1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 if (Src == Dst) 123 continue; 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 const SCEV *Distance = D->getDistance(II); 139 const SCEVConstant *SCEVConst = 140 dyn_cast_or_null<SCEVConstant>(Distance); 141 if (SCEVConst) { 142 const ConstantInt *CI = SCEVConst->getValue(); 143 if (CI->isNegative()) 144 Direction = '<'; 145 else if (CI->isZero()) 146 Direction = '='; 147 else 148 Direction = '>'; 149 Dep.push_back(Direction); 150 } else if (D->isScalar(II)) { 151 Direction = 'S'; 152 Dep.push_back(Direction); 153 } else { 154 unsigned Dir = D->getDirection(II); 155 if (Dir == Dependence::DVEntry::LT || 156 Dir == Dependence::DVEntry::LE) 157 Direction = '<'; 158 else if (Dir == Dependence::DVEntry::GT || 159 Dir == Dependence::DVEntry::GE) 160 Direction = '>'; 161 else if (Dir == Dependence::DVEntry::EQ) 162 Direction = '='; 163 else 164 Direction = '*'; 165 Dep.push_back(Direction); 166 } 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 DepMatrix.push_back(Dep); 173 if (DepMatrix.size() > MaxMemInstrCount) { 174 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 175 << " dependencies inside loop\n"); 176 return false; 177 } 178 } 179 } 180 } 181 182 return true; 183 } 184 185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 186 // matrix by exchanging the two columns. 187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 188 unsigned ToIndx) { 189 unsigned numRows = DepMatrix.size(); 190 for (unsigned i = 0; i < numRows; ++i) { 191 char TmpVal = DepMatrix[i][ToIndx]; 192 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 193 DepMatrix[i][FromIndx] = TmpVal; 194 } 195 } 196 197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 198 // '>' 199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 200 unsigned Column) { 201 for (unsigned i = 0; i <= Column; ++i) { 202 if (DepMatrix[Row][i] == '<') 203 return false; 204 if (DepMatrix[Row][i] == '>') 205 return true; 206 } 207 // All dependencies were '=','S' or 'I' 208 return false; 209 } 210 211 // Checks if no dependence exist in the dependency matrix in Row before Column. 212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 213 unsigned Column) { 214 for (unsigned i = 0; i < Column; ++i) { 215 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 216 DepMatrix[Row][i] != 'I') 217 return false; 218 } 219 return true; 220 } 221 222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 223 unsigned OuterLoopId, char InnerDep, 224 char OuterDep) { 225 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 226 return false; 227 228 if (InnerDep == OuterDep) 229 return true; 230 231 // It is legal to interchange if and only if after interchange no row has a 232 // '>' direction as the leftmost non-'='. 233 234 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 235 return true; 236 237 if (InnerDep == '<') 238 return true; 239 240 if (InnerDep == '>') { 241 // If OuterLoopId represents outermost loop then interchanging will make the 242 // 1st dependency as '>' 243 if (OuterLoopId == 0) 244 return false; 245 246 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 247 // interchanging will result in this row having an outermost non '=' 248 // dependency of '>' 249 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 250 return true; 251 } 252 253 return false; 254 } 255 256 // Checks if it is legal to interchange 2 loops. 257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 258 // if the direction matrix, after the same permutation is applied to its 259 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 260 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 261 unsigned InnerLoopId, 262 unsigned OuterLoopId) { 263 unsigned NumRows = DepMatrix.size(); 264 // For each row check if it is valid to interchange. 265 for (unsigned Row = 0; Row < NumRows; ++Row) { 266 char InnerDep = DepMatrix[Row][InnerLoopId]; 267 char OuterDep = DepMatrix[Row][OuterLoopId]; 268 if (InnerDep == '*' || OuterDep == '*') 269 return false; 270 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 271 return false; 272 } 273 return true; 274 } 275 276 static LoopVector populateWorklist(Loop &L) { 277 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 278 << L.getHeader()->getParent()->getName() << " Loop: %" 279 << L.getHeader()->getName() << '\n'); 280 LoopVector LoopList; 281 Loop *CurrentLoop = &L; 282 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 283 while (!Vec->empty()) { 284 // The current loop has multiple subloops in it hence it is not tightly 285 // nested. 286 // Discard all loops above it added into Worklist. 287 if (Vec->size() != 1) 288 return {}; 289 290 LoopList.push_back(CurrentLoop); 291 CurrentLoop = Vec->front(); 292 Vec = &CurrentLoop->getSubLoops(); 293 } 294 LoopList.push_back(CurrentLoop); 295 return LoopList; 296 } 297 298 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 299 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 300 if (InnerIndexVar) 301 return InnerIndexVar; 302 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 303 return nullptr; 304 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 305 PHINode *PhiVar = cast<PHINode>(I); 306 Type *PhiTy = PhiVar->getType(); 307 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 308 !PhiTy->isPointerTy()) 309 return nullptr; 310 const SCEVAddRecExpr *AddRec = 311 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 312 if (!AddRec || !AddRec->isAffine()) 313 continue; 314 const SCEV *Step = AddRec->getStepRecurrence(*SE); 315 if (!isa<SCEVConstant>(Step)) 316 continue; 317 // Found the induction variable. 318 // FIXME: Handle loops with more than one induction variable. Note that, 319 // currently, legality makes sure we have only one induction variable. 320 return PhiVar; 321 } 322 return nullptr; 323 } 324 325 namespace { 326 327 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 328 class LoopInterchangeLegality { 329 public: 330 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 331 OptimizationRemarkEmitter *ORE) 332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 333 334 /// Check if the loops can be interchanged. 335 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 336 CharMatrix &DepMatrix); 337 338 /// Check if the loop structure is understood. We do not handle triangular 339 /// loops for now. 340 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 341 342 bool currentLimitations(); 343 344 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 345 return OuterInnerReductions; 346 } 347 348 private: 349 bool tightlyNested(Loop *Outer, Loop *Inner); 350 bool containsUnsafeInstructions(BasicBlock *BB); 351 352 /// Discover induction and reduction PHIs in the header of \p L. Induction 353 /// PHIs are added to \p Inductions, reductions are added to 354 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 355 /// to be passed as \p InnerLoop. 356 bool findInductionAndReductions(Loop *L, 357 SmallVector<PHINode *, 8> &Inductions, 358 Loop *InnerLoop); 359 360 Loop *OuterLoop; 361 Loop *InnerLoop; 362 363 ScalarEvolution *SE; 364 365 /// Interface to emit optimization remarks. 366 OptimizationRemarkEmitter *ORE; 367 368 /// Set of reduction PHIs taking part of a reduction across the inner and 369 /// outer loop. 370 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 371 }; 372 373 /// LoopInterchangeProfitability checks if it is profitable to interchange the 374 /// loop. 375 class LoopInterchangeProfitability { 376 public: 377 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 378 OptimizationRemarkEmitter *ORE) 379 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 380 381 /// Check if the loop interchange is profitable. 382 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 383 CharMatrix &DepMatrix); 384 385 private: 386 int getInstrOrderCost(); 387 388 Loop *OuterLoop; 389 Loop *InnerLoop; 390 391 /// Scev analysis. 392 ScalarEvolution *SE; 393 394 /// Interface to emit optimization remarks. 395 OptimizationRemarkEmitter *ORE; 396 }; 397 398 /// LoopInterchangeTransform interchanges the loop. 399 class LoopInterchangeTransform { 400 public: 401 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 402 LoopInfo *LI, DominatorTree *DT, 403 BasicBlock *LoopNestExit, 404 const LoopInterchangeLegality &LIL) 405 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 406 LoopExit(LoopNestExit), LIL(LIL) {} 407 408 /// Interchange OuterLoop and InnerLoop. 409 bool transform(); 410 void restructureLoops(Loop *NewInner, Loop *NewOuter, 411 BasicBlock *OrigInnerPreHeader, 412 BasicBlock *OrigOuterPreHeader); 413 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 414 415 private: 416 bool adjustLoopLinks(); 417 bool adjustLoopBranches(); 418 419 Loop *OuterLoop; 420 Loop *InnerLoop; 421 422 /// Scev analysis. 423 ScalarEvolution *SE; 424 425 LoopInfo *LI; 426 DominatorTree *DT; 427 BasicBlock *LoopExit; 428 429 const LoopInterchangeLegality &LIL; 430 }; 431 432 struct LoopInterchange { 433 ScalarEvolution *SE = nullptr; 434 LoopInfo *LI = nullptr; 435 DependenceInfo *DI = nullptr; 436 DominatorTree *DT = nullptr; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 442 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 443 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 444 445 bool run(Loop *L) { 446 if (L->getParentLoop()) 447 return false; 448 449 return processLoopList(populateWorklist(*L)); 450 } 451 452 bool isComputableLoopNest(LoopVector LoopList) { 453 for (Loop *L : LoopList) { 454 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 455 if (ExitCountOuter == SE->getCouldNotCompute()) { 456 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 457 return false; 458 } 459 if (L->getNumBackEdges() != 1) { 460 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 461 return false; 462 } 463 if (!L->getExitingBlock()) { 464 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 465 return false; 466 } 467 } 468 return true; 469 } 470 471 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 472 // TODO: Add a better heuristic to select the loop to be interchanged based 473 // on the dependence matrix. Currently we select the innermost loop. 474 return LoopList.size() - 1; 475 } 476 477 bool processLoopList(LoopVector LoopList) { 478 bool Changed = false; 479 unsigned LoopNestDepth = LoopList.size(); 480 if (LoopNestDepth < 2) { 481 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 482 return false; 483 } 484 if (LoopNestDepth > MaxLoopNestDepth) { 485 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 486 << MaxLoopNestDepth << "\n"); 487 return false; 488 } 489 if (!isComputableLoopNest(LoopList)) { 490 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 491 return false; 492 } 493 494 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 495 << "\n"); 496 497 CharMatrix DependencyMatrix; 498 Loop *OuterMostLoop = *(LoopList.begin()); 499 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 500 OuterMostLoop, DI)) { 501 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 502 return false; 503 } 504 #ifdef DUMP_DEP_MATRICIES 505 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 506 printDepMatrix(DependencyMatrix); 507 #endif 508 509 // Get the Outermost loop exit. 510 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 511 if (!LoopNestExit) { 512 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 513 return false; 514 } 515 516 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 517 // Move the selected loop outwards to the best possible position. 518 for (unsigned i = SelecLoopId; i > 0; i--) { 519 bool Interchanged = 520 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 521 if (!Interchanged) 522 return Changed; 523 // Loops interchanged reflect the same in LoopList 524 std::swap(LoopList[i - 1], LoopList[i]); 525 526 // Update the DependencyMatrix 527 interChangeDependencies(DependencyMatrix, i, i - 1); 528 #ifdef DUMP_DEP_MATRICIES 529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 530 printDepMatrix(DependencyMatrix); 531 #endif 532 Changed |= Interchanged; 533 } 534 return Changed; 535 } 536 537 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 538 unsigned OuterLoopId, BasicBlock *LoopNestExit, 539 std::vector<std::vector<char>> &DependencyMatrix) { 540 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 541 << " and OuterLoopId = " << OuterLoopId << "\n"); 542 Loop *InnerLoop = LoopList[InnerLoopId]; 543 Loop *OuterLoop = LoopList[OuterLoopId]; 544 545 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 546 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 547 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 548 return false; 549 } 550 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 551 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 552 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 553 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 554 return false; 555 } 556 557 ORE->emit([&]() { 558 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 559 InnerLoop->getStartLoc(), 560 InnerLoop->getHeader()) 561 << "Loop interchanged with enclosing loop."; 562 }); 563 564 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 565 LIL); 566 LIT.transform(); 567 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 568 LoopsInterchanged++; 569 570 assert(InnerLoop->isLCSSAForm(*DT) && 571 "Inner loop not left in LCSSA form after loop interchange!"); 572 assert(OuterLoop->isLCSSAForm(*DT) && 573 "Outer loop not left in LCSSA form after loop interchange!"); 574 575 return true; 576 } 577 }; 578 579 } // end anonymous namespace 580 581 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 582 return any_of(*BB, [](const Instruction &I) { 583 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 584 }); 585 } 586 587 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 588 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 589 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 590 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 591 592 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 593 594 // A perfectly nested loop will not have any branch in between the outer and 595 // inner block i.e. outer header will branch to either inner preheader and 596 // outerloop latch. 597 BranchInst *OuterLoopHeaderBI = 598 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 599 if (!OuterLoopHeaderBI) 600 return false; 601 602 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 603 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 604 Succ != OuterLoopLatch) 605 return false; 606 607 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 608 // We do not have any basic block in between now make sure the outer header 609 // and outer loop latch doesn't contain any unsafe instructions. 610 if (containsUnsafeInstructions(OuterLoopHeader) || 611 containsUnsafeInstructions(OuterLoopLatch)) 612 return false; 613 614 // Also make sure the inner loop preheader does not contain any unsafe 615 // instructions. Note that all instructions in the preheader will be moved to 616 // the outer loop header when interchanging. 617 if (InnerLoopPreHeader != OuterLoopHeader && 618 containsUnsafeInstructions(InnerLoopPreHeader)) 619 return false; 620 621 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 622 // We have a perfect loop nest. 623 return true; 624 } 625 626 bool LoopInterchangeLegality::isLoopStructureUnderstood( 627 PHINode *InnerInduction) { 628 unsigned Num = InnerInduction->getNumOperands(); 629 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 630 for (unsigned i = 0; i < Num; ++i) { 631 Value *Val = InnerInduction->getOperand(i); 632 if (isa<Constant>(Val)) 633 continue; 634 Instruction *I = dyn_cast<Instruction>(Val); 635 if (!I) 636 return false; 637 // TODO: Handle triangular loops. 638 // e.g. for(int i=0;i<N;i++) 639 // for(int j=i;j<N;j++) 640 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 641 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 642 InnerLoopPreheader && 643 !OuterLoop->isLoopInvariant(I)) { 644 return false; 645 } 646 } 647 return true; 648 } 649 650 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 651 // value. 652 static Value *followLCSSA(Value *SV) { 653 PHINode *PHI = dyn_cast<PHINode>(SV); 654 if (!PHI) 655 return SV; 656 657 if (PHI->getNumIncomingValues() != 1) 658 return SV; 659 return followLCSSA(PHI->getIncomingValue(0)); 660 } 661 662 // Check V's users to see if it is involved in a reduction in L. 663 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 664 for (Value *User : V->users()) { 665 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 666 if (PHI->getNumIncomingValues() == 1) 667 continue; 668 RecurrenceDescriptor RD; 669 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 670 return PHI; 671 return nullptr; 672 } 673 } 674 675 return nullptr; 676 } 677 678 bool LoopInterchangeLegality::findInductionAndReductions( 679 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 680 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 681 return false; 682 for (PHINode &PHI : L->getHeader()->phis()) { 683 RecurrenceDescriptor RD; 684 InductionDescriptor ID; 685 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 686 Inductions.push_back(&PHI); 687 else { 688 // PHIs in inner loops need to be part of a reduction in the outer loop, 689 // discovered when checking the PHIs of the outer loop earlier. 690 if (!InnerLoop) { 691 if (!OuterInnerReductions.count(&PHI)) { 692 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 693 "across the outer loop.\n"); 694 return false; 695 } 696 } else { 697 assert(PHI.getNumIncomingValues() == 2 && 698 "Phis in loop header should have exactly 2 incoming values"); 699 // Check if we have a PHI node in the outer loop that has a reduction 700 // result from the inner loop as an incoming value. 701 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 702 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 703 if (!InnerRedPhi || 704 !llvm::any_of(InnerRedPhi->incoming_values(), 705 [&PHI](Value *V) { return V == &PHI; })) { 706 LLVM_DEBUG( 707 dbgs() 708 << "Failed to recognize PHI as an induction or reduction.\n"); 709 return false; 710 } 711 OuterInnerReductions.insert(&PHI); 712 OuterInnerReductions.insert(InnerRedPhi); 713 } 714 } 715 } 716 return true; 717 } 718 719 // This function indicates the current limitations in the transform as a result 720 // of which we do not proceed. 721 bool LoopInterchangeLegality::currentLimitations() { 722 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 723 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 724 725 // transform currently expects the loop latches to also be the exiting 726 // blocks. 727 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 728 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 729 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 730 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 731 LLVM_DEBUG( 732 dbgs() << "Loops where the latch is not the exiting block are not" 733 << " supported currently.\n"); 734 ORE->emit([&]() { 735 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 736 OuterLoop->getStartLoc(), 737 OuterLoop->getHeader()) 738 << "Loops where the latch is not the exiting block cannot be" 739 " interchange currently."; 740 }); 741 return true; 742 } 743 744 PHINode *InnerInductionVar; 745 SmallVector<PHINode *, 8> Inductions; 746 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 747 LLVM_DEBUG( 748 dbgs() << "Only outer loops with induction or reduction PHI nodes " 749 << "are supported currently.\n"); 750 ORE->emit([&]() { 751 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 752 OuterLoop->getStartLoc(), 753 OuterLoop->getHeader()) 754 << "Only outer loops with induction or reduction PHI nodes can be" 755 " interchanged currently."; 756 }); 757 return true; 758 } 759 760 // TODO: Currently we handle only loops with 1 induction variable. 761 if (Inductions.size() != 1) { 762 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 763 << "supported currently.\n"); 764 ORE->emit([&]() { 765 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 766 OuterLoop->getStartLoc(), 767 OuterLoop->getHeader()) 768 << "Only outer loops with 1 induction variable can be " 769 "interchanged currently."; 770 }); 771 return true; 772 } 773 774 Inductions.clear(); 775 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 776 LLVM_DEBUG( 777 dbgs() << "Only inner loops with induction or reduction PHI nodes " 778 << "are supported currently.\n"); 779 ORE->emit([&]() { 780 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 781 InnerLoop->getStartLoc(), 782 InnerLoop->getHeader()) 783 << "Only inner loops with induction or reduction PHI nodes can be" 784 " interchange currently."; 785 }); 786 return true; 787 } 788 789 // TODO: Currently we handle only loops with 1 induction variable. 790 if (Inductions.size() != 1) { 791 LLVM_DEBUG( 792 dbgs() << "We currently only support loops with 1 induction variable." 793 << "Failed to interchange due to current limitation\n"); 794 ORE->emit([&]() { 795 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 796 InnerLoop->getStartLoc(), 797 InnerLoop->getHeader()) 798 << "Only inner loops with 1 induction variable can be " 799 "interchanged currently."; 800 }); 801 return true; 802 } 803 InnerInductionVar = Inductions.pop_back_val(); 804 805 // TODO: Triangular loops are not handled for now. 806 if (!isLoopStructureUnderstood(InnerInductionVar)) { 807 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 808 ORE->emit([&]() { 809 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 810 InnerLoop->getStartLoc(), 811 InnerLoop->getHeader()) 812 << "Inner loop structure not understood currently."; 813 }); 814 return true; 815 } 816 817 // TODO: Current limitation: Since we split the inner loop latch at the point 818 // were induction variable is incremented (induction.next); We cannot have 819 // more than 1 user of induction.next since it would result in broken code 820 // after split. 821 // e.g. 822 // for(i=0;i<N;i++) { 823 // for(j = 0;j<M;j++) { 824 // A[j+1][i+2] = A[j][i]+k; 825 // } 826 // } 827 Instruction *InnerIndexVarInc = nullptr; 828 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 829 InnerIndexVarInc = 830 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 831 else 832 InnerIndexVarInc = 833 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 834 835 if (!InnerIndexVarInc) { 836 LLVM_DEBUG( 837 dbgs() << "Did not find an instruction to increment the induction " 838 << "variable.\n"); 839 ORE->emit([&]() { 840 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 841 InnerLoop->getStartLoc(), 842 InnerLoop->getHeader()) 843 << "The inner loop does not increment the induction variable."; 844 }); 845 return true; 846 } 847 848 // Since we split the inner loop latch on this induction variable. Make sure 849 // we do not have any instruction between the induction variable and branch 850 // instruction. 851 852 bool FoundInduction = false; 853 for (const Instruction &I : 854 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 855 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 856 isa<ZExtInst>(I)) 857 continue; 858 859 // We found an instruction. If this is not induction variable then it is not 860 // safe to split this loop latch. 861 if (!I.isIdenticalTo(InnerIndexVarInc)) { 862 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 863 << "variable increment and branch.\n"); 864 ORE->emit([&]() { 865 return OptimizationRemarkMissed( 866 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 867 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 868 << "Found unsupported instruction between induction variable " 869 "increment and branch."; 870 }); 871 return true; 872 } 873 874 FoundInduction = true; 875 break; 876 } 877 // The loop latch ended and we didn't find the induction variable return as 878 // current limitation. 879 if (!FoundInduction) { 880 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 881 ORE->emit([&]() { 882 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 883 InnerLoop->getStartLoc(), 884 InnerLoop->getHeader()) 885 << "Did not find the induction variable."; 886 }); 887 return true; 888 } 889 return false; 890 } 891 892 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 893 // users are either reduction PHIs or PHIs outside the outer loop (which means 894 // the we are only interested in the final value after the loop). 895 static bool 896 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 897 SmallPtrSetImpl<PHINode *> &Reductions) { 898 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 899 for (PHINode &PHI : InnerExit->phis()) { 900 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 901 if (PHI.getNumIncomingValues() > 1) 902 return false; 903 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 904 PHINode *PN = dyn_cast<PHINode>(U); 905 return !PN || 906 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 907 })) { 908 return false; 909 } 910 } 911 return true; 912 } 913 914 // We currently support LCSSA PHI nodes in the outer loop exit, if their 915 // incoming values do not come from the outer loop latch or if the 916 // outer loop latch has a single predecessor. In that case, the value will 917 // be available if both the inner and outer loop conditions are true, which 918 // will still be true after interchanging. If we have multiple predecessor, 919 // that may not be the case, e.g. because the outer loop latch may be executed 920 // if the inner loop is not executed. 921 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 922 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 923 for (PHINode &PHI : LoopNestExit->phis()) { 924 // FIXME: We currently are not able to detect floating point reductions 925 // and have to use floating point PHIs as a proxy to prevent 926 // interchanging in the presence of floating point reductions. 927 if (PHI.getType()->isFloatingPointTy()) 928 return false; 929 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 930 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 931 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 932 continue; 933 934 // The incoming value is defined in the outer loop latch. Currently we 935 // only support that in case the outer loop latch has a single predecessor. 936 // This guarantees that the outer loop latch is executed if and only if 937 // the inner loop is executed (because tightlyNested() guarantees that the 938 // outer loop header only branches to the inner loop or the outer loop 939 // latch). 940 // FIXME: We could weaken this logic and allow multiple predecessors, 941 // if the values are produced outside the loop latch. We would need 942 // additional logic to update the PHI nodes in the exit block as 943 // well. 944 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 945 return false; 946 } 947 } 948 return true; 949 } 950 951 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 952 unsigned OuterLoopId, 953 CharMatrix &DepMatrix) { 954 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 955 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 956 << " and OuterLoopId = " << OuterLoopId 957 << " due to dependence\n"); 958 ORE->emit([&]() { 959 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 960 InnerLoop->getStartLoc(), 961 InnerLoop->getHeader()) 962 << "Cannot interchange loops due to dependences."; 963 }); 964 return false; 965 } 966 // Check if outer and inner loop contain legal instructions only. 967 for (auto *BB : OuterLoop->blocks()) 968 for (Instruction &I : BB->instructionsWithoutDebug()) 969 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 970 // readnone functions do not prevent interchanging. 971 if (CI->doesNotReadMemory()) 972 continue; 973 LLVM_DEBUG( 974 dbgs() << "Loops with call instructions cannot be interchanged " 975 << "safely."); 976 ORE->emit([&]() { 977 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 978 CI->getDebugLoc(), 979 CI->getParent()) 980 << "Cannot interchange loops due to call instruction."; 981 }); 982 983 return false; 984 } 985 986 // TODO: The loops could not be interchanged due to current limitations in the 987 // transform module. 988 if (currentLimitations()) { 989 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 990 return false; 991 } 992 993 // Check if the loops are tightly nested. 994 if (!tightlyNested(OuterLoop, InnerLoop)) { 995 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 996 ORE->emit([&]() { 997 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 998 InnerLoop->getStartLoc(), 999 InnerLoop->getHeader()) 1000 << "Cannot interchange loops because they are not tightly " 1001 "nested."; 1002 }); 1003 return false; 1004 } 1005 1006 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1007 OuterInnerReductions)) { 1008 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1009 ORE->emit([&]() { 1010 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1011 InnerLoop->getStartLoc(), 1012 InnerLoop->getHeader()) 1013 << "Found unsupported PHI node in loop exit."; 1014 }); 1015 return false; 1016 } 1017 1018 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1019 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1020 ORE->emit([&]() { 1021 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1022 OuterLoop->getStartLoc(), 1023 OuterLoop->getHeader()) 1024 << "Found unsupported PHI node in loop exit."; 1025 }); 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 1032 int LoopInterchangeProfitability::getInstrOrderCost() { 1033 unsigned GoodOrder, BadOrder; 1034 BadOrder = GoodOrder = 0; 1035 for (BasicBlock *BB : InnerLoop->blocks()) { 1036 for (Instruction &Ins : *BB) { 1037 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1038 unsigned NumOp = GEP->getNumOperands(); 1039 bool FoundInnerInduction = false; 1040 bool FoundOuterInduction = false; 1041 for (unsigned i = 0; i < NumOp; ++i) { 1042 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1043 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1044 if (!AR) 1045 continue; 1046 1047 // If we find the inner induction after an outer induction e.g. 1048 // for(int i=0;i<N;i++) 1049 // for(int j=0;j<N;j++) 1050 // A[i][j] = A[i-1][j-1]+k; 1051 // then it is a good order. 1052 if (AR->getLoop() == InnerLoop) { 1053 // We found an InnerLoop induction after OuterLoop induction. It is 1054 // a good order. 1055 FoundInnerInduction = true; 1056 if (FoundOuterInduction) { 1057 GoodOrder++; 1058 break; 1059 } 1060 } 1061 // If we find the outer induction after an inner induction e.g. 1062 // for(int i=0;i<N;i++) 1063 // for(int j=0;j<N;j++) 1064 // A[j][i] = A[j-1][i-1]+k; 1065 // then it is a bad order. 1066 if (AR->getLoop() == OuterLoop) { 1067 // We found an OuterLoop induction after InnerLoop induction. It is 1068 // a bad order. 1069 FoundOuterInduction = true; 1070 if (FoundInnerInduction) { 1071 BadOrder++; 1072 break; 1073 } 1074 } 1075 } 1076 } 1077 } 1078 } 1079 return GoodOrder - BadOrder; 1080 } 1081 1082 static bool isProfitableForVectorization(unsigned InnerLoopId, 1083 unsigned OuterLoopId, 1084 CharMatrix &DepMatrix) { 1085 // TODO: Improve this heuristic to catch more cases. 1086 // If the inner loop is loop independent or doesn't carry any dependency it is 1087 // profitable to move this to outer position. 1088 for (auto &Row : DepMatrix) { 1089 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1090 return false; 1091 // TODO: We need to improve this heuristic. 1092 if (Row[OuterLoopId] != '=') 1093 return false; 1094 } 1095 // If outer loop has dependence and inner loop is loop independent then it is 1096 // profitable to interchange to enable parallelism. 1097 // If there are no dependences, interchanging will not improve anything. 1098 return !DepMatrix.empty(); 1099 } 1100 1101 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1102 unsigned OuterLoopId, 1103 CharMatrix &DepMatrix) { 1104 // TODO: Add better profitability checks. 1105 // e.g 1106 // 1) Construct dependency matrix and move the one with no loop carried dep 1107 // inside to enable vectorization. 1108 1109 // This is rough cost estimation algorithm. It counts the good and bad order 1110 // of induction variables in the instruction and allows reordering if number 1111 // of bad orders is more than good. 1112 int Cost = getInstrOrderCost(); 1113 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1114 if (Cost < -LoopInterchangeCostThreshold) 1115 return true; 1116 1117 // It is not profitable as per current cache profitability model. But check if 1118 // we can move this loop outside to improve parallelism. 1119 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1120 return true; 1121 1122 ORE->emit([&]() { 1123 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1124 InnerLoop->getStartLoc(), 1125 InnerLoop->getHeader()) 1126 << "Interchanging loops is too costly (cost=" 1127 << ore::NV("Cost", Cost) << ", threshold=" 1128 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1129 << ") and it does not improve parallelism."; 1130 }); 1131 return false; 1132 } 1133 1134 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1135 Loop *InnerLoop) { 1136 for (Loop *L : *OuterLoop) 1137 if (L == InnerLoop) { 1138 OuterLoop->removeChildLoop(L); 1139 return; 1140 } 1141 llvm_unreachable("Couldn't find loop"); 1142 } 1143 1144 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1145 /// new inner and outer loop after interchanging: NewInner is the original 1146 /// outer loop and NewOuter is the original inner loop. 1147 /// 1148 /// Before interchanging, we have the following structure 1149 /// Outer preheader 1150 // Outer header 1151 // Inner preheader 1152 // Inner header 1153 // Inner body 1154 // Inner latch 1155 // outer bbs 1156 // Outer latch 1157 // 1158 // After interchanging: 1159 // Inner preheader 1160 // Inner header 1161 // Outer preheader 1162 // Outer header 1163 // Inner body 1164 // outer bbs 1165 // Outer latch 1166 // Inner latch 1167 void LoopInterchangeTransform::restructureLoops( 1168 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1169 BasicBlock *OrigOuterPreHeader) { 1170 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1171 // The original inner loop preheader moves from the new inner loop to 1172 // the parent loop, if there is one. 1173 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1174 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1175 1176 // Switch the loop levels. 1177 if (OuterLoopParent) { 1178 // Remove the loop from its parent loop. 1179 removeChildLoop(OuterLoopParent, NewInner); 1180 removeChildLoop(NewInner, NewOuter); 1181 OuterLoopParent->addChildLoop(NewOuter); 1182 } else { 1183 removeChildLoop(NewInner, NewOuter); 1184 LI->changeTopLevelLoop(NewInner, NewOuter); 1185 } 1186 while (!NewOuter->isInnermost()) 1187 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1188 NewOuter->addChildLoop(NewInner); 1189 1190 // BBs from the original inner loop. 1191 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1192 1193 // Add BBs from the original outer loop to the original inner loop (excluding 1194 // BBs already in inner loop) 1195 for (BasicBlock *BB : NewInner->blocks()) 1196 if (LI->getLoopFor(BB) == NewInner) 1197 NewOuter->addBlockEntry(BB); 1198 1199 // Now remove inner loop header and latch from the new inner loop and move 1200 // other BBs (the loop body) to the new inner loop. 1201 BasicBlock *OuterHeader = NewOuter->getHeader(); 1202 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1203 for (BasicBlock *BB : OrigInnerBBs) { 1204 // Nothing will change for BBs in child loops. 1205 if (LI->getLoopFor(BB) != NewOuter) 1206 continue; 1207 // Remove the new outer loop header and latch from the new inner loop. 1208 if (BB == OuterHeader || BB == OuterLatch) 1209 NewInner->removeBlockFromLoop(BB); 1210 else 1211 LI->changeLoopFor(BB, NewInner); 1212 } 1213 1214 // The preheader of the original outer loop becomes part of the new 1215 // outer loop. 1216 NewOuter->addBlockEntry(OrigOuterPreHeader); 1217 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1218 1219 // Tell SE that we move the loops around. 1220 SE->forgetLoop(NewOuter); 1221 SE->forgetLoop(NewInner); 1222 } 1223 1224 bool LoopInterchangeTransform::transform() { 1225 bool Transformed = false; 1226 Instruction *InnerIndexVar; 1227 1228 if (InnerLoop->getSubLoops().empty()) { 1229 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1230 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1231 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1232 if (!InductionPHI) { 1233 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1234 return false; 1235 } 1236 1237 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1238 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1239 else 1240 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1241 1242 // Ensure that InductionPHI is the first Phi node. 1243 if (&InductionPHI->getParent()->front() != InductionPHI) 1244 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1245 1246 // Create a new latch block for the inner loop. We split at the 1247 // current latch's terminator and then move the condition and all 1248 // operands that are not either loop-invariant or the induction PHI into the 1249 // new latch block. 1250 BasicBlock *NewLatch = 1251 SplitBlock(InnerLoop->getLoopLatch(), 1252 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1253 1254 SmallSetVector<Instruction *, 4> WorkList; 1255 unsigned i = 0; 1256 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1257 for (; i < WorkList.size(); i++) { 1258 // Duplicate instruction and move it the new latch. Update uses that 1259 // have been moved. 1260 Instruction *NewI = WorkList[i]->clone(); 1261 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1262 assert(!NewI->mayHaveSideEffects() && 1263 "Moving instructions with side-effects may change behavior of " 1264 "the loop nest!"); 1265 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1266 UI != UE;) { 1267 Use &U = *UI++; 1268 Instruction *UserI = cast<Instruction>(U.getUser()); 1269 if (!InnerLoop->contains(UserI->getParent()) || 1270 UserI->getParent() == NewLatch || UserI == InductionPHI) 1271 U.set(NewI); 1272 } 1273 // Add operands of moved instruction to the worklist, except if they are 1274 // outside the inner loop or are the induction PHI. 1275 for (Value *Op : WorkList[i]->operands()) { 1276 Instruction *OpI = dyn_cast<Instruction>(Op); 1277 if (!OpI || 1278 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1279 OpI == InductionPHI) 1280 continue; 1281 WorkList.insert(OpI); 1282 } 1283 } 1284 }; 1285 1286 // FIXME: Should we interchange when we have a constant condition? 1287 Instruction *CondI = dyn_cast<Instruction>( 1288 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1289 ->getCondition()); 1290 if (CondI) 1291 WorkList.insert(CondI); 1292 MoveInstructions(); 1293 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1294 MoveInstructions(); 1295 1296 // Splits the inner loops phi nodes out into a separate basic block. 1297 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1298 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1299 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1300 } 1301 1302 // Instructions in the original inner loop preheader may depend on values 1303 // defined in the outer loop header. Move them there, because the original 1304 // inner loop preheader will become the entry into the interchanged loop nest. 1305 // Currently we move all instructions and rely on LICM to move invariant 1306 // instructions outside the loop nest. 1307 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1308 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1309 if (InnerLoopPreHeader != OuterLoopHeader) { 1310 SmallPtrSet<Instruction *, 4> NeedsMoving; 1311 for (Instruction &I : 1312 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1313 std::prev(InnerLoopPreHeader->end())))) 1314 I.moveBefore(OuterLoopHeader->getTerminator()); 1315 } 1316 1317 Transformed |= adjustLoopLinks(); 1318 if (!Transformed) { 1319 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1320 return false; 1321 } 1322 1323 return true; 1324 } 1325 1326 /// \brief Move all instructions except the terminator from FromBB right before 1327 /// InsertBefore 1328 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1329 auto &ToList = InsertBefore->getParent()->getInstList(); 1330 auto &FromList = FromBB->getInstList(); 1331 1332 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1333 FromBB->getTerminator()->getIterator()); 1334 } 1335 1336 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1337 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1338 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1339 // from BB1 afterwards. 1340 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1341 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1342 for (Instruction *I : TempInstrs) 1343 I->removeFromParent(); 1344 1345 // Move instructions from BB2 to BB1. 1346 moveBBContents(BB2, BB1->getTerminator()); 1347 1348 // Move instructions from TempInstrs to BB2. 1349 for (Instruction *I : TempInstrs) 1350 I->insertBefore(BB2->getTerminator()); 1351 } 1352 1353 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1354 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1355 // \p OldBB is exactly once in BI's successor list. 1356 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1357 BasicBlock *NewBB, 1358 std::vector<DominatorTree::UpdateType> &DTUpdates, 1359 bool MustUpdateOnce = true) { 1360 assert((!MustUpdateOnce || 1361 llvm::count_if(successors(BI), 1362 [OldBB](BasicBlock *BB) { 1363 return BB == OldBB; 1364 }) == 1) && "BI must jump to OldBB exactly once."); 1365 bool Changed = false; 1366 for (Use &Op : BI->operands()) 1367 if (Op == OldBB) { 1368 Op.set(NewBB); 1369 Changed = true; 1370 } 1371 1372 if (Changed) { 1373 DTUpdates.push_back( 1374 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1375 DTUpdates.push_back( 1376 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1377 } 1378 assert(Changed && "Expected a successor to be updated"); 1379 } 1380 1381 // Move Lcssa PHIs to the right place. 1382 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1383 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1384 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1385 Loop *InnerLoop, LoopInfo *LI) { 1386 1387 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1388 // defined either in the header or latch. Those blocks will become header and 1389 // latch of the new outer loop, and the only possible users can PHI nodes 1390 // in the exit block of the loop nest or the outer loop header (reduction 1391 // PHIs, in that case, the incoming value must be defined in the inner loop 1392 // header). We can just substitute the user with the incoming value and remove 1393 // the PHI. 1394 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1395 assert(P.getNumIncomingValues() == 1 && 1396 "Only loops with a single exit are supported!"); 1397 1398 // Incoming values are guaranteed be instructions currently. 1399 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1400 // Skip phis with incoming values from the inner loop body, excluding the 1401 // header and latch. 1402 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1403 continue; 1404 1405 assert(all_of(P.users(), 1406 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1407 return (cast<PHINode>(U)->getParent() == OuterHeader && 1408 IncI->getParent() == InnerHeader) || 1409 cast<PHINode>(U)->getParent() == OuterExit; 1410 }) && 1411 "Can only replace phis iff the uses are in the loop nest exit or " 1412 "the incoming value is defined in the inner header (it will " 1413 "dominate all loop blocks after interchanging)"); 1414 P.replaceAllUsesWith(IncI); 1415 P.eraseFromParent(); 1416 } 1417 1418 SmallVector<PHINode *, 8> LcssaInnerExit; 1419 for (PHINode &P : InnerExit->phis()) 1420 LcssaInnerExit.push_back(&P); 1421 1422 SmallVector<PHINode *, 8> LcssaInnerLatch; 1423 for (PHINode &P : InnerLatch->phis()) 1424 LcssaInnerLatch.push_back(&P); 1425 1426 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1427 // If a PHI node has users outside of InnerExit, it has a use outside the 1428 // interchanged loop and we have to preserve it. We move these to 1429 // InnerLatch, which will become the new exit block for the innermost 1430 // loop after interchanging. 1431 for (PHINode *P : LcssaInnerExit) 1432 P->moveBefore(InnerLatch->getFirstNonPHI()); 1433 1434 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1435 // and we have to move them to the new inner latch. 1436 for (PHINode *P : LcssaInnerLatch) 1437 P->moveBefore(InnerExit->getFirstNonPHI()); 1438 1439 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1440 // incoming values defined in the outer loop, we have to add a new PHI 1441 // in the inner loop latch, which became the exit block of the outer loop, 1442 // after interchanging. 1443 if (OuterExit) { 1444 for (PHINode &P : OuterExit->phis()) { 1445 if (P.getNumIncomingValues() != 1) 1446 continue; 1447 // Skip Phis with incoming values defined in the inner loop. Those should 1448 // already have been updated. 1449 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1450 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1451 continue; 1452 1453 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1454 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1455 NewPhi->setIncomingBlock(0, OuterLatch); 1456 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1457 P.setIncomingValue(0, NewPhi); 1458 } 1459 } 1460 1461 // Now adjust the incoming blocks for the LCSSA PHIs. 1462 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1463 // with the new latch. 1464 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1465 } 1466 1467 bool LoopInterchangeTransform::adjustLoopBranches() { 1468 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1469 std::vector<DominatorTree::UpdateType> DTUpdates; 1470 1471 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1472 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1473 1474 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1475 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1476 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1477 // Ensure that both preheaders do not contain PHI nodes and have single 1478 // predecessors. This allows us to move them easily. We use 1479 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1480 // preheaders do not satisfy those conditions. 1481 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1482 !OuterLoopPreHeader->getUniquePredecessor()) 1483 OuterLoopPreHeader = 1484 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1485 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1486 InnerLoopPreHeader = 1487 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1488 1489 // Adjust the loop preheader 1490 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1491 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1492 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1493 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1494 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1495 BasicBlock *InnerLoopLatchPredecessor = 1496 InnerLoopLatch->getUniquePredecessor(); 1497 BasicBlock *InnerLoopLatchSuccessor; 1498 BasicBlock *OuterLoopLatchSuccessor; 1499 1500 BranchInst *OuterLoopLatchBI = 1501 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1502 BranchInst *InnerLoopLatchBI = 1503 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1504 BranchInst *OuterLoopHeaderBI = 1505 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1506 BranchInst *InnerLoopHeaderBI = 1507 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1508 1509 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1510 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1511 !InnerLoopHeaderBI) 1512 return false; 1513 1514 BranchInst *InnerLoopLatchPredecessorBI = 1515 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1516 BranchInst *OuterLoopPredecessorBI = 1517 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1518 1519 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1520 return false; 1521 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1522 if (!InnerLoopHeaderSuccessor) 1523 return false; 1524 1525 // Adjust Loop Preheader and headers. 1526 // The branches in the outer loop predecessor and the outer loop header can 1527 // be unconditional branches or conditional branches with duplicates. Consider 1528 // this when updating the successors. 1529 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1530 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1531 // The outer loop header might or might not branch to the outer latch. 1532 // We are guaranteed to branch to the inner loop preheader. 1533 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1534 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1535 /*MustUpdateOnce=*/false); 1536 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1537 InnerLoopHeaderSuccessor, DTUpdates, 1538 /*MustUpdateOnce=*/false); 1539 1540 // Adjust reduction PHI's now that the incoming block has changed. 1541 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1542 OuterLoopHeader); 1543 1544 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1545 OuterLoopPreHeader, DTUpdates); 1546 1547 // -------------Adjust loop latches----------- 1548 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1549 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1550 else 1551 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1552 1553 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1554 InnerLoopLatchSuccessor, DTUpdates); 1555 1556 1557 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1558 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1559 else 1560 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1561 1562 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1563 OuterLoopLatchSuccessor, DTUpdates); 1564 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1565 DTUpdates); 1566 1567 DT->applyUpdates(DTUpdates); 1568 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1569 OuterLoopPreHeader); 1570 1571 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1572 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1573 InnerLoop, LI); 1574 // For PHIs in the exit block of the outer loop, outer's latch has been 1575 // replaced by Inners'. 1576 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1577 1578 // Now update the reduction PHIs in the inner and outer loop headers. 1579 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1580 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1581 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1582 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1583 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1584 1585 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1586 (void)OuterInnerReductions; 1587 1588 // Now move the remaining reduction PHIs from outer to inner loop header and 1589 // vice versa. The PHI nodes must be part of a reduction across the inner and 1590 // outer loop and all the remains to do is and updating the incoming blocks. 1591 for (PHINode *PHI : OuterLoopPHIs) { 1592 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1593 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1594 } 1595 for (PHINode *PHI : InnerLoopPHIs) { 1596 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1597 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1598 } 1599 1600 // Update the incoming blocks for moved PHI nodes. 1601 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1602 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1603 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1604 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1605 1606 // Values defined in the outer loop header could be used in the inner loop 1607 // latch. In that case, we need to create LCSSA phis for them, because after 1608 // interchanging they will be defined in the new inner loop and used in the 1609 // new outer loop. 1610 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1611 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1612 for (Instruction &I : 1613 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1614 MayNeedLCSSAPhis.push_back(&I); 1615 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1616 1617 return true; 1618 } 1619 1620 bool LoopInterchangeTransform::adjustLoopLinks() { 1621 // Adjust all branches in the inner and outer loop. 1622 bool Changed = adjustLoopBranches(); 1623 if (Changed) { 1624 // We have interchanged the preheaders so we need to interchange the data in 1625 // the preheaders as well. This is because the content of the inner 1626 // preheader was previously executed inside the outer loop. 1627 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1628 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1629 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1630 } 1631 return Changed; 1632 } 1633 1634 /// Main LoopInterchange Pass. 1635 struct LoopInterchangeLegacyPass : public LoopPass { 1636 static char ID; 1637 1638 LoopInterchangeLegacyPass() : LoopPass(ID) { 1639 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1640 } 1641 1642 void getAnalysisUsage(AnalysisUsage &AU) const override { 1643 AU.addRequired<DependenceAnalysisWrapperPass>(); 1644 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1645 1646 getLoopAnalysisUsage(AU); 1647 } 1648 1649 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1650 if (skipLoop(L)) 1651 return false; 1652 1653 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1654 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1655 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1656 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1657 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1658 1659 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1660 } 1661 }; 1662 1663 char LoopInterchangeLegacyPass::ID = 0; 1664 1665 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1666 "Interchanges loops for cache reuse", false, false) 1667 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1668 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1669 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1670 1671 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1672 "Interchanges loops for cache reuse", false, false) 1673 1674 Pass *llvm::createLoopInterchangePass() { 1675 return new LoopInterchangeLegacyPass(); 1676 } 1677 1678 PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM, 1679 LoopStandardAnalysisResults &AR, 1680 LPMUpdater &U) { 1681 Function &F = *L.getHeader()->getParent(); 1682 1683 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1684 OptimizationRemarkEmitter ORE(&F); 1685 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L)) 1686 return PreservedAnalyses::all(); 1687 return getLoopPassPreservedAnalyses(); 1688 } 1689