1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This Pass handles loop interchange transform.
11 // This pass interchanges loops to provide a more cache-friendly memory access
12 // patterns.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "loop-interchange"
54 
55 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56 
57 static cl::opt<int> LoopInterchangeCostThreshold(
58     "loop-interchange-threshold", cl::init(0), cl::Hidden,
59     cl::desc("Interchange if you gain more than this number"));
60 
61 namespace {
62 
63 using LoopVector = SmallVector<Loop *, 8>;
64 
65 // TODO: Check if we can use a sparse matrix here.
66 using CharMatrix = std::vector<std::vector<char>>;
67 
68 } // end anonymous namespace
69 
70 // Maximum number of dependencies that can be handled in the dependency matrix.
71 static const unsigned MaxMemInstrCount = 100;
72 
73 // Maximum loop depth supported.
74 static const unsigned MaxLoopNestDepth = 10;
75 
76 #ifdef DUMP_DEP_MATRICIES
77 static void printDepMatrix(CharMatrix &DepMatrix) {
78   for (auto &Row : DepMatrix) {
79     for (auto D : Row)
80       LLVM_DEBUG(dbgs() << D << " ");
81     LLVM_DEBUG(dbgs() << "\n");
82   }
83 }
84 #endif
85 
86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
87                                      Loop *L, DependenceInfo *DI) {
88   using ValueVector = SmallVector<Value *, 16>;
89 
90   ValueVector MemInstr;
91 
92   // For each block.
93   for (BasicBlock *BB : L->blocks()) {
94     // Scan the BB and collect legal loads and stores.
95     for (Instruction &I : *BB) {
96       if (!isa<Instruction>(I))
97         return false;
98       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99         if (!Ld->isSimple())
100           return false;
101         MemInstr.push_back(&I);
102       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103         if (!St->isSimple())
104           return false;
105         MemInstr.push_back(&I);
106       }
107     }
108   }
109 
110   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
111                     << " Loads and Stores to analyze\n");
112 
113   ValueVector::iterator I, IE, J, JE;
114 
115   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117       std::vector<char> Dep;
118       Instruction *Src = cast<Instruction>(*I);
119       Instruction *Dst = cast<Instruction>(*J);
120       if (Src == Dst)
121         continue;
122       // Ignore Input dependencies.
123       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124         continue;
125       // Track Output, Flow, and Anti dependencies.
126       if (auto D = DI->depends(Src, Dst, true)) {
127         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128         LLVM_DEBUG(StringRef DepType =
129                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130                    dbgs() << "Found " << DepType
131                           << " dependency between Src and Dst\n"
132                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133         unsigned Levels = D->getLevels();
134         char Direction;
135         for (unsigned II = 1; II <= Levels; ++II) {
136           const SCEV *Distance = D->getDistance(II);
137           const SCEVConstant *SCEVConst =
138               dyn_cast_or_null<SCEVConstant>(Distance);
139           if (SCEVConst) {
140             const ConstantInt *CI = SCEVConst->getValue();
141             if (CI->isNegative())
142               Direction = '<';
143             else if (CI->isZero())
144               Direction = '=';
145             else
146               Direction = '>';
147             Dep.push_back(Direction);
148           } else if (D->isScalar(II)) {
149             Direction = 'S';
150             Dep.push_back(Direction);
151           } else {
152             unsigned Dir = D->getDirection(II);
153             if (Dir == Dependence::DVEntry::LT ||
154                 Dir == Dependence::DVEntry::LE)
155               Direction = '<';
156             else if (Dir == Dependence::DVEntry::GT ||
157                      Dir == Dependence::DVEntry::GE)
158               Direction = '>';
159             else if (Dir == Dependence::DVEntry::EQ)
160               Direction = '=';
161             else
162               Direction = '*';
163             Dep.push_back(Direction);
164           }
165         }
166         while (Dep.size() != Level) {
167           Dep.push_back('I');
168         }
169 
170         DepMatrix.push_back(Dep);
171         if (DepMatrix.size() > MaxMemInstrCount) {
172           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173                             << " dependencies inside loop\n");
174           return false;
175         }
176       }
177     }
178   }
179 
180   return true;
181 }
182 
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186                                     unsigned ToIndx) {
187   unsigned numRows = DepMatrix.size();
188   for (unsigned i = 0; i < numRows; ++i) {
189     char TmpVal = DepMatrix[i][ToIndx];
190     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
191     DepMatrix[i][FromIndx] = TmpVal;
192   }
193 }
194 
195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 // '>'
197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
198                                    unsigned Column) {
199   for (unsigned i = 0; i <= Column; ++i) {
200     if (DepMatrix[Row][i] == '<')
201       return false;
202     if (DepMatrix[Row][i] == '>')
203       return true;
204   }
205   // All dependencies were '=','S' or 'I'
206   return false;
207 }
208 
209 // Checks if no dependence exist in the dependency matrix in Row before Column.
210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
211                                  unsigned Column) {
212   for (unsigned i = 0; i < Column; ++i) {
213     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
214         DepMatrix[Row][i] != 'I')
215       return false;
216   }
217   return true;
218 }
219 
220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
221                                 unsigned OuterLoopId, char InnerDep,
222                                 char OuterDep) {
223   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
224     return false;
225 
226   if (InnerDep == OuterDep)
227     return true;
228 
229   // It is legal to interchange if and only if after interchange no row has a
230   // '>' direction as the leftmost non-'='.
231 
232   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
233     return true;
234 
235   if (InnerDep == '<')
236     return true;
237 
238   if (InnerDep == '>') {
239     // If OuterLoopId represents outermost loop then interchanging will make the
240     // 1st dependency as '>'
241     if (OuterLoopId == 0)
242       return false;
243 
244     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
245     // interchanging will result in this row having an outermost non '='
246     // dependency of '>'
247     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
248       return true;
249   }
250 
251   return false;
252 }
253 
254 // Checks if it is legal to interchange 2 loops.
255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
256 // if the direction matrix, after the same permutation is applied to its
257 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
259                                       unsigned InnerLoopId,
260                                       unsigned OuterLoopId) {
261   unsigned NumRows = DepMatrix.size();
262   // For each row check if it is valid to interchange.
263   for (unsigned Row = 0; Row < NumRows; ++Row) {
264     char InnerDep = DepMatrix[Row][InnerLoopId];
265     char OuterDep = DepMatrix[Row][OuterLoopId];
266     if (InnerDep == '*' || OuterDep == '*')
267       return false;
268     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
269       return false;
270   }
271   return true;
272 }
273 
274 static LoopVector populateWorklist(Loop &L) {
275   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
276                     << L.getHeader()->getParent()->getName() << " Loop: %"
277                     << L.getHeader()->getName() << '\n');
278   LoopVector LoopList;
279   Loop *CurrentLoop = &L;
280   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
281   while (!Vec->empty()) {
282     // The current loop has multiple subloops in it hence it is not tightly
283     // nested.
284     // Discard all loops above it added into Worklist.
285     if (Vec->size() != 1)
286       return {};
287 
288     LoopList.push_back(CurrentLoop);
289     CurrentLoop = Vec->front();
290     Vec = &CurrentLoop->getSubLoops();
291   }
292   LoopList.push_back(CurrentLoop);
293   return LoopList;
294 }
295 
296 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
297   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
298   if (InnerIndexVar)
299     return InnerIndexVar;
300   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
301     return nullptr;
302   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
303     PHINode *PhiVar = cast<PHINode>(I);
304     Type *PhiTy = PhiVar->getType();
305     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
306         !PhiTy->isPointerTy())
307       return nullptr;
308     const SCEVAddRecExpr *AddRec =
309         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
310     if (!AddRec || !AddRec->isAffine())
311       continue;
312     const SCEV *Step = AddRec->getStepRecurrence(*SE);
313     if (!isa<SCEVConstant>(Step))
314       continue;
315     // Found the induction variable.
316     // FIXME: Handle loops with more than one induction variable. Note that,
317     // currently, legality makes sure we have only one induction variable.
318     return PhiVar;
319   }
320   return nullptr;
321 }
322 
323 namespace {
324 
325 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
326 class LoopInterchangeLegality {
327 public:
328   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
329                           OptimizationRemarkEmitter *ORE)
330       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
331 
332   /// Check if the loops can be interchanged.
333   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
334                            CharMatrix &DepMatrix);
335 
336   /// Check if the loop structure is understood. We do not handle triangular
337   /// loops for now.
338   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
339 
340   bool currentLimitations();
341 
342 private:
343   bool tightlyNested(Loop *Outer, Loop *Inner);
344   bool containsUnsafeInstructions(BasicBlock *BB);
345   bool findInductions(Loop *L, SmallVector<PHINode *, 8> &Inductions);
346 
347   Loop *OuterLoop;
348   Loop *InnerLoop;
349 
350   ScalarEvolution *SE;
351 
352   /// Interface to emit optimization remarks.
353   OptimizationRemarkEmitter *ORE;
354 
355 };
356 
357 /// LoopInterchangeProfitability checks if it is profitable to interchange the
358 /// loop.
359 class LoopInterchangeProfitability {
360 public:
361   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
362                                OptimizationRemarkEmitter *ORE)
363       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
364 
365   /// Check if the loop interchange is profitable.
366   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
367                     CharMatrix &DepMatrix);
368 
369 private:
370   int getInstrOrderCost();
371 
372   Loop *OuterLoop;
373   Loop *InnerLoop;
374 
375   /// Scev analysis.
376   ScalarEvolution *SE;
377 
378   /// Interface to emit optimization remarks.
379   OptimizationRemarkEmitter *ORE;
380 };
381 
382 /// LoopInterchangeTransform interchanges the loop.
383 class LoopInterchangeTransform {
384 public:
385   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
386                            LoopInfo *LI, DominatorTree *DT,
387                            BasicBlock *LoopNestExit)
388       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
389         LoopExit(LoopNestExit) {}
390 
391   /// Interchange OuterLoop and InnerLoop.
392   bool transform();
393   void restructureLoops(Loop *NewInner, Loop *NewOuter,
394                         BasicBlock *OrigInnerPreHeader,
395                         BasicBlock *OrigOuterPreHeader);
396   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
397 
398 private:
399   void splitInnerLoopLatch(Instruction *);
400   void splitInnerLoopHeader();
401   bool adjustLoopLinks();
402   void adjustLoopPreheaders();
403   bool adjustLoopBranches();
404 
405   Loop *OuterLoop;
406   Loop *InnerLoop;
407 
408   /// Scev analysis.
409   ScalarEvolution *SE;
410 
411   LoopInfo *LI;
412   DominatorTree *DT;
413   BasicBlock *LoopExit;
414 };
415 
416 // Main LoopInterchange Pass.
417 struct LoopInterchange : public LoopPass {
418   static char ID;
419   ScalarEvolution *SE = nullptr;
420   LoopInfo *LI = nullptr;
421   DependenceInfo *DI = nullptr;
422   DominatorTree *DT = nullptr;
423 
424   /// Interface to emit optimization remarks.
425   OptimizationRemarkEmitter *ORE;
426 
427   LoopInterchange() : LoopPass(ID) {
428     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
429   }
430 
431   void getAnalysisUsage(AnalysisUsage &AU) const override {
432     AU.addRequired<DependenceAnalysisWrapperPass>();
433     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
434 
435     getLoopAnalysisUsage(AU);
436   }
437 
438   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
439     if (skipLoop(L) || L->getParentLoop())
440       return false;
441 
442     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
443     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
444     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
445     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
446     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
447 
448     return processLoopList(populateWorklist(*L));
449   }
450 
451   bool isComputableLoopNest(LoopVector LoopList) {
452     for (Loop *L : LoopList) {
453       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
454       if (ExitCountOuter == SE->getCouldNotCompute()) {
455         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
456         return false;
457       }
458       if (L->getNumBackEdges() != 1) {
459         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
460         return false;
461       }
462       if (!L->getExitingBlock()) {
463         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
464         return false;
465       }
466     }
467     return true;
468   }
469 
470   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
471     // TODO: Add a better heuristic to select the loop to be interchanged based
472     // on the dependence matrix. Currently we select the innermost loop.
473     return LoopList.size() - 1;
474   }
475 
476   bool processLoopList(LoopVector LoopList) {
477     bool Changed = false;
478     unsigned LoopNestDepth = LoopList.size();
479     if (LoopNestDepth < 2) {
480       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
481       return false;
482     }
483     if (LoopNestDepth > MaxLoopNestDepth) {
484       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
485                         << MaxLoopNestDepth << "\n");
486       return false;
487     }
488     if (!isComputableLoopNest(LoopList)) {
489       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
490       return false;
491     }
492 
493     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
494                       << "\n");
495 
496     CharMatrix DependencyMatrix;
497     Loop *OuterMostLoop = *(LoopList.begin());
498     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
499                                   OuterMostLoop, DI)) {
500       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
501       return false;
502     }
503 #ifdef DUMP_DEP_MATRICIES
504     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
505     printDepMatrix(DependencyMatrix);
506 #endif
507 
508     // Get the Outermost loop exit.
509     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
510     if (!LoopNestExit) {
511       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
512       return false;
513     }
514 
515     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
516     // Move the selected loop outwards to the best possible position.
517     for (unsigned i = SelecLoopId; i > 0; i--) {
518       bool Interchanged =
519           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
520       if (!Interchanged)
521         return Changed;
522       // Loops interchanged reflect the same in LoopList
523       std::swap(LoopList[i - 1], LoopList[i]);
524 
525       // Update the DependencyMatrix
526       interChangeDependencies(DependencyMatrix, i, i - 1);
527 #ifdef DUMP_DEP_MATRICIES
528       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
529       printDepMatrix(DependencyMatrix);
530 #endif
531       Changed |= Interchanged;
532     }
533     return Changed;
534   }
535 
536   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
537                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
538                    std::vector<std::vector<char>> &DependencyMatrix) {
539     LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
540                       << " and OuterLoopId = " << OuterLoopId << "\n");
541     Loop *InnerLoop = LoopList[InnerLoopId];
542     Loop *OuterLoop = LoopList[OuterLoopId];
543 
544     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
545     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
546       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
547       return false;
548     }
549     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
550     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
551     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
552       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
553       return false;
554     }
555 
556     ORE->emit([&]() {
557       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
558                                 InnerLoop->getStartLoc(),
559                                 InnerLoop->getHeader())
560              << "Loop interchanged with enclosing loop.";
561     });
562 
563     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
564                                  LoopNestExit);
565     LIT.transform();
566     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
567     LoopsInterchanged++;
568     return true;
569   }
570 };
571 
572 } // end anonymous namespace
573 
574 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
575   return any_of(*BB, [](const Instruction &I) {
576     return I.mayHaveSideEffects() || I.mayReadFromMemory();
577   });
578 }
579 
580 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
581   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
582   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
583   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
584 
585   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
586 
587   // A perfectly nested loop will not have any branch in between the outer and
588   // inner block i.e. outer header will branch to either inner preheader and
589   // outerloop latch.
590   BranchInst *OuterLoopHeaderBI =
591       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
592   if (!OuterLoopHeaderBI)
593     return false;
594 
595   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
596     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
597         Succ != OuterLoopLatch)
598       return false;
599 
600   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
601   // We do not have any basic block in between now make sure the outer header
602   // and outer loop latch doesn't contain any unsafe instructions.
603   if (containsUnsafeInstructions(OuterLoopHeader) ||
604       containsUnsafeInstructions(OuterLoopLatch))
605     return false;
606 
607   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
608   // We have a perfect loop nest.
609   return true;
610 }
611 
612 bool LoopInterchangeLegality::isLoopStructureUnderstood(
613     PHINode *InnerInduction) {
614   unsigned Num = InnerInduction->getNumOperands();
615   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
616   for (unsigned i = 0; i < Num; ++i) {
617     Value *Val = InnerInduction->getOperand(i);
618     if (isa<Constant>(Val))
619       continue;
620     Instruction *I = dyn_cast<Instruction>(Val);
621     if (!I)
622       return false;
623     // TODO: Handle triangular loops.
624     // e.g. for(int i=0;i<N;i++)
625     //        for(int j=i;j<N;j++)
626     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
627     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
628             InnerLoopPreheader &&
629         !OuterLoop->isLoopInvariant(I)) {
630       return false;
631     }
632   }
633   return true;
634 }
635 
636 bool LoopInterchangeLegality::findInductions(
637     Loop *L, SmallVector<PHINode *, 8> &Inductions) {
638   if (!L->getLoopLatch() || !L->getLoopPredecessor())
639     return false;
640   for (PHINode &PHI : L->getHeader()->phis()) {
641     RecurrenceDescriptor RD;
642     InductionDescriptor ID;
643     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
644       Inductions.push_back(&PHI);
645     else {
646       LLVM_DEBUG(dbgs() << "Failed to recognize PHI as an induction.\n");
647       return false;
648     }
649   }
650   return true;
651 }
652 
653 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
654   for (PHINode &PHI : Block->phis()) {
655     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
656     if (PHI.getNumIncomingValues() > 1)
657       return false;
658     Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
659     if (!Ins)
660       return false;
661     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
662     // exits lcssa phi else it would not be tightly nested.
663     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
664       return false;
665   }
666   return true;
667 }
668 
669 // This function indicates the current limitations in the transform as a result
670 // of which we do not proceed.
671 bool LoopInterchangeLegality::currentLimitations() {
672   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
673   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
674 
675   // transform currently expects the loop latches to also be the exiting
676   // blocks.
677   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
678       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
679       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
680       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
681     LLVM_DEBUG(
682         dbgs() << "Loops where the latch is not the exiting block are not"
683                << " supported currently.\n");
684     ORE->emit([&]() {
685       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
686                                       OuterLoop->getStartLoc(),
687                                       OuterLoop->getHeader())
688              << "Loops where the latch is not the exiting block cannot be"
689                 " interchange currently.";
690     });
691     return true;
692   }
693 
694   PHINode *InnerInductionVar;
695   SmallVector<PHINode *, 8> Inductions;
696   if (!findInductions(InnerLoop, Inductions)) {
697     LLVM_DEBUG(
698         dbgs() << "Only inner loops with induction or reduction PHI nodes "
699                << "are supported currently.\n");
700     ORE->emit([&]() {
701       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
702                                       InnerLoop->getStartLoc(),
703                                       InnerLoop->getHeader())
704              << "Only inner loops with induction or reduction PHI nodes can be"
705                 " interchange currently.";
706     });
707     return true;
708   }
709 
710   // TODO: Currently we handle only loops with 1 induction variable.
711   if (Inductions.size() != 1) {
712     LLVM_DEBUG(
713         dbgs() << "We currently only support loops with 1 induction variable."
714                << "Failed to interchange due to current limitation\n");
715     ORE->emit([&]() {
716       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
717                                       InnerLoop->getStartLoc(),
718                                       InnerLoop->getHeader())
719              << "Only inner loops with 1 induction variable can be "
720                 "interchanged currently.";
721     });
722     return true;
723   }
724 
725   InnerInductionVar = Inductions.pop_back_val();
726   if (!findInductions(OuterLoop, Inductions)) {
727     LLVM_DEBUG(
728         dbgs() << "Only outer loops with induction or reduction PHI nodes "
729                << "are supported currently.\n");
730     ORE->emit([&]() {
731       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
732                                       OuterLoop->getStartLoc(),
733                                       OuterLoop->getHeader())
734              << "Only outer loops with induction or reduction PHI nodes can be"
735                 " interchanged currently.";
736     });
737     return true;
738   }
739 
740   // TODO: Currently we handle only loops with 1 induction variable.
741   if (Inductions.size() != 1) {
742     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
743                       << "supported currently.\n");
744     ORE->emit([&]() {
745       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
746                                       OuterLoop->getStartLoc(),
747                                       OuterLoop->getHeader())
748              << "Only outer loops with 1 induction variable can be "
749                 "interchanged currently.";
750     });
751     return true;
752   }
753 
754   // TODO: Triangular loops are not handled for now.
755   if (!isLoopStructureUnderstood(InnerInductionVar)) {
756     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
757     ORE->emit([&]() {
758       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
759                                       InnerLoop->getStartLoc(),
760                                       InnerLoop->getHeader())
761              << "Inner loop structure not understood currently.";
762     });
763     return true;
764   }
765 
766   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
767   BasicBlock *InnerExit = InnerLoop->getExitBlock();
768   if (!containsSafePHI(InnerExit, false)) {
769     LLVM_DEBUG(
770         dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
771     ORE->emit([&]() {
772       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
773                                       InnerLoop->getStartLoc(),
774                                       InnerLoop->getHeader())
775              << "Only inner loops with LCSSA PHIs can be interchange "
776                 "currently.";
777     });
778     return true;
779   }
780 
781   // TODO: Current limitation: Since we split the inner loop latch at the point
782   // were induction variable is incremented (induction.next); We cannot have
783   // more than 1 user of induction.next since it would result in broken code
784   // after split.
785   // e.g.
786   // for(i=0;i<N;i++) {
787   //    for(j = 0;j<M;j++) {
788   //      A[j+1][i+2] = A[j][i]+k;
789   //  }
790   // }
791   Instruction *InnerIndexVarInc = nullptr;
792   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
793     InnerIndexVarInc =
794         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
795   else
796     InnerIndexVarInc =
797         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
798 
799   if (!InnerIndexVarInc) {
800     LLVM_DEBUG(
801         dbgs() << "Did not find an instruction to increment the induction "
802                << "variable.\n");
803     ORE->emit([&]() {
804       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
805                                       InnerLoop->getStartLoc(),
806                                       InnerLoop->getHeader())
807              << "The inner loop does not increment the induction variable.";
808     });
809     return true;
810   }
811 
812   // Since we split the inner loop latch on this induction variable. Make sure
813   // we do not have any instruction between the induction variable and branch
814   // instruction.
815 
816   bool FoundInduction = false;
817   for (const Instruction &I :
818        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
819     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
820         isa<ZExtInst>(I))
821       continue;
822 
823     // We found an instruction. If this is not induction variable then it is not
824     // safe to split this loop latch.
825     if (!I.isIdenticalTo(InnerIndexVarInc)) {
826       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
827                         << "variable increment and branch.\n");
828       ORE->emit([&]() {
829         return OptimizationRemarkMissed(
830                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
831                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
832                << "Found unsupported instruction between induction variable "
833                   "increment and branch.";
834       });
835       return true;
836     }
837 
838     FoundInduction = true;
839     break;
840   }
841   // The loop latch ended and we didn't find the induction variable return as
842   // current limitation.
843   if (!FoundInduction) {
844     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
845     ORE->emit([&]() {
846       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
847                                       InnerLoop->getStartLoc(),
848                                       InnerLoop->getHeader())
849              << "Did not find the induction variable.";
850     });
851     return true;
852   }
853   return false;
854 }
855 
856 // We currently support LCSSA PHI nodes in the outer loop exit, if their
857 // incoming values do not come from the outer loop latch or if the
858 // outer loop latch has a single predecessor. In that case, the value will
859 // be available if both the inner and outer loop conditions are true, which
860 // will still be true after interchanging. If we have multiple predecessor,
861 // that may not be the case, e.g. because the outer loop latch may be executed
862 // if the inner loop is not executed.
863 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
864   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
865   for (PHINode &PHI : LoopNestExit->phis()) {
866     //  FIXME: We currently are not able to detect floating point reductions
867     //         and have to use floating point PHIs as a proxy to prevent
868     //         interchanging in the presence of floating point reductions.
869     if (PHI.getType()->isFloatingPointTy())
870       return false;
871     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
872      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
873      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
874        continue;
875 
876      // The incoming value is defined in the outer loop latch. Currently we
877      // only support that in case the outer loop latch has a single predecessor.
878      // This guarantees that the outer loop latch is executed if and only if
879      // the inner loop is executed (because tightlyNested() guarantees that the
880      // outer loop header only branches to the inner loop or the outer loop
881      // latch).
882      // FIXME: We could weaken this logic and allow multiple predecessors,
883      //        if the values are produced outside the loop latch. We would need
884      //        additional logic to update the PHI nodes in the exit block as
885      //        well.
886      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
887        return false;
888     }
889   }
890   return true;
891 }
892 
893 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
894                                                   unsigned OuterLoopId,
895                                                   CharMatrix &DepMatrix) {
896   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
897     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
898                       << " and OuterLoopId = " << OuterLoopId
899                       << " due to dependence\n");
900     ORE->emit([&]() {
901       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
902                                       InnerLoop->getStartLoc(),
903                                       InnerLoop->getHeader())
904              << "Cannot interchange loops due to dependences.";
905     });
906     return false;
907   }
908   // Check if outer and inner loop contain legal instructions only.
909   for (auto *BB : OuterLoop->blocks())
910     for (Instruction &I : BB->instructionsWithoutDebug())
911       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
912         // readnone functions do not prevent interchanging.
913         if (CI->doesNotReadMemory())
914           continue;
915         LLVM_DEBUG(
916             dbgs() << "Loops with call instructions cannot be interchanged "
917                    << "safely.");
918         ORE->emit([&]() {
919           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
920                                           CI->getDebugLoc(),
921                                           CI->getParent())
922                  << "Cannot interchange loops due to call instruction.";
923         });
924 
925         return false;
926       }
927 
928   // TODO: The loops could not be interchanged due to current limitations in the
929   // transform module.
930   if (currentLimitations()) {
931     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
932     return false;
933   }
934 
935   // Check if the loops are tightly nested.
936   if (!tightlyNested(OuterLoop, InnerLoop)) {
937     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
938     ORE->emit([&]() {
939       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
940                                       InnerLoop->getStartLoc(),
941                                       InnerLoop->getHeader())
942              << "Cannot interchange loops because they are not tightly "
943                 "nested.";
944     });
945     return false;
946   }
947 
948   if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
949     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
950     ORE->emit([&]() {
951       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
952                                       OuterLoop->getStartLoc(),
953                                       OuterLoop->getHeader())
954              << "Found unsupported PHI node in loop exit.";
955     });
956     return false;
957   }
958 
959   return true;
960 }
961 
962 int LoopInterchangeProfitability::getInstrOrderCost() {
963   unsigned GoodOrder, BadOrder;
964   BadOrder = GoodOrder = 0;
965   for (BasicBlock *BB : InnerLoop->blocks()) {
966     for (Instruction &Ins : *BB) {
967       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
968         unsigned NumOp = GEP->getNumOperands();
969         bool FoundInnerInduction = false;
970         bool FoundOuterInduction = false;
971         for (unsigned i = 0; i < NumOp; ++i) {
972           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
973           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
974           if (!AR)
975             continue;
976 
977           // If we find the inner induction after an outer induction e.g.
978           // for(int i=0;i<N;i++)
979           //   for(int j=0;j<N;j++)
980           //     A[i][j] = A[i-1][j-1]+k;
981           // then it is a good order.
982           if (AR->getLoop() == InnerLoop) {
983             // We found an InnerLoop induction after OuterLoop induction. It is
984             // a good order.
985             FoundInnerInduction = true;
986             if (FoundOuterInduction) {
987               GoodOrder++;
988               break;
989             }
990           }
991           // If we find the outer induction after an inner induction e.g.
992           // for(int i=0;i<N;i++)
993           //   for(int j=0;j<N;j++)
994           //     A[j][i] = A[j-1][i-1]+k;
995           // then it is a bad order.
996           if (AR->getLoop() == OuterLoop) {
997             // We found an OuterLoop induction after InnerLoop induction. It is
998             // a bad order.
999             FoundOuterInduction = true;
1000             if (FoundInnerInduction) {
1001               BadOrder++;
1002               break;
1003             }
1004           }
1005         }
1006       }
1007     }
1008   }
1009   return GoodOrder - BadOrder;
1010 }
1011 
1012 static bool isProfitableForVectorization(unsigned InnerLoopId,
1013                                          unsigned OuterLoopId,
1014                                          CharMatrix &DepMatrix) {
1015   // TODO: Improve this heuristic to catch more cases.
1016   // If the inner loop is loop independent or doesn't carry any dependency it is
1017   // profitable to move this to outer position.
1018   for (auto &Row : DepMatrix) {
1019     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1020       return false;
1021     // TODO: We need to improve this heuristic.
1022     if (Row[OuterLoopId] != '=')
1023       return false;
1024   }
1025   // If outer loop has dependence and inner loop is loop independent then it is
1026   // profitable to interchange to enable parallelism.
1027   // If there are no dependences, interchanging will not improve anything.
1028   return !DepMatrix.empty();
1029 }
1030 
1031 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1032                                                 unsigned OuterLoopId,
1033                                                 CharMatrix &DepMatrix) {
1034   // TODO: Add better profitability checks.
1035   // e.g
1036   // 1) Construct dependency matrix and move the one with no loop carried dep
1037   //    inside to enable vectorization.
1038 
1039   // This is rough cost estimation algorithm. It counts the good and bad order
1040   // of induction variables in the instruction and allows reordering if number
1041   // of bad orders is more than good.
1042   int Cost = getInstrOrderCost();
1043   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1044   if (Cost < -LoopInterchangeCostThreshold)
1045     return true;
1046 
1047   // It is not profitable as per current cache profitability model. But check if
1048   // we can move this loop outside to improve parallelism.
1049   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1050     return true;
1051 
1052   ORE->emit([&]() {
1053     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1054                                     InnerLoop->getStartLoc(),
1055                                     InnerLoop->getHeader())
1056            << "Interchanging loops is too costly (cost="
1057            << ore::NV("Cost", Cost) << ", threshold="
1058            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1059            << ") and it does not improve parallelism.";
1060   });
1061   return false;
1062 }
1063 
1064 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1065                                                Loop *InnerLoop) {
1066   for (Loop *L : *OuterLoop)
1067     if (L == InnerLoop) {
1068       OuterLoop->removeChildLoop(L);
1069       return;
1070     }
1071   llvm_unreachable("Couldn't find loop");
1072 }
1073 
1074 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1075 /// new inner and outer loop after interchanging: NewInner is the original
1076 /// outer loop and NewOuter is the original inner loop.
1077 ///
1078 /// Before interchanging, we have the following structure
1079 /// Outer preheader
1080 //  Outer header
1081 //    Inner preheader
1082 //    Inner header
1083 //      Inner body
1084 //      Inner latch
1085 //   outer bbs
1086 //   Outer latch
1087 //
1088 // After interchanging:
1089 // Inner preheader
1090 // Inner header
1091 //   Outer preheader
1092 //   Outer header
1093 //     Inner body
1094 //     outer bbs
1095 //     Outer latch
1096 //   Inner latch
1097 void LoopInterchangeTransform::restructureLoops(
1098     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1099     BasicBlock *OrigOuterPreHeader) {
1100   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1101   // The original inner loop preheader moves from the new inner loop to
1102   // the parent loop, if there is one.
1103   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1104   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1105 
1106   // Switch the loop levels.
1107   if (OuterLoopParent) {
1108     // Remove the loop from its parent loop.
1109     removeChildLoop(OuterLoopParent, NewInner);
1110     removeChildLoop(NewInner, NewOuter);
1111     OuterLoopParent->addChildLoop(NewOuter);
1112   } else {
1113     removeChildLoop(NewInner, NewOuter);
1114     LI->changeTopLevelLoop(NewInner, NewOuter);
1115   }
1116   while (!NewOuter->empty())
1117     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1118   NewOuter->addChildLoop(NewInner);
1119 
1120   // BBs from the original inner loop.
1121   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1122 
1123   // Add BBs from the original outer loop to the original inner loop (excluding
1124   // BBs already in inner loop)
1125   for (BasicBlock *BB : NewInner->blocks())
1126     if (LI->getLoopFor(BB) == NewInner)
1127       NewOuter->addBlockEntry(BB);
1128 
1129   // Now remove inner loop header and latch from the new inner loop and move
1130   // other BBs (the loop body) to the new inner loop.
1131   BasicBlock *OuterHeader = NewOuter->getHeader();
1132   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1133   for (BasicBlock *BB : OrigInnerBBs) {
1134     // Nothing will change for BBs in child loops.
1135     if (LI->getLoopFor(BB) != NewOuter)
1136       continue;
1137     // Remove the new outer loop header and latch from the new inner loop.
1138     if (BB == OuterHeader || BB == OuterLatch)
1139       NewInner->removeBlockFromLoop(BB);
1140     else
1141       LI->changeLoopFor(BB, NewInner);
1142   }
1143 
1144   // The preheader of the original outer loop becomes part of the new
1145   // outer loop.
1146   NewOuter->addBlockEntry(OrigOuterPreHeader);
1147   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1148 
1149   // Tell SE that we move the loops around.
1150   SE->forgetLoop(NewOuter);
1151   SE->forgetLoop(NewInner);
1152 }
1153 
1154 bool LoopInterchangeTransform::transform() {
1155   bool Transformed = false;
1156   Instruction *InnerIndexVar;
1157 
1158   if (InnerLoop->getSubLoops().empty()) {
1159     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1160     LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
1161     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1162     if (!InductionPHI) {
1163       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1164       return false;
1165     }
1166 
1167     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1168       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1169     else
1170       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1171 
1172     // Ensure that InductionPHI is the first Phi node.
1173     if (&InductionPHI->getParent()->front() != InductionPHI)
1174       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1175 
1176     // Split at the place were the induction variable is
1177     // incremented/decremented.
1178     // TODO: This splitting logic may not work always. Fix this.
1179     splitInnerLoopLatch(InnerIndexVar);
1180     LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1181 
1182     // Splits the inner loops phi nodes out into a separate basic block.
1183     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1184     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1185     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1186   }
1187 
1188   Transformed |= adjustLoopLinks();
1189   if (!Transformed) {
1190     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1191     return false;
1192   }
1193 
1194   return true;
1195 }
1196 
1197 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1198   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1199   BasicBlock *InnerLoopLatchPred = InnerLoopLatch;
1200   InnerLoopLatch = SplitBlock(InnerLoopLatchPred, Inc, DT, LI);
1201 }
1202 
1203 /// \brief Move all instructions except the terminator from FromBB right before
1204 /// InsertBefore
1205 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1206   auto &ToList = InsertBefore->getParent()->getInstList();
1207   auto &FromList = FromBB->getInstList();
1208 
1209   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1210                 FromBB->getTerminator()->getIterator());
1211 }
1212 
1213 static void updateIncomingBlock(BasicBlock *CurrBlock, BasicBlock *OldPred,
1214                                 BasicBlock *NewPred) {
1215   for (PHINode &PHI : CurrBlock->phis()) {
1216     unsigned Num = PHI.getNumIncomingValues();
1217     for (unsigned i = 0; i < Num; ++i) {
1218       if (PHI.getIncomingBlock(i) == OldPred)
1219         PHI.setIncomingBlock(i, NewPred);
1220     }
1221   }
1222 }
1223 
1224 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1225 /// the dominator tree in DTUpdates, if DT should be preserved.
1226 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1227                             BasicBlock *NewBB,
1228                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1229   assert(llvm::count_if(successors(BI),
1230                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1231          "BI must jump to OldBB at most once.");
1232   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1233     if (BI->getSuccessor(i) == OldBB) {
1234       BI->setSuccessor(i, NewBB);
1235 
1236       DTUpdates.push_back(
1237           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1238       DTUpdates.push_back(
1239           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1240       break;
1241     }
1242   }
1243 }
1244 
1245 // Move Lcssa PHIs to the right place.
1246 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerLatch,
1247                           BasicBlock *OuterLatch) {
1248   SmallVector<PHINode *, 8> LcssaInnerExit;
1249   for (PHINode &P : InnerExit->phis())
1250     LcssaInnerExit.push_back(&P);
1251 
1252   SmallVector<PHINode *, 8> LcssaInnerLatch;
1253   for (PHINode &P : InnerLatch->phis())
1254     LcssaInnerLatch.push_back(&P);
1255 
1256   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1257   // If a PHI node has users outside of InnerExit, it has a use outside the
1258   // interchanged loop and we have to preserve it. We move these to
1259   // InnerLatch, which will become the new exit block for the innermost
1260   // loop after interchanging. For PHIs only used in InnerExit, we can just
1261   // replace them with the incoming value.
1262   for (PHINode *P : LcssaInnerExit) {
1263     bool hasUsersOutside = false;
1264     for (auto UI = P->use_begin(), E = P->use_end(); UI != E;) {
1265       Use &U = *UI;
1266       ++UI;
1267       auto *Usr = cast<Instruction>(U.getUser());
1268       if (Usr->getParent() != InnerExit) {
1269         hasUsersOutside = true;
1270         continue;
1271       }
1272       U.set(P->getIncomingValueForBlock(InnerLatch));
1273     }
1274     if (hasUsersOutside)
1275       P->moveBefore(InnerLatch->getFirstNonPHI());
1276     else
1277       P->eraseFromParent();
1278   }
1279 
1280   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1281   // and we have to move them to the new inner latch.
1282   for (PHINode *P : LcssaInnerLatch)
1283     P->moveBefore(InnerExit->getFirstNonPHI());
1284 
1285   // Now adjust the incoming blocks for the LCSSA PHIs.
1286   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1287   // with the new latch.
1288   updateIncomingBlock(InnerLatch, InnerLatch, OuterLatch);
1289 }
1290 
1291 bool LoopInterchangeTransform::adjustLoopBranches() {
1292   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1293   std::vector<DominatorTree::UpdateType> DTUpdates;
1294 
1295   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1296   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1297 
1298   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1299          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1300          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1301   // Ensure that both preheaders do not contain PHI nodes and have single
1302   // predecessors. This allows us to move them easily. We use
1303   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1304   // preheaders do not satisfy those conditions.
1305   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1306       !OuterLoopPreHeader->getUniquePredecessor())
1307     OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, DT, LI, true);
1308   if (InnerLoopPreHeader == OuterLoop->getHeader())
1309     InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, DT, LI, true);
1310 
1311   // Adjust the loop preheader
1312   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1313   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1314   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1315   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1316   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1317   BasicBlock *InnerLoopLatchPredecessor =
1318       InnerLoopLatch->getUniquePredecessor();
1319   BasicBlock *InnerLoopLatchSuccessor;
1320   BasicBlock *OuterLoopLatchSuccessor;
1321 
1322   BranchInst *OuterLoopLatchBI =
1323       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1324   BranchInst *InnerLoopLatchBI =
1325       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1326   BranchInst *OuterLoopHeaderBI =
1327       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1328   BranchInst *InnerLoopHeaderBI =
1329       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1330 
1331   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1332       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1333       !InnerLoopHeaderBI)
1334     return false;
1335 
1336   BranchInst *InnerLoopLatchPredecessorBI =
1337       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1338   BranchInst *OuterLoopPredecessorBI =
1339       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1340 
1341   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1342     return false;
1343   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1344   if (!InnerLoopHeaderSuccessor)
1345     return false;
1346 
1347   // Adjust Loop Preheader and headers
1348   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1349                   InnerLoopPreHeader, DTUpdates);
1350   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1351   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1352                   InnerLoopHeaderSuccessor, DTUpdates);
1353 
1354   // Adjust reduction PHI's now that the incoming block has changed.
1355   updateIncomingBlock(InnerLoopHeaderSuccessor, InnerLoopHeader,
1356                       OuterLoopHeader);
1357 
1358   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1359                   OuterLoopPreHeader, DTUpdates);
1360 
1361   // -------------Adjust loop latches-----------
1362   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1363     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1364   else
1365     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1366 
1367   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1368                   InnerLoopLatchSuccessor, DTUpdates);
1369 
1370 
1371   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1372     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1373   else
1374     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1375 
1376   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1377                   OuterLoopLatchSuccessor, DTUpdates);
1378   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1379                   DTUpdates);
1380 
1381   DT->applyUpdates(DTUpdates);
1382   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1383                    OuterLoopPreHeader);
1384 
1385   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopLatch, OuterLoopLatch);
1386   // For PHIs in the exit block of the outer loop, outer's latch has been
1387   // replaced by Inners'.
1388   updateIncomingBlock(OuterLoopLatchSuccessor, OuterLoopLatch, InnerLoopLatch);
1389 
1390   // Make sure we have no other PHIs.
1391   auto InnerPhis = drop_begin(InnerLoopHeader->phis(), 1);
1392   auto OuterPhis = drop_begin(OuterLoopHeader->phis(), 1);
1393   (void) InnerPhis;
1394   (void) OuterPhis;
1395   assert(begin(InnerPhis) == end(InnerPhis) && "Unexpected PHIs in inner loop");
1396   assert(begin(OuterPhis) == end(OuterPhis) && "Unexpected PHis in outer loop");
1397 
1398   // Update the incoming blocks for moved PHI nodes.
1399   updateIncomingBlock(OuterLoopHeader, InnerLoopPreHeader, OuterLoopPreHeader);
1400   updateIncomingBlock(OuterLoopHeader, InnerLoopLatch, OuterLoopLatch);
1401   updateIncomingBlock(InnerLoopHeader, OuterLoopPreHeader, InnerLoopPreHeader);
1402   updateIncomingBlock(InnerLoopHeader, OuterLoopLatch, InnerLoopLatch);
1403 
1404   return true;
1405 }
1406 
1407 void LoopInterchangeTransform::adjustLoopPreheaders() {
1408   // We have interchanged the preheaders so we need to interchange the data in
1409   // the preheader as well.
1410   // This is because the content of inner preheader was previously executed
1411   // inside the outer loop.
1412   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1413   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1414   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1415   BranchInst *InnerTermBI =
1416       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1417 
1418   // These instructions should now be executed inside the loop.
1419   // Move instruction into a new block after outer header.
1420   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1421   // These instructions were not executed previously in the loop so move them to
1422   // the older inner loop preheader.
1423   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1424 }
1425 
1426 bool LoopInterchangeTransform::adjustLoopLinks() {
1427   // Adjust all branches in the inner and outer loop.
1428   bool Changed = adjustLoopBranches();
1429   if (Changed)
1430     adjustLoopPreheaders();
1431   return Changed;
1432 }
1433 
1434 char LoopInterchange::ID = 0;
1435 
1436 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1437                       "Interchanges loops for cache reuse", false, false)
1438 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1439 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1440 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1441 
1442 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1443                     "Interchanges loops for cache reuse", false, false)
1444 
1445 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1446