1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/InstructionCost.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include "llvm/Transforms/Scalar.h"
96 #include "llvm/Transforms/Utils/BuildLibCalls.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include "llvm/Transforms/Utils/LoopUtils.h"
99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cstdint>
103 #include <utility>
104 #include <vector>
105 
106 using namespace llvm;
107 
108 #define DEBUG_TYPE "loop-idiom"
109 
110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
112 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
113 STATISTIC(
114     NumShiftUntilBitTest,
115     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
116 STATISTIC(NumShiftUntilZero,
117           "Number of uncountable loops recognized as 'shift until zero' idiom");
118 
119 bool DisableLIRP::All;
120 static cl::opt<bool, true>
121     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
122                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
123                    cl::location(DisableLIRP::All), cl::init(false),
124                    cl::ReallyHidden);
125 
126 bool DisableLIRP::Memset;
127 static cl::opt<bool, true>
128     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
129                       cl::desc("Proceed with loop idiom recognize pass, but do "
130                                "not convert loop(s) to memset."),
131                       cl::location(DisableLIRP::Memset), cl::init(false),
132                       cl::ReallyHidden);
133 
134 bool DisableLIRP::Memcpy;
135 static cl::opt<bool, true>
136     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
137                       cl::desc("Proceed with loop idiom recognize pass, but do "
138                                "not convert loop(s) to memcpy."),
139                       cl::location(DisableLIRP::Memcpy), cl::init(false),
140                       cl::ReallyHidden);
141 
142 static cl::opt<bool> UseLIRCodeSizeHeurs(
143     "use-lir-code-size-heurs",
144     cl::desc("Use loop idiom recognition code size heuristics when compiling"
145              "with -Os/-Oz"),
146     cl::init(true), cl::Hidden);
147 
148 namespace {
149 
150 class LoopIdiomRecognize {
151   Loop *CurLoop = nullptr;
152   AliasAnalysis *AA;
153   DominatorTree *DT;
154   LoopInfo *LI;
155   ScalarEvolution *SE;
156   TargetLibraryInfo *TLI;
157   const TargetTransformInfo *TTI;
158   const DataLayout *DL;
159   OptimizationRemarkEmitter &ORE;
160   bool ApplyCodeSizeHeuristics;
161   std::unique_ptr<MemorySSAUpdater> MSSAU;
162 
163 public:
164   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
165                               LoopInfo *LI, ScalarEvolution *SE,
166                               TargetLibraryInfo *TLI,
167                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
168                               const DataLayout *DL,
169                               OptimizationRemarkEmitter &ORE)
170       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
171     if (MSSA)
172       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
173   }
174 
175   bool runOnLoop(Loop *L);
176 
177 private:
178   using StoreList = SmallVector<StoreInst *, 8>;
179   using StoreListMap = MapVector<Value *, StoreList>;
180 
181   StoreListMap StoreRefsForMemset;
182   StoreListMap StoreRefsForMemsetPattern;
183   StoreList StoreRefsForMemcpy;
184   bool HasMemset;
185   bool HasMemsetPattern;
186   bool HasMemcpy;
187 
188   /// Return code for isLegalStore()
189   enum LegalStoreKind {
190     None = 0,
191     Memset,
192     MemsetPattern,
193     Memcpy,
194     UnorderedAtomicMemcpy,
195     DontUse // Dummy retval never to be used. Allows catching errors in retval
196             // handling.
197   };
198 
199   /// \name Countable Loop Idiom Handling
200   /// @{
201 
202   bool runOnCountableLoop();
203   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
204                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
205 
206   void collectStores(BasicBlock *BB);
207   LegalStoreKind isLegalStore(StoreInst *SI);
208   enum class ForMemset { No, Yes };
209   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
210                          ForMemset For);
211 
212   template <typename MemInst>
213   bool processLoopMemIntrinsic(
214       BasicBlock *BB,
215       bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
216       const SCEV *BECount);
217   bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
218   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
219 
220   bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
221                                MaybeAlign StoreAlignment, Value *StoredVal,
222                                Instruction *TheStore,
223                                SmallPtrSetImpl<Instruction *> &Stores,
224                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
225                                bool IsNegStride, bool IsLoopMemset = false);
226   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
227   bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
228                                   unsigned StoreSize, MaybeAlign StoreAlign,
229                                   MaybeAlign LoadAlign, Instruction *TheStore,
230                                   Instruction *TheLoad,
231                                   const SCEVAddRecExpr *StoreEv,
232                                   const SCEVAddRecExpr *LoadEv,
233                                   const SCEV *BECount);
234   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
235                                  bool IsLoopMemset = false);
236 
237   /// @}
238   /// \name Noncountable Loop Idiom Handling
239   /// @{
240 
241   bool runOnNoncountableLoop();
242 
243   bool recognizePopcount();
244   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
245                                PHINode *CntPhi, Value *Var);
246   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
247   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
248                                 Instruction *CntInst, PHINode *CntPhi,
249                                 Value *Var, Instruction *DefX,
250                                 const DebugLoc &DL, bool ZeroCheck,
251                                 bool IsCntPhiUsedOutsideLoop);
252 
253   bool recognizeShiftUntilBitTest();
254   bool recognizeShiftUntilZero();
255 
256   /// @}
257 };
258 
259 class LoopIdiomRecognizeLegacyPass : public LoopPass {
260 public:
261   static char ID;
262 
263   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
264     initializeLoopIdiomRecognizeLegacyPassPass(
265         *PassRegistry::getPassRegistry());
266   }
267 
268   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
269     if (DisableLIRP::All)
270       return false;
271 
272     if (skipLoop(L))
273       return false;
274 
275     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
276     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
277     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
278     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
279     TargetLibraryInfo *TLI =
280         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
281             *L->getHeader()->getParent());
282     const TargetTransformInfo *TTI =
283         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
284             *L->getHeader()->getParent());
285     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
286     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
287     MemorySSA *MSSA = nullptr;
288     if (MSSAAnalysis)
289       MSSA = &MSSAAnalysis->getMSSA();
290 
291     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
292     // pass.  Function analyses need to be preserved across loop transformations
293     // but ORE cannot be preserved (see comment before the pass definition).
294     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
295 
296     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
297     return LIR.runOnLoop(L);
298   }
299 
300   /// This transformation requires natural loop information & requires that
301   /// loop preheaders be inserted into the CFG.
302   void getAnalysisUsage(AnalysisUsage &AU) const override {
303     AU.addRequired<TargetLibraryInfoWrapperPass>();
304     AU.addRequired<TargetTransformInfoWrapperPass>();
305     AU.addPreserved<MemorySSAWrapperPass>();
306     getLoopAnalysisUsage(AU);
307   }
308 };
309 
310 } // end anonymous namespace
311 
312 char LoopIdiomRecognizeLegacyPass::ID = 0;
313 
314 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
315                                               LoopStandardAnalysisResults &AR,
316                                               LPMUpdater &) {
317   if (DisableLIRP::All)
318     return PreservedAnalyses::all();
319 
320   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
321 
322   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
323   // pass.  Function analyses need to be preserved across loop transformations
324   // but ORE cannot be preserved (see comment before the pass definition).
325   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
326 
327   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
328                          AR.MSSA, DL, ORE);
329   if (!LIR.runOnLoop(&L))
330     return PreservedAnalyses::all();
331 
332   auto PA = getLoopPassPreservedAnalyses();
333   if (AR.MSSA)
334     PA.preserve<MemorySSAAnalysis>();
335   return PA;
336 }
337 
338 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
339                       "Recognize loop idioms", false, false)
340 INITIALIZE_PASS_DEPENDENCY(LoopPass)
341 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
343 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
344                     "Recognize loop idioms", false, false)
345 
346 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
347 
348 static void deleteDeadInstruction(Instruction *I) {
349   I->replaceAllUsesWith(UndefValue::get(I->getType()));
350   I->eraseFromParent();
351 }
352 
353 //===----------------------------------------------------------------------===//
354 //
355 //          Implementation of LoopIdiomRecognize
356 //
357 //===----------------------------------------------------------------------===//
358 
359 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
360   CurLoop = L;
361   // If the loop could not be converted to canonical form, it must have an
362   // indirectbr in it, just give up.
363   if (!L->getLoopPreheader())
364     return false;
365 
366   // Disable loop idiom recognition if the function's name is a common idiom.
367   StringRef Name = L->getHeader()->getParent()->getName();
368   if (Name == "memset" || Name == "memcpy")
369     return false;
370 
371   // Determine if code size heuristics need to be applied.
372   ApplyCodeSizeHeuristics =
373       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
374 
375   HasMemset = TLI->has(LibFunc_memset);
376   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
377   HasMemcpy = TLI->has(LibFunc_memcpy);
378 
379   if (HasMemset || HasMemsetPattern || HasMemcpy)
380     if (SE->hasLoopInvariantBackedgeTakenCount(L))
381       return runOnCountableLoop();
382 
383   return runOnNoncountableLoop();
384 }
385 
386 bool LoopIdiomRecognize::runOnCountableLoop() {
387   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
388   assert(!isa<SCEVCouldNotCompute>(BECount) &&
389          "runOnCountableLoop() called on a loop without a predictable"
390          "backedge-taken count");
391 
392   // If this loop executes exactly one time, then it should be peeled, not
393   // optimized by this pass.
394   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
395     if (BECst->getAPInt() == 0)
396       return false;
397 
398   SmallVector<BasicBlock *, 8> ExitBlocks;
399   CurLoop->getUniqueExitBlocks(ExitBlocks);
400 
401   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
402                     << CurLoop->getHeader()->getParent()->getName()
403                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
404                     << "\n");
405 
406   // The following transforms hoist stores/memsets into the loop pre-header.
407   // Give up if the loop has instructions that may throw.
408   SimpleLoopSafetyInfo SafetyInfo;
409   SafetyInfo.computeLoopSafetyInfo(CurLoop);
410   if (SafetyInfo.anyBlockMayThrow())
411     return false;
412 
413   bool MadeChange = false;
414 
415   // Scan all the blocks in the loop that are not in subloops.
416   for (auto *BB : CurLoop->getBlocks()) {
417     // Ignore blocks in subloops.
418     if (LI->getLoopFor(BB) != CurLoop)
419       continue;
420 
421     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
422   }
423   return MadeChange;
424 }
425 
426 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
427   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
428   return ConstStride->getAPInt();
429 }
430 
431 /// getMemSetPatternValue - If a strided store of the specified value is safe to
432 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
433 /// be passed in.  Otherwise, return null.
434 ///
435 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
436 /// just replicate their input array and then pass on to memset_pattern16.
437 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
438   // FIXME: This could check for UndefValue because it can be merged into any
439   // other valid pattern.
440 
441   // If the value isn't a constant, we can't promote it to being in a constant
442   // array.  We could theoretically do a store to an alloca or something, but
443   // that doesn't seem worthwhile.
444   Constant *C = dyn_cast<Constant>(V);
445   if (!C)
446     return nullptr;
447 
448   // Only handle simple values that are a power of two bytes in size.
449   uint64_t Size = DL->getTypeSizeInBits(V->getType());
450   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
451     return nullptr;
452 
453   // Don't care enough about darwin/ppc to implement this.
454   if (DL->isBigEndian())
455     return nullptr;
456 
457   // Convert to size in bytes.
458   Size /= 8;
459 
460   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
461   // if the top and bottom are the same (e.g. for vectors and large integers).
462   if (Size > 16)
463     return nullptr;
464 
465   // If the constant is exactly 16 bytes, just use it.
466   if (Size == 16)
467     return C;
468 
469   // Otherwise, we'll use an array of the constants.
470   unsigned ArraySize = 16 / Size;
471   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
472   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
473 }
474 
475 LoopIdiomRecognize::LegalStoreKind
476 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
477   // Don't touch volatile stores.
478   if (SI->isVolatile())
479     return LegalStoreKind::None;
480   // We only want simple or unordered-atomic stores.
481   if (!SI->isUnordered())
482     return LegalStoreKind::None;
483 
484   // Avoid merging nontemporal stores.
485   if (SI->getMetadata(LLVMContext::MD_nontemporal))
486     return LegalStoreKind::None;
487 
488   Value *StoredVal = SI->getValueOperand();
489   Value *StorePtr = SI->getPointerOperand();
490 
491   // Don't convert stores of non-integral pointer types to memsets (which stores
492   // integers).
493   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
494     return LegalStoreKind::None;
495 
496   // Reject stores that are so large that they overflow an unsigned.
497   // When storing out scalable vectors we bail out for now, since the code
498   // below currently only works for constant strides.
499   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
500   if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
501       (SizeInBits.getFixedSize() >> 32) != 0)
502     return LegalStoreKind::None;
503 
504   // See if the pointer expression is an AddRec like {base,+,1} on the current
505   // loop, which indicates a strided store.  If we have something else, it's a
506   // random store we can't handle.
507   const SCEVAddRecExpr *StoreEv =
508       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
509   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
510     return LegalStoreKind::None;
511 
512   // Check to see if we have a constant stride.
513   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
514     return LegalStoreKind::None;
515 
516   // See if the store can be turned into a memset.
517 
518   // If the stored value is a byte-wise value (like i32 -1), then it may be
519   // turned into a memset of i8 -1, assuming that all the consecutive bytes
520   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
521   // but it can be turned into memset_pattern if the target supports it.
522   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
523 
524   // Note: memset and memset_pattern on unordered-atomic is yet not supported
525   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
526 
527   // If we're allowed to form a memset, and the stored value would be
528   // acceptable for memset, use it.
529   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
530       // Verify that the stored value is loop invariant.  If not, we can't
531       // promote the memset.
532       CurLoop->isLoopInvariant(SplatValue)) {
533     // It looks like we can use SplatValue.
534     return LegalStoreKind::Memset;
535   }
536   if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
537       // Don't create memset_pattern16s with address spaces.
538       StorePtr->getType()->getPointerAddressSpace() == 0 &&
539       getMemSetPatternValue(StoredVal, DL)) {
540     // It looks like we can use PatternValue!
541     return LegalStoreKind::MemsetPattern;
542   }
543 
544   // Otherwise, see if the store can be turned into a memcpy.
545   if (HasMemcpy && !DisableLIRP::Memcpy) {
546     // Check to see if the stride matches the size of the store.  If so, then we
547     // know that every byte is touched in the loop.
548     APInt Stride = getStoreStride(StoreEv);
549     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
550     if (StoreSize != Stride && StoreSize != -Stride)
551       return LegalStoreKind::None;
552 
553     // The store must be feeding a non-volatile load.
554     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
555 
556     // Only allow non-volatile loads
557     if (!LI || LI->isVolatile())
558       return LegalStoreKind::None;
559     // Only allow simple or unordered-atomic loads
560     if (!LI->isUnordered())
561       return LegalStoreKind::None;
562 
563     // See if the pointer expression is an AddRec like {base,+,1} on the current
564     // loop, which indicates a strided load.  If we have something else, it's a
565     // random load we can't handle.
566     const SCEVAddRecExpr *LoadEv =
567         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
568     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
569       return LegalStoreKind::None;
570 
571     // The store and load must share the same stride.
572     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
573       return LegalStoreKind::None;
574 
575     // Success.  This store can be converted into a memcpy.
576     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
577     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
578                            : LegalStoreKind::Memcpy;
579   }
580   // This store can't be transformed into a memset/memcpy.
581   return LegalStoreKind::None;
582 }
583 
584 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
585   StoreRefsForMemset.clear();
586   StoreRefsForMemsetPattern.clear();
587   StoreRefsForMemcpy.clear();
588   for (Instruction &I : *BB) {
589     StoreInst *SI = dyn_cast<StoreInst>(&I);
590     if (!SI)
591       continue;
592 
593     // Make sure this is a strided store with a constant stride.
594     switch (isLegalStore(SI)) {
595     case LegalStoreKind::None:
596       // Nothing to do
597       break;
598     case LegalStoreKind::Memset: {
599       // Find the base pointer.
600       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
601       StoreRefsForMemset[Ptr].push_back(SI);
602     } break;
603     case LegalStoreKind::MemsetPattern: {
604       // Find the base pointer.
605       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
606       StoreRefsForMemsetPattern[Ptr].push_back(SI);
607     } break;
608     case LegalStoreKind::Memcpy:
609     case LegalStoreKind::UnorderedAtomicMemcpy:
610       StoreRefsForMemcpy.push_back(SI);
611       break;
612     default:
613       assert(false && "unhandled return value");
614       break;
615     }
616   }
617 }
618 
619 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
620 /// with the specified backedge count.  This block is known to be in the current
621 /// loop and not in any subloops.
622 bool LoopIdiomRecognize::runOnLoopBlock(
623     BasicBlock *BB, const SCEV *BECount,
624     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
625   // We can only promote stores in this block if they are unconditionally
626   // executed in the loop.  For a block to be unconditionally executed, it has
627   // to dominate all the exit blocks of the loop.  Verify this now.
628   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
629     if (!DT->dominates(BB, ExitBlocks[i]))
630       return false;
631 
632   bool MadeChange = false;
633   // Look for store instructions, which may be optimized to memset/memcpy.
634   collectStores(BB);
635 
636   // Look for a single store or sets of stores with a common base, which can be
637   // optimized into a memset (memset_pattern).  The latter most commonly happens
638   // with structs and handunrolled loops.
639   for (auto &SL : StoreRefsForMemset)
640     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
641 
642   for (auto &SL : StoreRefsForMemsetPattern)
643     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
644 
645   // Optimize the store into a memcpy, if it feeds an similarly strided load.
646   for (auto &SI : StoreRefsForMemcpy)
647     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
648 
649   MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
650       BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
651   MadeChange |= processLoopMemIntrinsic<MemSetInst>(
652       BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
653 
654   return MadeChange;
655 }
656 
657 /// See if this store(s) can be promoted to a memset.
658 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
659                                            const SCEV *BECount, ForMemset For) {
660   // Try to find consecutive stores that can be transformed into memsets.
661   SetVector<StoreInst *> Heads, Tails;
662   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
663 
664   // Do a quadratic search on all of the given stores and find
665   // all of the pairs of stores that follow each other.
666   SmallVector<unsigned, 16> IndexQueue;
667   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
668     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
669 
670     Value *FirstStoredVal = SL[i]->getValueOperand();
671     Value *FirstStorePtr = SL[i]->getPointerOperand();
672     const SCEVAddRecExpr *FirstStoreEv =
673         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
674     APInt FirstStride = getStoreStride(FirstStoreEv);
675     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
676 
677     // See if we can optimize just this store in isolation.
678     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
679       Heads.insert(SL[i]);
680       continue;
681     }
682 
683     Value *FirstSplatValue = nullptr;
684     Constant *FirstPatternValue = nullptr;
685 
686     if (For == ForMemset::Yes)
687       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
688     else
689       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
690 
691     assert((FirstSplatValue || FirstPatternValue) &&
692            "Expected either splat value or pattern value.");
693 
694     IndexQueue.clear();
695     // If a store has multiple consecutive store candidates, search Stores
696     // array according to the sequence: from i+1 to e, then from i-1 to 0.
697     // This is because usually pairing with immediate succeeding or preceding
698     // candidate create the best chance to find memset opportunity.
699     unsigned j = 0;
700     for (j = i + 1; j < e; ++j)
701       IndexQueue.push_back(j);
702     for (j = i; j > 0; --j)
703       IndexQueue.push_back(j - 1);
704 
705     for (auto &k : IndexQueue) {
706       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
707       Value *SecondStorePtr = SL[k]->getPointerOperand();
708       const SCEVAddRecExpr *SecondStoreEv =
709           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
710       APInt SecondStride = getStoreStride(SecondStoreEv);
711 
712       if (FirstStride != SecondStride)
713         continue;
714 
715       Value *SecondStoredVal = SL[k]->getValueOperand();
716       Value *SecondSplatValue = nullptr;
717       Constant *SecondPatternValue = nullptr;
718 
719       if (For == ForMemset::Yes)
720         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
721       else
722         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
723 
724       assert((SecondSplatValue || SecondPatternValue) &&
725              "Expected either splat value or pattern value.");
726 
727       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
728         if (For == ForMemset::Yes) {
729           if (isa<UndefValue>(FirstSplatValue))
730             FirstSplatValue = SecondSplatValue;
731           if (FirstSplatValue != SecondSplatValue)
732             continue;
733         } else {
734           if (isa<UndefValue>(FirstPatternValue))
735             FirstPatternValue = SecondPatternValue;
736           if (FirstPatternValue != SecondPatternValue)
737             continue;
738         }
739         Tails.insert(SL[k]);
740         Heads.insert(SL[i]);
741         ConsecutiveChain[SL[i]] = SL[k];
742         break;
743       }
744     }
745   }
746 
747   // We may run into multiple chains that merge into a single chain. We mark the
748   // stores that we transformed so that we don't visit the same store twice.
749   SmallPtrSet<Value *, 16> TransformedStores;
750   bool Changed = false;
751 
752   // For stores that start but don't end a link in the chain:
753   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
754        it != e; ++it) {
755     if (Tails.count(*it))
756       continue;
757 
758     // We found a store instr that starts a chain. Now follow the chain and try
759     // to transform it.
760     SmallPtrSet<Instruction *, 8> AdjacentStores;
761     StoreInst *I = *it;
762 
763     StoreInst *HeadStore = I;
764     unsigned StoreSize = 0;
765 
766     // Collect the chain into a list.
767     while (Tails.count(I) || Heads.count(I)) {
768       if (TransformedStores.count(I))
769         break;
770       AdjacentStores.insert(I);
771 
772       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
773       // Move to the next value in the chain.
774       I = ConsecutiveChain[I];
775     }
776 
777     Value *StoredVal = HeadStore->getValueOperand();
778     Value *StorePtr = HeadStore->getPointerOperand();
779     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
780     APInt Stride = getStoreStride(StoreEv);
781 
782     // Check to see if the stride matches the size of the stores.  If so, then
783     // we know that every byte is touched in the loop.
784     if (StoreSize != Stride && StoreSize != -Stride)
785       continue;
786 
787     bool IsNegStride = StoreSize == -Stride;
788 
789     const SCEV *StoreSizeSCEV = SE->getConstant(BECount->getType(), StoreSize);
790     if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
791                                 MaybeAlign(HeadStore->getAlignment()),
792                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
793                                 BECount, IsNegStride)) {
794       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
795       Changed = true;
796     }
797   }
798 
799   return Changed;
800 }
801 
802 /// processLoopMemIntrinsic - Template function for calling different processor
803 /// functions based on mem instrinsic type.
804 template <typename MemInst>
805 bool LoopIdiomRecognize::processLoopMemIntrinsic(
806     BasicBlock *BB,
807     bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
808     const SCEV *BECount) {
809   bool MadeChange = false;
810   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
811     Instruction *Inst = &*I++;
812     // Look for memory instructions, which may be optimized to a larger one.
813     if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
814       WeakTrackingVH InstPtr(&*I);
815       if (!(this->*Processor)(MI, BECount))
816         continue;
817       MadeChange = true;
818 
819       // If processing the instruction invalidated our iterator, start over from
820       // the top of the block.
821       if (!InstPtr)
822         I = BB->begin();
823     }
824   }
825   return MadeChange;
826 }
827 
828 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
829 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
830                                            const SCEV *BECount) {
831   // We can only handle non-volatile memcpys with a constant size.
832   if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
833     return false;
834 
835   // If we're not allowed to hack on memcpy, we fail.
836   if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
837     return false;
838 
839   Value *Dest = MCI->getDest();
840   Value *Source = MCI->getSource();
841   if (!Dest || !Source)
842     return false;
843 
844   // See if the load and store pointer expressions are AddRec like {base,+,1} on
845   // the current loop, which indicates a strided load and store.  If we have
846   // something else, it's a random load or store we can't handle.
847   const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
848   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
849     return false;
850   const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
851   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
852     return false;
853 
854   // Reject memcpys that are so large that they overflow an unsigned.
855   uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
856   if ((SizeInBytes >> 32) != 0)
857     return false;
858 
859   // Check if the stride matches the size of the memcpy. If so, then we know
860   // that every byte is touched in the loop.
861   const SCEVConstant *StoreStride =
862       dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
863   const SCEVConstant *LoadStride =
864       dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
865   if (!StoreStride || !LoadStride)
866     return false;
867 
868   APInt StoreStrideValue = StoreStride->getAPInt();
869   APInt LoadStrideValue = LoadStride->getAPInt();
870   // Huge stride value - give up
871   if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
872     return false;
873 
874   if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
875     ORE.emit([&]() {
876       return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
877              << ore::NV("Inst", "memcpy") << " in "
878              << ore::NV("Function", MCI->getFunction())
879              << " function will not be hoised: "
880              << ore::NV("Reason", "memcpy size is not equal to stride");
881     });
882     return false;
883   }
884 
885   int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
886   int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
887   // Check if the load stride matches the store stride.
888   if (StoreStrideInt != LoadStrideInt)
889     return false;
890 
891   return processLoopStoreOfLoopLoad(Dest, Source, (unsigned)SizeInBytes,
892                                     MCI->getDestAlign(), MCI->getSourceAlign(),
893                                     MCI, MCI, StoreEv, LoadEv, BECount);
894 }
895 
896 /// processLoopMemSet - See if this memset can be promoted to a large memset.
897 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
898                                            const SCEV *BECount) {
899   // We can only handle non-volatile memsets.
900   if (MSI->isVolatile())
901     return false;
902 
903   // If we're not allowed to hack on memset, we fail.
904   if (!HasMemset || DisableLIRP::Memset)
905     return false;
906 
907   Value *Pointer = MSI->getDest();
908 
909   // See if the pointer expression is an AddRec like {base,+,1} on the current
910   // loop, which indicates a strided store.  If we have something else, it's a
911   // random store we can't handle.
912   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
913   if (!Ev || Ev->getLoop() != CurLoop)
914     return false;
915   if (!Ev->isAffine()) {
916     LLVM_DEBUG(dbgs() << "  Pointer is not affine, abort\n");
917     return false;
918   }
919 
920   const SCEV *PointerStrideSCEV = Ev->getOperand(1);
921   const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
922   if (!PointerStrideSCEV || !MemsetSizeSCEV)
923     return false;
924 
925   bool IsNegStride = false;
926   const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
927 
928   if (IsConstantSize) {
929     // Memset size is constant.
930     // Check if the pointer stride matches the memset size. If so, then
931     // we know that every byte is touched in the loop.
932     LLVM_DEBUG(dbgs() << "  memset size is constant\n");
933     uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
934     const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
935     if (!ConstStride)
936       return false;
937 
938     APInt Stride = ConstStride->getAPInt();
939     if (SizeInBytes != Stride && SizeInBytes != -Stride)
940       return false;
941 
942     IsNegStride = SizeInBytes == -Stride;
943   } else {
944     // Memset size is non-constant.
945     // Check if the pointer stride matches the memset size.
946     // To be conservative, the pass would not promote pointers that aren't in
947     // address space zero. Also, the pass only handles memset length and stride
948     // that are invariant for the top level loop.
949     LLVM_DEBUG(dbgs() << "  memset size is non-constant\n");
950     if (Pointer->getType()->getPointerAddressSpace() != 0) {
951       LLVM_DEBUG(dbgs() << "  pointer is not in address space zero, "
952                         << "abort\n");
953       return false;
954     }
955     if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
956       LLVM_DEBUG(dbgs() << "  memset size is not a loop-invariant, "
957                         << "abort\n");
958       return false;
959     }
960 
961     // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
962     IsNegStride = PointerStrideSCEV->isNonConstantNegative();
963     const SCEV *PositiveStrideSCEV =
964         IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
965                     : PointerStrideSCEV;
966     LLVM_DEBUG(dbgs() << "  MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
967                       << "  PositiveStrideSCEV: " << *PositiveStrideSCEV
968                       << "\n");
969 
970     if (PositiveStrideSCEV != MemsetSizeSCEV) {
971       // TODO: folding can be done to the SCEVs
972       // The folding is to fold expressions that is covered by the loop guard
973       // at loop entry. After the folding, compare again and proceed
974       // optimization if equal.
975       LLVM_DEBUG(dbgs() << "  SCEV don't match, abort\n");
976       return false;
977     }
978   }
979 
980   // Verify that the memset value is loop invariant.  If not, we can't promote
981   // the memset.
982   Value *SplatValue = MSI->getValue();
983   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
984     return false;
985 
986   SmallPtrSet<Instruction *, 1> MSIs;
987   MSIs.insert(MSI);
988   return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
989                                  MaybeAlign(MSI->getDestAlignment()),
990                                  SplatValue, MSI, MSIs, Ev, BECount,
991                                  IsNegStride, /*IsLoopMemset=*/true);
992 }
993 
994 /// mayLoopAccessLocation - Return true if the specified loop might access the
995 /// specified pointer location, which is a loop-strided access.  The 'Access'
996 /// argument specifies what the verboten forms of access are (read or write).
997 static bool
998 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
999                       const SCEV *BECount, const SCEV *StoreSizeSCEV,
1000                       AliasAnalysis &AA,
1001                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
1002   // Get the location that may be stored across the loop.  Since the access is
1003   // strided positively through memory, we say that the modified location starts
1004   // at the pointer and has infinite size.
1005   LocationSize AccessSize = LocationSize::afterPointer();
1006 
1007   // If the loop iterates a fixed number of times, we can refine the access size
1008   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
1009   const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
1010   const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1011   if (BECst && ConstSize)
1012     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1013                                        ConstSize->getValue()->getZExtValue());
1014 
1015   // TODO: For this to be really effective, we have to dive into the pointer
1016   // operand in the store.  Store to &A[i] of 100 will always return may alias
1017   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1018   // which will then no-alias a store to &A[100].
1019   MemoryLocation StoreLoc(Ptr, AccessSize);
1020 
1021   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
1022        ++BI)
1023     for (Instruction &I : **BI)
1024       if (IgnoredStores.count(&I) == 0 &&
1025           isModOrRefSet(
1026               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
1027         return true;
1028   return false;
1029 }
1030 
1031 // If we have a negative stride, Start refers to the end of the memory location
1032 // we're trying to memset.  Therefore, we need to recompute the base pointer,
1033 // which is just Start - BECount*Size.
1034 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
1035                                         Type *IntPtr, const SCEV *StoreSizeSCEV,
1036                                         ScalarEvolution *SE) {
1037   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1038   if (!StoreSizeSCEV->isOne()) {
1039     // index = back edge count * store size
1040     Index = SE->getMulExpr(Index,
1041                            SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1042                            SCEV::FlagNUW);
1043   }
1044   // base pointer = start - index * store size
1045   return SE->getMinusSCEV(Start, Index);
1046 }
1047 
1048 /// Compute trip count from the backedge taken count.
1049 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr,
1050                                 Loop *CurLoop, const DataLayout *DL,
1051                                 ScalarEvolution *SE) {
1052   const SCEV *TripCountS = nullptr;
1053   // The # stored bytes is (BECount+1).  Expand the trip count out to
1054   // pointer size if it isn't already.
1055   //
1056   // If we're going to need to zero extend the BE count, check if we can add
1057   // one to it prior to zero extending without overflow. Provided this is safe,
1058   // it allows better simplification of the +1.
1059   if (DL->getTypeSizeInBits(BECount->getType()) <
1060           DL->getTypeSizeInBits(IntPtr) &&
1061       SE->isLoopEntryGuardedByCond(
1062           CurLoop, ICmpInst::ICMP_NE, BECount,
1063           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
1064     TripCountS = SE->getZeroExtendExpr(
1065         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
1066         IntPtr);
1067   } else {
1068     TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
1069                                 SE->getOne(IntPtr), SCEV::FlagNUW);
1070   }
1071 
1072   return TripCountS;
1073 }
1074 
1075 /// Compute the number of bytes as a SCEV from the backedge taken count.
1076 ///
1077 /// This also maps the SCEV into the provided type and tries to handle the
1078 /// computation in a way that will fold cleanly.
1079 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
1080                                const SCEV *StoreSizeSCEV, Loop *CurLoop,
1081                                const DataLayout *DL, ScalarEvolution *SE) {
1082   const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE);
1083 
1084   return SE->getMulExpr(TripCountSCEV,
1085                         SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1086                         SCEV::FlagNUW);
1087 }
1088 
1089 /// processLoopStridedStore - We see a strided store of some value.  If we can
1090 /// transform this into a memset or memset_pattern in the loop preheader, do so.
1091 bool LoopIdiomRecognize::processLoopStridedStore(
1092     Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1093     Value *StoredVal, Instruction *TheStore,
1094     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1095     const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1096   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1097   Constant *PatternValue = nullptr;
1098 
1099   if (!SplatValue)
1100     PatternValue = getMemSetPatternValue(StoredVal, DL);
1101 
1102   assert((SplatValue || PatternValue) &&
1103          "Expected either splat value or pattern value.");
1104 
1105   // The trip count of the loop and the base pointer of the addrec SCEV is
1106   // guaranteed to be loop invariant, which means that it should dominate the
1107   // header.  This allows us to insert code for it in the preheader.
1108   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1109   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1110   IRBuilder<> Builder(Preheader->getTerminator());
1111   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1112   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1113 
1114   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
1115   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1116 
1117   bool Changed = false;
1118   const SCEV *Start = Ev->getStart();
1119   // Handle negative strided loops.
1120   if (IsNegStride)
1121     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1122 
1123   // TODO: ideally we should still be able to generate memset if SCEV expander
1124   // is taught to generate the dependencies at the latest point.
1125   if (!isSafeToExpand(Start, *SE))
1126     return Changed;
1127 
1128   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
1129   // this into a memset in the loop preheader now if we want.  However, this
1130   // would be unsafe to do if there is anything else in the loop that may read
1131   // or write to the aliased location.  Check for any overlap by generating the
1132   // base pointer and checking the region.
1133   Value *BasePtr =
1134       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1135 
1136   // From here on out, conservatively report to the pass manager that we've
1137   // changed the IR, even if we later clean up these added instructions. There
1138   // may be structural differences e.g. in the order of use lists not accounted
1139   // for in just a textual dump of the IR. This is written as a variable, even
1140   // though statically all the places this dominates could be replaced with
1141   // 'true', with the hope that anyone trying to be clever / "more precise" with
1142   // the return value will read this comment, and leave them alone.
1143   Changed = true;
1144 
1145   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1146                             StoreSizeSCEV, *AA, Stores))
1147     return Changed;
1148 
1149   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1150     return Changed;
1151 
1152   // Okay, everything looks good, insert the memset.
1153 
1154   const SCEV *NumBytesS =
1155       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1156 
1157   // TODO: ideally we should still be able to generate memset if SCEV expander
1158   // is taught to generate the dependencies at the latest point.
1159   if (!isSafeToExpand(NumBytesS, *SE))
1160     return Changed;
1161 
1162   Value *NumBytes =
1163       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1164 
1165   CallInst *NewCall;
1166   if (SplatValue) {
1167     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
1168                                    MaybeAlign(StoreAlignment));
1169   } else {
1170     // Everything is emitted in default address space
1171     Type *Int8PtrTy = DestInt8PtrTy;
1172 
1173     Module *M = TheStore->getModule();
1174     StringRef FuncName = "memset_pattern16";
1175     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1176                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1177     inferLibFuncAttributes(M, FuncName, *TLI);
1178 
1179     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1180     // an constant array of 16-bytes.  Plop the value into a mergable global.
1181     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1182                                             GlobalValue::PrivateLinkage,
1183                                             PatternValue, ".memset_pattern");
1184     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1185     GV->setAlignment(Align(16));
1186     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1187     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1188   }
1189   NewCall->setDebugLoc(TheStore->getDebugLoc());
1190 
1191   if (MSSAU) {
1192     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1193         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1194     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1195   }
1196 
1197   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1198                     << "    from store to: " << *Ev << " at: " << *TheStore
1199                     << "\n");
1200 
1201   ORE.emit([&]() {
1202     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
1203                               NewCall->getDebugLoc(), Preheader)
1204            << "Transformed loop-strided store in "
1205            << ore::NV("Function", TheStore->getFunction())
1206            << " function into a call to "
1207            << ore::NV("NewFunction", NewCall->getCalledFunction())
1208            << "() intrinsic";
1209   });
1210 
1211   // Okay, the memset has been formed.  Zap the original store and anything that
1212   // feeds into it.
1213   for (auto *I : Stores) {
1214     if (MSSAU)
1215       MSSAU->removeMemoryAccess(I, true);
1216     deleteDeadInstruction(I);
1217   }
1218   if (MSSAU && VerifyMemorySSA)
1219     MSSAU->getMemorySSA()->verifyMemorySSA();
1220   ++NumMemSet;
1221   ExpCleaner.markResultUsed();
1222   return true;
1223 }
1224 
1225 /// If the stored value is a strided load in the same loop with the same stride
1226 /// this may be transformable into a memcpy.  This kicks in for stuff like
1227 /// for (i) A[i] = B[i];
1228 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1229                                                     const SCEV *BECount) {
1230   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1231 
1232   Value *StorePtr = SI->getPointerOperand();
1233   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1234   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1235 
1236   // The store must be feeding a non-volatile load.
1237   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1238   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1239 
1240   // See if the pointer expression is an AddRec like {base,+,1} on the current
1241   // loop, which indicates a strided load.  If we have something else, it's a
1242   // random load we can't handle.
1243   Value *LoadPtr = LI->getPointerOperand();
1244   const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1245   return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSize,
1246                                     SI->getAlign(), LI->getAlign(), SI, LI,
1247                                     StoreEv, LoadEv, BECount);
1248 }
1249 
1250 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1251     Value *DestPtr, Value *SourcePtr, unsigned StoreSize, MaybeAlign StoreAlign,
1252     MaybeAlign LoadAlign, Instruction *TheStore, Instruction *TheLoad,
1253     const SCEVAddRecExpr *StoreEv, const SCEVAddRecExpr *LoadEv,
1254     const SCEV *BECount) {
1255 
1256   // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1257   // conservatively bail here, since otherwise we may have to transform
1258   // llvm.memcpy.inline into llvm.memcpy which is illegal.
1259   if (isa<MemCpyInlineInst>(TheStore))
1260     return false;
1261 
1262   // The trip count of the loop and the base pointer of the addrec SCEV is
1263   // guaranteed to be loop invariant, which means that it should dominate the
1264   // header.  This allows us to insert code for it in the preheader.
1265   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1266   IRBuilder<> Builder(Preheader->getTerminator());
1267   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1268 
1269   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1270 
1271   bool Changed = false;
1272   const SCEV *StrStart = StoreEv->getStart();
1273   unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1274   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1275 
1276   APInt Stride = getStoreStride(StoreEv);
1277   bool IsNegStride = StoreSize == -Stride;
1278 
1279   const SCEV *StoreSizeSCEV = SE->getConstant(BECount->getType(), StoreSize);
1280   // Handle negative strided loops.
1281   if (IsNegStride)
1282     StrStart =
1283         getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1284 
1285   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1286   // this into a memcpy in the loop preheader now if we want.  However, this
1287   // would be unsafe to do if there is anything else in the loop that may read
1288   // or write the memory region we're storing to.  This includes the load that
1289   // feeds the stores.  Check for an alias by generating the base address and
1290   // checking everything.
1291   Value *StoreBasePtr = Expander.expandCodeFor(
1292       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1293 
1294   // From here on out, conservatively report to the pass manager that we've
1295   // changed the IR, even if we later clean up these added instructions. There
1296   // may be structural differences e.g. in the order of use lists not accounted
1297   // for in just a textual dump of the IR. This is written as a variable, even
1298   // though statically all the places this dominates could be replaced with
1299   // 'true', with the hope that anyone trying to be clever / "more precise" with
1300   // the return value will read this comment, and leave them alone.
1301   Changed = true;
1302 
1303   SmallPtrSet<Instruction *, 2> Stores;
1304   Stores.insert(TheStore);
1305 
1306   bool IsMemCpy = isa<MemCpyInst>(TheStore);
1307   const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1308 
1309   bool UseMemMove =
1310       mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1311                             StoreSizeSCEV, *AA, Stores);
1312   if (UseMemMove) {
1313     Stores.insert(TheLoad);
1314     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1315                               BECount, StoreSizeSCEV, *AA, Stores)) {
1316       ORE.emit([&]() {
1317         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1318                                         TheStore)
1319                << ore::NV("Inst", InstRemark) << " in "
1320                << ore::NV("Function", TheStore->getFunction())
1321                << " function will not be hoisted: "
1322                << ore::NV("Reason", "The loop may access store location");
1323       });
1324       return Changed;
1325     }
1326     Stores.erase(TheLoad);
1327   }
1328 
1329   const SCEV *LdStart = LoadEv->getStart();
1330   unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1331 
1332   // Handle negative strided loops.
1333   if (IsNegStride)
1334     LdStart =
1335         getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1336 
1337   // For a memcpy, we have to make sure that the input array is not being
1338   // mutated by the loop.
1339   Value *LoadBasePtr = Expander.expandCodeFor(
1340       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1341 
1342   // If the store is a memcpy instruction, we must check if it will write to
1343   // the load memory locations. So remove it from the ignored stores.
1344   if (IsMemCpy)
1345     Stores.erase(TheStore);
1346   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1347                             StoreSizeSCEV, *AA, Stores)) {
1348     ORE.emit([&]() {
1349       return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1350              << ore::NV("Inst", InstRemark) << " in "
1351              << ore::NV("Function", TheStore->getFunction())
1352              << " function will not be hoisted: "
1353              << ore::NV("Reason", "The loop may access load location");
1354     });
1355     return Changed;
1356   }
1357   if (UseMemMove) {
1358     // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr for
1359     // negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1360     int64_t LoadOff = 0, StoreOff = 0;
1361     const Value *BP1 = llvm::GetPointerBaseWithConstantOffset(
1362         LoadBasePtr->stripPointerCasts(), LoadOff, *DL);
1363     const Value *BP2 = llvm::GetPointerBaseWithConstantOffset(
1364         StoreBasePtr->stripPointerCasts(), StoreOff, *DL);
1365     int64_t LoadSize =
1366         DL->getTypeSizeInBits(TheLoad->getType()).getFixedSize() / 8;
1367     if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1368       return Changed;
1369     if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1370         (IsNegStride && LoadOff + LoadSize > StoreOff))
1371       return Changed;
1372   }
1373 
1374   if (avoidLIRForMultiBlockLoop())
1375     return Changed;
1376 
1377   // Okay, everything is safe, we can transform this!
1378 
1379   const SCEV *NumBytesS = getNumBytes(
1380       BECount, IntIdxTy, SE->getConstant(IntIdxTy, StoreSize), CurLoop, DL, SE);
1381 
1382   Value *NumBytes =
1383       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1384 
1385   CallInst *NewCall = nullptr;
1386   // Check whether to generate an unordered atomic memcpy:
1387   //  If the load or store are atomic, then they must necessarily be unordered
1388   //  by previous checks.
1389   if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1390     if (UseMemMove)
1391       NewCall = Builder.CreateMemMove(StoreBasePtr, StoreAlign, LoadBasePtr,
1392                                       LoadAlign, NumBytes);
1393     else
1394       NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr,
1395                                      LoadAlign, NumBytes);
1396   } else {
1397     // For now don't support unordered atomic memmove.
1398     if (UseMemMove)
1399       return Changed;
1400     // We cannot allow unaligned ops for unordered load/store, so reject
1401     // anything where the alignment isn't at least the element size.
1402     assert((StoreAlign.hasValue() && LoadAlign.hasValue()) &&
1403            "Expect unordered load/store to have align.");
1404     if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize)
1405       return Changed;
1406 
1407     // If the element.atomic memcpy is not lowered into explicit
1408     // loads/stores later, then it will be lowered into an element-size
1409     // specific lib call. If the lib call doesn't exist for our store size, then
1410     // we shouldn't generate the memcpy.
1411     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1412       return Changed;
1413 
1414     // Create the call.
1415     // Note that unordered atomic loads/stores are *required* by the spec to
1416     // have an alignment but non-atomic loads/stores may not.
1417     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1418         StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(),
1419         NumBytes, StoreSize);
1420   }
1421   NewCall->setDebugLoc(TheStore->getDebugLoc());
1422 
1423   if (MSSAU) {
1424     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1425         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1426     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1427   }
1428 
1429   LLVM_DEBUG(dbgs() << "  Formed new call: " << *NewCall << "\n"
1430                     << "    from load ptr=" << *LoadEv << " at: " << *TheLoad
1431                     << "\n"
1432                     << "    from store ptr=" << *StoreEv << " at: " << *TheStore
1433                     << "\n");
1434 
1435   ORE.emit([&]() {
1436     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1437                               NewCall->getDebugLoc(), Preheader)
1438            << "Formed a call to "
1439            << ore::NV("NewFunction", NewCall->getCalledFunction())
1440            << "() intrinsic from " << ore::NV("Inst", InstRemark)
1441            << " instruction in " << ore::NV("Function", TheStore->getFunction())
1442            << " function";
1443   });
1444 
1445   // Okay, the memcpy has been formed.  Zap the original store and anything that
1446   // feeds into it.
1447   if (MSSAU)
1448     MSSAU->removeMemoryAccess(TheStore, true);
1449   deleteDeadInstruction(TheStore);
1450   if (MSSAU && VerifyMemorySSA)
1451     MSSAU->getMemorySSA()->verifyMemorySSA();
1452   if (UseMemMove)
1453     ++NumMemMove;
1454   else
1455     ++NumMemCpy;
1456   ExpCleaner.markResultUsed();
1457   return true;
1458 }
1459 
1460 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1461 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1462 //
1463 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1464                                                    bool IsLoopMemset) {
1465   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1466     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1467       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1468                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1469                         << " avoided: multi-block top-level loop\n");
1470       return true;
1471     }
1472   }
1473 
1474   return false;
1475 }
1476 
1477 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1478   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1479                     << CurLoop->getHeader()->getParent()->getName()
1480                     << "] Noncountable Loop %"
1481                     << CurLoop->getHeader()->getName() << "\n");
1482 
1483   return recognizePopcount() || recognizeAndInsertFFS() ||
1484          recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1485 }
1486 
1487 /// Check if the given conditional branch is based on the comparison between
1488 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1489 /// true), the control yields to the loop entry. If the branch matches the
1490 /// behavior, the variable involved in the comparison is returned. This function
1491 /// will be called to see if the precondition and postcondition of the loop are
1492 /// in desirable form.
1493 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1494                              bool JmpOnZero = false) {
1495   if (!BI || !BI->isConditional())
1496     return nullptr;
1497 
1498   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1499   if (!Cond)
1500     return nullptr;
1501 
1502   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1503   if (!CmpZero || !CmpZero->isZero())
1504     return nullptr;
1505 
1506   BasicBlock *TrueSucc = BI->getSuccessor(0);
1507   BasicBlock *FalseSucc = BI->getSuccessor(1);
1508   if (JmpOnZero)
1509     std::swap(TrueSucc, FalseSucc);
1510 
1511   ICmpInst::Predicate Pred = Cond->getPredicate();
1512   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1513       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1514     return Cond->getOperand(0);
1515 
1516   return nullptr;
1517 }
1518 
1519 // Check if the recurrence variable `VarX` is in the right form to create
1520 // the idiom. Returns the value coerced to a PHINode if so.
1521 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1522                                  BasicBlock *LoopEntry) {
1523   auto *PhiX = dyn_cast<PHINode>(VarX);
1524   if (PhiX && PhiX->getParent() == LoopEntry &&
1525       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1526     return PhiX;
1527   return nullptr;
1528 }
1529 
1530 /// Return true iff the idiom is detected in the loop.
1531 ///
1532 /// Additionally:
1533 /// 1) \p CntInst is set to the instruction counting the population bit.
1534 /// 2) \p CntPhi is set to the corresponding phi node.
1535 /// 3) \p Var is set to the value whose population bits are being counted.
1536 ///
1537 /// The core idiom we are trying to detect is:
1538 /// \code
1539 ///    if (x0 != 0)
1540 ///      goto loop-exit // the precondition of the loop
1541 ///    cnt0 = init-val;
1542 ///    do {
1543 ///       x1 = phi (x0, x2);
1544 ///       cnt1 = phi(cnt0, cnt2);
1545 ///
1546 ///       cnt2 = cnt1 + 1;
1547 ///        ...
1548 ///       x2 = x1 & (x1 - 1);
1549 ///        ...
1550 ///    } while(x != 0);
1551 ///
1552 /// loop-exit:
1553 /// \endcode
1554 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1555                                 Instruction *&CntInst, PHINode *&CntPhi,
1556                                 Value *&Var) {
1557   // step 1: Check to see if the look-back branch match this pattern:
1558   //    "if (a!=0) goto loop-entry".
1559   BasicBlock *LoopEntry;
1560   Instruction *DefX2, *CountInst;
1561   Value *VarX1, *VarX0;
1562   PHINode *PhiX, *CountPhi;
1563 
1564   DefX2 = CountInst = nullptr;
1565   VarX1 = VarX0 = nullptr;
1566   PhiX = CountPhi = nullptr;
1567   LoopEntry = *(CurLoop->block_begin());
1568 
1569   // step 1: Check if the loop-back branch is in desirable form.
1570   {
1571     if (Value *T = matchCondition(
1572             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1573       DefX2 = dyn_cast<Instruction>(T);
1574     else
1575       return false;
1576   }
1577 
1578   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1579   {
1580     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1581       return false;
1582 
1583     BinaryOperator *SubOneOp;
1584 
1585     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1586       VarX1 = DefX2->getOperand(1);
1587     else {
1588       VarX1 = DefX2->getOperand(0);
1589       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1590     }
1591     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1592       return false;
1593 
1594     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1595     if (!Dec ||
1596         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1597           (SubOneOp->getOpcode() == Instruction::Add &&
1598            Dec->isMinusOne()))) {
1599       return false;
1600     }
1601   }
1602 
1603   // step 3: Check the recurrence of variable X
1604   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1605   if (!PhiX)
1606     return false;
1607 
1608   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1609   {
1610     CountInst = nullptr;
1611     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1612                               IterE = LoopEntry->end();
1613          Iter != IterE; Iter++) {
1614       Instruction *Inst = &*Iter;
1615       if (Inst->getOpcode() != Instruction::Add)
1616         continue;
1617 
1618       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1619       if (!Inc || !Inc->isOne())
1620         continue;
1621 
1622       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1623       if (!Phi)
1624         continue;
1625 
1626       // Check if the result of the instruction is live of the loop.
1627       bool LiveOutLoop = false;
1628       for (User *U : Inst->users()) {
1629         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1630           LiveOutLoop = true;
1631           break;
1632         }
1633       }
1634 
1635       if (LiveOutLoop) {
1636         CountInst = Inst;
1637         CountPhi = Phi;
1638         break;
1639       }
1640     }
1641 
1642     if (!CountInst)
1643       return false;
1644   }
1645 
1646   // step 5: check if the precondition is in this form:
1647   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1648   {
1649     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1650     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1651     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1652       return false;
1653 
1654     CntInst = CountInst;
1655     CntPhi = CountPhi;
1656     Var = T;
1657   }
1658 
1659   return true;
1660 }
1661 
1662 /// Return true if the idiom is detected in the loop.
1663 ///
1664 /// Additionally:
1665 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1666 ///       or nullptr if there is no such.
1667 /// 2) \p CntPhi is set to the corresponding phi node
1668 ///       or nullptr if there is no such.
1669 /// 3) \p Var is set to the value whose CTLZ could be used.
1670 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1671 ///
1672 /// The core idiom we are trying to detect is:
1673 /// \code
1674 ///    if (x0 == 0)
1675 ///      goto loop-exit // the precondition of the loop
1676 ///    cnt0 = init-val;
1677 ///    do {
1678 ///       x = phi (x0, x.next);   //PhiX
1679 ///       cnt = phi(cnt0, cnt.next);
1680 ///
1681 ///       cnt.next = cnt + 1;
1682 ///        ...
1683 ///       x.next = x >> 1;   // DefX
1684 ///        ...
1685 ///    } while(x.next != 0);
1686 ///
1687 /// loop-exit:
1688 /// \endcode
1689 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1690                                       Intrinsic::ID &IntrinID, Value *&InitX,
1691                                       Instruction *&CntInst, PHINode *&CntPhi,
1692                                       Instruction *&DefX) {
1693   BasicBlock *LoopEntry;
1694   Value *VarX = nullptr;
1695 
1696   DefX = nullptr;
1697   CntInst = nullptr;
1698   CntPhi = nullptr;
1699   LoopEntry = *(CurLoop->block_begin());
1700 
1701   // step 1: Check if the loop-back branch is in desirable form.
1702   if (Value *T = matchCondition(
1703           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1704     DefX = dyn_cast<Instruction>(T);
1705   else
1706     return false;
1707 
1708   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1709   if (!DefX || !DefX->isShift())
1710     return false;
1711   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1712                                                      Intrinsic::ctlz;
1713   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1714   if (!Shft || !Shft->isOne())
1715     return false;
1716   VarX = DefX->getOperand(0);
1717 
1718   // step 3: Check the recurrence of variable X
1719   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1720   if (!PhiX)
1721     return false;
1722 
1723   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1724 
1725   // Make sure the initial value can't be negative otherwise the ashr in the
1726   // loop might never reach zero which would make the loop infinite.
1727   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1728     return false;
1729 
1730   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1731   //         or cnt.next = cnt + -1.
1732   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1733   //       then all uses of "cnt.next" could be optimized to the trip count
1734   //       plus "cnt0". Currently it is not optimized.
1735   //       This step could be used to detect POPCNT instruction:
1736   //       cnt.next = cnt + (x.next & 1)
1737   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1738                             IterE = LoopEntry->end();
1739        Iter != IterE; Iter++) {
1740     Instruction *Inst = &*Iter;
1741     if (Inst->getOpcode() != Instruction::Add)
1742       continue;
1743 
1744     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1745     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1746       continue;
1747 
1748     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1749     if (!Phi)
1750       continue;
1751 
1752     CntInst = Inst;
1753     CntPhi = Phi;
1754     break;
1755   }
1756   if (!CntInst)
1757     return false;
1758 
1759   return true;
1760 }
1761 
1762 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1763 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1764 /// trip count returns true; otherwise, returns false.
1765 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1766   // Give up if the loop has multiple blocks or multiple backedges.
1767   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1768     return false;
1769 
1770   Intrinsic::ID IntrinID;
1771   Value *InitX;
1772   Instruction *DefX = nullptr;
1773   PHINode *CntPhi = nullptr;
1774   Instruction *CntInst = nullptr;
1775   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1776   // this is always 6.
1777   size_t IdiomCanonicalSize = 6;
1778 
1779   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1780                                  CntInst, CntPhi, DefX))
1781     return false;
1782 
1783   bool IsCntPhiUsedOutsideLoop = false;
1784   for (User *U : CntPhi->users())
1785     if (!CurLoop->contains(cast<Instruction>(U))) {
1786       IsCntPhiUsedOutsideLoop = true;
1787       break;
1788     }
1789   bool IsCntInstUsedOutsideLoop = false;
1790   for (User *U : CntInst->users())
1791     if (!CurLoop->contains(cast<Instruction>(U))) {
1792       IsCntInstUsedOutsideLoop = true;
1793       break;
1794     }
1795   // If both CntInst and CntPhi are used outside the loop the profitability
1796   // is questionable.
1797   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1798     return false;
1799 
1800   // For some CPUs result of CTLZ(X) intrinsic is undefined
1801   // when X is 0. If we can not guarantee X != 0, we need to check this
1802   // when expand.
1803   bool ZeroCheck = false;
1804   // It is safe to assume Preheader exist as it was checked in
1805   // parent function RunOnLoop.
1806   BasicBlock *PH = CurLoop->getLoopPreheader();
1807 
1808   // If we are using the count instruction outside the loop, make sure we
1809   // have a zero check as a precondition. Without the check the loop would run
1810   // one iteration for before any check of the input value. This means 0 and 1
1811   // would have identical behavior in the original loop and thus
1812   if (!IsCntPhiUsedOutsideLoop) {
1813     auto *PreCondBB = PH->getSinglePredecessor();
1814     if (!PreCondBB)
1815       return false;
1816     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1817     if (!PreCondBI)
1818       return false;
1819     if (matchCondition(PreCondBI, PH) != InitX)
1820       return false;
1821     ZeroCheck = true;
1822   }
1823 
1824   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1825   // profitable if we delete the loop.
1826 
1827   // the loop has only 6 instructions:
1828   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1829   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1830   //  %shr = ashr %n.addr.0, 1
1831   //  %tobool = icmp eq %shr, 0
1832   //  %inc = add nsw %i.0, 1
1833   //  br i1 %tobool
1834 
1835   const Value *Args[] = {InitX,
1836                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1837 
1838   // @llvm.dbg doesn't count as they have no semantic effect.
1839   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1840   uint32_t HeaderSize =
1841       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1842 
1843   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1844   InstructionCost Cost =
1845     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1846   if (HeaderSize != IdiomCanonicalSize &&
1847       Cost > TargetTransformInfo::TCC_Basic)
1848     return false;
1849 
1850   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1851                            DefX->getDebugLoc(), ZeroCheck,
1852                            IsCntPhiUsedOutsideLoop);
1853   return true;
1854 }
1855 
1856 /// Recognizes a population count idiom in a non-countable loop.
1857 ///
1858 /// If detected, transforms the relevant code to issue the popcount intrinsic
1859 /// function call, and returns true; otherwise, returns false.
1860 bool LoopIdiomRecognize::recognizePopcount() {
1861   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1862     return false;
1863 
1864   // Counting population are usually conducted by few arithmetic instructions.
1865   // Such instructions can be easily "absorbed" by vacant slots in a
1866   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1867   // in a compact loop.
1868 
1869   // Give up if the loop has multiple blocks or multiple backedges.
1870   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1871     return false;
1872 
1873   BasicBlock *LoopBody = *(CurLoop->block_begin());
1874   if (LoopBody->size() >= 20) {
1875     // The loop is too big, bail out.
1876     return false;
1877   }
1878 
1879   // It should have a preheader containing nothing but an unconditional branch.
1880   BasicBlock *PH = CurLoop->getLoopPreheader();
1881   if (!PH || &PH->front() != PH->getTerminator())
1882     return false;
1883   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1884   if (!EntryBI || EntryBI->isConditional())
1885     return false;
1886 
1887   // It should have a precondition block where the generated popcount intrinsic
1888   // function can be inserted.
1889   auto *PreCondBB = PH->getSinglePredecessor();
1890   if (!PreCondBB)
1891     return false;
1892   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1893   if (!PreCondBI || PreCondBI->isUnconditional())
1894     return false;
1895 
1896   Instruction *CntInst;
1897   PHINode *CntPhi;
1898   Value *Val;
1899   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1900     return false;
1901 
1902   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1903   return true;
1904 }
1905 
1906 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1907                                        const DebugLoc &DL) {
1908   Value *Ops[] = {Val};
1909   Type *Tys[] = {Val->getType()};
1910 
1911   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1912   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1913   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1914   CI->setDebugLoc(DL);
1915 
1916   return CI;
1917 }
1918 
1919 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1920                                     const DebugLoc &DL, bool ZeroCheck,
1921                                     Intrinsic::ID IID) {
1922   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1923   Type *Tys[] = {Val->getType()};
1924 
1925   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1926   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1927   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1928   CI->setDebugLoc(DL);
1929 
1930   return CI;
1931 }
1932 
1933 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1934 /// loop:
1935 ///   CntPhi = PHI [Cnt0, CntInst]
1936 ///   PhiX = PHI [InitX, DefX]
1937 ///   CntInst = CntPhi + 1
1938 ///   DefX = PhiX >> 1
1939 ///   LOOP_BODY
1940 ///   Br: loop if (DefX != 0)
1941 /// Use(CntPhi) or Use(CntInst)
1942 ///
1943 /// Into:
1944 /// If CntPhi used outside the loop:
1945 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1946 ///   Count = CountPrev + 1
1947 /// else
1948 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1949 /// loop:
1950 ///   CntPhi = PHI [Cnt0, CntInst]
1951 ///   PhiX = PHI [InitX, DefX]
1952 ///   PhiCount = PHI [Count, Dec]
1953 ///   CntInst = CntPhi + 1
1954 ///   DefX = PhiX >> 1
1955 ///   Dec = PhiCount - 1
1956 ///   LOOP_BODY
1957 ///   Br: loop if (Dec != 0)
1958 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1959 /// or
1960 /// Use(Count + Cnt0) // Use(CntInst)
1961 ///
1962 /// If LOOP_BODY is empty the loop will be deleted.
1963 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1964 void LoopIdiomRecognize::transformLoopToCountable(
1965     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1966     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1967     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1968   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1969 
1970   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1971   IRBuilder<> Builder(PreheaderBr);
1972   Builder.SetCurrentDebugLocation(DL);
1973 
1974   // If there are no uses of CntPhi crate:
1975   //   Count = BitWidth - CTLZ(InitX);
1976   //   NewCount = Count;
1977   // If there are uses of CntPhi create:
1978   //   NewCount = BitWidth - CTLZ(InitX >> 1);
1979   //   Count = NewCount + 1;
1980   Value *InitXNext;
1981   if (IsCntPhiUsedOutsideLoop) {
1982     if (DefX->getOpcode() == Instruction::AShr)
1983       InitXNext = Builder.CreateAShr(InitX, 1);
1984     else if (DefX->getOpcode() == Instruction::LShr)
1985       InitXNext = Builder.CreateLShr(InitX, 1);
1986     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1987       InitXNext = Builder.CreateShl(InitX, 1);
1988     else
1989       llvm_unreachable("Unexpected opcode!");
1990   } else
1991     InitXNext = InitX;
1992   Value *Count =
1993       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1994   Type *CountTy = Count->getType();
1995   Count = Builder.CreateSub(
1996       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
1997   Value *NewCount = Count;
1998   if (IsCntPhiUsedOutsideLoop)
1999     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2000 
2001   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2002 
2003   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2004   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2005     // If the counter was being incremented in the loop, add NewCount to the
2006     // counter's initial value, but only if the initial value is not zero.
2007     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2008     if (!InitConst || !InitConst->isZero())
2009       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2010   } else {
2011     // If the count was being decremented in the loop, subtract NewCount from
2012     // the counter's initial value.
2013     NewCount = Builder.CreateSub(CntInitVal, NewCount);
2014   }
2015 
2016   // Step 2: Insert new IV and loop condition:
2017   // loop:
2018   //   ...
2019   //   PhiCount = PHI [Count, Dec]
2020   //   ...
2021   //   Dec = PhiCount - 1
2022   //   ...
2023   //   Br: loop if (Dec != 0)
2024   BasicBlock *Body = *(CurLoop->block_begin());
2025   auto *LbBr = cast<BranchInst>(Body->getTerminator());
2026   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2027 
2028   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
2029 
2030   Builder.SetInsertPoint(LbCond);
2031   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2032       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2033 
2034   TcPhi->addIncoming(Count, Preheader);
2035   TcPhi->addIncoming(TcDec, Body);
2036 
2037   CmpInst::Predicate Pred =
2038       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2039   LbCond->setPredicate(Pred);
2040   LbCond->setOperand(0, TcDec);
2041   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2042 
2043   // Step 3: All the references to the original counter outside
2044   //  the loop are replaced with the NewCount
2045   if (IsCntPhiUsedOutsideLoop)
2046     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2047   else
2048     CntInst->replaceUsesOutsideBlock(NewCount, Body);
2049 
2050   // step 4: Forget the "non-computable" trip-count SCEV associated with the
2051   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2052   SE->forgetLoop(CurLoop);
2053 }
2054 
2055 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2056                                                  Instruction *CntInst,
2057                                                  PHINode *CntPhi, Value *Var) {
2058   BasicBlock *PreHead = CurLoop->getLoopPreheader();
2059   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2060   const DebugLoc &DL = CntInst->getDebugLoc();
2061 
2062   // Assuming before transformation, the loop is following:
2063   //  if (x) // the precondition
2064   //     do { cnt++; x &= x - 1; } while(x);
2065 
2066   // Step 1: Insert the ctpop instruction at the end of the precondition block
2067   IRBuilder<> Builder(PreCondBr);
2068   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2069   {
2070     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2071     NewCount = PopCntZext =
2072         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2073 
2074     if (NewCount != PopCnt)
2075       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2076 
2077     // TripCnt is exactly the number of iterations the loop has
2078     TripCnt = NewCount;
2079 
2080     // If the population counter's initial value is not zero, insert Add Inst.
2081     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2082     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2083     if (!InitConst || !InitConst->isZero()) {
2084       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2085       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2086     }
2087   }
2088 
2089   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2090   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2091   //   function would be partial dead code, and downstream passes will drag
2092   //   it back from the precondition block to the preheader.
2093   {
2094     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2095 
2096     Value *Opnd0 = PopCntZext;
2097     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2098     if (PreCond->getOperand(0) != Var)
2099       std::swap(Opnd0, Opnd1);
2100 
2101     ICmpInst *NewPreCond = cast<ICmpInst>(
2102         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2103     PreCondBr->setCondition(NewPreCond);
2104 
2105     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2106   }
2107 
2108   // Step 3: Note that the population count is exactly the trip count of the
2109   // loop in question, which enable us to convert the loop from noncountable
2110   // loop into a countable one. The benefit is twofold:
2111   //
2112   //  - If the loop only counts population, the entire loop becomes dead after
2113   //    the transformation. It is a lot easier to prove a countable loop dead
2114   //    than to prove a noncountable one. (In some C dialects, an infinite loop
2115   //    isn't dead even if it computes nothing useful. In general, DCE needs
2116   //    to prove a noncountable loop finite before safely delete it.)
2117   //
2118   //  - If the loop also performs something else, it remains alive.
2119   //    Since it is transformed to countable form, it can be aggressively
2120   //    optimized by some optimizations which are in general not applicable
2121   //    to a noncountable loop.
2122   //
2123   // After this step, this loop (conceptually) would look like following:
2124   //   newcnt = __builtin_ctpop(x);
2125   //   t = newcnt;
2126   //   if (x)
2127   //     do { cnt++; x &= x-1; t--) } while (t > 0);
2128   BasicBlock *Body = *(CurLoop->block_begin());
2129   {
2130     auto *LbBr = cast<BranchInst>(Body->getTerminator());
2131     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2132     Type *Ty = TripCnt->getType();
2133 
2134     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
2135 
2136     Builder.SetInsertPoint(LbCond);
2137     Instruction *TcDec = cast<Instruction>(
2138         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2139                           "tcdec", false, true));
2140 
2141     TcPhi->addIncoming(TripCnt, PreHead);
2142     TcPhi->addIncoming(TcDec, Body);
2143 
2144     CmpInst::Predicate Pred =
2145         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2146     LbCond->setPredicate(Pred);
2147     LbCond->setOperand(0, TcDec);
2148     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2149   }
2150 
2151   // Step 4: All the references to the original population counter outside
2152   //  the loop are replaced with the NewCount -- the value returned from
2153   //  __builtin_ctpop().
2154   CntInst->replaceUsesOutsideBlock(NewCount, Body);
2155 
2156   // step 5: Forget the "non-computable" trip-count SCEV associated with the
2157   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2158   SE->forgetLoop(CurLoop);
2159 }
2160 
2161 /// Match loop-invariant value.
2162 template <typename SubPattern_t> struct match_LoopInvariant {
2163   SubPattern_t SubPattern;
2164   const Loop *L;
2165 
2166   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2167       : SubPattern(SP), L(L) {}
2168 
2169   template <typename ITy> bool match(ITy *V) {
2170     return L->isLoopInvariant(V) && SubPattern.match(V);
2171   }
2172 };
2173 
2174 /// Matches if the value is loop-invariant.
2175 template <typename Ty>
2176 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2177   return match_LoopInvariant<Ty>(M, L);
2178 }
2179 
2180 /// Return true if the idiom is detected in the loop.
2181 ///
2182 /// The core idiom we are trying to detect is:
2183 /// \code
2184 ///   entry:
2185 ///     <...>
2186 ///     %bitmask = shl i32 1, %bitpos
2187 ///     br label %loop
2188 ///
2189 ///   loop:
2190 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2191 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2192 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2193 ///     %x.next = shl i32 %x.curr, 1
2194 ///     <...>
2195 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2196 ///
2197 ///   end:
2198 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2199 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2200 ///     <...>
2201 /// \endcode
2202 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2203                                          Value *&BitMask, Value *&BitPos,
2204                                          Value *&CurrX, Instruction *&NextX) {
2205   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2206              " Performing shift-until-bittest idiom detection.\n");
2207 
2208   // Give up if the loop has multiple blocks or multiple backedges.
2209   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2210     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2211     return false;
2212   }
2213 
2214   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2215   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2216   assert(LoopPreheaderBB && "There is always a loop preheader.");
2217 
2218   using namespace PatternMatch;
2219 
2220   // Step 1: Check if the loop backedge is in desirable form.
2221 
2222   ICmpInst::Predicate Pred;
2223   Value *CmpLHS, *CmpRHS;
2224   BasicBlock *TrueBB, *FalseBB;
2225   if (!match(LoopHeaderBB->getTerminator(),
2226              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2227                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2228     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2229     return false;
2230   }
2231 
2232   // Step 2: Check if the backedge's condition is in desirable form.
2233 
2234   auto MatchVariableBitMask = [&]() {
2235     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2236            match(CmpLHS,
2237                  m_c_And(m_Value(CurrX),
2238                          m_CombineAnd(
2239                              m_Value(BitMask),
2240                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2241                                              CurLoop))));
2242   };
2243   auto MatchConstantBitMask = [&]() {
2244     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2245            match(CmpLHS, m_And(m_Value(CurrX),
2246                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2247            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2248   };
2249   auto MatchDecomposableConstantBitMask = [&]() {
2250     APInt Mask;
2251     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2252            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2253            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2254            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2255   };
2256 
2257   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2258       !MatchDecomposableConstantBitMask()) {
2259     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2260     return false;
2261   }
2262 
2263   // Step 3: Check if the recurrence is in desirable form.
2264   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2265   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2266     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2267     return false;
2268   }
2269 
2270   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2271   NextX =
2272       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2273 
2274   assert(CurLoop->isLoopInvariant(BaseX) &&
2275          "Expected BaseX to be avaliable in the preheader!");
2276 
2277   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2278     // FIXME: support right-shift?
2279     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2280     return false;
2281   }
2282 
2283   // Step 4: Check if the backedge's destinations are in desirable form.
2284 
2285   assert(ICmpInst::isEquality(Pred) &&
2286          "Should only get equality predicates here.");
2287 
2288   // cmp-br is commutative, so canonicalize to a single variant.
2289   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2290     Pred = ICmpInst::getInversePredicate(Pred);
2291     std::swap(TrueBB, FalseBB);
2292   }
2293 
2294   // We expect to exit loop when comparison yields false,
2295   // so when it yields true we should branch back to loop header.
2296   if (TrueBB != LoopHeaderBB) {
2297     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2298     return false;
2299   }
2300 
2301   // Okay, idiom checks out.
2302   return true;
2303 }
2304 
2305 /// Look for the following loop:
2306 /// \code
2307 ///   entry:
2308 ///     <...>
2309 ///     %bitmask = shl i32 1, %bitpos
2310 ///     br label %loop
2311 ///
2312 ///   loop:
2313 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2314 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2315 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2316 ///     %x.next = shl i32 %x.curr, 1
2317 ///     <...>
2318 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2319 ///
2320 ///   end:
2321 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2322 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2323 ///     <...>
2324 /// \endcode
2325 ///
2326 /// And transform it into:
2327 /// \code
2328 ///   entry:
2329 ///     %bitmask = shl i32 1, %bitpos
2330 ///     %lowbitmask = add i32 %bitmask, -1
2331 ///     %mask = or i32 %lowbitmask, %bitmask
2332 ///     %x.masked = and i32 %x, %mask
2333 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2334 ///                                                         i1 true)
2335 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2336 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2337 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2338 ///     %tripcount = add i32 %backedgetakencount, 1
2339 ///     %x.curr = shl i32 %x, %backedgetakencount
2340 ///     %x.next = shl i32 %x, %tripcount
2341 ///     br label %loop
2342 ///
2343 ///   loop:
2344 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2345 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2346 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2347 ///     <...>
2348 ///     br i1 %loop.ivcheck, label %end, label %loop
2349 ///
2350 ///   end:
2351 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2352 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2353 ///     <...>
2354 /// \endcode
2355 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2356   bool MadeChange = false;
2357 
2358   Value *X, *BitMask, *BitPos, *XCurr;
2359   Instruction *XNext;
2360   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2361                                     XNext)) {
2362     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2363                " shift-until-bittest idiom detection failed.\n");
2364     return MadeChange;
2365   }
2366   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2367 
2368   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2369   // but is it profitable to transform?
2370 
2371   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2372   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2373   assert(LoopPreheaderBB && "There is always a loop preheader.");
2374 
2375   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2376   assert(SuccessorBB && "There is only a single successor.");
2377 
2378   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2379   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2380 
2381   Intrinsic::ID IntrID = Intrinsic::ctlz;
2382   Type *Ty = X->getType();
2383   unsigned Bitwidth = Ty->getScalarSizeInBits();
2384 
2385   TargetTransformInfo::TargetCostKind CostKind =
2386       TargetTransformInfo::TCK_SizeAndLatency;
2387 
2388   // The rewrite is considered to be unprofitable iff and only iff the
2389   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2390   // making the loop countable, even if nothing else changes.
2391   IntrinsicCostAttributes Attrs(
2392       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2393   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2394   if (Cost > TargetTransformInfo::TCC_Basic) {
2395     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2396                " Intrinsic is too costly, not beneficial\n");
2397     return MadeChange;
2398   }
2399   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2400       TargetTransformInfo::TCC_Basic) {
2401     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2402     return MadeChange;
2403   }
2404 
2405   // Ok, transform appears worthwhile.
2406   MadeChange = true;
2407 
2408   // Step 1: Compute the loop trip count.
2409 
2410   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2411                                         BitPos->getName() + ".lowbitmask");
2412   Value *Mask =
2413       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2414   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2415   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2416       IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2417       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2418   Value *XMaskedNumActiveBits = Builder.CreateSub(
2419       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2420       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2421       /*HasNSW=*/Bitwidth != 2);
2422   Value *XMaskedLeadingOnePos =
2423       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2424                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2425                         /*HasNSW=*/Bitwidth > 2);
2426 
2427   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2428       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2429       /*HasNUW=*/true, /*HasNSW=*/true);
2430   // We know loop's backedge-taken count, but what's loop's trip count?
2431   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2432   Value *LoopTripCount =
2433       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2434                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2435                         /*HasNSW=*/Bitwidth != 2);
2436 
2437   // Step 2: Compute the recurrence's final value without a loop.
2438 
2439   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2440   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2441   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2442   NewX->takeName(XCurr);
2443   if (auto *I = dyn_cast<Instruction>(NewX))
2444     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2445 
2446   Value *NewXNext;
2447   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2448   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2449   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2450   // that isn't the case, we'll need to emit an alternative, safe IR.
2451   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2452       PatternMatch::match(
2453           BitPos, PatternMatch::m_SpecificInt_ICMP(
2454                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2455                                                Ty->getScalarSizeInBits() - 1))))
2456     NewXNext = Builder.CreateShl(X, LoopTripCount);
2457   else {
2458     // Otherwise, just additionally shift by one. It's the smallest solution,
2459     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2460     // and select 0 instead.
2461     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2462   }
2463 
2464   NewXNext->takeName(XNext);
2465   if (auto *I = dyn_cast<Instruction>(NewXNext))
2466     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2467 
2468   // Step 3: Adjust the successor basic block to recieve the computed
2469   //         recurrence's final value instead of the recurrence itself.
2470 
2471   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2472   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2473 
2474   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2475 
2476   // The new canonical induction variable.
2477   Builder.SetInsertPoint(&LoopHeaderBB->front());
2478   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2479 
2480   // The induction itself.
2481   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2482   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2483   auto *IVNext =
2484       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2485                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2486 
2487   // The loop trip count check.
2488   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2489                                        CurLoop->getName() + ".ivcheck");
2490   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2491   LoopHeaderBB->getTerminator()->eraseFromParent();
2492 
2493   // Populate the IV PHI.
2494   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2495   IV->addIncoming(IVNext, LoopHeaderBB);
2496 
2497   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2498   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2499 
2500   SE->forgetLoop(CurLoop);
2501 
2502   // Other passes will take care of actually deleting the loop if possible.
2503 
2504   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2505 
2506   ++NumShiftUntilBitTest;
2507   return MadeChange;
2508 }
2509 
2510 /// Return true if the idiom is detected in the loop.
2511 ///
2512 /// The core idiom we are trying to detect is:
2513 /// \code
2514 ///   entry:
2515 ///     <...>
2516 ///     %start = <...>
2517 ///     %extraoffset = <...>
2518 ///     <...>
2519 ///     br label %for.cond
2520 ///
2521 ///   loop:
2522 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2523 ///     %nbits = add nsw i8 %iv, %extraoffset
2524 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2525 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2526 ///     %iv.next = add i8 %iv, 1
2527 ///     <...>
2528 ///     br i1 %val.shifted.iszero, label %end, label %loop
2529 ///
2530 ///   end:
2531 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2532 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2533 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2534 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2535 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2536 ///     <...>
2537 /// \endcode
2538 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2539                                       Instruction *&ValShiftedIsZero,
2540                                       Intrinsic::ID &IntrinID, Instruction *&IV,
2541                                       Value *&Start, Value *&Val,
2542                                       const SCEV *&ExtraOffsetExpr,
2543                                       bool &InvertedCond) {
2544   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2545              " Performing shift-until-zero idiom detection.\n");
2546 
2547   // Give up if the loop has multiple blocks or multiple backedges.
2548   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2549     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2550     return false;
2551   }
2552 
2553   Instruction *ValShifted, *NBits, *IVNext;
2554   Value *ExtraOffset;
2555 
2556   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2557   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2558   assert(LoopPreheaderBB && "There is always a loop preheader.");
2559 
2560   using namespace PatternMatch;
2561 
2562   // Step 1: Check if the loop backedge, condition is in desirable form.
2563 
2564   ICmpInst::Predicate Pred;
2565   BasicBlock *TrueBB, *FalseBB;
2566   if (!match(LoopHeaderBB->getTerminator(),
2567              m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2568                   m_BasicBlock(FalseBB))) ||
2569       !match(ValShiftedIsZero,
2570              m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2571       !ICmpInst::isEquality(Pred)) {
2572     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2573     return false;
2574   }
2575 
2576   // Step 2: Check if the comparison's operand is in desirable form.
2577   // FIXME: Val could be a one-input PHI node, which we should look past.
2578   if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2579                                  m_Instruction(NBits)))) {
2580     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2581     return false;
2582   }
2583   IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2584                                                          : Intrinsic::ctlz;
2585 
2586   // Step 3: Check if the shift amount is in desirable form.
2587 
2588   if (match(NBits, m_c_Add(m_Instruction(IV),
2589                            m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2590       (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2591     ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2592   else if (match(NBits,
2593                  m_Sub(m_Instruction(IV),
2594                        m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2595            NBits->hasNoSignedWrap())
2596     ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2597   else {
2598     IV = NBits;
2599     ExtraOffsetExpr = SE->getZero(NBits->getType());
2600   }
2601 
2602   // Step 4: Check if the recurrence is in desirable form.
2603   auto *IVPN = dyn_cast<PHINode>(IV);
2604   if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2605     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2606     return false;
2607   }
2608 
2609   Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2610   IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2611 
2612   if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2613     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2614     return false;
2615   }
2616 
2617   // Step 4: Check if the backedge's destinations are in desirable form.
2618 
2619   assert(ICmpInst::isEquality(Pred) &&
2620          "Should only get equality predicates here.");
2621 
2622   // cmp-br is commutative, so canonicalize to a single variant.
2623   InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2624   if (InvertedCond) {
2625     Pred = ICmpInst::getInversePredicate(Pred);
2626     std::swap(TrueBB, FalseBB);
2627   }
2628 
2629   // We expect to exit loop when comparison yields true,
2630   // so when it yields false we should branch back to loop header.
2631   if (FalseBB != LoopHeaderBB) {
2632     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2633     return false;
2634   }
2635 
2636   // The new, countable, loop will certainly only run a known number of
2637   // iterations, It won't be infinite. But the old loop might be infinite
2638   // under certain conditions. For logical shifts, the value will become zero
2639   // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2640   // right-shift, iff the sign bit was set, the value will never become zero,
2641   // and the loop may never finish.
2642   if (ValShifted->getOpcode() == Instruction::AShr &&
2643       !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2644     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2645     return false;
2646   }
2647 
2648   // Okay, idiom checks out.
2649   return true;
2650 }
2651 
2652 /// Look for the following loop:
2653 /// \code
2654 ///   entry:
2655 ///     <...>
2656 ///     %start = <...>
2657 ///     %extraoffset = <...>
2658 ///     <...>
2659 ///     br label %for.cond
2660 ///
2661 ///   loop:
2662 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2663 ///     %nbits = add nsw i8 %iv, %extraoffset
2664 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2665 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2666 ///     %iv.next = add i8 %iv, 1
2667 ///     <...>
2668 ///     br i1 %val.shifted.iszero, label %end, label %loop
2669 ///
2670 ///   end:
2671 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2672 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2673 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2674 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2675 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2676 ///     <...>
2677 /// \endcode
2678 ///
2679 /// And transform it into:
2680 /// \code
2681 ///   entry:
2682 ///     <...>
2683 ///     %start = <...>
2684 ///     %extraoffset = <...>
2685 ///     <...>
2686 ///     %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2687 ///     %val.numactivebits = sub i8 8, %val.numleadingzeros
2688 ///     %extraoffset.neg = sub i8 0, %extraoffset
2689 ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg
2690 ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2691 ///     %loop.tripcount = sub i8 %iv.final, %start
2692 ///     br label %loop
2693 ///
2694 ///   loop:
2695 ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2696 ///     %loop.iv.next = add i8 %loop.iv, 1
2697 ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2698 ///     %iv = add i8 %loop.iv, %start
2699 ///     <...>
2700 ///     br i1 %loop.ivcheck, label %end, label %loop
2701 ///
2702 ///   end:
2703 ///     %iv.res = phi i8 [ %iv.final, %loop ] <...>
2704 ///     <...>
2705 /// \endcode
2706 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2707   bool MadeChange = false;
2708 
2709   Instruction *ValShiftedIsZero;
2710   Intrinsic::ID IntrID;
2711   Instruction *IV;
2712   Value *Start, *Val;
2713   const SCEV *ExtraOffsetExpr;
2714   bool InvertedCond;
2715   if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2716                                  Start, Val, ExtraOffsetExpr, InvertedCond)) {
2717     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2718                " shift-until-zero idiom detection failed.\n");
2719     return MadeChange;
2720   }
2721   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2722 
2723   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2724   // but is it profitable to transform?
2725 
2726   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2727   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2728   assert(LoopPreheaderBB && "There is always a loop preheader.");
2729 
2730   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2731   assert(SuccessorBB && "There is only a single successor.");
2732 
2733   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2734   Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2735 
2736   Type *Ty = Val->getType();
2737   unsigned Bitwidth = Ty->getScalarSizeInBits();
2738 
2739   TargetTransformInfo::TargetCostKind CostKind =
2740       TargetTransformInfo::TCK_SizeAndLatency;
2741 
2742   // The rewrite is considered to be unprofitable iff and only iff the
2743   // intrinsic we'll use are not cheap. Note that we are okay with *just*
2744   // making the loop countable, even if nothing else changes.
2745   IntrinsicCostAttributes Attrs(
2746       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
2747   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2748   if (Cost > TargetTransformInfo::TCC_Basic) {
2749     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2750                " Intrinsic is too costly, not beneficial\n");
2751     return MadeChange;
2752   }
2753 
2754   // Ok, transform appears worthwhile.
2755   MadeChange = true;
2756 
2757   bool OffsetIsZero = false;
2758   if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2759     OffsetIsZero = ExtraOffsetExprC->isZero();
2760 
2761   // Step 1: Compute the loop's final IV value / trip count.
2762 
2763   CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2764       IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
2765       /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2766   Value *ValNumActiveBits = Builder.CreateSub(
2767       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2768       Val->getName() + ".numactivebits", /*HasNUW=*/true,
2769       /*HasNSW=*/Bitwidth != 2);
2770 
2771   SCEVExpander Expander(*SE, *DL, "loop-idiom");
2772   Expander.setInsertPoint(&*Builder.GetInsertPoint());
2773   Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2774 
2775   Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2776       ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2777       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2778   Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2779                                            {ValNumActiveBitsOffset, Start},
2780                                            /*FMFSource=*/nullptr, "iv.final");
2781 
2782   auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2783       IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2784       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2785   // FIXME: or when the offset was `add nuw`
2786 
2787   // We know loop's backedge-taken count, but what's loop's trip count?
2788   Value *LoopTripCount =
2789       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2790                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2791                         /*HasNSW=*/Bitwidth != 2);
2792 
2793   // Step 2: Adjust the successor basic block to recieve the original
2794   //         induction variable's final value instead of the orig. IV itself.
2795 
2796   IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2797 
2798   // Step 3: Rewrite the loop into a countable form, with canonical IV.
2799 
2800   // The new canonical induction variable.
2801   Builder.SetInsertPoint(&LoopHeaderBB->front());
2802   auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2803 
2804   // The induction itself.
2805   Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
2806   auto *CIVNext =
2807       Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2808                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2809 
2810   // The loop trip count check.
2811   auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2812                                         CurLoop->getName() + ".ivcheck");
2813   auto *NewIVCheck = CIVCheck;
2814   if (InvertedCond) {
2815     NewIVCheck = Builder.CreateNot(CIVCheck);
2816     NewIVCheck->takeName(ValShiftedIsZero);
2817   }
2818 
2819   // The original IV, but rebased to be an offset to the CIV.
2820   auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2821                                      /*HasNSW=*/true); // FIXME: what about NUW?
2822   IVDePHId->takeName(IV);
2823 
2824   // The loop terminator.
2825   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2826   Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2827   LoopHeaderBB->getTerminator()->eraseFromParent();
2828 
2829   // Populate the IV PHI.
2830   CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2831   CIV->addIncoming(CIVNext, LoopHeaderBB);
2832 
2833   // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2834   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2835 
2836   SE->forgetLoop(CurLoop);
2837 
2838   // Step 5: Try to cleanup the loop's body somewhat.
2839   IV->replaceAllUsesWith(IVDePHId);
2840   IV->eraseFromParent();
2841 
2842   ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2843   ValShiftedIsZero->eraseFromParent();
2844 
2845   // Other passes will take care of actually deleting the loop if possible.
2846 
2847   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2848 
2849   ++NumShiftUntilZero;
2850   return MadeChange;
2851 }
2852