoopInfo *LI, DominatorTree *DT,
393                            BasicBlock *LoopNestExit,
394                            bool InnerLoopContainsReductions)
395       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
396         LoopExit(LoopNestExit),
397         InnerLoopHasReduction(InnerLoopContainsReductions) {}
398 
399   /// Interchange OuterLoop and InnerLoop.
400   bool transform();
401   void restructureLoops(Loop *InnerLoop, Loop *OuterLoop);
402   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
403 
404 private:
405   void splitInnerLoopLatch(Instruction *);
406   void splitOuterLoopLatch();
407   void splitInnerLoopHeader();
408   bool adjustLoopLinks();
409   void adjustLoopPreheaders();
410   void adjustOuterLoopPreheader();
411   bool adjustLoopBranches();
412   void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
413                            BasicBlock *NewPred);
414 
415   Loop *OuterLoop;
416   Loop *InnerLoop;
417 
418   /// Scev analysis.
419   ScalarEvolution *SE;
420   LoopInfo *LI;
421   DominatorTree *DT;
422   BasicBlock *LoopExit;
423   bool InnerLoopHasReduction;
424 };
425 
426 // Main LoopInterchange Pass.
427 struct LoopInterchange : public FunctionPass {
428   static char ID;
429   ScalarEvolution *SE;
430   LoopInfo *LI;
431   DependenceInfo *DI;
432   DominatorTree *DT;
433   bool PreserveLCSSA;
434   LoopInterchange()
435       : FunctionPass(ID), SE(nullptr), LI(nullptr), DI(nullptr), DT(nullptr) {
436     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
437   }
438 
439   void getAnalysisUsage(AnalysisUsage &AU) const override {
440     AU.addRequired<ScalarEvolutionWrapperPass>();
441     AU.addRequired<AAResultsWrapperPass>();
442     AU.addRequired<DominatorTreeWrapperPass>();
443     AU.addRequired<LoopInfoWrapperPass>();
444     AU.addRequired<DependenceAnalysisWrapperPass>();
445     AU.addRequiredID(LoopSimplifyID);
446     AU.addRequiredID(LCSSAID);
447   }
448 
449   bool runOnFunction(Function &F) override {
450     if (skipFunction(F))
451       return false;
452 
453     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
454     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
455     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
456     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
457     DT = DTWP ? &DTWP->getDomTree() : nullptr;
458     PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
459 
460     // Build up a worklist of loop pairs to analyze.
461     SmallVector<LoopVector, 8> Worklist;
462 
463     for (Loop *L : *LI)
464       populateWorklist(*L, Worklist);
465 
466     DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n");
467     bool Changed = true;
468     while (!Worklist.empty()) {
469       LoopVector LoopList = Worklist.pop_back_val();
470       Changed = processLoopList(LoopList, F);
471     }
472     return Changed;
473   }
474 
475   bool isComputableLoopNest(LoopVector LoopList) {
476     for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) {
477       Loop *L = *I;
478       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
479       if (ExitCountOuter == SE->getCouldNotCompute()) {
480         DEBUG(dbgs() << "Couldn't compute Backedge count\n");
481         return false;
482       }
483       if (L->getNumBackEdges() != 1) {
484         DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
485         return false;
486       }
487       if (!L->getExitingBlock()) {
488         DEBUG(dbgs() << "Loop Doesn't have unique exit block\n");
489         return false;
490       }
491     }
492     return true;
493   }
494 
495   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
496     // TODO: Add a better heuristic to select the loop to be interchanged based
497     // on the dependence matrix. Currently we select the innermost loop.
498     return LoopList.size() - 1;
499   }
500 
501   bool processLoopList(LoopVector LoopList, Function &F) {
502 
503     bool Changed = false;
504     CharMatrix DependencyMatrix;
505     if (LoopList.size() < 2) {
506       DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
507       return false;
508     }
509     if (!isComputableLoopNest(LoopList)) {
510       DEBUG(dbgs() << "Not vaild loop candidate for interchange\n");
511       return false;
512     }
513     Loop *OuterMostLoop = *(LoopList.begin());
514 
515     DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size()
516                  << "\n");
517 
518     if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(),
519                                   OuterMostLoop, DI)) {
520       DEBUG(dbgs() << "Populating Dependency matrix failed\n");
521       return false;
522     }
523 #ifdef DUMP_DEP_MATRICIES
524     DEBUG(dbgs() << "Dependence before inter change \n");
525     printDepMatrix(DependencyMatrix);
526 #endif
527 
528     BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch();
529     BranchInst *OuterMostLoopLatchBI =
530         dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator());
531     if (!OuterMostLoopLatchBI)
532       return false;
533 
534     // Since we currently do not handle LCSSA PHI's any failure in loop
535     // condition will now branch to LoopNestExit.
536     // TODO: This should be removed once we handle LCSSA PHI nodes.
537 
538     // Get the Outermost loop exit.
539     BasicBlock *LoopNestExit;
540     if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader())
541       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1);
542     else
543       LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0);
544 
545     if (isa<PHINode>(LoopNestExit->begin())) {
546       DEBUG(dbgs() << "PHI Nodes in loop nest exit is not handled for now "
547                       "since on failure all loops branch to loop nest exit.\n");
548       return false;
549     }
550 
551     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
552     // Move the selected loop outwards to the best possible position.
553     for (unsigned i = SelecLoopId; i > 0; i--) {
554       bool Interchanged =
555           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
556       if (!Interchanged)
557         return Changed;
558       // Loops interchanged reflect the same in LoopList
559       std::swap(LoopList[i - 1], LoopList[i]);
560 
561       // Update the DependencyMatrix
562       interChangeDepedencies(DependencyMatrix, i, i - 1);
563       DT->recalculate(F);
564 #ifdef DUMP_DEP_MATRICIES
565       DEBUG(dbgs() << "Dependence after inter change \n");
566       printDepMatrix(DependencyMatrix);
567 #endif
568       Changed |= Interchanged;
569     }
570     return Changed;
571   }
572 
573   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
574                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
575                    std::vector<std::vector<char>> &DependencyMatrix) {
576 
577     DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId
578                  << " and OuterLoopId = " << OuterLoopId << "\n");
579     Loop *InnerLoop = LoopList[InnerLoopId];
580     Loop *OuterLoop = LoopList[OuterLoopId];
581 
582     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
583                                 PreserveLCSSA);
584     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
585       DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
586       return false;
587     }
588     DEBUG(dbgs() << "Loops are legal to interchange\n");
589     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE);
590     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
591       DEBUG(dbgs() << "Interchanging Loops not profitable\n");
592       return false;
593     }
594 
595     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
596                                  LoopNestExit, LIL.hasInnerLoopReduction());
597     LIT.transform();
598     DEBUG(dbgs() << "Loops interchanged\n");
599     return true;
600   }
601 };
602 
603 } // end of namespace
604 bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
605   return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
606     PHINode *UserIns = dyn_cast<PHINode>(U);
607     RecurrenceDescriptor RD;
608     return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
609   });
610 }
611 
612 bool LoopInterchangeLegality::containsUnsafeInstructionsInHeader(
613     BasicBlock *BB) {
614   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
615     // Load corresponding to reduction PHI's are safe while concluding if
616     // tightly nested.
617     if (LoadInst *L = dyn_cast<LoadInst>(I)) {
618       if (!areAllUsesReductions(L, InnerLoop))
619         return true;
620     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
621       return true;
622   }
623   return false;
624 }
625 
626 bool LoopInterchangeLegality::containsUnsafeInstructionsInLatch(
627     BasicBlock *BB) {
628   for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
629     // Stores corresponding to reductions are safe while concluding if tightly
630     // nested.
631     if (StoreInst *L = dyn_cast<StoreInst>(I)) {
632       PHINode *PHI = dyn_cast<PHINode>(L->getOperand(0));
633       if (!PHI)
634         return true;
635     } else if (I->mayHaveSideEffects() || I->mayReadFromMemory())
636       return true;
637   }
638   return false;
639 }
640 
641 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
642   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
643   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
644   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
645 
646   DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n");
647 
648   // A perfectly nested loop will not have any branch in between the outer and
649   // inner block i.e. outer header will branch to either inner preheader and
650   // outerloop latch.
651   BranchInst *outerLoopHeaderBI =
652       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
653   if (!outerLoopHeaderBI)
654     return false;
655   unsigned num = outerLoopHeaderBI->getNumSuccessors();
656   for (unsigned i = 0; i < num; i++) {
657     if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader &&
658         outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch)
659       return false;
660   }
661 
662   DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n");
663   // We do not have any basic block in between now make sure the outer header
664   // and outer loop latch doesn't contain any unsafe instructions.
665   if (containsUnsafeInstructionsInHeader(OuterLoopHeader) ||
666       containsUnsafeInstructionsInLatch(OuterLoopLatch))
667     return false;
668 
669   DEBUG(dbgs() << "Loops are perfectly nested \n");
670   // We have a perfect loop nest.
671   return true;
672 }
673 
674 
675 bool LoopInterchangeLegality::isLoopStructureUnderstood(
676     PHINode *InnerInduction) {
677 
678   unsigned Num = InnerInduction->getNumOperands();
679   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
680   for (unsigned i = 0; i < Num; ++i) {
681     Value *Val = InnerInduction->getOperand(i);
682     if (isa<Constant>(Val))
683       continue;
684     Instruction *I = dyn_cast<Instruction>(Val);
685     if (!I)
686       return false;
687     // TODO: Handle triangular loops.
688     // e.g. for(int i=0;i<N;i++)
689     //        for(int j=i;j<N;j++)
690     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
691     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
692             InnerLoopPreheader &&
693         !OuterLoop->isLoopInvariant(I)) {
694       return false;
695     }
696   }
697   return true;
698 }
699 
700 bool LoopInterchangeLegality::findInductionAndReductions(
701     Loop *L, SmallVector<PHINode *, 8> &Inductions,
702     SmallVector<PHINode *, 8> &Reductions) {
703   if (!L->getLoopLatch() || !L->getLoopPredecessor())
704     return false;
705   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
706     RecurrenceDescriptor RD;
707     InductionDescriptor ID;
708     PHINode *PHI = cast<PHINode>(I);
709     if (InductionDescriptor::isInductionPHI(PHI, SE, ID))
710       Inductions.push_back(PHI);
711     else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
712       Reductions.push_back(PHI);
713     else {
714       DEBUG(
715           dbgs() << "Failed to recognize PHI as an induction or reduction.\n");
716       return false;
717     }
718   }
719   return true;
720 }
721 
722 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
723   for (auto I = Block->begin(); isa<PHINode>(I); ++I) {
724     PHINode *PHI = cast<PHINode>(I);
725     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
726     if (PHI->getNumIncomingValues() > 1)
727       return false;
728     Instruction *Ins = dyn_cast<Instruction>(PHI->getIncomingValue(0));
729     if (!Ins)
730       return false;
731     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
732     // exits lcssa phi else it would not be tightly nested.
733     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
734       return false;
735   }
736   return true;
737 }
738 
739 static BasicBlock *getLoopLatchExitBlock(BasicBlock *LatchBlock,
740                                          BasicBlock *LoopHeader) {
741   if (BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator())) {
742     unsigned Num = BI->getNumSuccessors();
743     assert(Num == 2);
744     for (unsigned i = 0; i < Num; ++i) {
745       if (BI->getSuccessor(i) == LoopHeader)
746         continue;
747       return BI->getSuccessor(i);
748     }
749   }
750   return nullptr;
751 }
752 
753 // This function indicates the current limitations in the transform as a result
754 // of which we do not proceed.
755 bool LoopInterchangeLegality::currentLimitations() {
756 
757   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
758   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
759   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
760   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
761   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
762 
763   PHINode *InnerInductionVar;
764   SmallVector<PHINode *, 8> Inductions;
765   SmallVector<PHINode *, 8> Reductions;
766   if (!findInductionAndReductions(InnerLoop, Inductions, Reductions))
767     return true;
768 
769   // TODO: Currently we handle only loops with 1 induction variable.
770   if (Inductions.size() != 1) {
771     DEBUG(dbgs() << "We currently only support loops with 1 induction variable."
772                  << "Failed to interchange due to current limitation\n");
773     return true;
774   }
775   if (Reductions.size() > 0)
776     InnerLoopHasReduction = true;
777 
778   InnerInductionVar = Inductions.pop_back_val();
779   Reductions.clear();
780   if (!findInductionAndReductions(OuterLoop, Inductions, Reductions))
781     return true;
782 
783   // Outer loop cannot have reduction because then loops will not be tightly
784   // nested.
785   if (!Reductions.empty())
786     return true;
787   // TODO: Currently we handle only loops with 1 induction variable.
788   if (Inductions.size() != 1)
789     return true;
790 
791   // TODO: Triangular loops are not handled for now.
792   if (!isLoopStructureUnderstood(InnerInductionVar)) {
793     DEBUG(dbgs() << "Loop structure not understood by pass\n");
794     return true;
795   }
796 
797   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
798   BasicBlock *LoopExitBlock =
799       getLoopLatchExitBlock(OuterLoopLatch, OuterLoopHeader);
800   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, true))
801     return true;
802 
803   LoopExitBlock = getLoopLatchExitBlock(InnerLoopLatch, InnerLoopHeader);
804   if (!LoopExitBlock || !containsSafePHI(LoopExitBlock, false))
805     return true;
806 
807   // TODO: Current limitation: Since we split the inner loop latch at the point
808   // were induction variable is incremented (induction.next); We cannot have
809   // more than 1 user of induction.next since it would result in broken code
810   // after split.
811   // e.g.
812   // for(i=0;i<N;i++) {
813   //    for(j = 0;j<M;j++) {
814   //      A[j+1][i+2] = A[j][i]+k;
815   //  }
816   // }
817   bool FoundInduction = false;
818   Instruction *InnerIndexVarInc = nullptr;
819   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
820     InnerIndexVarInc =
821         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
822   else
823     InnerIndexVarInc =
824         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
825 
826   if (!InnerIndexVarInc)
827     return true;
828 
829   // Since we split the inner loop latch on this induction variable. Make sure
830   // we do not have any instruction between the induction variable and branch
831   // instruction.
832 
833   for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend();
834        I != E && !FoundInduction; ++I) {
835     if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I))
836       continue;
837     const Instruction &Ins = *I;
838     // We found an instruction. If this is not induction variable then it is not
839     // safe to split this loop latch.
840     if (!Ins.isIdenticalTo(InnerIndexVarInc))
841       return true;
842     else
843       FoundInduction = true;
844   }
845   // The loop latch ended and we didn't find the induction variable return as
846   // current limitation.
847   if (!FoundInduction)
848     return true;
849 
850   return false;
851 }
852 
853 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
854                                                   unsigned OuterLoopId,
855                                                   CharMatrix &DepMatrix) {
856 
857   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
858     DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
859                  << "and OuterLoopId = " << OuterLoopId
860                  << "due to dependence\n");
861     return false;
862   }
863 
864   // Create unique Preheaders if we already do not have one.
865   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
866   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
867 
868   // Create  a unique outer preheader -
869   // 1) If OuterLoop preheader is not present.
870   // 2) If OuterLoop Preheader is same as OuterLoop Header
871   // 3) If OuterLoop Preheader is same as Header of the previous loop.
872   // 4) If OuterLoop Preheader is Entry node.
873   if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
874       isa<PHINode>(OuterLoopPreHeader->begin()) ||
875       !OuterLoopPreHeader->getUniquePredecessor()) {
876     OuterLoopPreHeader =
877         InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
878   }
879 
880   if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
881       InnerLoopPreHeader == OuterLoop->getHeader()) {
882     InnerLoopPreHeader =
883         InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
884   }
885 
886   // TODO: The loops could not be interchanged due to current limitations in the
887   // transform module.
888   if (currentLimitations()) {
889     DEBUG(dbgs() << "Not legal because of current transform limitation\n");
890     return false;
891   }
892 
893   // Check if the loops are tightly nested.
894   if (!tightlyNested(OuterLoop, InnerLoop)) {
895     DEBUG(dbgs() << "Loops not tightly nested\n");
896     return false;
897   }
898 
899   return true;
900 }
901 
902 int LoopInterchangeProfitability::getInstrOrderCost() {
903   unsigned GoodOrder, BadOrder;
904   BadOrder = GoodOrder = 0;
905   for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end();
906        BI != BE; ++BI) {
907     for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
908       const Instruction &Ins = *I;
909       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
910         unsigned NumOp = GEP->getNumOperands();
911         bool FoundInnerInduction = false;
912         bool FoundOuterInduction = false;
913         for (unsigned i = 0; i < NumOp; ++i) {
914           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
915           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
916           if (!AR)
917             continue;
918 
919           // If we find the inner induction after an outer induction e.g.
920           // for(int i=0;i<N;i++)
921           //   for(int j=0;j<N;j++)
922           //     A[i][j] = A[i-1][j-1]+k;
923           // then it is a good order.
924           if (AR->getLoop() == InnerLoop) {
925             // We found an InnerLoop induction after OuterLoop induction. It is
926             // a good order.
927             FoundInnerInduction = true;
928             if (FoundOuterInduction) {
929               GoodOrder++;
930               break;
931             }
932           }
933           // If we find the outer induction after an inner induction e.g.
934           // for(int i=0;i<N;i++)
935           //   for(int j=0;j<N;j++)
936           //     A[j][i] = A[j-1][i-1]+k;
937           // then it is a bad order.
938           if (AR->getLoop() == OuterLoop) {
939             // We found an OuterLoop induction after InnerLoop induction. It is
940             // a bad order.
941             FoundOuterInduction = true;
942             if (FoundInnerInduction) {
943               BadOrder++;
944               break;
945             }
946           }
947         }
948       }
949     }
950   }
951   return GoodOrder - BadOrder;
952 }
953 
954 static bool isProfitabileForVectorization(unsigned InnerLoopId,
955                                           unsigned OuterLoopId,
956                                           CharMatrix &DepMatrix) {
957   // TODO: Improve this heuristic to catch more cases.
958   // If the inner loop is loop independent or doesn't carry any dependency it is
959   // profitable to move this to outer position.
960   unsigned Row = DepMatrix.size();
961   for (unsigned i = 0; i < Row; ++i) {
962     if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I')
963       return false;
964     // TODO: We need to improve this heuristic.
965     if (DepMatrix[i][OuterLoopId] != '=')
966       return false;
967   }
968   // If outer loop has dependence and inner loop is loop independent then it is
969   // profitable to interchange to enable parallelism.
970   return true;
971 }
972 
973 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
974                                                 unsigned OuterLoopId,
975                                                 CharMatrix &DepMatrix) {
976 
977   // TODO: Add better profitability checks.
978   // e.g
979   // 1) Construct dependency matrix and move the one with no loop carried dep
980   //    inside to enable vectorization.
981 
982   // This is rough cost estimation algorithm. It counts the good and bad order
983   // of induction variables in the instruction and allows reordering if number
984   // of bad orders is more than good.
985   int Cost = 0;
986   Cost += getInstrOrderCost();
987   DEBUG(dbgs() << "Cost = " << Cost << "\n");
988   if (Cost < 0)
989     return true;
990 
991   // It is not profitable as per current cache profitability model. But check if
992   // we can move this loop outside to improve parallelism.
993   bool ImprovesPar =
994       isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
995   return ImprovesPar;
996 }
997 
998 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
999                                                Loop *InnerLoop) {
1000   for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E;
1001        ++I) {
1002     if (*I == InnerLoop) {
1003       OuterLoop->removeChildLoop(I);
1004       return;
1005     }
1006   }
1007   llvm_unreachable("Couldn't find loop");
1008 }
1009 
1010 void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop,
1011                                                 Loop *OuterLoop) {
1012   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1013   if (OuterLoopParent) {
1014     // Remove the loop from its parent loop.
1015     removeChildLoop(OuterLoopParent, OuterLoop);
1016     removeChildLoop(OuterLoop, InnerLoop);
1017     OuterLoopParent->addChildLoop(InnerLoop);
1018   } else {
1019     removeChildLoop(OuterLoop, InnerLoop);
1020     LI->changeTopLevelLoop(OuterLoop, InnerLoop);
1021   }
1022 
1023   while (!InnerLoop->empty())
1024     OuterLoop->addChildLoop(InnerLoop->removeChildLoop(InnerLoop->begin()));
1025 
1026   InnerLoop->addChildLoop(OuterLoop);
1027 }
1028 
1029 bool LoopInterchangeTransform::transform() {
1030 
1031   DEBUG(dbgs() << "transform\n");
1032   bool Transformed = false;
1033   Instruction *InnerIndexVar;
1034 
1035   if (InnerLoop->getSubLoops().size() == 0) {
1036     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1037     DEBUG(dbgs() << "Calling Split Inner Loop\n");
1038     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1039     if (!InductionPHI) {
1040       DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1041       return false;
1042     }
1043 
1044     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1045       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1046     else
1047       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1048 
1049     //
1050     // Split at the place were the induction variable is
1051     // incremented/decremented.
1052     // TODO: This splitting logic may not work always. Fix this.
1053     splitInnerLoopLatch(InnerIndexVar);
1054     DEBUG(dbgs() << "splitInnerLoopLatch Done\n");
1055 
1056     // Splits the inner loops phi nodes out into a separate basic block.
1057     splitInnerLoopHeader();
1058     DEBUG(dbgs() << "splitInnerLoopHeader Done\n");
1059   }
1060 
1061   Transformed |= adjustLoopLinks();
1062   if (!Transformed) {
1063     DEBUG(dbgs() << "adjustLoopLinks Failed\n");
1064     return false;
1065   }
1066 
1067   restructureLoops(InnerLoop, OuterLoop);
1068   return true;
1069 }
1070 
1071 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1072   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1073   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1074   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1075 }
1076 
1077 void LoopInterchangeTransform::splitOuterLoopLatch() {
1078   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1079   BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch;
1080   OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock,
1081                               OuterLoopLatch->getFirstNonPHI(), DT, LI);
1082 }
1083 
1084 void LoopInterchangeTransform::splitInnerLoopHeader() {
1085 
1086   // Split the inner loop header out. Here make sure that the reduction PHI's
1087   // stay in the innerloop body.
1088   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1089   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1090   if (InnerLoopHasReduction) {
1091     // FIXME: Check if the induction PHI will always be the first PHI.
1092     BasicBlock *New = InnerLoopHeader->splitBasicBlock(
1093         ++(InnerLoopHeader->begin()), InnerLoopHeader->getName() + ".split");
1094     if (LI)
1095       if (Loop *L = LI->getLoopFor(InnerLoopHeader))
1096         L->addBasicBlockToLoop(New, *LI);
1097 
1098     // Adjust Reduction PHI's in the block.
1099     SmallVector<PHINode *, 8> PHIVec;
1100     for (auto I = New->begin(); isa<PHINode>(I); ++I) {
1101       PHINode *PHI = dyn_cast<PHINode>(I);
1102       Value *V = PHI->getIncomingValueForBlock(InnerLoopPreHeader);
1103       PHI->replaceAllUsesWith(V);
1104       PHIVec.push_back((PHI));
1105     }
1106     for (auto I = PHIVec.begin(), E = PHIVec.end(); I != E; ++I) {
1107       PHINode *P = *I;
1108       P->eraseFromParent();
1109     }
1110   } else {
1111     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1112   }
1113 
1114   DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & "
1115                   "InnerLoopHeader \n");
1116 }
1117 
1118 /// \brief Move all instructions except the terminator from FromBB right before
1119 /// InsertBefore
1120 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1121   auto &ToList = InsertBefore->getParent()->getInstList();
1122   auto &FromList = FromBB->getInstList();
1123 
1124   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1125                 FromBB->getTerminator()->getIterator());
1126 }
1127 
1128 void LoopInterchangeTransform::adjustOuterLoopPreheader() {
1129   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1130   BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader();
1131 
1132   moveBBContents(OuterLoopPreHeader, InnerPreHeader->getTerminator());
1133 }
1134 
1135 void LoopInterchangeTransform::updateIncomingBlock(BasicBlock *CurrBlock,
1136                                                    BasicBlock *OldPred,
1137                                                    BasicBlock *NewPred) {
1138   for (auto I = CurrBlock->begin(); isa<PHINode>(I); ++I) {
1139     PHINode *PHI = cast<PHINode>(I);
1140     unsigned Num = PHI->getNumIncomingValues();
1141     for (unsigned i = 0; i < Num; ++i) {
1142       if (PHI->getIncomingBlock(i) == OldPred)
1143         PHI->setIncomingBlock(i, NewPred);
1144     }
1145   }
1146 }
1147 
1148 bool LoopInterchangeTransform::adjustLoopBranches() {
1149 
1150   DEBUG(dbgs() << "adjustLoopBranches called\n");
1151   // Adjust the loop preheader
1152   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1153   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1154   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1155   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1156   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1157   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1158   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1159   BasicBlock *InnerLoopLatchPredecessor =
1160       InnerLoopLatch->getUniquePredecessor();
1161   BasicBlock *InnerLoopLatchSuccessor;
1162   BasicBlock *OuterLoopLatchSuccessor;
1163 
1164   BranchInst *OuterLoopLatchBI =
1165       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1166   BranchInst *InnerLoopLatchBI =
1167       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1168   BranchInst *OuterLoopHeaderBI =
1169       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1170   BranchInst *InnerLoopHeaderBI =
1171       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1172 
1173   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1174       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1175       !InnerLoopHeaderBI)
1176     return false;
1177 
1178   BranchInst *InnerLoopLatchPredecessorBI =
1179       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1180   BranchInst *OuterLoopPredecessorBI =
1181       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1182 
1183   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1184     return false;
1185   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1186   if (!InnerLoopHeaderSuccessor)
1187     return false;
1188 
1189   // Adjust Loop Preheader and headers
1190 
1191   unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors();
1192   for (unsigned i = 0; i < NumSucc; ++i) {
1193     if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader)
1194       OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader);
1195   }
1196 
1197   NumSucc = OuterLoopHeaderBI->getNumSuccessors();
1198   for (unsigned i = 0; i < NumSucc; ++i) {
1199     if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch)
1200       OuterLoopHeaderBI->setSuccessor(i, LoopExit);
1201     else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader)
1202       OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSuccessor);
1203   }
1204 
1205   // Adjust reduction PHI's now that the incoming block has changed.
1206   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1207                       OuterLoopHeader);
1208 
1209   BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI);
1210   InnerLoopHeaderBI->eraseFromParent();
1211 
1212   // -------------Adjust loop latches-----------
1213   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1214     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1215   else
1216     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1217 
1218   NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors();
1219   for (unsigned i = 0; i < NumSucc; ++i) {
1220     if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch)
1221       InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor);
1222   }
1223 
1224   // Adjust PHI nodes in InnerLoopLatchSuccessor. Update all uses of PHI with
1225   // the value and remove this PHI node from inner loop.
1226   SmallVector<PHINode *, 8> LcssaVec;
1227   for (auto I = InnerLoopLatchSuccessor->begin(); isa<PHINode>(I); ++I) {
1228     PHINode *LcssaPhi = cast<PHINode>(I);
1229     LcssaVec.push_back(LcssaPhi);
1230   }
1231   for (auto I = LcssaVec.begin(), E = LcssaVec.end(); I != E; ++I) {
1232     PHINode *P = *I;
1233     Value *Incoming = P->getIncomingValueForBlock(InnerLoopLatch);
1234     P->replaceAllUsesWith(Incoming);
1235     P->eraseFromParent();
1236   }
1237 
1238   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1239     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1240   else
1241     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1242 
1243   if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor)
1244     InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor);
1245   else
1246     InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor);
1247 
1248   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1249 
1250   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) {
1251     OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch);
1252   } else {
1253     OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch);
1254   }
1255 
1256   return true;
1257 }
1258 void LoopInterchangeTransform::adjustLoopPreheaders() {
1259 
1260   // We have interchanged the preheaders so we need to interchange the data in
1261   // the preheader as well.
1262   // This is because the content of inner preheader was previously executed
1263   // inside the outer loop.
1264   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1265   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1266   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1267   BranchInst *InnerTermBI =
1268       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1269 
1270   // These instructions should now be executed inside the loop.
1271   // Move instruction into a new block after outer header.
1272   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1273   // These instructions were not executed previously in the loop so move them to
1274   // the older inner loop preheader.
1275   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1276 }
1277 
1278 bool LoopInterchangeTransform::adjustLoopLinks() {
1279 
1280   // Adjust all branches in the inner and outer loop.
1281   bool Changed = adjustLoopBranches();
1282   if (Changed)
1283     adjustLoopPreheaders();
1284   return Changed;
1285 }
1286 
1287 char LoopInterchange::ID = 0;
1288 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1289                       "Interchanges loops for cache reuse", false, false)
1290 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1291 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1293 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1294 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1295 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1296 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1297 
1298 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1299                     "Interchanges loops for cache reuse", false, false)
1300 
1301 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1302