1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "loop-interchange"
57 
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
59 
60 static cl::opt<int> LoopInterchangeCostThreshold(
61     "loop-interchange-threshold", cl::init(0), cl::Hidden,
62     cl::desc("Interchange if you gain more than this number"));
63 
64 namespace {
65 
66 using LoopVector = SmallVector<Loop *, 8>;
67 
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
70 
71 } // end anonymous namespace
72 
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
75 
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
78 
79 #ifdef DUMP_DEP_MATRICIES
80 static void printDepMatrix(CharMatrix &DepMatrix) {
81   for (auto &Row : DepMatrix) {
82     for (auto D : Row)
83       LLVM_DEBUG(dbgs() << D << " ");
84     LLVM_DEBUG(dbgs() << "\n");
85   }
86 }
87 #endif
88 
89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90                                      Loop *L, DependenceInfo *DI) {
91   using ValueVector = SmallVector<Value *, 16>;
92 
93   ValueVector MemInstr;
94 
95   // For each block.
96   for (BasicBlock *BB : L->blocks()) {
97     // Scan the BB and collect legal loads and stores.
98     for (Instruction &I : *BB) {
99       if (!isa<Instruction>(I))
100         return false;
101       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
102         if (!Ld->isSimple())
103           return false;
104         MemInstr.push_back(&I);
105       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
106         if (!St->isSimple())
107           return false;
108         MemInstr.push_back(&I);
109       }
110     }
111   }
112 
113   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
114                     << " Loads and Stores to analyze\n");
115 
116   ValueVector::iterator I, IE, J, JE;
117 
118   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
119     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
120       std::vector<char> Dep;
121       Instruction *Src = cast<Instruction>(*I);
122       Instruction *Dst = cast<Instruction>(*J);
123       if (Src == Dst)
124         continue;
125       // Ignore Input dependencies.
126       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
127         continue;
128       // Track Output, Flow, and Anti dependencies.
129       if (auto D = DI->depends(Src, Dst, true)) {
130         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
131         LLVM_DEBUG(StringRef DepType =
132                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
133                    dbgs() << "Found " << DepType
134                           << " dependency between Src and Dst\n"
135                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
136         unsigned Levels = D->getLevels();
137         char Direction;
138         for (unsigned II = 1; II <= Levels; ++II) {
139           const SCEV *Distance = D->getDistance(II);
140           const SCEVConstant *SCEVConst =
141               dyn_cast_or_null<SCEVConstant>(Distance);
142           if (SCEVConst) {
143             const ConstantInt *CI = SCEVConst->getValue();
144             if (CI->isNegative())
145               Direction = '<';
146             else if (CI->isZero())
147               Direction = '=';
148             else
149               Direction = '>';
150             Dep.push_back(Direction);
151           } else if (D->isScalar(II)) {
152             Direction = 'S';
153             Dep.push_back(Direction);
154           } else {
155             unsigned Dir = D->getDirection(II);
156             if (Dir == Dependence::DVEntry::LT ||
157                 Dir == Dependence::DVEntry::LE)
158               Direction = '<';
159             else if (Dir == Dependence::DVEntry::GT ||
160                      Dir == Dependence::DVEntry::GE)
161               Direction = '>';
162             else if (Dir == Dependence::DVEntry::EQ)
163               Direction = '=';
164             else
165               Direction = '*';
166             Dep.push_back(Direction);
167           }
168         }
169         while (Dep.size() != Level) {
170           Dep.push_back('I');
171         }
172 
173         DepMatrix.push_back(Dep);
174         if (DepMatrix.size() > MaxMemInstrCount) {
175           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
176                             << " dependencies inside loop\n");
177           return false;
178         }
179       }
180     }
181   }
182 
183   return true;
184 }
185 
186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
187 // matrix by exchanging the two columns.
188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
189                                     unsigned ToIndx) {
190   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
191     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
192 }
193 
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197                                    unsigned Column) {
198   for (unsigned i = 0; i <= Column; ++i) {
199     if (DepMatrix[Row][i] == '<')
200       return false;
201     if (DepMatrix[Row][i] == '>')
202       return true;
203   }
204   // All dependencies were '=','S' or 'I'
205   return false;
206 }
207 
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210                                  unsigned Column) {
211   for (unsigned i = 0; i < Column; ++i) {
212     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213         DepMatrix[Row][i] != 'I')
214       return false;
215   }
216   return true;
217 }
218 
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220                                 unsigned OuterLoopId, char InnerDep,
221                                 char OuterDep) {
222   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223     return false;
224 
225   if (InnerDep == OuterDep)
226     return true;
227 
228   // It is legal to interchange if and only if after interchange no row has a
229   // '>' direction as the leftmost non-'='.
230 
231   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232     return true;
233 
234   if (InnerDep == '<')
235     return true;
236 
237   if (InnerDep == '>') {
238     // If OuterLoopId represents outermost loop then interchanging will make the
239     // 1st dependency as '>'
240     if (OuterLoopId == 0)
241       return false;
242 
243     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244     // interchanging will result in this row having an outermost non '='
245     // dependency of '>'
246     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247       return true;
248   }
249 
250   return false;
251 }
252 
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258                                       unsigned InnerLoopId,
259                                       unsigned OuterLoopId) {
260   unsigned NumRows = DepMatrix.size();
261   // For each row check if it is valid to interchange.
262   for (unsigned Row = 0; Row < NumRows; ++Row) {
263     char InnerDep = DepMatrix[Row][InnerLoopId];
264     char OuterDep = DepMatrix[Row][OuterLoopId];
265     if (InnerDep == '*' || OuterDep == '*')
266       return false;
267     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268       return false;
269   }
270   return true;
271 }
272 
273 static LoopVector populateWorklist(Loop &L) {
274   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275                     << L.getHeader()->getParent()->getName() << " Loop: %"
276                     << L.getHeader()->getName() << '\n');
277   LoopVector LoopList;
278   Loop *CurrentLoop = &L;
279   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280   while (!Vec->empty()) {
281     // The current loop has multiple subloops in it hence it is not tightly
282     // nested.
283     // Discard all loops above it added into Worklist.
284     if (Vec->size() != 1)
285       return {};
286 
287     LoopList.push_back(CurrentLoop);
288     CurrentLoop = Vec->front();
289     Vec = &CurrentLoop->getSubLoops();
290   }
291   LoopList.push_back(CurrentLoop);
292   return LoopList;
293 }
294 
295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297   if (InnerIndexVar)
298     return InnerIndexVar;
299   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300     return nullptr;
301   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302     PHINode *PhiVar = cast<PHINode>(I);
303     Type *PhiTy = PhiVar->getType();
304     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305         !PhiTy->isPointerTy())
306       return nullptr;
307     const SCEVAddRecExpr *AddRec =
308         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309     if (!AddRec || !AddRec->isAffine())
310       continue;
311     const SCEV *Step = AddRec->getStepRecurrence(*SE);
312     if (!isa<SCEVConstant>(Step))
313       continue;
314     // Found the induction variable.
315     // FIXME: Handle loops with more than one induction variable. Note that,
316     // currently, legality makes sure we have only one induction variable.
317     return PhiVar;
318   }
319   return nullptr;
320 }
321 
322 namespace {
323 
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
327   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328                           OptimizationRemarkEmitter *ORE)
329       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
330 
331   /// Check if the loops can be interchanged.
332   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333                            CharMatrix &DepMatrix);
334 
335   /// Check if the loop structure is understood. We do not handle triangular
336   /// loops for now.
337   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
338 
339   bool currentLimitations();
340 
341   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342     return OuterInnerReductions;
343   }
344 
345 private:
346   bool tightlyNested(Loop *Outer, Loop *Inner);
347   bool containsUnsafeInstructions(BasicBlock *BB);
348 
349   /// Discover induction and reduction PHIs in the header of \p L. Induction
350   /// PHIs are added to \p Inductions, reductions are added to
351   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352   /// to be passed as \p InnerLoop.
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   Loop *InnerLoop);
356 
357   Loop *OuterLoop;
358   Loop *InnerLoop;
359 
360   ScalarEvolution *SE;
361 
362   /// Interface to emit optimization remarks.
363   OptimizationRemarkEmitter *ORE;
364 
365   /// Set of reduction PHIs taking part of a reduction across the inner and
366   /// outer loop.
367   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
368 };
369 
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375                                OptimizationRemarkEmitter *ORE)
376       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377 
378   /// Check if the loop interchange is profitable.
379   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380                     CharMatrix &DepMatrix);
381 
382 private:
383   int getInstrOrderCost();
384 
385   Loop *OuterLoop;
386   Loop *InnerLoop;
387 
388   /// Scev analysis.
389   ScalarEvolution *SE;
390 
391   /// Interface to emit optimization remarks.
392   OptimizationRemarkEmitter *ORE;
393 };
394 
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399                            LoopInfo *LI, DominatorTree *DT,
400                            const LoopInterchangeLegality &LIL)
401       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
402 
403   /// Interchange OuterLoop and InnerLoop.
404   bool transform();
405   void restructureLoops(Loop *NewInner, Loop *NewOuter,
406                         BasicBlock *OrigInnerPreHeader,
407                         BasicBlock *OrigOuterPreHeader);
408   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
409 
410 private:
411   bool adjustLoopLinks();
412   bool adjustLoopBranches();
413 
414   Loop *OuterLoop;
415   Loop *InnerLoop;
416 
417   /// Scev analysis.
418   ScalarEvolution *SE;
419 
420   LoopInfo *LI;
421   DominatorTree *DT;
422 
423   const LoopInterchangeLegality &LIL;
424 };
425 
426 struct LoopInterchange {
427   ScalarEvolution *SE = nullptr;
428   LoopInfo *LI = nullptr;
429   DependenceInfo *DI = nullptr;
430   DominatorTree *DT = nullptr;
431 
432   /// Interface to emit optimization remarks.
433   OptimizationRemarkEmitter *ORE;
434 
435   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
436                   DominatorTree *DT, OptimizationRemarkEmitter *ORE)
437       : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
438 
439   bool run(Loop *L) {
440     if (L->getParentLoop())
441       return false;
442 
443     return processLoopList(populateWorklist(*L));
444   }
445 
446   bool run(LoopNest &LN) {
447     const auto &LoopList = LN.getLoops();
448     for (unsigned I = 1; I < LoopList.size(); ++I)
449       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
450         return false;
451     return processLoopList(LoopList);
452   }
453 
454   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
455     for (Loop *L : LoopList) {
456       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
457       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
458         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
459         return false;
460       }
461       if (L->getNumBackEdges() != 1) {
462         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
463         return false;
464       }
465       if (!L->getExitingBlock()) {
466         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
467         return false;
468       }
469     }
470     return true;
471   }
472 
473   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
474     // TODO: Add a better heuristic to select the loop to be interchanged based
475     // on the dependence matrix. Currently we select the innermost loop.
476     return LoopList.size() - 1;
477   }
478 
479   bool processLoopList(ArrayRef<Loop *> LoopList) {
480     bool Changed = false;
481     unsigned LoopNestDepth = LoopList.size();
482     if (LoopNestDepth < 2) {
483       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
484       return false;
485     }
486     if (LoopNestDepth > MaxLoopNestDepth) {
487       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
488                         << MaxLoopNestDepth << "\n");
489       return false;
490     }
491     if (!isComputableLoopNest(LoopList)) {
492       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
493       return false;
494     }
495 
496     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
497                       << "\n");
498 
499     CharMatrix DependencyMatrix;
500     Loop *OuterMostLoop = *(LoopList.begin());
501     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
502                                   OuterMostLoop, DI)) {
503       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
504       return false;
505     }
506 #ifdef DUMP_DEP_MATRICIES
507     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
508     printDepMatrix(DependencyMatrix);
509 #endif
510 
511     // Get the Outermost loop exit.
512     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
513     if (!LoopNestExit) {
514       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
515       return false;
516     }
517 
518     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
519     // Move the selected loop outwards to the best possible position.
520     Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
521     for (unsigned i = SelecLoopId; i > 0; i--) {
522       bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
523                                       i - 1, DependencyMatrix);
524       if (!Interchanged)
525         return Changed;
526       // Update the DependencyMatrix
527       interChangeDependencies(DependencyMatrix, i, i - 1);
528 #ifdef DUMP_DEP_MATRICIES
529       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
530       printDepMatrix(DependencyMatrix);
531 #endif
532       Changed |= Interchanged;
533     }
534     return Changed;
535   }
536 
537   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
538                    unsigned OuterLoopId,
539                    std::vector<std::vector<char>> &DependencyMatrix) {
540     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
541                       << " and OuterLoopId = " << OuterLoopId << "\n");
542     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
543     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
544       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
545       return false;
546     }
547     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
548     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
549     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
550       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
551       return false;
552     }
553 
554     ORE->emit([&]() {
555       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
556                                 InnerLoop->getStartLoc(),
557                                 InnerLoop->getHeader())
558              << "Loop interchanged with enclosing loop.";
559     });
560 
561     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
562     LIT.transform();
563     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
564     LoopsInterchanged++;
565 
566     assert(InnerLoop->isLCSSAForm(*DT) &&
567            "Inner loop not left in LCSSA form after loop interchange!");
568     assert(OuterLoop->isLCSSAForm(*DT) &&
569            "Outer loop not left in LCSSA form after loop interchange!");
570 
571     return true;
572   }
573 };
574 
575 } // end anonymous namespace
576 
577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
578   return any_of(*BB, [](const Instruction &I) {
579     return I.mayHaveSideEffects() || I.mayReadFromMemory();
580   });
581 }
582 
583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
584   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
585   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
586   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
587 
588   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
589 
590   // A perfectly nested loop will not have any branch in between the outer and
591   // inner block i.e. outer header will branch to either inner preheader and
592   // outerloop latch.
593   BranchInst *OuterLoopHeaderBI =
594       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
595   if (!OuterLoopHeaderBI)
596     return false;
597 
598   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
599     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
600         Succ != OuterLoopLatch)
601       return false;
602 
603   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
604   // We do not have any basic block in between now make sure the outer header
605   // and outer loop latch doesn't contain any unsafe instructions.
606   if (containsUnsafeInstructions(OuterLoopHeader) ||
607       containsUnsafeInstructions(OuterLoopLatch))
608     return false;
609 
610   // Also make sure the inner loop preheader does not contain any unsafe
611   // instructions. Note that all instructions in the preheader will be moved to
612   // the outer loop header when interchanging.
613   if (InnerLoopPreHeader != OuterLoopHeader &&
614       containsUnsafeInstructions(InnerLoopPreHeader))
615     return false;
616 
617   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
618   // Ensure the inner loop exit block flows to the outer loop latch possibly
619   // through empty blocks.
620   const BasicBlock &SuccInner =
621       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
622   if (&SuccInner != OuterLoopLatch) {
623     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
624                       << " does not lead to the outer loop latch.\n";);
625     return false;
626   }
627   // The inner loop exit block does flow to the outer loop latch and not some
628   // other BBs, now make sure it contains safe instructions, since it will be
629   // moved into the (new) inner loop after interchange.
630   if (containsUnsafeInstructions(InnerLoopExit))
631     return false;
632 
633   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
634   // We have a perfect loop nest.
635   return true;
636 }
637 
638 bool LoopInterchangeLegality::isLoopStructureUnderstood(
639     PHINode *InnerInduction) {
640   unsigned Num = InnerInduction->getNumOperands();
641   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
642   for (unsigned i = 0; i < Num; ++i) {
643     Value *Val = InnerInduction->getOperand(i);
644     if (isa<Constant>(Val))
645       continue;
646     Instruction *I = dyn_cast<Instruction>(Val);
647     if (!I)
648       return false;
649     // TODO: Handle triangular loops.
650     // e.g. for(int i=0;i<N;i++)
651     //        for(int j=i;j<N;j++)
652     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
653     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
654             InnerLoopPreheader &&
655         !OuterLoop->isLoopInvariant(I)) {
656       return false;
657     }
658   }
659 
660   // TODO: Handle triangular loops of another form.
661   // e.g. for(int i=0;i<N;i++)
662   //        for(int j=0;j<i;j++)
663   // or,
664   //      for(int i=0;i<N;i++)
665   //        for(int j=0;j*i<N;j++)
666   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
667   BranchInst *InnerLoopLatchBI =
668       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
669   if (!InnerLoopLatchBI->isConditional())
670     return false;
671   if (CmpInst *InnerLoopCmp =
672           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
673     Value *Op0 = InnerLoopCmp->getOperand(0);
674     Value *Op1 = InnerLoopCmp->getOperand(1);
675 
676     // LHS and RHS of the inner loop exit condition, e.g.,
677     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
678     Value *Left = nullptr;
679     Value *Right = nullptr;
680 
681     // Check if V only involves inner loop induction variable.
682     // Return true if V is InnerInduction, or a cast from
683     // InnerInduction, or a binary operator that involves
684     // InnerInduction and a constant.
685     std::function<bool(Value *)> IsPathToIndVar;
686     IsPathToIndVar = [&InnerInduction, &IsPathToIndVar](Value *V) -> bool {
687       if (V == InnerInduction)
688         return true;
689       if (isa<Constant>(V))
690         return true;
691       Instruction *I = dyn_cast<Instruction>(V);
692       if (!I)
693         return false;
694       if (isa<CastInst>(I))
695         return IsPathToIndVar(I->getOperand(0));
696       if (isa<BinaryOperator>(I))
697         return IsPathToIndVar(I->getOperand(0)) &&
698                IsPathToIndVar(I->getOperand(1));
699       return false;
700     };
701 
702     if (IsPathToIndVar(Op0) && !isa<Constant>(Op0)) {
703       Left = Op0;
704       Right = Op1;
705     } else if (IsPathToIndVar(Op1) && !isa<Constant>(Op1)) {
706       Left = Op1;
707       Right = Op0;
708     }
709 
710     if (Left == nullptr)
711       return false;
712 
713     const SCEV *S = SE->getSCEV(Right);
714     if (!SE->isLoopInvariant(S, OuterLoop))
715       return false;
716   }
717 
718   return true;
719 }
720 
721 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
722 // value.
723 static Value *followLCSSA(Value *SV) {
724   PHINode *PHI = dyn_cast<PHINode>(SV);
725   if (!PHI)
726     return SV;
727 
728   if (PHI->getNumIncomingValues() != 1)
729     return SV;
730   return followLCSSA(PHI->getIncomingValue(0));
731 }
732 
733 // Check V's users to see if it is involved in a reduction in L.
734 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
735   // Reduction variables cannot be constants.
736   if (isa<Constant>(V))
737     return nullptr;
738 
739   for (Value *User : V->users()) {
740     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
741       if (PHI->getNumIncomingValues() == 1)
742         continue;
743       RecurrenceDescriptor RD;
744       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
745         return PHI;
746       return nullptr;
747     }
748   }
749 
750   return nullptr;
751 }
752 
753 bool LoopInterchangeLegality::findInductionAndReductions(
754     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
755   if (!L->getLoopLatch() || !L->getLoopPredecessor())
756     return false;
757   for (PHINode &PHI : L->getHeader()->phis()) {
758     RecurrenceDescriptor RD;
759     InductionDescriptor ID;
760     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
761       Inductions.push_back(&PHI);
762     else {
763       // PHIs in inner loops need to be part of a reduction in the outer loop,
764       // discovered when checking the PHIs of the outer loop earlier.
765       if (!InnerLoop) {
766         if (!OuterInnerReductions.count(&PHI)) {
767           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
768                                "across the outer loop.\n");
769           return false;
770         }
771       } else {
772         assert(PHI.getNumIncomingValues() == 2 &&
773                "Phis in loop header should have exactly 2 incoming values");
774         // Check if we have a PHI node in the outer loop that has a reduction
775         // result from the inner loop as an incoming value.
776         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
777         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
778         if (!InnerRedPhi ||
779             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
780           LLVM_DEBUG(
781               dbgs()
782               << "Failed to recognize PHI as an induction or reduction.\n");
783           return false;
784         }
785         OuterInnerReductions.insert(&PHI);
786         OuterInnerReductions.insert(InnerRedPhi);
787       }
788     }
789   }
790   return true;
791 }
792 
793 // This function indicates the current limitations in the transform as a result
794 // of which we do not proceed.
795 bool LoopInterchangeLegality::currentLimitations() {
796   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
797   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
798 
799   // transform currently expects the loop latches to also be the exiting
800   // blocks.
801   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
802       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
803       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
804       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
805     LLVM_DEBUG(
806         dbgs() << "Loops where the latch is not the exiting block are not"
807                << " supported currently.\n");
808     ORE->emit([&]() {
809       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
810                                       OuterLoop->getStartLoc(),
811                                       OuterLoop->getHeader())
812              << "Loops where the latch is not the exiting block cannot be"
813                 " interchange currently.";
814     });
815     return true;
816   }
817 
818   PHINode *InnerInductionVar;
819   SmallVector<PHINode *, 8> Inductions;
820   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
821     LLVM_DEBUG(
822         dbgs() << "Only outer loops with induction or reduction PHI nodes "
823                << "are supported currently.\n");
824     ORE->emit([&]() {
825       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
826                                       OuterLoop->getStartLoc(),
827                                       OuterLoop->getHeader())
828              << "Only outer loops with induction or reduction PHI nodes can be"
829                 " interchanged currently.";
830     });
831     return true;
832   }
833 
834   // TODO: Currently we handle only loops with 1 induction variable.
835   if (Inductions.size() != 1) {
836     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
837                       << "supported currently.\n");
838     ORE->emit([&]() {
839       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
840                                       OuterLoop->getStartLoc(),
841                                       OuterLoop->getHeader())
842              << "Only outer loops with 1 induction variable can be "
843                 "interchanged currently.";
844     });
845     return true;
846   }
847 
848   Inductions.clear();
849   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
850     LLVM_DEBUG(
851         dbgs() << "Only inner loops with induction or reduction PHI nodes "
852                << "are supported currently.\n");
853     ORE->emit([&]() {
854       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
855                                       InnerLoop->getStartLoc(),
856                                       InnerLoop->getHeader())
857              << "Only inner loops with induction or reduction PHI nodes can be"
858                 " interchange currently.";
859     });
860     return true;
861   }
862 
863   // TODO: Currently we handle only loops with 1 induction variable.
864   if (Inductions.size() != 1) {
865     LLVM_DEBUG(
866         dbgs() << "We currently only support loops with 1 induction variable."
867                << "Failed to interchange due to current limitation\n");
868     ORE->emit([&]() {
869       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
870                                       InnerLoop->getStartLoc(),
871                                       InnerLoop->getHeader())
872              << "Only inner loops with 1 induction variable can be "
873                 "interchanged currently.";
874     });
875     return true;
876   }
877   InnerInductionVar = Inductions.pop_back_val();
878 
879   // TODO: Triangular loops are not handled for now.
880   if (!isLoopStructureUnderstood(InnerInductionVar)) {
881     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
882     ORE->emit([&]() {
883       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
884                                       InnerLoop->getStartLoc(),
885                                       InnerLoop->getHeader())
886              << "Inner loop structure not understood currently.";
887     });
888     return true;
889   }
890 
891   return false;
892 }
893 
894 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
895 // users are either reduction PHIs or PHIs outside the outer loop (which means
896 // the we are only interested in the final value after the loop).
897 static bool
898 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
899                               SmallPtrSetImpl<PHINode *> &Reductions) {
900   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
901   for (PHINode &PHI : InnerExit->phis()) {
902     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
903     if (PHI.getNumIncomingValues() > 1)
904       return false;
905     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
906           PHINode *PN = dyn_cast<PHINode>(U);
907           return !PN ||
908                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
909         })) {
910       return false;
911     }
912   }
913   return true;
914 }
915 
916 // We currently support LCSSA PHI nodes in the outer loop exit, if their
917 // incoming values do not come from the outer loop latch or if the
918 // outer loop latch has a single predecessor. In that case, the value will
919 // be available if both the inner and outer loop conditions are true, which
920 // will still be true after interchanging. If we have multiple predecessor,
921 // that may not be the case, e.g. because the outer loop latch may be executed
922 // if the inner loop is not executed.
923 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
924   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
925   for (PHINode &PHI : LoopNestExit->phis()) {
926     //  FIXME: We currently are not able to detect floating point reductions
927     //         and have to use floating point PHIs as a proxy to prevent
928     //         interchanging in the presence of floating point reductions.
929     if (PHI.getType()->isFloatingPointTy())
930       return false;
931     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
932      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
933      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
934        continue;
935 
936      // The incoming value is defined in the outer loop latch. Currently we
937      // only support that in case the outer loop latch has a single predecessor.
938      // This guarantees that the outer loop latch is executed if and only if
939      // the inner loop is executed (because tightlyNested() guarantees that the
940      // outer loop header only branches to the inner loop or the outer loop
941      // latch).
942      // FIXME: We could weaken this logic and allow multiple predecessors,
943      //        if the values are produced outside the loop latch. We would need
944      //        additional logic to update the PHI nodes in the exit block as
945      //        well.
946      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
947        return false;
948     }
949   }
950   return true;
951 }
952 
953 // In case of multi-level nested loops, it may occur that lcssa phis exist in
954 // the latch of InnerLoop, i.e., when defs of the incoming values are further
955 // inside the loopnest. Sometimes those incoming values are not available
956 // after interchange, since the original inner latch will become the new outer
957 // latch which may have predecessor paths that do not include those incoming
958 // values.
959 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
960 // multi-level loop nests.
961 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
962   if (InnerLoop->getSubLoops().empty())
963     return true;
964   // If the original outer latch has only one predecessor, then values defined
965   // further inside the looploop, e.g., in the innermost loop, will be available
966   // at the new outer latch after interchange.
967   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
968     return true;
969 
970   // The outer latch has more than one predecessors, i.e., the inner
971   // exit and the inner header.
972   // PHI nodes in the inner latch are lcssa phis where the incoming values
973   // are defined further inside the loopnest. Check if those phis are used
974   // in the original inner latch. If that is the case then bail out since
975   // those incoming values may not be available at the new outer latch.
976   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
977   for (PHINode &PHI : InnerLoopLatch->phis()) {
978     for (auto *U : PHI.users()) {
979       Instruction *UI = cast<Instruction>(U);
980       if (InnerLoopLatch == UI->getParent())
981         return false;
982     }
983   }
984   return true;
985 }
986 
987 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
988                                                   unsigned OuterLoopId,
989                                                   CharMatrix &DepMatrix) {
990   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
991     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
992                       << " and OuterLoopId = " << OuterLoopId
993                       << " due to dependence\n");
994     ORE->emit([&]() {
995       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
996                                       InnerLoop->getStartLoc(),
997                                       InnerLoop->getHeader())
998              << "Cannot interchange loops due to dependences.";
999     });
1000     return false;
1001   }
1002   // Check if outer and inner loop contain legal instructions only.
1003   for (auto *BB : OuterLoop->blocks())
1004     for (Instruction &I : BB->instructionsWithoutDebug())
1005       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1006         // readnone functions do not prevent interchanging.
1007         if (CI->onlyWritesMemory())
1008           continue;
1009         LLVM_DEBUG(
1010             dbgs() << "Loops with call instructions cannot be interchanged "
1011                    << "safely.");
1012         ORE->emit([&]() {
1013           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1014                                           CI->getDebugLoc(),
1015                                           CI->getParent())
1016                  << "Cannot interchange loops due to call instruction.";
1017         });
1018 
1019         return false;
1020       }
1021 
1022   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
1023     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1024     ORE->emit([&]() {
1025       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1026                                       InnerLoop->getStartLoc(),
1027                                       InnerLoop->getHeader())
1028              << "Cannot interchange loops because unsupported PHI nodes found "
1029                 "in inner loop latch.";
1030     });
1031     return false;
1032   }
1033 
1034   // TODO: The loops could not be interchanged due to current limitations in the
1035   // transform module.
1036   if (currentLimitations()) {
1037     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1038     return false;
1039   }
1040 
1041   // Check if the loops are tightly nested.
1042   if (!tightlyNested(OuterLoop, InnerLoop)) {
1043     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1044     ORE->emit([&]() {
1045       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1046                                       InnerLoop->getStartLoc(),
1047                                       InnerLoop->getHeader())
1048              << "Cannot interchange loops because they are not tightly "
1049                 "nested.";
1050     });
1051     return false;
1052   }
1053 
1054   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1055                                      OuterInnerReductions)) {
1056     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1057     ORE->emit([&]() {
1058       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1059                                       InnerLoop->getStartLoc(),
1060                                       InnerLoop->getHeader())
1061              << "Found unsupported PHI node in loop exit.";
1062     });
1063     return false;
1064   }
1065 
1066   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1067     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1068     ORE->emit([&]() {
1069       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1070                                       OuterLoop->getStartLoc(),
1071                                       OuterLoop->getHeader())
1072              << "Found unsupported PHI node in loop exit.";
1073     });
1074     return false;
1075   }
1076 
1077   return true;
1078 }
1079 
1080 int LoopInterchangeProfitability::getInstrOrderCost() {
1081   unsigned GoodOrder, BadOrder;
1082   BadOrder = GoodOrder = 0;
1083   for (BasicBlock *BB : InnerLoop->blocks()) {
1084     for (Instruction &Ins : *BB) {
1085       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1086         unsigned NumOp = GEP->getNumOperands();
1087         bool FoundInnerInduction = false;
1088         bool FoundOuterInduction = false;
1089         for (unsigned i = 0; i < NumOp; ++i) {
1090           // Skip operands that are not SCEV-able.
1091           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1092             continue;
1093 
1094           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1095           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1096           if (!AR)
1097             continue;
1098 
1099           // If we find the inner induction after an outer induction e.g.
1100           // for(int i=0;i<N;i++)
1101           //   for(int j=0;j<N;j++)
1102           //     A[i][j] = A[i-1][j-1]+k;
1103           // then it is a good order.
1104           if (AR->getLoop() == InnerLoop) {
1105             // We found an InnerLoop induction after OuterLoop induction. It is
1106             // a good order.
1107             FoundInnerInduction = true;
1108             if (FoundOuterInduction) {
1109               GoodOrder++;
1110               break;
1111             }
1112           }
1113           // If we find the outer induction after an inner induction e.g.
1114           // for(int i=0;i<N;i++)
1115           //   for(int j=0;j<N;j++)
1116           //     A[j][i] = A[j-1][i-1]+k;
1117           // then it is a bad order.
1118           if (AR->getLoop() == OuterLoop) {
1119             // We found an OuterLoop induction after InnerLoop induction. It is
1120             // a bad order.
1121             FoundOuterInduction = true;
1122             if (FoundInnerInduction) {
1123               BadOrder++;
1124               break;
1125             }
1126           }
1127         }
1128       }
1129     }
1130   }
1131   return GoodOrder - BadOrder;
1132 }
1133 
1134 static bool isProfitableForVectorization(unsigned InnerLoopId,
1135                                          unsigned OuterLoopId,
1136                                          CharMatrix &DepMatrix) {
1137   // TODO: Improve this heuristic to catch more cases.
1138   // If the inner loop is loop independent or doesn't carry any dependency it is
1139   // profitable to move this to outer position.
1140   for (auto &Row : DepMatrix) {
1141     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1142       return false;
1143     // TODO: We need to improve this heuristic.
1144     if (Row[OuterLoopId] != '=')
1145       return false;
1146   }
1147   // If outer loop has dependence and inner loop is loop independent then it is
1148   // profitable to interchange to enable parallelism.
1149   // If there are no dependences, interchanging will not improve anything.
1150   return !DepMatrix.empty();
1151 }
1152 
1153 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1154                                                 unsigned OuterLoopId,
1155                                                 CharMatrix &DepMatrix) {
1156   // TODO: Add better profitability checks.
1157   // e.g
1158   // 1) Construct dependency matrix and move the one with no loop carried dep
1159   //    inside to enable vectorization.
1160 
1161   // This is rough cost estimation algorithm. It counts the good and bad order
1162   // of induction variables in the instruction and allows reordering if number
1163   // of bad orders is more than good.
1164   int Cost = getInstrOrderCost();
1165   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1166   if (Cost < -LoopInterchangeCostThreshold)
1167     return true;
1168 
1169   // It is not profitable as per current cache profitability model. But check if
1170   // we can move this loop outside to improve parallelism.
1171   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1172     return true;
1173 
1174   ORE->emit([&]() {
1175     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1176                                     InnerLoop->getStartLoc(),
1177                                     InnerLoop->getHeader())
1178            << "Interchanging loops is too costly (cost="
1179            << ore::NV("Cost", Cost) << ", threshold="
1180            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1181            << ") and it does not improve parallelism.";
1182   });
1183   return false;
1184 }
1185 
1186 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1187                                                Loop *InnerLoop) {
1188   for (Loop *L : *OuterLoop)
1189     if (L == InnerLoop) {
1190       OuterLoop->removeChildLoop(L);
1191       return;
1192     }
1193   llvm_unreachable("Couldn't find loop");
1194 }
1195 
1196 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1197 /// new inner and outer loop after interchanging: NewInner is the original
1198 /// outer loop and NewOuter is the original inner loop.
1199 ///
1200 /// Before interchanging, we have the following structure
1201 /// Outer preheader
1202 //  Outer header
1203 //    Inner preheader
1204 //    Inner header
1205 //      Inner body
1206 //      Inner latch
1207 //   outer bbs
1208 //   Outer latch
1209 //
1210 // After interchanging:
1211 // Inner preheader
1212 // Inner header
1213 //   Outer preheader
1214 //   Outer header
1215 //     Inner body
1216 //     outer bbs
1217 //     Outer latch
1218 //   Inner latch
1219 void LoopInterchangeTransform::restructureLoops(
1220     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1221     BasicBlock *OrigOuterPreHeader) {
1222   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1223   // The original inner loop preheader moves from the new inner loop to
1224   // the parent loop, if there is one.
1225   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1226   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1227 
1228   // Switch the loop levels.
1229   if (OuterLoopParent) {
1230     // Remove the loop from its parent loop.
1231     removeChildLoop(OuterLoopParent, NewInner);
1232     removeChildLoop(NewInner, NewOuter);
1233     OuterLoopParent->addChildLoop(NewOuter);
1234   } else {
1235     removeChildLoop(NewInner, NewOuter);
1236     LI->changeTopLevelLoop(NewInner, NewOuter);
1237   }
1238   while (!NewOuter->isInnermost())
1239     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1240   NewOuter->addChildLoop(NewInner);
1241 
1242   // BBs from the original inner loop.
1243   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1244 
1245   // Add BBs from the original outer loop to the original inner loop (excluding
1246   // BBs already in inner loop)
1247   for (BasicBlock *BB : NewInner->blocks())
1248     if (LI->getLoopFor(BB) == NewInner)
1249       NewOuter->addBlockEntry(BB);
1250 
1251   // Now remove inner loop header and latch from the new inner loop and move
1252   // other BBs (the loop body) to the new inner loop.
1253   BasicBlock *OuterHeader = NewOuter->getHeader();
1254   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1255   for (BasicBlock *BB : OrigInnerBBs) {
1256     // Nothing will change for BBs in child loops.
1257     if (LI->getLoopFor(BB) != NewOuter)
1258       continue;
1259     // Remove the new outer loop header and latch from the new inner loop.
1260     if (BB == OuterHeader || BB == OuterLatch)
1261       NewInner->removeBlockFromLoop(BB);
1262     else
1263       LI->changeLoopFor(BB, NewInner);
1264   }
1265 
1266   // The preheader of the original outer loop becomes part of the new
1267   // outer loop.
1268   NewOuter->addBlockEntry(OrigOuterPreHeader);
1269   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1270 
1271   // Tell SE that we move the loops around.
1272   SE->forgetLoop(NewOuter);
1273   SE->forgetLoop(NewInner);
1274 }
1275 
1276 bool LoopInterchangeTransform::transform() {
1277   bool Transformed = false;
1278   Instruction *InnerIndexVar;
1279 
1280   if (InnerLoop->getSubLoops().empty()) {
1281     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1282     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1283     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1284     if (!InductionPHI) {
1285       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1286       return false;
1287     }
1288 
1289     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1290       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1291     else
1292       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1293 
1294     // Ensure that InductionPHI is the first Phi node.
1295     if (&InductionPHI->getParent()->front() != InductionPHI)
1296       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1297 
1298     // Create a new latch block for the inner loop. We split at the
1299     // current latch's terminator and then move the condition and all
1300     // operands that are not either loop-invariant or the induction PHI into the
1301     // new latch block.
1302     BasicBlock *NewLatch =
1303         SplitBlock(InnerLoop->getLoopLatch(),
1304                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1305 
1306     SmallSetVector<Instruction *, 4> WorkList;
1307     unsigned i = 0;
1308     auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1309       for (; i < WorkList.size(); i++) {
1310         // Duplicate instruction and move it the new latch. Update uses that
1311         // have been moved.
1312         Instruction *NewI = WorkList[i]->clone();
1313         NewI->insertBefore(NewLatch->getFirstNonPHI());
1314         assert(!NewI->mayHaveSideEffects() &&
1315                "Moving instructions with side-effects may change behavior of "
1316                "the loop nest!");
1317         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1318           Instruction *UserI = cast<Instruction>(U.getUser());
1319           if (!InnerLoop->contains(UserI->getParent()) ||
1320               UserI->getParent() == NewLatch || UserI == InductionPHI)
1321             U.set(NewI);
1322         }
1323         // Add operands of moved instruction to the worklist, except if they are
1324         // outside the inner loop or are the induction PHI.
1325         for (Value *Op : WorkList[i]->operands()) {
1326           Instruction *OpI = dyn_cast<Instruction>(Op);
1327           if (!OpI ||
1328               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1329               OpI == InductionPHI)
1330             continue;
1331           WorkList.insert(OpI);
1332         }
1333       }
1334     };
1335 
1336     // FIXME: Should we interchange when we have a constant condition?
1337     Instruction *CondI = dyn_cast<Instruction>(
1338         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1339             ->getCondition());
1340     if (CondI)
1341       WorkList.insert(CondI);
1342     MoveInstructions();
1343     WorkList.insert(cast<Instruction>(InnerIndexVar));
1344     MoveInstructions();
1345 
1346     // Splits the inner loops phi nodes out into a separate basic block.
1347     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1348     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1349     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1350   }
1351 
1352   // Instructions in the original inner loop preheader may depend on values
1353   // defined in the outer loop header. Move them there, because the original
1354   // inner loop preheader will become the entry into the interchanged loop nest.
1355   // Currently we move all instructions and rely on LICM to move invariant
1356   // instructions outside the loop nest.
1357   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1358   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1359   if (InnerLoopPreHeader != OuterLoopHeader) {
1360     SmallPtrSet<Instruction *, 4> NeedsMoving;
1361     for (Instruction &I :
1362          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1363                                          std::prev(InnerLoopPreHeader->end()))))
1364       I.moveBefore(OuterLoopHeader->getTerminator());
1365   }
1366 
1367   Transformed |= adjustLoopLinks();
1368   if (!Transformed) {
1369     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1370     return false;
1371   }
1372 
1373   return true;
1374 }
1375 
1376 /// \brief Move all instructions except the terminator from FromBB right before
1377 /// InsertBefore
1378 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1379   auto &ToList = InsertBefore->getParent()->getInstList();
1380   auto &FromList = FromBB->getInstList();
1381 
1382   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1383                 FromBB->getTerminator()->getIterator());
1384 }
1385 
1386 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1387 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1388   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1389   // from BB1 afterwards.
1390   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1391   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1392   for (Instruction *I : TempInstrs)
1393     I->removeFromParent();
1394 
1395   // Move instructions from BB2 to BB1.
1396   moveBBContents(BB2, BB1->getTerminator());
1397 
1398   // Move instructions from TempInstrs to BB2.
1399   for (Instruction *I : TempInstrs)
1400     I->insertBefore(BB2->getTerminator());
1401 }
1402 
1403 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1404 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1405 // \p OldBB  is exactly once in BI's successor list.
1406 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1407                             BasicBlock *NewBB,
1408                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1409                             bool MustUpdateOnce = true) {
1410   assert((!MustUpdateOnce ||
1411           llvm::count_if(successors(BI),
1412                          [OldBB](BasicBlock *BB) {
1413                            return BB == OldBB;
1414                          }) == 1) && "BI must jump to OldBB exactly once.");
1415   bool Changed = false;
1416   for (Use &Op : BI->operands())
1417     if (Op == OldBB) {
1418       Op.set(NewBB);
1419       Changed = true;
1420     }
1421 
1422   if (Changed) {
1423     DTUpdates.push_back(
1424         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1425     DTUpdates.push_back(
1426         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1427   }
1428   assert(Changed && "Expected a successor to be updated");
1429 }
1430 
1431 // Move Lcssa PHIs to the right place.
1432 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1433                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1434                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1435                           Loop *InnerLoop, LoopInfo *LI) {
1436 
1437   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1438   // defined either in the header or latch. Those blocks will become header and
1439   // latch of the new outer loop, and the only possible users can PHI nodes
1440   // in the exit block of the loop nest or the outer loop header (reduction
1441   // PHIs, in that case, the incoming value must be defined in the inner loop
1442   // header). We can just substitute the user with the incoming value and remove
1443   // the PHI.
1444   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1445     assert(P.getNumIncomingValues() == 1 &&
1446            "Only loops with a single exit are supported!");
1447 
1448     // Incoming values are guaranteed be instructions currently.
1449     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1450     // Skip phis with incoming values from the inner loop body, excluding the
1451     // header and latch.
1452     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1453       continue;
1454 
1455     assert(all_of(P.users(),
1456                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1457                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1458                             IncI->getParent() == InnerHeader) ||
1459                            cast<PHINode>(U)->getParent() == OuterExit;
1460                   }) &&
1461            "Can only replace phis iff the uses are in the loop nest exit or "
1462            "the incoming value is defined in the inner header (it will "
1463            "dominate all loop blocks after interchanging)");
1464     P.replaceAllUsesWith(IncI);
1465     P.eraseFromParent();
1466   }
1467 
1468   SmallVector<PHINode *, 8> LcssaInnerExit;
1469   for (PHINode &P : InnerExit->phis())
1470     LcssaInnerExit.push_back(&P);
1471 
1472   SmallVector<PHINode *, 8> LcssaInnerLatch;
1473   for (PHINode &P : InnerLatch->phis())
1474     LcssaInnerLatch.push_back(&P);
1475 
1476   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1477   // If a PHI node has users outside of InnerExit, it has a use outside the
1478   // interchanged loop and we have to preserve it. We move these to
1479   // InnerLatch, which will become the new exit block for the innermost
1480   // loop after interchanging.
1481   for (PHINode *P : LcssaInnerExit)
1482     P->moveBefore(InnerLatch->getFirstNonPHI());
1483 
1484   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1485   // and we have to move them to the new inner latch.
1486   for (PHINode *P : LcssaInnerLatch)
1487     P->moveBefore(InnerExit->getFirstNonPHI());
1488 
1489   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1490   // incoming values defined in the outer loop, we have to add a new PHI
1491   // in the inner loop latch, which became the exit block of the outer loop,
1492   // after interchanging.
1493   if (OuterExit) {
1494     for (PHINode &P : OuterExit->phis()) {
1495       if (P.getNumIncomingValues() != 1)
1496         continue;
1497       // Skip Phis with incoming values defined in the inner loop. Those should
1498       // already have been updated.
1499       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1500       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1501         continue;
1502 
1503       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1504       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1505       NewPhi->setIncomingBlock(0, OuterLatch);
1506       // We might have incoming edges from other BBs, i.e., the original outer
1507       // header.
1508       for (auto *Pred : predecessors(InnerLatch)) {
1509         if (Pred == OuterLatch)
1510           continue;
1511         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1512       }
1513       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1514       P.setIncomingValue(0, NewPhi);
1515     }
1516   }
1517 
1518   // Now adjust the incoming blocks for the LCSSA PHIs.
1519   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1520   // with the new latch.
1521   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1522 }
1523 
1524 bool LoopInterchangeTransform::adjustLoopBranches() {
1525   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1526   std::vector<DominatorTree::UpdateType> DTUpdates;
1527 
1528   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1529   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1530 
1531   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1532          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1533          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1534   // Ensure that both preheaders do not contain PHI nodes and have single
1535   // predecessors. This allows us to move them easily. We use
1536   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1537   // preheaders do not satisfy those conditions.
1538   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1539       !OuterLoopPreHeader->getUniquePredecessor())
1540     OuterLoopPreHeader =
1541         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1542   if (InnerLoopPreHeader == OuterLoop->getHeader())
1543     InnerLoopPreHeader =
1544         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1545 
1546   // Adjust the loop preheader
1547   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1548   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1549   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1550   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1551   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1552   BasicBlock *InnerLoopLatchPredecessor =
1553       InnerLoopLatch->getUniquePredecessor();
1554   BasicBlock *InnerLoopLatchSuccessor;
1555   BasicBlock *OuterLoopLatchSuccessor;
1556 
1557   BranchInst *OuterLoopLatchBI =
1558       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1559   BranchInst *InnerLoopLatchBI =
1560       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1561   BranchInst *OuterLoopHeaderBI =
1562       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1563   BranchInst *InnerLoopHeaderBI =
1564       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1565 
1566   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1567       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1568       !InnerLoopHeaderBI)
1569     return false;
1570 
1571   BranchInst *InnerLoopLatchPredecessorBI =
1572       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1573   BranchInst *OuterLoopPredecessorBI =
1574       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1575 
1576   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1577     return false;
1578   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1579   if (!InnerLoopHeaderSuccessor)
1580     return false;
1581 
1582   // Adjust Loop Preheader and headers.
1583   // The branches in the outer loop predecessor and the outer loop header can
1584   // be unconditional branches or conditional branches with duplicates. Consider
1585   // this when updating the successors.
1586   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1587                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1588   // The outer loop header might or might not branch to the outer latch.
1589   // We are guaranteed to branch to the inner loop preheader.
1590   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1591     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1592     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1593                     DTUpdates,
1594                     /*MustUpdateOnce=*/false);
1595   }
1596   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1597                   InnerLoopHeaderSuccessor, DTUpdates,
1598                   /*MustUpdateOnce=*/false);
1599 
1600   // Adjust reduction PHI's now that the incoming block has changed.
1601   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1602                                                OuterLoopHeader);
1603 
1604   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1605                   OuterLoopPreHeader, DTUpdates);
1606 
1607   // -------------Adjust loop latches-----------
1608   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1609     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1610   else
1611     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1612 
1613   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1614                   InnerLoopLatchSuccessor, DTUpdates);
1615 
1616 
1617   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1618     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1619   else
1620     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1621 
1622   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1623                   OuterLoopLatchSuccessor, DTUpdates);
1624   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1625                   DTUpdates);
1626 
1627   DT->applyUpdates(DTUpdates);
1628   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1629                    OuterLoopPreHeader);
1630 
1631   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1632                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1633                 InnerLoop, LI);
1634   // For PHIs in the exit block of the outer loop, outer's latch has been
1635   // replaced by Inners'.
1636   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1637 
1638   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1639   // Now update the reduction PHIs in the inner and outer loop headers.
1640   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1641   for (PHINode &PHI : InnerLoopHeader->phis())
1642     if (OuterInnerReductions.contains(&PHI))
1643       InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1644   for (PHINode &PHI : OuterLoopHeader->phis())
1645     if (OuterInnerReductions.contains(&PHI))
1646       OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1647 
1648   // Now move the remaining reduction PHIs from outer to inner loop header and
1649   // vice versa. The PHI nodes must be part of a reduction across the inner and
1650   // outer loop and all the remains to do is and updating the incoming blocks.
1651   for (PHINode *PHI : OuterLoopPHIs) {
1652     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1653     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1654   }
1655   for (PHINode *PHI : InnerLoopPHIs) {
1656     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1657     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1658   }
1659 
1660   // Update the incoming blocks for moved PHI nodes.
1661   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1662   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1663   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1664   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1665 
1666   // Values defined in the outer loop header could be used in the inner loop
1667   // latch. In that case, we need to create LCSSA phis for them, because after
1668   // interchanging they will be defined in the new inner loop and used in the
1669   // new outer loop.
1670   IRBuilder<> Builder(OuterLoopHeader->getContext());
1671   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1672   for (Instruction &I :
1673        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1674     MayNeedLCSSAPhis.push_back(&I);
1675   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1676 
1677   return true;
1678 }
1679 
1680 bool LoopInterchangeTransform::adjustLoopLinks() {
1681   // Adjust all branches in the inner and outer loop.
1682   bool Changed = adjustLoopBranches();
1683   if (Changed) {
1684     // We have interchanged the preheaders so we need to interchange the data in
1685     // the preheaders as well. This is because the content of the inner
1686     // preheader was previously executed inside the outer loop.
1687     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1688     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1689     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1690   }
1691   return Changed;
1692 }
1693 
1694 namespace {
1695 /// Main LoopInterchange Pass.
1696 struct LoopInterchangeLegacyPass : public LoopPass {
1697   static char ID;
1698 
1699   LoopInterchangeLegacyPass() : LoopPass(ID) {
1700     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1701   }
1702 
1703   void getAnalysisUsage(AnalysisUsage &AU) const override {
1704     AU.addRequired<DependenceAnalysisWrapperPass>();
1705     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1706 
1707     getLoopAnalysisUsage(AU);
1708   }
1709 
1710   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1711     if (skipLoop(L))
1712       return false;
1713 
1714     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1715     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1716     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1717     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1718     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1719 
1720     return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1721   }
1722 };
1723 } // namespace
1724 
1725 char LoopInterchangeLegacyPass::ID = 0;
1726 
1727 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1728                       "Interchanges loops for cache reuse", false, false)
1729 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1730 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1731 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1732 
1733 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1734                     "Interchanges loops for cache reuse", false, false)
1735 
1736 Pass *llvm::createLoopInterchangePass() {
1737   return new LoopInterchangeLegacyPass();
1738 }
1739 
1740 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1741                                            LoopAnalysisManager &AM,
1742                                            LoopStandardAnalysisResults &AR,
1743                                            LPMUpdater &U) {
1744   Function &F = *LN.getParent();
1745 
1746   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1747   OptimizationRemarkEmitter ORE(&F);
1748   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1749     return PreservedAnalyses::all();
1750   return getLoopPassPreservedAnalyses();
1751 }
1752