1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 if (Src == Dst) 123 continue; 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 const SCEV *Distance = D->getDistance(II); 139 const SCEVConstant *SCEVConst = 140 dyn_cast_or_null<SCEVConstant>(Distance); 141 if (SCEVConst) { 142 const ConstantInt *CI = SCEVConst->getValue(); 143 if (CI->isNegative()) 144 Direction = '<'; 145 else if (CI->isZero()) 146 Direction = '='; 147 else 148 Direction = '>'; 149 Dep.push_back(Direction); 150 } else if (D->isScalar(II)) { 151 Direction = 'S'; 152 Dep.push_back(Direction); 153 } else { 154 unsigned Dir = D->getDirection(II); 155 if (Dir == Dependence::DVEntry::LT || 156 Dir == Dependence::DVEntry::LE) 157 Direction = '<'; 158 else if (Dir == Dependence::DVEntry::GT || 159 Dir == Dependence::DVEntry::GE) 160 Direction = '>'; 161 else if (Dir == Dependence::DVEntry::EQ) 162 Direction = '='; 163 else 164 Direction = '*'; 165 Dep.push_back(Direction); 166 } 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 DepMatrix.push_back(Dep); 173 if (DepMatrix.size() > MaxMemInstrCount) { 174 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 175 << " dependencies inside loop\n"); 176 return false; 177 } 178 } 179 } 180 } 181 182 return true; 183 } 184 185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 186 // matrix by exchanging the two columns. 187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 188 unsigned ToIndx) { 189 unsigned numRows = DepMatrix.size(); 190 for (unsigned i = 0; i < numRows; ++i) { 191 char TmpVal = DepMatrix[i][ToIndx]; 192 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 193 DepMatrix[i][FromIndx] = TmpVal; 194 } 195 } 196 197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 198 // '>' 199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 200 unsigned Column) { 201 for (unsigned i = 0; i <= Column; ++i) { 202 if (DepMatrix[Row][i] == '<') 203 return false; 204 if (DepMatrix[Row][i] == '>') 205 return true; 206 } 207 // All dependencies were '=','S' or 'I' 208 return false; 209 } 210 211 // Checks if no dependence exist in the dependency matrix in Row before Column. 212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 213 unsigned Column) { 214 for (unsigned i = 0; i < Column; ++i) { 215 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 216 DepMatrix[Row][i] != 'I') 217 return false; 218 } 219 return true; 220 } 221 222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 223 unsigned OuterLoopId, char InnerDep, 224 char OuterDep) { 225 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 226 return false; 227 228 if (InnerDep == OuterDep) 229 return true; 230 231 // It is legal to interchange if and only if after interchange no row has a 232 // '>' direction as the leftmost non-'='. 233 234 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 235 return true; 236 237 if (InnerDep == '<') 238 return true; 239 240 if (InnerDep == '>') { 241 // If OuterLoopId represents outermost loop then interchanging will make the 242 // 1st dependency as '>' 243 if (OuterLoopId == 0) 244 return false; 245 246 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 247 // interchanging will result in this row having an outermost non '=' 248 // dependency of '>' 249 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 250 return true; 251 } 252 253 return false; 254 } 255 256 // Checks if it is legal to interchange 2 loops. 257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 258 // if the direction matrix, after the same permutation is applied to its 259 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 260 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 261 unsigned InnerLoopId, 262 unsigned OuterLoopId) { 263 unsigned NumRows = DepMatrix.size(); 264 // For each row check if it is valid to interchange. 265 for (unsigned Row = 0; Row < NumRows; ++Row) { 266 char InnerDep = DepMatrix[Row][InnerLoopId]; 267 char OuterDep = DepMatrix[Row][OuterLoopId]; 268 if (InnerDep == '*' || OuterDep == '*') 269 return false; 270 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 271 return false; 272 } 273 return true; 274 } 275 276 static LoopVector populateWorklist(Loop &L) { 277 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 278 << L.getHeader()->getParent()->getName() << " Loop: %" 279 << L.getHeader()->getName() << '\n'); 280 LoopVector LoopList; 281 Loop *CurrentLoop = &L; 282 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 283 while (!Vec->empty()) { 284 // The current loop has multiple subloops in it hence it is not tightly 285 // nested. 286 // Discard all loops above it added into Worklist. 287 if (Vec->size() != 1) 288 return {}; 289 290 LoopList.push_back(CurrentLoop); 291 CurrentLoop = Vec->front(); 292 Vec = &CurrentLoop->getSubLoops(); 293 } 294 LoopList.push_back(CurrentLoop); 295 return LoopList; 296 } 297 298 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 299 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 300 if (InnerIndexVar) 301 return InnerIndexVar; 302 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 303 return nullptr; 304 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 305 PHINode *PhiVar = cast<PHINode>(I); 306 Type *PhiTy = PhiVar->getType(); 307 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 308 !PhiTy->isPointerTy()) 309 return nullptr; 310 const SCEVAddRecExpr *AddRec = 311 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 312 if (!AddRec || !AddRec->isAffine()) 313 continue; 314 const SCEV *Step = AddRec->getStepRecurrence(*SE); 315 if (!isa<SCEVConstant>(Step)) 316 continue; 317 // Found the induction variable. 318 // FIXME: Handle loops with more than one induction variable. Note that, 319 // currently, legality makes sure we have only one induction variable. 320 return PhiVar; 321 } 322 return nullptr; 323 } 324 325 namespace { 326 327 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 328 class LoopInterchangeLegality { 329 public: 330 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 331 OptimizationRemarkEmitter *ORE) 332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 333 334 /// Check if the loops can be interchanged. 335 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 336 CharMatrix &DepMatrix); 337 338 /// Check if the loop structure is understood. We do not handle triangular 339 /// loops for now. 340 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 341 342 bool currentLimitations(); 343 344 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 345 return OuterInnerReductions; 346 } 347 348 private: 349 bool tightlyNested(Loop *Outer, Loop *Inner); 350 bool containsUnsafeInstructions(BasicBlock *BB); 351 352 /// Discover induction and reduction PHIs in the header of \p L. Induction 353 /// PHIs are added to \p Inductions, reductions are added to 354 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 355 /// to be passed as \p InnerLoop. 356 bool findInductionAndReductions(Loop *L, 357 SmallVector<PHINode *, 8> &Inductions, 358 Loop *InnerLoop); 359 360 Loop *OuterLoop; 361 Loop *InnerLoop; 362 363 ScalarEvolution *SE; 364 365 /// Interface to emit optimization remarks. 366 OptimizationRemarkEmitter *ORE; 367 368 /// Set of reduction PHIs taking part of a reduction across the inner and 369 /// outer loop. 370 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 371 }; 372 373 /// LoopInterchangeProfitability checks if it is profitable to interchange the 374 /// loop. 375 class LoopInterchangeProfitability { 376 public: 377 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 378 OptimizationRemarkEmitter *ORE) 379 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 380 381 /// Check if the loop interchange is profitable. 382 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 383 CharMatrix &DepMatrix); 384 385 private: 386 int getInstrOrderCost(); 387 388 Loop *OuterLoop; 389 Loop *InnerLoop; 390 391 /// Scev analysis. 392 ScalarEvolution *SE; 393 394 /// Interface to emit optimization remarks. 395 OptimizationRemarkEmitter *ORE; 396 }; 397 398 /// LoopInterchangeTransform interchanges the loop. 399 class LoopInterchangeTransform { 400 public: 401 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 402 LoopInfo *LI, DominatorTree *DT, 403 BasicBlock *LoopNestExit, 404 const LoopInterchangeLegality &LIL) 405 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 406 LoopExit(LoopNestExit), LIL(LIL) {} 407 408 /// Interchange OuterLoop and InnerLoop. 409 bool transform(); 410 void restructureLoops(Loop *NewInner, Loop *NewOuter, 411 BasicBlock *OrigInnerPreHeader, 412 BasicBlock *OrigOuterPreHeader); 413 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 414 415 private: 416 bool adjustLoopLinks(); 417 bool adjustLoopBranches(); 418 419 Loop *OuterLoop; 420 Loop *InnerLoop; 421 422 /// Scev analysis. 423 ScalarEvolution *SE; 424 425 LoopInfo *LI; 426 DominatorTree *DT; 427 BasicBlock *LoopExit; 428 429 const LoopInterchangeLegality &LIL; 430 }; 431 432 struct LoopInterchange { 433 ScalarEvolution *SE = nullptr; 434 LoopInfo *LI = nullptr; 435 DependenceInfo *DI = nullptr; 436 DominatorTree *DT = nullptr; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 442 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 443 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 444 445 bool run(Loop *L) { 446 if (L->getParentLoop()) 447 return false; 448 449 return processLoopList(populateWorklist(*L)); 450 } 451 452 bool run(LoopNest &LN) { 453 const auto &LoopList = LN.getLoops(); 454 for (unsigned I = 1; I < LoopList.size(); ++I) 455 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 456 return false; 457 return processLoopList(LoopList); 458 } 459 460 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 461 for (Loop *L : LoopList) { 462 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 463 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 464 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 465 return false; 466 } 467 if (L->getNumBackEdges() != 1) { 468 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 469 return false; 470 } 471 if (!L->getExitingBlock()) { 472 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 473 return false; 474 } 475 } 476 return true; 477 } 478 479 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 480 // TODO: Add a better heuristic to select the loop to be interchanged based 481 // on the dependence matrix. Currently we select the innermost loop. 482 return LoopList.size() - 1; 483 } 484 485 bool processLoopList(ArrayRef<Loop *> LoopList) { 486 bool Changed = false; 487 unsigned LoopNestDepth = LoopList.size(); 488 if (LoopNestDepth < 2) { 489 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 490 return false; 491 } 492 if (LoopNestDepth > MaxLoopNestDepth) { 493 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 494 << MaxLoopNestDepth << "\n"); 495 return false; 496 } 497 if (!isComputableLoopNest(LoopList)) { 498 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 499 return false; 500 } 501 502 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 503 << "\n"); 504 505 CharMatrix DependencyMatrix; 506 Loop *OuterMostLoop = *(LoopList.begin()); 507 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 508 OuterMostLoop, DI)) { 509 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 510 return false; 511 } 512 #ifdef DUMP_DEP_MATRICIES 513 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 514 printDepMatrix(DependencyMatrix); 515 #endif 516 517 // Get the Outermost loop exit. 518 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 519 if (!LoopNestExit) { 520 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 521 return false; 522 } 523 524 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 525 // Move the selected loop outwards to the best possible position. 526 Loop *LoopToBeInterchanged = LoopList[SelecLoopId]; 527 for (unsigned i = SelecLoopId; i > 0; i--) { 528 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i, 529 i - 1, LoopNestExit, DependencyMatrix); 530 if (!Interchanged) 531 return Changed; 532 // Update the DependencyMatrix 533 interChangeDependencies(DependencyMatrix, i, i - 1); 534 #ifdef DUMP_DEP_MATRICIES 535 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 536 printDepMatrix(DependencyMatrix); 537 #endif 538 Changed |= Interchanged; 539 } 540 return Changed; 541 } 542 543 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 544 unsigned OuterLoopId, BasicBlock *LoopNestExit, 545 std::vector<std::vector<char>> &DependencyMatrix) { 546 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 547 << " and OuterLoopId = " << OuterLoopId << "\n"); 548 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 549 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 550 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 551 return false; 552 } 553 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 554 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 555 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 556 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 557 return false; 558 } 559 560 ORE->emit([&]() { 561 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 562 InnerLoop->getStartLoc(), 563 InnerLoop->getHeader()) 564 << "Loop interchanged with enclosing loop."; 565 }); 566 567 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 568 LIL); 569 LIT.transform(); 570 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 571 LoopsInterchanged++; 572 573 assert(InnerLoop->isLCSSAForm(*DT) && 574 "Inner loop not left in LCSSA form after loop interchange!"); 575 assert(OuterLoop->isLCSSAForm(*DT) && 576 "Outer loop not left in LCSSA form after loop interchange!"); 577 578 return true; 579 } 580 }; 581 582 } // end anonymous namespace 583 584 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 585 return any_of(*BB, [](const Instruction &I) { 586 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 587 }); 588 } 589 590 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 591 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 592 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 593 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 594 595 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 596 597 // A perfectly nested loop will not have any branch in between the outer and 598 // inner block i.e. outer header will branch to either inner preheader and 599 // outerloop latch. 600 BranchInst *OuterLoopHeaderBI = 601 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 602 if (!OuterLoopHeaderBI) 603 return false; 604 605 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 606 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 607 Succ != OuterLoopLatch) 608 return false; 609 610 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 611 // We do not have any basic block in between now make sure the outer header 612 // and outer loop latch doesn't contain any unsafe instructions. 613 if (containsUnsafeInstructions(OuterLoopHeader) || 614 containsUnsafeInstructions(OuterLoopLatch)) 615 return false; 616 617 // Also make sure the inner loop preheader does not contain any unsafe 618 // instructions. Note that all instructions in the preheader will be moved to 619 // the outer loop header when interchanging. 620 if (InnerLoopPreHeader != OuterLoopHeader && 621 containsUnsafeInstructions(InnerLoopPreHeader)) 622 return false; 623 624 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 625 // We have a perfect loop nest. 626 return true; 627 } 628 629 bool LoopInterchangeLegality::isLoopStructureUnderstood( 630 PHINode *InnerInduction) { 631 unsigned Num = InnerInduction->getNumOperands(); 632 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 633 for (unsigned i = 0; i < Num; ++i) { 634 Value *Val = InnerInduction->getOperand(i); 635 if (isa<Constant>(Val)) 636 continue; 637 Instruction *I = dyn_cast<Instruction>(Val); 638 if (!I) 639 return false; 640 // TODO: Handle triangular loops. 641 // e.g. for(int i=0;i<N;i++) 642 // for(int j=i;j<N;j++) 643 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 644 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 645 InnerLoopPreheader && 646 !OuterLoop->isLoopInvariant(I)) { 647 return false; 648 } 649 } 650 return true; 651 } 652 653 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 654 // value. 655 static Value *followLCSSA(Value *SV) { 656 PHINode *PHI = dyn_cast<PHINode>(SV); 657 if (!PHI) 658 return SV; 659 660 if (PHI->getNumIncomingValues() != 1) 661 return SV; 662 return followLCSSA(PHI->getIncomingValue(0)); 663 } 664 665 // Check V's users to see if it is involved in a reduction in L. 666 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 667 // Reduction variables cannot be constants. 668 if (isa<Constant>(V)) 669 return nullptr; 670 671 for (Value *User : V->users()) { 672 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 673 if (PHI->getNumIncomingValues() == 1) 674 continue; 675 RecurrenceDescriptor RD; 676 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 677 return PHI; 678 return nullptr; 679 } 680 } 681 682 return nullptr; 683 } 684 685 bool LoopInterchangeLegality::findInductionAndReductions( 686 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 687 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 688 return false; 689 for (PHINode &PHI : L->getHeader()->phis()) { 690 RecurrenceDescriptor RD; 691 InductionDescriptor ID; 692 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 693 Inductions.push_back(&PHI); 694 else { 695 // PHIs in inner loops need to be part of a reduction in the outer loop, 696 // discovered when checking the PHIs of the outer loop earlier. 697 if (!InnerLoop) { 698 if (!OuterInnerReductions.count(&PHI)) { 699 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 700 "across the outer loop.\n"); 701 return false; 702 } 703 } else { 704 assert(PHI.getNumIncomingValues() == 2 && 705 "Phis in loop header should have exactly 2 incoming values"); 706 // Check if we have a PHI node in the outer loop that has a reduction 707 // result from the inner loop as an incoming value. 708 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 709 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 710 if (!InnerRedPhi || 711 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 712 LLVM_DEBUG( 713 dbgs() 714 << "Failed to recognize PHI as an induction or reduction.\n"); 715 return false; 716 } 717 OuterInnerReductions.insert(&PHI); 718 OuterInnerReductions.insert(InnerRedPhi); 719 } 720 } 721 } 722 return true; 723 } 724 725 // This function indicates the current limitations in the transform as a result 726 // of which we do not proceed. 727 bool LoopInterchangeLegality::currentLimitations() { 728 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 729 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 730 731 // transform currently expects the loop latches to also be the exiting 732 // blocks. 733 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 734 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 735 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 736 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 737 LLVM_DEBUG( 738 dbgs() << "Loops where the latch is not the exiting block are not" 739 << " supported currently.\n"); 740 ORE->emit([&]() { 741 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 742 OuterLoop->getStartLoc(), 743 OuterLoop->getHeader()) 744 << "Loops where the latch is not the exiting block cannot be" 745 " interchange currently."; 746 }); 747 return true; 748 } 749 750 PHINode *InnerInductionVar; 751 SmallVector<PHINode *, 8> Inductions; 752 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 753 LLVM_DEBUG( 754 dbgs() << "Only outer loops with induction or reduction PHI nodes " 755 << "are supported currently.\n"); 756 ORE->emit([&]() { 757 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 758 OuterLoop->getStartLoc(), 759 OuterLoop->getHeader()) 760 << "Only outer loops with induction or reduction PHI nodes can be" 761 " interchanged currently."; 762 }); 763 return true; 764 } 765 766 // TODO: Currently we handle only loops with 1 induction variable. 767 if (Inductions.size() != 1) { 768 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 769 << "supported currently.\n"); 770 ORE->emit([&]() { 771 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 772 OuterLoop->getStartLoc(), 773 OuterLoop->getHeader()) 774 << "Only outer loops with 1 induction variable can be " 775 "interchanged currently."; 776 }); 777 return true; 778 } 779 780 Inductions.clear(); 781 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 782 LLVM_DEBUG( 783 dbgs() << "Only inner loops with induction or reduction PHI nodes " 784 << "are supported currently.\n"); 785 ORE->emit([&]() { 786 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 787 InnerLoop->getStartLoc(), 788 InnerLoop->getHeader()) 789 << "Only inner loops with induction or reduction PHI nodes can be" 790 " interchange currently."; 791 }); 792 return true; 793 } 794 795 // TODO: Currently we handle only loops with 1 induction variable. 796 if (Inductions.size() != 1) { 797 LLVM_DEBUG( 798 dbgs() << "We currently only support loops with 1 induction variable." 799 << "Failed to interchange due to current limitation\n"); 800 ORE->emit([&]() { 801 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 802 InnerLoop->getStartLoc(), 803 InnerLoop->getHeader()) 804 << "Only inner loops with 1 induction variable can be " 805 "interchanged currently."; 806 }); 807 return true; 808 } 809 InnerInductionVar = Inductions.pop_back_val(); 810 811 // TODO: Triangular loops are not handled for now. 812 if (!isLoopStructureUnderstood(InnerInductionVar)) { 813 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 814 ORE->emit([&]() { 815 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 816 InnerLoop->getStartLoc(), 817 InnerLoop->getHeader()) 818 << "Inner loop structure not understood currently."; 819 }); 820 return true; 821 } 822 823 // TODO: Current limitation: Since we split the inner loop latch at the point 824 // were induction variable is incremented (induction.next); We cannot have 825 // more than 1 user of induction.next since it would result in broken code 826 // after split. 827 // e.g. 828 // for(i=0;i<N;i++) { 829 // for(j = 0;j<M;j++) { 830 // A[j+1][i+2] = A[j][i]+k; 831 // } 832 // } 833 Instruction *InnerIndexVarInc = nullptr; 834 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 835 InnerIndexVarInc = 836 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 837 else 838 InnerIndexVarInc = 839 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 840 841 if (!InnerIndexVarInc) { 842 LLVM_DEBUG( 843 dbgs() << "Did not find an instruction to increment the induction " 844 << "variable.\n"); 845 ORE->emit([&]() { 846 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 847 InnerLoop->getStartLoc(), 848 InnerLoop->getHeader()) 849 << "The inner loop does not increment the induction variable."; 850 }); 851 return true; 852 } 853 854 // Since we split the inner loop latch on this induction variable. Make sure 855 // we do not have any instruction between the induction variable and branch 856 // instruction. 857 858 bool FoundInduction = false; 859 for (const Instruction &I : 860 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 861 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 862 isa<ZExtInst>(I)) 863 continue; 864 865 // We found an instruction. If this is not induction variable then it is not 866 // safe to split this loop latch. 867 if (!I.isIdenticalTo(InnerIndexVarInc)) { 868 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 869 << "variable increment and branch.\n"); 870 ORE->emit([&]() { 871 return OptimizationRemarkMissed( 872 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 873 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 874 << "Found unsupported instruction between induction variable " 875 "increment and branch."; 876 }); 877 return true; 878 } 879 880 FoundInduction = true; 881 break; 882 } 883 // The loop latch ended and we didn't find the induction variable return as 884 // current limitation. 885 if (!FoundInduction) { 886 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 887 ORE->emit([&]() { 888 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 889 InnerLoop->getStartLoc(), 890 InnerLoop->getHeader()) 891 << "Did not find the induction variable."; 892 }); 893 return true; 894 } 895 return false; 896 } 897 898 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 899 // users are either reduction PHIs or PHIs outside the outer loop (which means 900 // the we are only interested in the final value after the loop). 901 static bool 902 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 903 SmallPtrSetImpl<PHINode *> &Reductions) { 904 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 905 for (PHINode &PHI : InnerExit->phis()) { 906 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 907 if (PHI.getNumIncomingValues() > 1) 908 return false; 909 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 910 PHINode *PN = dyn_cast<PHINode>(U); 911 return !PN || 912 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 913 })) { 914 return false; 915 } 916 } 917 return true; 918 } 919 920 // We currently support LCSSA PHI nodes in the outer loop exit, if their 921 // incoming values do not come from the outer loop latch or if the 922 // outer loop latch has a single predecessor. In that case, the value will 923 // be available if both the inner and outer loop conditions are true, which 924 // will still be true after interchanging. If we have multiple predecessor, 925 // that may not be the case, e.g. because the outer loop latch may be executed 926 // if the inner loop is not executed. 927 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 928 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 929 for (PHINode &PHI : LoopNestExit->phis()) { 930 // FIXME: We currently are not able to detect floating point reductions 931 // and have to use floating point PHIs as a proxy to prevent 932 // interchanging in the presence of floating point reductions. 933 if (PHI.getType()->isFloatingPointTy()) 934 return false; 935 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 936 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 937 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 938 continue; 939 940 // The incoming value is defined in the outer loop latch. Currently we 941 // only support that in case the outer loop latch has a single predecessor. 942 // This guarantees that the outer loop latch is executed if and only if 943 // the inner loop is executed (because tightlyNested() guarantees that the 944 // outer loop header only branches to the inner loop or the outer loop 945 // latch). 946 // FIXME: We could weaken this logic and allow multiple predecessors, 947 // if the values are produced outside the loop latch. We would need 948 // additional logic to update the PHI nodes in the exit block as 949 // well. 950 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 951 return false; 952 } 953 } 954 return true; 955 } 956 957 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 958 unsigned OuterLoopId, 959 CharMatrix &DepMatrix) { 960 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 961 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 962 << " and OuterLoopId = " << OuterLoopId 963 << " due to dependence\n"); 964 ORE->emit([&]() { 965 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 966 InnerLoop->getStartLoc(), 967 InnerLoop->getHeader()) 968 << "Cannot interchange loops due to dependences."; 969 }); 970 return false; 971 } 972 // Check if outer and inner loop contain legal instructions only. 973 for (auto *BB : OuterLoop->blocks()) 974 for (Instruction &I : BB->instructionsWithoutDebug()) 975 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 976 // readnone functions do not prevent interchanging. 977 if (CI->doesNotReadMemory()) 978 continue; 979 LLVM_DEBUG( 980 dbgs() << "Loops with call instructions cannot be interchanged " 981 << "safely."); 982 ORE->emit([&]() { 983 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 984 CI->getDebugLoc(), 985 CI->getParent()) 986 << "Cannot interchange loops due to call instruction."; 987 }); 988 989 return false; 990 } 991 992 // TODO: The loops could not be interchanged due to current limitations in the 993 // transform module. 994 if (currentLimitations()) { 995 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 996 return false; 997 } 998 999 // Check if the loops are tightly nested. 1000 if (!tightlyNested(OuterLoop, InnerLoop)) { 1001 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1002 ORE->emit([&]() { 1003 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1004 InnerLoop->getStartLoc(), 1005 InnerLoop->getHeader()) 1006 << "Cannot interchange loops because they are not tightly " 1007 "nested."; 1008 }); 1009 return false; 1010 } 1011 1012 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1013 OuterInnerReductions)) { 1014 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1015 ORE->emit([&]() { 1016 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1017 InnerLoop->getStartLoc(), 1018 InnerLoop->getHeader()) 1019 << "Found unsupported PHI node in loop exit."; 1020 }); 1021 return false; 1022 } 1023 1024 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1025 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1026 ORE->emit([&]() { 1027 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1028 OuterLoop->getStartLoc(), 1029 OuterLoop->getHeader()) 1030 << "Found unsupported PHI node in loop exit."; 1031 }); 1032 return false; 1033 } 1034 1035 return true; 1036 } 1037 1038 int LoopInterchangeProfitability::getInstrOrderCost() { 1039 unsigned GoodOrder, BadOrder; 1040 BadOrder = GoodOrder = 0; 1041 for (BasicBlock *BB : InnerLoop->blocks()) { 1042 for (Instruction &Ins : *BB) { 1043 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1044 unsigned NumOp = GEP->getNumOperands(); 1045 bool FoundInnerInduction = false; 1046 bool FoundOuterInduction = false; 1047 for (unsigned i = 0; i < NumOp; ++i) { 1048 // Skip operands that are not SCEV-able. 1049 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1050 continue; 1051 1052 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1053 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1054 if (!AR) 1055 continue; 1056 1057 // If we find the inner induction after an outer induction e.g. 1058 // for(int i=0;i<N;i++) 1059 // for(int j=0;j<N;j++) 1060 // A[i][j] = A[i-1][j-1]+k; 1061 // then it is a good order. 1062 if (AR->getLoop() == InnerLoop) { 1063 // We found an InnerLoop induction after OuterLoop induction. It is 1064 // a good order. 1065 FoundInnerInduction = true; 1066 if (FoundOuterInduction) { 1067 GoodOrder++; 1068 break; 1069 } 1070 } 1071 // If we find the outer induction after an inner induction e.g. 1072 // for(int i=0;i<N;i++) 1073 // for(int j=0;j<N;j++) 1074 // A[j][i] = A[j-1][i-1]+k; 1075 // then it is a bad order. 1076 if (AR->getLoop() == OuterLoop) { 1077 // We found an OuterLoop induction after InnerLoop induction. It is 1078 // a bad order. 1079 FoundOuterInduction = true; 1080 if (FoundInnerInduction) { 1081 BadOrder++; 1082 break; 1083 } 1084 } 1085 } 1086 } 1087 } 1088 } 1089 return GoodOrder - BadOrder; 1090 } 1091 1092 static bool isProfitableForVectorization(unsigned InnerLoopId, 1093 unsigned OuterLoopId, 1094 CharMatrix &DepMatrix) { 1095 // TODO: Improve this heuristic to catch more cases. 1096 // If the inner loop is loop independent or doesn't carry any dependency it is 1097 // profitable to move this to outer position. 1098 for (auto &Row : DepMatrix) { 1099 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1100 return false; 1101 // TODO: We need to improve this heuristic. 1102 if (Row[OuterLoopId] != '=') 1103 return false; 1104 } 1105 // If outer loop has dependence and inner loop is loop independent then it is 1106 // profitable to interchange to enable parallelism. 1107 // If there are no dependences, interchanging will not improve anything. 1108 return !DepMatrix.empty(); 1109 } 1110 1111 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1112 unsigned OuterLoopId, 1113 CharMatrix &DepMatrix) { 1114 // TODO: Add better profitability checks. 1115 // e.g 1116 // 1) Construct dependency matrix and move the one with no loop carried dep 1117 // inside to enable vectorization. 1118 1119 // This is rough cost estimation algorithm. It counts the good and bad order 1120 // of induction variables in the instruction and allows reordering if number 1121 // of bad orders is more than good. 1122 int Cost = getInstrOrderCost(); 1123 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1124 if (Cost < -LoopInterchangeCostThreshold) 1125 return true; 1126 1127 // It is not profitable as per current cache profitability model. But check if 1128 // we can move this loop outside to improve parallelism. 1129 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1130 return true; 1131 1132 ORE->emit([&]() { 1133 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1134 InnerLoop->getStartLoc(), 1135 InnerLoop->getHeader()) 1136 << "Interchanging loops is too costly (cost=" 1137 << ore::NV("Cost", Cost) << ", threshold=" 1138 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1139 << ") and it does not improve parallelism."; 1140 }); 1141 return false; 1142 } 1143 1144 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1145 Loop *InnerLoop) { 1146 for (Loop *L : *OuterLoop) 1147 if (L == InnerLoop) { 1148 OuterLoop->removeChildLoop(L); 1149 return; 1150 } 1151 llvm_unreachable("Couldn't find loop"); 1152 } 1153 1154 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1155 /// new inner and outer loop after interchanging: NewInner is the original 1156 /// outer loop and NewOuter is the original inner loop. 1157 /// 1158 /// Before interchanging, we have the following structure 1159 /// Outer preheader 1160 // Outer header 1161 // Inner preheader 1162 // Inner header 1163 // Inner body 1164 // Inner latch 1165 // outer bbs 1166 // Outer latch 1167 // 1168 // After interchanging: 1169 // Inner preheader 1170 // Inner header 1171 // Outer preheader 1172 // Outer header 1173 // Inner body 1174 // outer bbs 1175 // Outer latch 1176 // Inner latch 1177 void LoopInterchangeTransform::restructureLoops( 1178 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1179 BasicBlock *OrigOuterPreHeader) { 1180 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1181 // The original inner loop preheader moves from the new inner loop to 1182 // the parent loop, if there is one. 1183 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1184 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1185 1186 // Switch the loop levels. 1187 if (OuterLoopParent) { 1188 // Remove the loop from its parent loop. 1189 removeChildLoop(OuterLoopParent, NewInner); 1190 removeChildLoop(NewInner, NewOuter); 1191 OuterLoopParent->addChildLoop(NewOuter); 1192 } else { 1193 removeChildLoop(NewInner, NewOuter); 1194 LI->changeTopLevelLoop(NewInner, NewOuter); 1195 } 1196 while (!NewOuter->isInnermost()) 1197 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1198 NewOuter->addChildLoop(NewInner); 1199 1200 // BBs from the original inner loop. 1201 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1202 1203 // Add BBs from the original outer loop to the original inner loop (excluding 1204 // BBs already in inner loop) 1205 for (BasicBlock *BB : NewInner->blocks()) 1206 if (LI->getLoopFor(BB) == NewInner) 1207 NewOuter->addBlockEntry(BB); 1208 1209 // Now remove inner loop header and latch from the new inner loop and move 1210 // other BBs (the loop body) to the new inner loop. 1211 BasicBlock *OuterHeader = NewOuter->getHeader(); 1212 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1213 for (BasicBlock *BB : OrigInnerBBs) { 1214 // Nothing will change for BBs in child loops. 1215 if (LI->getLoopFor(BB) != NewOuter) 1216 continue; 1217 // Remove the new outer loop header and latch from the new inner loop. 1218 if (BB == OuterHeader || BB == OuterLatch) 1219 NewInner->removeBlockFromLoop(BB); 1220 else 1221 LI->changeLoopFor(BB, NewInner); 1222 } 1223 1224 // The preheader of the original outer loop becomes part of the new 1225 // outer loop. 1226 NewOuter->addBlockEntry(OrigOuterPreHeader); 1227 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1228 1229 // Tell SE that we move the loops around. 1230 SE->forgetLoop(NewOuter); 1231 SE->forgetLoop(NewInner); 1232 } 1233 1234 bool LoopInterchangeTransform::transform() { 1235 bool Transformed = false; 1236 Instruction *InnerIndexVar; 1237 1238 if (InnerLoop->getSubLoops().empty()) { 1239 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1240 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1241 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1242 if (!InductionPHI) { 1243 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1244 return false; 1245 } 1246 1247 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1248 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1249 else 1250 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1251 1252 // Ensure that InductionPHI is the first Phi node. 1253 if (&InductionPHI->getParent()->front() != InductionPHI) 1254 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1255 1256 // Create a new latch block for the inner loop. We split at the 1257 // current latch's terminator and then move the condition and all 1258 // operands that are not either loop-invariant or the induction PHI into the 1259 // new latch block. 1260 BasicBlock *NewLatch = 1261 SplitBlock(InnerLoop->getLoopLatch(), 1262 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1263 1264 SmallSetVector<Instruction *, 4> WorkList; 1265 unsigned i = 0; 1266 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1267 for (; i < WorkList.size(); i++) { 1268 // Duplicate instruction and move it the new latch. Update uses that 1269 // have been moved. 1270 Instruction *NewI = WorkList[i]->clone(); 1271 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1272 assert(!NewI->mayHaveSideEffects() && 1273 "Moving instructions with side-effects may change behavior of " 1274 "the loop nest!"); 1275 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1276 UI != UE;) { 1277 Use &U = *UI++; 1278 Instruction *UserI = cast<Instruction>(U.getUser()); 1279 if (!InnerLoop->contains(UserI->getParent()) || 1280 UserI->getParent() == NewLatch || UserI == InductionPHI) 1281 U.set(NewI); 1282 } 1283 // Add operands of moved instruction to the worklist, except if they are 1284 // outside the inner loop or are the induction PHI. 1285 for (Value *Op : WorkList[i]->operands()) { 1286 Instruction *OpI = dyn_cast<Instruction>(Op); 1287 if (!OpI || 1288 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1289 OpI == InductionPHI) 1290 continue; 1291 WorkList.insert(OpI); 1292 } 1293 } 1294 }; 1295 1296 // FIXME: Should we interchange when we have a constant condition? 1297 Instruction *CondI = dyn_cast<Instruction>( 1298 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1299 ->getCondition()); 1300 if (CondI) 1301 WorkList.insert(CondI); 1302 MoveInstructions(); 1303 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1304 MoveInstructions(); 1305 1306 // Splits the inner loops phi nodes out into a separate basic block. 1307 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1308 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1309 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1310 } 1311 1312 // Instructions in the original inner loop preheader may depend on values 1313 // defined in the outer loop header. Move them there, because the original 1314 // inner loop preheader will become the entry into the interchanged loop nest. 1315 // Currently we move all instructions and rely on LICM to move invariant 1316 // instructions outside the loop nest. 1317 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1318 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1319 if (InnerLoopPreHeader != OuterLoopHeader) { 1320 SmallPtrSet<Instruction *, 4> NeedsMoving; 1321 for (Instruction &I : 1322 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1323 std::prev(InnerLoopPreHeader->end())))) 1324 I.moveBefore(OuterLoopHeader->getTerminator()); 1325 } 1326 1327 Transformed |= adjustLoopLinks(); 1328 if (!Transformed) { 1329 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1330 return false; 1331 } 1332 1333 return true; 1334 } 1335 1336 /// \brief Move all instructions except the terminator from FromBB right before 1337 /// InsertBefore 1338 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1339 auto &ToList = InsertBefore->getParent()->getInstList(); 1340 auto &FromList = FromBB->getInstList(); 1341 1342 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1343 FromBB->getTerminator()->getIterator()); 1344 } 1345 1346 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1347 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1348 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1349 // from BB1 afterwards. 1350 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1351 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1352 for (Instruction *I : TempInstrs) 1353 I->removeFromParent(); 1354 1355 // Move instructions from BB2 to BB1. 1356 moveBBContents(BB2, BB1->getTerminator()); 1357 1358 // Move instructions from TempInstrs to BB2. 1359 for (Instruction *I : TempInstrs) 1360 I->insertBefore(BB2->getTerminator()); 1361 } 1362 1363 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1364 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1365 // \p OldBB is exactly once in BI's successor list. 1366 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1367 BasicBlock *NewBB, 1368 std::vector<DominatorTree::UpdateType> &DTUpdates, 1369 bool MustUpdateOnce = true) { 1370 assert((!MustUpdateOnce || 1371 llvm::count_if(successors(BI), 1372 [OldBB](BasicBlock *BB) { 1373 return BB == OldBB; 1374 }) == 1) && "BI must jump to OldBB exactly once."); 1375 bool Changed = false; 1376 for (Use &Op : BI->operands()) 1377 if (Op == OldBB) { 1378 Op.set(NewBB); 1379 Changed = true; 1380 } 1381 1382 if (Changed) { 1383 DTUpdates.push_back( 1384 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1385 DTUpdates.push_back( 1386 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1387 } 1388 assert(Changed && "Expected a successor to be updated"); 1389 } 1390 1391 // Move Lcssa PHIs to the right place. 1392 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1393 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1394 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1395 Loop *InnerLoop, LoopInfo *LI) { 1396 1397 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1398 // defined either in the header or latch. Those blocks will become header and 1399 // latch of the new outer loop, and the only possible users can PHI nodes 1400 // in the exit block of the loop nest or the outer loop header (reduction 1401 // PHIs, in that case, the incoming value must be defined in the inner loop 1402 // header). We can just substitute the user with the incoming value and remove 1403 // the PHI. 1404 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1405 assert(P.getNumIncomingValues() == 1 && 1406 "Only loops with a single exit are supported!"); 1407 1408 // Incoming values are guaranteed be instructions currently. 1409 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1410 // Skip phis with incoming values from the inner loop body, excluding the 1411 // header and latch. 1412 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1413 continue; 1414 1415 assert(all_of(P.users(), 1416 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1417 return (cast<PHINode>(U)->getParent() == OuterHeader && 1418 IncI->getParent() == InnerHeader) || 1419 cast<PHINode>(U)->getParent() == OuterExit; 1420 }) && 1421 "Can only replace phis iff the uses are in the loop nest exit or " 1422 "the incoming value is defined in the inner header (it will " 1423 "dominate all loop blocks after interchanging)"); 1424 P.replaceAllUsesWith(IncI); 1425 P.eraseFromParent(); 1426 } 1427 1428 SmallVector<PHINode *, 8> LcssaInnerExit; 1429 for (PHINode &P : InnerExit->phis()) 1430 LcssaInnerExit.push_back(&P); 1431 1432 SmallVector<PHINode *, 8> LcssaInnerLatch; 1433 for (PHINode &P : InnerLatch->phis()) 1434 LcssaInnerLatch.push_back(&P); 1435 1436 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1437 // If a PHI node has users outside of InnerExit, it has a use outside the 1438 // interchanged loop and we have to preserve it. We move these to 1439 // InnerLatch, which will become the new exit block for the innermost 1440 // loop after interchanging. 1441 for (PHINode *P : LcssaInnerExit) 1442 P->moveBefore(InnerLatch->getFirstNonPHI()); 1443 1444 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1445 // and we have to move them to the new inner latch. 1446 for (PHINode *P : LcssaInnerLatch) 1447 P->moveBefore(InnerExit->getFirstNonPHI()); 1448 1449 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1450 // incoming values defined in the outer loop, we have to add a new PHI 1451 // in the inner loop latch, which became the exit block of the outer loop, 1452 // after interchanging. 1453 if (OuterExit) { 1454 for (PHINode &P : OuterExit->phis()) { 1455 if (P.getNumIncomingValues() != 1) 1456 continue; 1457 // Skip Phis with incoming values defined in the inner loop. Those should 1458 // already have been updated. 1459 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1460 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1461 continue; 1462 1463 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1464 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1465 NewPhi->setIncomingBlock(0, OuterLatch); 1466 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1467 P.setIncomingValue(0, NewPhi); 1468 } 1469 } 1470 1471 // Now adjust the incoming blocks for the LCSSA PHIs. 1472 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1473 // with the new latch. 1474 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1475 } 1476 1477 bool LoopInterchangeTransform::adjustLoopBranches() { 1478 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1479 std::vector<DominatorTree::UpdateType> DTUpdates; 1480 1481 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1482 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1483 1484 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1485 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1486 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1487 // Ensure that both preheaders do not contain PHI nodes and have single 1488 // predecessors. This allows us to move them easily. We use 1489 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1490 // preheaders do not satisfy those conditions. 1491 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1492 !OuterLoopPreHeader->getUniquePredecessor()) 1493 OuterLoopPreHeader = 1494 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1495 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1496 InnerLoopPreHeader = 1497 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1498 1499 // Adjust the loop preheader 1500 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1501 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1502 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1503 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1504 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1505 BasicBlock *InnerLoopLatchPredecessor = 1506 InnerLoopLatch->getUniquePredecessor(); 1507 BasicBlock *InnerLoopLatchSuccessor; 1508 BasicBlock *OuterLoopLatchSuccessor; 1509 1510 BranchInst *OuterLoopLatchBI = 1511 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1512 BranchInst *InnerLoopLatchBI = 1513 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1514 BranchInst *OuterLoopHeaderBI = 1515 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1516 BranchInst *InnerLoopHeaderBI = 1517 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1518 1519 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1520 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1521 !InnerLoopHeaderBI) 1522 return false; 1523 1524 BranchInst *InnerLoopLatchPredecessorBI = 1525 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1526 BranchInst *OuterLoopPredecessorBI = 1527 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1528 1529 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1530 return false; 1531 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1532 if (!InnerLoopHeaderSuccessor) 1533 return false; 1534 1535 // Adjust Loop Preheader and headers. 1536 // The branches in the outer loop predecessor and the outer loop header can 1537 // be unconditional branches or conditional branches with duplicates. Consider 1538 // this when updating the successors. 1539 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1540 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1541 // The outer loop header might or might not branch to the outer latch. 1542 // We are guaranteed to branch to the inner loop preheader. 1543 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1544 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1545 /*MustUpdateOnce=*/false); 1546 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1547 InnerLoopHeaderSuccessor, DTUpdates, 1548 /*MustUpdateOnce=*/false); 1549 1550 // Adjust reduction PHI's now that the incoming block has changed. 1551 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1552 OuterLoopHeader); 1553 1554 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1555 OuterLoopPreHeader, DTUpdates); 1556 1557 // -------------Adjust loop latches----------- 1558 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1559 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1560 else 1561 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1562 1563 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1564 InnerLoopLatchSuccessor, DTUpdates); 1565 1566 1567 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1568 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1569 else 1570 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1571 1572 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1573 OuterLoopLatchSuccessor, DTUpdates); 1574 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1575 DTUpdates); 1576 1577 DT->applyUpdates(DTUpdates); 1578 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1579 OuterLoopPreHeader); 1580 1581 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1582 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1583 InnerLoop, LI); 1584 // For PHIs in the exit block of the outer loop, outer's latch has been 1585 // replaced by Inners'. 1586 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1587 1588 // Now update the reduction PHIs in the inner and outer loop headers. 1589 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1590 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1591 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1592 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1593 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1594 1595 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1596 (void)OuterInnerReductions; 1597 1598 // Now move the remaining reduction PHIs from outer to inner loop header and 1599 // vice versa. The PHI nodes must be part of a reduction across the inner and 1600 // outer loop and all the remains to do is and updating the incoming blocks. 1601 for (PHINode *PHI : OuterLoopPHIs) { 1602 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1603 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1604 } 1605 for (PHINode *PHI : InnerLoopPHIs) { 1606 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1607 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1608 } 1609 1610 // Update the incoming blocks for moved PHI nodes. 1611 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1612 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1613 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1614 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1615 1616 // Values defined in the outer loop header could be used in the inner loop 1617 // latch. In that case, we need to create LCSSA phis for them, because after 1618 // interchanging they will be defined in the new inner loop and used in the 1619 // new outer loop. 1620 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1621 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1622 for (Instruction &I : 1623 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1624 MayNeedLCSSAPhis.push_back(&I); 1625 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1626 1627 return true; 1628 } 1629 1630 bool LoopInterchangeTransform::adjustLoopLinks() { 1631 // Adjust all branches in the inner and outer loop. 1632 bool Changed = adjustLoopBranches(); 1633 if (Changed) { 1634 // We have interchanged the preheaders so we need to interchange the data in 1635 // the preheaders as well. This is because the content of the inner 1636 // preheader was previously executed inside the outer loop. 1637 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1638 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1639 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1640 } 1641 return Changed; 1642 } 1643 1644 /// Main LoopInterchange Pass. 1645 struct LoopInterchangeLegacyPass : public LoopPass { 1646 static char ID; 1647 1648 LoopInterchangeLegacyPass() : LoopPass(ID) { 1649 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1650 } 1651 1652 void getAnalysisUsage(AnalysisUsage &AU) const override { 1653 AU.addRequired<DependenceAnalysisWrapperPass>(); 1654 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1655 1656 getLoopAnalysisUsage(AU); 1657 } 1658 1659 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1660 if (skipLoop(L)) 1661 return false; 1662 1663 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1664 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1665 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1666 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1667 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1668 1669 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1670 } 1671 }; 1672 1673 char LoopInterchangeLegacyPass::ID = 0; 1674 1675 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1676 "Interchanges loops for cache reuse", false, false) 1677 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1678 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1679 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1680 1681 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1682 "Interchanges loops for cache reuse", false, false) 1683 1684 Pass *llvm::createLoopInterchangePass() { 1685 return new LoopInterchangeLegacyPass(); 1686 } 1687 1688 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1689 LoopAnalysisManager &AM, 1690 LoopStandardAnalysisResults &AR, 1691 LPMUpdater &U) { 1692 Function &F = *LN.getParent(); 1693 1694 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1695 OptimizationRemarkEmitter ORE(&F); 1696 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN)) 1697 return PreservedAnalyses::all(); 1698 return getLoopPassPreservedAnalyses(); 1699 } 1700