1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, memmove, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/LoopAccessAnalysis.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/LoopPass.h" 53 #include "llvm/Analysis/MemoryLocation.h" 54 #include "llvm/Analysis/MemorySSA.h" 55 #include "llvm/Analysis/MemorySSAUpdater.h" 56 #include "llvm/Analysis/MustExecute.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Attributes.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/GlobalValue.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/User.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/InitializePasses.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/Casting.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BuildLibCalls.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/LoopUtils.h" 96 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 97 #include <algorithm> 98 #include <cassert> 99 #include <cstdint> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 105 #define DEBUG_TYPE "loop-idiom" 106 107 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 108 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 109 110 bool DisableLIRP::All; 111 static cl::opt<bool, true> 112 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 113 cl::desc("Options to disable Loop Idiom Recognize Pass."), 114 cl::location(DisableLIRP::All), cl::init(false), 115 cl::ReallyHidden); 116 117 bool DisableLIRP::Memset; 118 static cl::opt<bool, true> 119 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 120 cl::desc("Proceed with loop idiom recognize pass, but do " 121 "not convert loop(s) to memset."), 122 cl::location(DisableLIRP::Memset), cl::init(false), 123 cl::ReallyHidden); 124 125 bool DisableLIRP::Memcpy; 126 static cl::opt<bool, true> 127 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 128 cl::desc("Proceed with loop idiom recognize pass, but do " 129 "not convert loop(s) to memcpy."), 130 cl::location(DisableLIRP::Memcpy), cl::init(false), 131 cl::ReallyHidden); 132 133 static cl::opt<bool> UseLIRCodeSizeHeurs( 134 "use-lir-code-size-heurs", 135 cl::desc("Use loop idiom recognition code size heuristics when compiling" 136 "with -Os/-Oz"), 137 cl::init(true), cl::Hidden); 138 139 namespace { 140 141 class LoopIdiomRecognize { 142 Loop *CurLoop = nullptr; 143 AliasAnalysis *AA; 144 DominatorTree *DT; 145 LoopInfo *LI; 146 ScalarEvolution *SE; 147 TargetLibraryInfo *TLI; 148 const TargetTransformInfo *TTI; 149 const DataLayout *DL; 150 OptimizationRemarkEmitter &ORE; 151 bool ApplyCodeSizeHeuristics; 152 std::unique_ptr<MemorySSAUpdater> MSSAU; 153 154 public: 155 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 156 LoopInfo *LI, ScalarEvolution *SE, 157 TargetLibraryInfo *TLI, 158 const TargetTransformInfo *TTI, MemorySSA *MSSA, 159 const DataLayout *DL, 160 OptimizationRemarkEmitter &ORE) 161 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 162 if (MSSA) 163 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 164 } 165 166 bool runOnLoop(Loop *L); 167 168 private: 169 using StoreList = SmallVector<StoreInst *, 8>; 170 using StoreListMap = MapVector<Value *, StoreList>; 171 172 StoreListMap StoreRefsForMemset; 173 StoreListMap StoreRefsForMemsetPattern; 174 StoreList StoreRefsForMemcpy; 175 bool HasMemset; 176 bool HasMemsetPattern; 177 bool HasMemcpy; 178 179 /// Return code for isLegalStore() 180 enum LegalStoreKind { 181 None = 0, 182 Memset, 183 MemsetPattern, 184 Memcpy, 185 UnorderedAtomicMemcpy, 186 DontUse // Dummy retval never to be used. Allows catching errors in retval 187 // handling. 188 }; 189 190 /// \name Countable Loop Idiom Handling 191 /// @{ 192 193 bool runOnCountableLoop(); 194 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 195 SmallVectorImpl<BasicBlock *> &ExitBlocks); 196 197 void collectStores(BasicBlock *BB); 198 LegalStoreKind isLegalStore(StoreInst *SI); 199 enum class ForMemset { No, Yes }; 200 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 201 ForMemset For); 202 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 203 204 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 205 MaybeAlign StoreAlignment, Value *StoredVal, 206 Instruction *TheStore, 207 SmallPtrSetImpl<Instruction *> &Stores, 208 const SCEVAddRecExpr *Ev, const SCEV *BECount, 209 bool NegStride, bool IsLoopMemset = false); 210 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 211 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 212 bool IsLoopMemset = false); 213 214 /// @} 215 /// \name Noncountable Loop Idiom Handling 216 /// @{ 217 218 bool runOnNoncountableLoop(); 219 220 bool recognizePopcount(); 221 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 222 PHINode *CntPhi, Value *Var); 223 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 224 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 225 Instruction *CntInst, PHINode *CntPhi, 226 Value *Var, Instruction *DefX, 227 const DebugLoc &DL, bool ZeroCheck, 228 bool IsCntPhiUsedOutsideLoop); 229 230 /// @} 231 }; 232 233 class LoopIdiomRecognizeLegacyPass : public LoopPass { 234 public: 235 static char ID; 236 237 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 238 initializeLoopIdiomRecognizeLegacyPassPass( 239 *PassRegistry::getPassRegistry()); 240 } 241 242 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 243 if (DisableLIRP::All) 244 return false; 245 246 if (skipLoop(L)) 247 return false; 248 249 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 250 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 251 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 252 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 253 TargetLibraryInfo *TLI = 254 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 255 *L->getHeader()->getParent()); 256 const TargetTransformInfo *TTI = 257 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 258 *L->getHeader()->getParent()); 259 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 260 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 261 MemorySSA *MSSA = nullptr; 262 if (MSSAAnalysis) 263 MSSA = &MSSAAnalysis->getMSSA(); 264 265 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 266 // pass. Function analyses need to be preserved across loop transformations 267 // but ORE cannot be preserved (see comment before the pass definition). 268 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 269 270 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 271 return LIR.runOnLoop(L); 272 } 273 274 /// This transformation requires natural loop information & requires that 275 /// loop preheaders be inserted into the CFG. 276 void getAnalysisUsage(AnalysisUsage &AU) const override { 277 AU.addRequired<TargetLibraryInfoWrapperPass>(); 278 AU.addRequired<TargetTransformInfoWrapperPass>(); 279 AU.addPreserved<MemorySSAWrapperPass>(); 280 getLoopAnalysisUsage(AU); 281 } 282 }; 283 284 } // end anonymous namespace 285 286 char LoopIdiomRecognizeLegacyPass::ID = 0; 287 288 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 289 LoopStandardAnalysisResults &AR, 290 LPMUpdater &) { 291 if (DisableLIRP::All) 292 return PreservedAnalyses::all(); 293 294 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 295 296 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 297 // pass. Function analyses need to be preserved across loop transformations 298 // but ORE cannot be preserved (see comment before the pass definition). 299 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 300 301 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 302 AR.MSSA, DL, ORE); 303 if (!LIR.runOnLoop(&L)) 304 return PreservedAnalyses::all(); 305 306 auto PA = getLoopPassPreservedAnalyses(); 307 if (AR.MSSA) 308 PA.preserve<MemorySSAAnalysis>(); 309 return PA; 310 } 311 312 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 313 "Recognize loop idioms", false, false) 314 INITIALIZE_PASS_DEPENDENCY(LoopPass) 315 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 316 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 317 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 318 "Recognize loop idioms", false, false) 319 320 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 321 322 static void deleteDeadInstruction(Instruction *I) { 323 I->replaceAllUsesWith(UndefValue::get(I->getType())); 324 I->eraseFromParent(); 325 } 326 327 //===----------------------------------------------------------------------===// 328 // 329 // Implementation of LoopIdiomRecognize 330 // 331 //===----------------------------------------------------------------------===// 332 333 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 334 CurLoop = L; 335 // If the loop could not be converted to canonical form, it must have an 336 // indirectbr in it, just give up. 337 if (!L->getLoopPreheader()) 338 return false; 339 340 // Disable loop idiom recognition if the function's name is a common idiom. 341 StringRef Name = L->getHeader()->getParent()->getName(); 342 if (Name == "memset" || Name == "memcpy") 343 return false; 344 345 // Determine if code size heuristics need to be applied. 346 ApplyCodeSizeHeuristics = 347 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 348 349 HasMemset = TLI->has(LibFunc_memset); 350 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 351 HasMemcpy = TLI->has(LibFunc_memcpy); 352 353 if (HasMemset || HasMemsetPattern || HasMemcpy) 354 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 355 return runOnCountableLoop(); 356 357 return runOnNoncountableLoop(); 358 } 359 360 bool LoopIdiomRecognize::runOnCountableLoop() { 361 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 362 assert(!isa<SCEVCouldNotCompute>(BECount) && 363 "runOnCountableLoop() called on a loop without a predictable" 364 "backedge-taken count"); 365 366 // If this loop executes exactly one time, then it should be peeled, not 367 // optimized by this pass. 368 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 369 if (BECst->getAPInt() == 0) 370 return false; 371 372 SmallVector<BasicBlock *, 8> ExitBlocks; 373 CurLoop->getUniqueExitBlocks(ExitBlocks); 374 375 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 376 << CurLoop->getHeader()->getParent()->getName() 377 << "] Countable Loop %" << CurLoop->getHeader()->getName() 378 << "\n"); 379 380 // The following transforms hoist stores/memsets into the loop pre-header. 381 // Give up if the loop has instructions that may throw. 382 SimpleLoopSafetyInfo SafetyInfo; 383 SafetyInfo.computeLoopSafetyInfo(CurLoop); 384 if (SafetyInfo.anyBlockMayThrow()) 385 return false; 386 387 bool MadeChange = false; 388 389 // Scan all the blocks in the loop that are not in subloops. 390 for (auto *BB : CurLoop->getBlocks()) { 391 // Ignore blocks in subloops. 392 if (LI->getLoopFor(BB) != CurLoop) 393 continue; 394 395 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 396 } 397 return MadeChange; 398 } 399 400 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 401 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 402 return ConstStride->getAPInt(); 403 } 404 405 /// getMemSetPatternValue - If a strided store of the specified value is safe to 406 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 407 /// be passed in. Otherwise, return null. 408 /// 409 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 410 /// just replicate their input array and then pass on to memset_pattern16. 411 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 412 // FIXME: This could check for UndefValue because it can be merged into any 413 // other valid pattern. 414 415 // If the value isn't a constant, we can't promote it to being in a constant 416 // array. We could theoretically do a store to an alloca or something, but 417 // that doesn't seem worthwhile. 418 Constant *C = dyn_cast<Constant>(V); 419 if (!C) 420 return nullptr; 421 422 // Only handle simple values that are a power of two bytes in size. 423 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 424 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 425 return nullptr; 426 427 // Don't care enough about darwin/ppc to implement this. 428 if (DL->isBigEndian()) 429 return nullptr; 430 431 // Convert to size in bytes. 432 Size /= 8; 433 434 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 435 // if the top and bottom are the same (e.g. for vectors and large integers). 436 if (Size > 16) 437 return nullptr; 438 439 // If the constant is exactly 16 bytes, just use it. 440 if (Size == 16) 441 return C; 442 443 // Otherwise, we'll use an array of the constants. 444 unsigned ArraySize = 16 / Size; 445 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 446 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 447 } 448 449 LoopIdiomRecognize::LegalStoreKind 450 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 451 // Don't touch volatile stores. 452 if (SI->isVolatile()) 453 return LegalStoreKind::None; 454 // We only want simple or unordered-atomic stores. 455 if (!SI->isUnordered()) 456 return LegalStoreKind::None; 457 458 // Avoid merging nontemporal stores. 459 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 460 return LegalStoreKind::None; 461 462 Value *StoredVal = SI->getValueOperand(); 463 Value *StorePtr = SI->getPointerOperand(); 464 465 // Don't convert stores of non-integral pointer types to memsets (which stores 466 // integers). 467 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 468 return LegalStoreKind::None; 469 470 // Reject stores that are so large that they overflow an unsigned. 471 // When storing out scalable vectors we bail out for now, since the code 472 // below currently only works for constant strides. 473 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 474 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 475 (SizeInBits.getFixedSize() >> 32) != 0) 476 return LegalStoreKind::None; 477 478 // See if the pointer expression is an AddRec like {base,+,1} on the current 479 // loop, which indicates a strided store. If we have something else, it's a 480 // random store we can't handle. 481 const SCEVAddRecExpr *StoreEv = 482 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 483 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 484 return LegalStoreKind::None; 485 486 // Check to see if we have a constant stride. 487 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 488 return LegalStoreKind::None; 489 490 // See if the store can be turned into a memset. 491 492 // If the stored value is a byte-wise value (like i32 -1), then it may be 493 // turned into a memset of i8 -1, assuming that all the consecutive bytes 494 // are stored. A store of i32 0x01020304 can never be turned into a memset, 495 // but it can be turned into memset_pattern if the target supports it. 496 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 497 Constant *PatternValue = nullptr; 498 499 // Note: memset and memset_pattern on unordered-atomic is yet not supported 500 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 501 502 // If we're allowed to form a memset, and the stored value would be 503 // acceptable for memset, use it. 504 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 505 // Verify that the stored value is loop invariant. If not, we can't 506 // promote the memset. 507 CurLoop->isLoopInvariant(SplatValue)) { 508 // It looks like we can use SplatValue. 509 return LegalStoreKind::Memset; 510 } else if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 511 // Don't create memset_pattern16s with address spaces. 512 StorePtr->getType()->getPointerAddressSpace() == 0 && 513 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 514 // It looks like we can use PatternValue! 515 return LegalStoreKind::MemsetPattern; 516 } 517 518 // Otherwise, see if the store can be turned into a memcpy. 519 if (HasMemcpy && !DisableLIRP::Memcpy) { 520 // Check to see if the stride matches the size of the store. If so, then we 521 // know that every byte is touched in the loop. 522 APInt Stride = getStoreStride(StoreEv); 523 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 524 if (StoreSize != Stride && StoreSize != -Stride) 525 return LegalStoreKind::None; 526 527 // The store must be feeding a non-volatile load. 528 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 529 530 // Only allow non-volatile loads 531 if (!LI || LI->isVolatile()) 532 return LegalStoreKind::None; 533 // Only allow simple or unordered-atomic loads 534 if (!LI->isUnordered()) 535 return LegalStoreKind::None; 536 537 // See if the pointer expression is an AddRec like {base,+,1} on the current 538 // loop, which indicates a strided load. If we have something else, it's a 539 // random load we can't handle. 540 const SCEVAddRecExpr *LoadEv = 541 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 542 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 543 return LegalStoreKind::None; 544 545 // The store and load must share the same stride. 546 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 547 return LegalStoreKind::None; 548 549 // Success. This store can be converted into a memcpy. 550 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 551 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 552 : LegalStoreKind::Memcpy; 553 } 554 // This store can't be transformed into a memset/memcpy. 555 return LegalStoreKind::None; 556 } 557 558 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 559 StoreRefsForMemset.clear(); 560 StoreRefsForMemsetPattern.clear(); 561 StoreRefsForMemcpy.clear(); 562 for (Instruction &I : *BB) { 563 StoreInst *SI = dyn_cast<StoreInst>(&I); 564 if (!SI) 565 continue; 566 567 // Make sure this is a strided store with a constant stride. 568 switch (isLegalStore(SI)) { 569 case LegalStoreKind::None: 570 // Nothing to do 571 break; 572 case LegalStoreKind::Memset: { 573 // Find the base pointer. 574 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 575 StoreRefsForMemset[Ptr].push_back(SI); 576 } break; 577 case LegalStoreKind::MemsetPattern: { 578 // Find the base pointer. 579 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 580 StoreRefsForMemsetPattern[Ptr].push_back(SI); 581 } break; 582 case LegalStoreKind::Memcpy: 583 case LegalStoreKind::UnorderedAtomicMemcpy: 584 StoreRefsForMemcpy.push_back(SI); 585 break; 586 default: 587 assert(false && "unhandled return value"); 588 break; 589 } 590 } 591 } 592 593 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 594 /// with the specified backedge count. This block is known to be in the current 595 /// loop and not in any subloops. 596 bool LoopIdiomRecognize::runOnLoopBlock( 597 BasicBlock *BB, const SCEV *BECount, 598 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 599 // We can only promote stores in this block if they are unconditionally 600 // executed in the loop. For a block to be unconditionally executed, it has 601 // to dominate all the exit blocks of the loop. Verify this now. 602 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 603 if (!DT->dominates(BB, ExitBlocks[i])) 604 return false; 605 606 bool MadeChange = false; 607 // Look for store instructions, which may be optimized to memset/memcpy. 608 collectStores(BB); 609 610 // Look for a single store or sets of stores with a common base, which can be 611 // optimized into a memset (memset_pattern). The latter most commonly happens 612 // with structs and handunrolled loops. 613 for (auto &SL : StoreRefsForMemset) 614 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 615 616 for (auto &SL : StoreRefsForMemsetPattern) 617 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 618 619 // Optimize the store into a memcpy, if it feeds an similarly strided load. 620 for (auto &SI : StoreRefsForMemcpy) 621 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 622 623 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 624 Instruction *Inst = &*I++; 625 // Look for memset instructions, which may be optimized to a larger memset. 626 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 627 WeakTrackingVH InstPtr(&*I); 628 if (!processLoopMemSet(MSI, BECount)) 629 continue; 630 MadeChange = true; 631 632 // If processing the memset invalidated our iterator, start over from the 633 // top of the block. 634 if (!InstPtr) 635 I = BB->begin(); 636 continue; 637 } 638 } 639 640 return MadeChange; 641 } 642 643 /// See if this store(s) can be promoted to a memset. 644 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 645 const SCEV *BECount, ForMemset For) { 646 // Try to find consecutive stores that can be transformed into memsets. 647 SetVector<StoreInst *> Heads, Tails; 648 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 649 650 // Do a quadratic search on all of the given stores and find 651 // all of the pairs of stores that follow each other. 652 SmallVector<unsigned, 16> IndexQueue; 653 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 654 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 655 656 Value *FirstStoredVal = SL[i]->getValueOperand(); 657 Value *FirstStorePtr = SL[i]->getPointerOperand(); 658 const SCEVAddRecExpr *FirstStoreEv = 659 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 660 APInt FirstStride = getStoreStride(FirstStoreEv); 661 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 662 663 // See if we can optimize just this store in isolation. 664 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 665 Heads.insert(SL[i]); 666 continue; 667 } 668 669 Value *FirstSplatValue = nullptr; 670 Constant *FirstPatternValue = nullptr; 671 672 if (For == ForMemset::Yes) 673 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 674 else 675 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 676 677 assert((FirstSplatValue || FirstPatternValue) && 678 "Expected either splat value or pattern value."); 679 680 IndexQueue.clear(); 681 // If a store has multiple consecutive store candidates, search Stores 682 // array according to the sequence: from i+1 to e, then from i-1 to 0. 683 // This is because usually pairing with immediate succeeding or preceding 684 // candidate create the best chance to find memset opportunity. 685 unsigned j = 0; 686 for (j = i + 1; j < e; ++j) 687 IndexQueue.push_back(j); 688 for (j = i; j > 0; --j) 689 IndexQueue.push_back(j - 1); 690 691 for (auto &k : IndexQueue) { 692 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 693 Value *SecondStorePtr = SL[k]->getPointerOperand(); 694 const SCEVAddRecExpr *SecondStoreEv = 695 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 696 APInt SecondStride = getStoreStride(SecondStoreEv); 697 698 if (FirstStride != SecondStride) 699 continue; 700 701 Value *SecondStoredVal = SL[k]->getValueOperand(); 702 Value *SecondSplatValue = nullptr; 703 Constant *SecondPatternValue = nullptr; 704 705 if (For == ForMemset::Yes) 706 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 707 else 708 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 709 710 assert((SecondSplatValue || SecondPatternValue) && 711 "Expected either splat value or pattern value."); 712 713 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 714 if (For == ForMemset::Yes) { 715 if (isa<UndefValue>(FirstSplatValue)) 716 FirstSplatValue = SecondSplatValue; 717 if (FirstSplatValue != SecondSplatValue) 718 continue; 719 } else { 720 if (isa<UndefValue>(FirstPatternValue)) 721 FirstPatternValue = SecondPatternValue; 722 if (FirstPatternValue != SecondPatternValue) 723 continue; 724 } 725 Tails.insert(SL[k]); 726 Heads.insert(SL[i]); 727 ConsecutiveChain[SL[i]] = SL[k]; 728 break; 729 } 730 } 731 } 732 733 // We may run into multiple chains that merge into a single chain. We mark the 734 // stores that we transformed so that we don't visit the same store twice. 735 SmallPtrSet<Value *, 16> TransformedStores; 736 bool Changed = false; 737 738 // For stores that start but don't end a link in the chain: 739 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 740 it != e; ++it) { 741 if (Tails.count(*it)) 742 continue; 743 744 // We found a store instr that starts a chain. Now follow the chain and try 745 // to transform it. 746 SmallPtrSet<Instruction *, 8> AdjacentStores; 747 StoreInst *I = *it; 748 749 StoreInst *HeadStore = I; 750 unsigned StoreSize = 0; 751 752 // Collect the chain into a list. 753 while (Tails.count(I) || Heads.count(I)) { 754 if (TransformedStores.count(I)) 755 break; 756 AdjacentStores.insert(I); 757 758 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 759 // Move to the next value in the chain. 760 I = ConsecutiveChain[I]; 761 } 762 763 Value *StoredVal = HeadStore->getValueOperand(); 764 Value *StorePtr = HeadStore->getPointerOperand(); 765 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 766 APInt Stride = getStoreStride(StoreEv); 767 768 // Check to see if the stride matches the size of the stores. If so, then 769 // we know that every byte is touched in the loop. 770 if (StoreSize != Stride && StoreSize != -Stride) 771 continue; 772 773 bool NegStride = StoreSize == -Stride; 774 775 if (processLoopStridedStore(StorePtr, StoreSize, 776 MaybeAlign(HeadStore->getAlignment()), 777 StoredVal, HeadStore, AdjacentStores, StoreEv, 778 BECount, NegStride)) { 779 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 780 Changed = true; 781 } 782 } 783 784 return Changed; 785 } 786 787 /// processLoopMemSet - See if this memset can be promoted to a large memset. 788 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 789 const SCEV *BECount) { 790 // We can only handle non-volatile memsets with a constant size. 791 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 792 return false; 793 794 // If we're not allowed to hack on memset, we fail. 795 if (!HasMemset) 796 return false; 797 798 Value *Pointer = MSI->getDest(); 799 800 // See if the pointer expression is an AddRec like {base,+,1} on the current 801 // loop, which indicates a strided store. If we have something else, it's a 802 // random store we can't handle. 803 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 804 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 805 return false; 806 807 // Reject memsets that are so large that they overflow an unsigned. 808 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 809 if ((SizeInBytes >> 32) != 0) 810 return false; 811 812 // Check to see if the stride matches the size of the memset. If so, then we 813 // know that every byte is touched in the loop. 814 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 815 if (!ConstStride) 816 return false; 817 818 APInt Stride = ConstStride->getAPInt(); 819 if (SizeInBytes != Stride && SizeInBytes != -Stride) 820 return false; 821 822 // Verify that the memset value is loop invariant. If not, we can't promote 823 // the memset. 824 Value *SplatValue = MSI->getValue(); 825 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 826 return false; 827 828 SmallPtrSet<Instruction *, 1> MSIs; 829 MSIs.insert(MSI); 830 bool NegStride = SizeInBytes == -Stride; 831 return processLoopStridedStore( 832 Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()), 833 SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); 834 } 835 836 /// mayLoopAccessLocation - Return true if the specified loop might access the 837 /// specified pointer location, which is a loop-strided access. The 'Access' 838 /// argument specifies what the verboten forms of access are (read or write). 839 static bool 840 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 841 const SCEV *BECount, unsigned StoreSize, 842 AliasAnalysis &AA, 843 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 844 // Get the location that may be stored across the loop. Since the access is 845 // strided positively through memory, we say that the modified location starts 846 // at the pointer and has infinite size. 847 LocationSize AccessSize = LocationSize::unknown(); 848 849 // If the loop iterates a fixed number of times, we can refine the access size 850 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 851 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 852 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 853 StoreSize); 854 855 // TODO: For this to be really effective, we have to dive into the pointer 856 // operand in the store. Store to &A[i] of 100 will always return may alias 857 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 858 // which will then no-alias a store to &A[100]. 859 MemoryLocation StoreLoc(Ptr, AccessSize); 860 861 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 862 ++BI) 863 for (Instruction &I : **BI) 864 if (IgnoredStores.count(&I) == 0 && 865 isModOrRefSet( 866 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 867 return true; 868 869 return false; 870 } 871 872 // If we have a negative stride, Start refers to the end of the memory location 873 // we're trying to memset. Therefore, we need to recompute the base pointer, 874 // which is just Start - BECount*Size. 875 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 876 Type *IntPtr, unsigned StoreSize, 877 ScalarEvolution *SE) { 878 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 879 if (StoreSize != 1) 880 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 881 SCEV::FlagNUW); 882 return SE->getMinusSCEV(Start, Index); 883 } 884 885 /// Compute the number of bytes as a SCEV from the backedge taken count. 886 /// 887 /// This also maps the SCEV into the provided type and tries to handle the 888 /// computation in a way that will fold cleanly. 889 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 890 unsigned StoreSize, Loop *CurLoop, 891 const DataLayout *DL, ScalarEvolution *SE) { 892 const SCEV *NumBytesS; 893 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 894 // pointer size if it isn't already. 895 // 896 // If we're going to need to zero extend the BE count, check if we can add 897 // one to it prior to zero extending without overflow. Provided this is safe, 898 // it allows better simplification of the +1. 899 if (DL->getTypeSizeInBits(BECount->getType()) < 900 DL->getTypeSizeInBits(IntPtr) && 901 SE->isLoopEntryGuardedByCond( 902 CurLoop, ICmpInst::ICMP_NE, BECount, 903 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 904 NumBytesS = SE->getZeroExtendExpr( 905 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 906 IntPtr); 907 } else { 908 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 909 SE->getOne(IntPtr), SCEV::FlagNUW); 910 } 911 912 // And scale it based on the store size. 913 if (StoreSize != 1) { 914 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 915 SCEV::FlagNUW); 916 } 917 return NumBytesS; 918 } 919 920 /// processLoopStridedStore - We see a strided store of some value. If we can 921 /// transform this into a memset or memset_pattern in the loop preheader, do so. 922 bool LoopIdiomRecognize::processLoopStridedStore( 923 Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment, 924 Value *StoredVal, Instruction *TheStore, 925 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 926 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 927 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 928 Constant *PatternValue = nullptr; 929 930 if (!SplatValue) 931 PatternValue = getMemSetPatternValue(StoredVal, DL); 932 933 assert((SplatValue || PatternValue) && 934 "Expected either splat value or pattern value."); 935 936 // The trip count of the loop and the base pointer of the addrec SCEV is 937 // guaranteed to be loop invariant, which means that it should dominate the 938 // header. This allows us to insert code for it in the preheader. 939 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 940 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 941 IRBuilder<> Builder(Preheader->getTerminator()); 942 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 943 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 944 945 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 946 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 947 948 bool Changed = false; 949 const SCEV *Start = Ev->getStart(); 950 // Handle negative strided loops. 951 if (NegStride) 952 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE); 953 954 // TODO: ideally we should still be able to generate memset if SCEV expander 955 // is taught to generate the dependencies at the latest point. 956 if (!isSafeToExpand(Start, *SE)) 957 return Changed; 958 959 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 960 // this into a memset in the loop preheader now if we want. However, this 961 // would be unsafe to do if there is anything else in the loop that may read 962 // or write to the aliased location. Check for any overlap by generating the 963 // base pointer and checking the region. 964 Value *BasePtr = 965 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 966 967 // From here on out, conservatively report to the pass manager that we've 968 // changed the IR, even if we later clean up these added instructions. There 969 // may be structural differences e.g. in the order of use lists not accounted 970 // for in just a textual dump of the IR. This is written as a variable, even 971 // though statically all the places this dominates could be replaced with 972 // 'true', with the hope that anyone trying to be clever / "more precise" with 973 // the return value will read this comment, and leave them alone. 974 Changed = true; 975 976 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 977 StoreSize, *AA, Stores)) 978 return Changed; 979 980 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 981 return Changed; 982 983 // Okay, everything looks good, insert the memset. 984 985 const SCEV *NumBytesS = 986 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 987 988 // TODO: ideally we should still be able to generate memset if SCEV expander 989 // is taught to generate the dependencies at the latest point. 990 if (!isSafeToExpand(NumBytesS, *SE)) 991 return Changed; 992 993 Value *NumBytes = 994 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 995 996 CallInst *NewCall; 997 if (SplatValue) { 998 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 999 MaybeAlign(StoreAlignment)); 1000 } else { 1001 // Everything is emitted in default address space 1002 Type *Int8PtrTy = DestInt8PtrTy; 1003 1004 Module *M = TheStore->getModule(); 1005 StringRef FuncName = "memset_pattern16"; 1006 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1007 Int8PtrTy, Int8PtrTy, IntIdxTy); 1008 inferLibFuncAttributes(M, FuncName, *TLI); 1009 1010 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1011 // an constant array of 16-bytes. Plop the value into a mergable global. 1012 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1013 GlobalValue::PrivateLinkage, 1014 PatternValue, ".memset_pattern"); 1015 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1016 GV->setAlignment(Align(16)); 1017 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1018 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1019 } 1020 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1021 1022 if (MSSAU) { 1023 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1024 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1025 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1026 } 1027 1028 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1029 << " from store to: " << *Ev << " at: " << *TheStore 1030 << "\n"); 1031 1032 ORE.emit([&]() { 1033 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 1034 NewCall->getDebugLoc(), Preheader) 1035 << "Transformed loop-strided store into a call to " 1036 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1037 << "() function"; 1038 }); 1039 1040 // Okay, the memset has been formed. Zap the original store and anything that 1041 // feeds into it. 1042 for (auto *I : Stores) { 1043 if (MSSAU) 1044 MSSAU->removeMemoryAccess(I, true); 1045 deleteDeadInstruction(I); 1046 } 1047 if (MSSAU && VerifyMemorySSA) 1048 MSSAU->getMemorySSA()->verifyMemorySSA(); 1049 ++NumMemSet; 1050 ExpCleaner.markResultUsed(); 1051 return true; 1052 } 1053 1054 /// If the stored value is a strided load in the same loop with the same stride 1055 /// this may be transformable into a memcpy. This kicks in for stuff like 1056 /// for (i) A[i] = B[i]; 1057 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1058 const SCEV *BECount) { 1059 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1060 1061 Value *StorePtr = SI->getPointerOperand(); 1062 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1063 APInt Stride = getStoreStride(StoreEv); 1064 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1065 bool NegStride = StoreSize == -Stride; 1066 1067 // The store must be feeding a non-volatile load. 1068 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1069 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1070 1071 // See if the pointer expression is an AddRec like {base,+,1} on the current 1072 // loop, which indicates a strided load. If we have something else, it's a 1073 // random load we can't handle. 1074 const SCEVAddRecExpr *LoadEv = 1075 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 1076 1077 // The trip count of the loop and the base pointer of the addrec SCEV is 1078 // guaranteed to be loop invariant, which means that it should dominate the 1079 // header. This allows us to insert code for it in the preheader. 1080 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1081 IRBuilder<> Builder(Preheader->getTerminator()); 1082 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1083 1084 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1085 1086 bool Changed = false; 1087 const SCEV *StrStart = StoreEv->getStart(); 1088 unsigned StrAS = SI->getPointerAddressSpace(); 1089 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1090 1091 // Handle negative strided loops. 1092 if (NegStride) 1093 StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE); 1094 1095 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1096 // this into a memcpy in the loop preheader now if we want. However, this 1097 // would be unsafe to do if there is anything else in the loop that may read 1098 // or write the memory region we're storing to. This includes the load that 1099 // feeds the stores. Check for an alias by generating the base address and 1100 // checking everything. 1101 Value *StoreBasePtr = Expander.expandCodeFor( 1102 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1103 1104 // From here on out, conservatively report to the pass manager that we've 1105 // changed the IR, even if we later clean up these added instructions. There 1106 // may be structural differences e.g. in the order of use lists not accounted 1107 // for in just a textual dump of the IR. This is written as a variable, even 1108 // though statically all the places this dominates could be replaced with 1109 // 'true', with the hope that anyone trying to be clever / "more precise" with 1110 // the return value will read this comment, and leave them alone. 1111 Changed = true; 1112 1113 SmallPtrSet<Instruction *, 1> Stores; 1114 Stores.insert(SI); 1115 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1116 StoreSize, *AA, Stores)) 1117 return Changed; 1118 1119 const SCEV *LdStart = LoadEv->getStart(); 1120 unsigned LdAS = LI->getPointerAddressSpace(); 1121 1122 // Handle negative strided loops. 1123 if (NegStride) 1124 LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE); 1125 1126 // For a memcpy, we have to make sure that the input array is not being 1127 // mutated by the loop. 1128 Value *LoadBasePtr = Expander.expandCodeFor( 1129 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1130 1131 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1132 StoreSize, *AA, Stores)) 1133 return Changed; 1134 1135 if (avoidLIRForMultiBlockLoop()) 1136 return Changed; 1137 1138 // Okay, everything is safe, we can transform this! 1139 1140 const SCEV *NumBytesS = 1141 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 1142 1143 Value *NumBytes = 1144 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1145 1146 CallInst *NewCall = nullptr; 1147 // Check whether to generate an unordered atomic memcpy: 1148 // If the load or store are atomic, then they must necessarily be unordered 1149 // by previous checks. 1150 if (!SI->isAtomic() && !LI->isAtomic()) 1151 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr, 1152 LI->getAlign(), NumBytes); 1153 else { 1154 // We cannot allow unaligned ops for unordered load/store, so reject 1155 // anything where the alignment isn't at least the element size. 1156 const Align StoreAlign = SI->getAlign(); 1157 const Align LoadAlign = LI->getAlign(); 1158 if (StoreAlign < StoreSize || LoadAlign < StoreSize) 1159 return Changed; 1160 1161 // If the element.atomic memcpy is not lowered into explicit 1162 // loads/stores later, then it will be lowered into an element-size 1163 // specific lib call. If the lib call doesn't exist for our store size, then 1164 // we shouldn't generate the memcpy. 1165 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1166 return Changed; 1167 1168 // Create the call. 1169 // Note that unordered atomic loads/stores are *required* by the spec to 1170 // have an alignment but non-atomic loads/stores may not. 1171 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1172 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1173 StoreSize); 1174 } 1175 NewCall->setDebugLoc(SI->getDebugLoc()); 1176 1177 if (MSSAU) { 1178 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1179 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1180 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1181 } 1182 1183 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1184 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1185 << " from store ptr=" << *StoreEv << " at: " << *SI 1186 << "\n"); 1187 1188 ORE.emit([&]() { 1189 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1190 NewCall->getDebugLoc(), Preheader) 1191 << "Formed a call to " 1192 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1193 << "() function"; 1194 }); 1195 1196 // Okay, the memcpy has been formed. Zap the original store and anything that 1197 // feeds into it. 1198 if (MSSAU) 1199 MSSAU->removeMemoryAccess(SI, true); 1200 deleteDeadInstruction(SI); 1201 if (MSSAU && VerifyMemorySSA) 1202 MSSAU->getMemorySSA()->verifyMemorySSA(); 1203 ++NumMemCpy; 1204 ExpCleaner.markResultUsed(); 1205 return true; 1206 } 1207 1208 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1209 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1210 // 1211 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1212 bool IsLoopMemset) { 1213 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1214 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1215 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1216 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1217 << " avoided: multi-block top-level loop\n"); 1218 return true; 1219 } 1220 } 1221 1222 return false; 1223 } 1224 1225 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1226 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1227 << CurLoop->getHeader()->getParent()->getName() 1228 << "] Noncountable Loop %" 1229 << CurLoop->getHeader()->getName() << "\n"); 1230 1231 return recognizePopcount() || recognizeAndInsertFFS(); 1232 } 1233 1234 /// Check if the given conditional branch is based on the comparison between 1235 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1236 /// true), the control yields to the loop entry. If the branch matches the 1237 /// behavior, the variable involved in the comparison is returned. This function 1238 /// will be called to see if the precondition and postcondition of the loop are 1239 /// in desirable form. 1240 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1241 bool JmpOnZero = false) { 1242 if (!BI || !BI->isConditional()) 1243 return nullptr; 1244 1245 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1246 if (!Cond) 1247 return nullptr; 1248 1249 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1250 if (!CmpZero || !CmpZero->isZero()) 1251 return nullptr; 1252 1253 BasicBlock *TrueSucc = BI->getSuccessor(0); 1254 BasicBlock *FalseSucc = BI->getSuccessor(1); 1255 if (JmpOnZero) 1256 std::swap(TrueSucc, FalseSucc); 1257 1258 ICmpInst::Predicate Pred = Cond->getPredicate(); 1259 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1260 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1261 return Cond->getOperand(0); 1262 1263 return nullptr; 1264 } 1265 1266 // Check if the recurrence variable `VarX` is in the right form to create 1267 // the idiom. Returns the value coerced to a PHINode if so. 1268 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1269 BasicBlock *LoopEntry) { 1270 auto *PhiX = dyn_cast<PHINode>(VarX); 1271 if (PhiX && PhiX->getParent() == LoopEntry && 1272 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1273 return PhiX; 1274 return nullptr; 1275 } 1276 1277 /// Return true iff the idiom is detected in the loop. 1278 /// 1279 /// Additionally: 1280 /// 1) \p CntInst is set to the instruction counting the population bit. 1281 /// 2) \p CntPhi is set to the corresponding phi node. 1282 /// 3) \p Var is set to the value whose population bits are being counted. 1283 /// 1284 /// The core idiom we are trying to detect is: 1285 /// \code 1286 /// if (x0 != 0) 1287 /// goto loop-exit // the precondition of the loop 1288 /// cnt0 = init-val; 1289 /// do { 1290 /// x1 = phi (x0, x2); 1291 /// cnt1 = phi(cnt0, cnt2); 1292 /// 1293 /// cnt2 = cnt1 + 1; 1294 /// ... 1295 /// x2 = x1 & (x1 - 1); 1296 /// ... 1297 /// } while(x != 0); 1298 /// 1299 /// loop-exit: 1300 /// \endcode 1301 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1302 Instruction *&CntInst, PHINode *&CntPhi, 1303 Value *&Var) { 1304 // step 1: Check to see if the look-back branch match this pattern: 1305 // "if (a!=0) goto loop-entry". 1306 BasicBlock *LoopEntry; 1307 Instruction *DefX2, *CountInst; 1308 Value *VarX1, *VarX0; 1309 PHINode *PhiX, *CountPhi; 1310 1311 DefX2 = CountInst = nullptr; 1312 VarX1 = VarX0 = nullptr; 1313 PhiX = CountPhi = nullptr; 1314 LoopEntry = *(CurLoop->block_begin()); 1315 1316 // step 1: Check if the loop-back branch is in desirable form. 1317 { 1318 if (Value *T = matchCondition( 1319 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1320 DefX2 = dyn_cast<Instruction>(T); 1321 else 1322 return false; 1323 } 1324 1325 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1326 { 1327 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1328 return false; 1329 1330 BinaryOperator *SubOneOp; 1331 1332 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1333 VarX1 = DefX2->getOperand(1); 1334 else { 1335 VarX1 = DefX2->getOperand(0); 1336 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1337 } 1338 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1339 return false; 1340 1341 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1342 if (!Dec || 1343 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1344 (SubOneOp->getOpcode() == Instruction::Add && 1345 Dec->isMinusOne()))) { 1346 return false; 1347 } 1348 } 1349 1350 // step 3: Check the recurrence of variable X 1351 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1352 if (!PhiX) 1353 return false; 1354 1355 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1356 { 1357 CountInst = nullptr; 1358 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1359 IterE = LoopEntry->end(); 1360 Iter != IterE; Iter++) { 1361 Instruction *Inst = &*Iter; 1362 if (Inst->getOpcode() != Instruction::Add) 1363 continue; 1364 1365 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1366 if (!Inc || !Inc->isOne()) 1367 continue; 1368 1369 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1370 if (!Phi) 1371 continue; 1372 1373 // Check if the result of the instruction is live of the loop. 1374 bool LiveOutLoop = false; 1375 for (User *U : Inst->users()) { 1376 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1377 LiveOutLoop = true; 1378 break; 1379 } 1380 } 1381 1382 if (LiveOutLoop) { 1383 CountInst = Inst; 1384 CountPhi = Phi; 1385 break; 1386 } 1387 } 1388 1389 if (!CountInst) 1390 return false; 1391 } 1392 1393 // step 5: check if the precondition is in this form: 1394 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1395 { 1396 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1397 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1398 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1399 return false; 1400 1401 CntInst = CountInst; 1402 CntPhi = CountPhi; 1403 Var = T; 1404 } 1405 1406 return true; 1407 } 1408 1409 /// Return true if the idiom is detected in the loop. 1410 /// 1411 /// Additionally: 1412 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1413 /// or nullptr if there is no such. 1414 /// 2) \p CntPhi is set to the corresponding phi node 1415 /// or nullptr if there is no such. 1416 /// 3) \p Var is set to the value whose CTLZ could be used. 1417 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1418 /// 1419 /// The core idiom we are trying to detect is: 1420 /// \code 1421 /// if (x0 == 0) 1422 /// goto loop-exit // the precondition of the loop 1423 /// cnt0 = init-val; 1424 /// do { 1425 /// x = phi (x0, x.next); //PhiX 1426 /// cnt = phi(cnt0, cnt.next); 1427 /// 1428 /// cnt.next = cnt + 1; 1429 /// ... 1430 /// x.next = x >> 1; // DefX 1431 /// ... 1432 /// } while(x.next != 0); 1433 /// 1434 /// loop-exit: 1435 /// \endcode 1436 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1437 Intrinsic::ID &IntrinID, Value *&InitX, 1438 Instruction *&CntInst, PHINode *&CntPhi, 1439 Instruction *&DefX) { 1440 BasicBlock *LoopEntry; 1441 Value *VarX = nullptr; 1442 1443 DefX = nullptr; 1444 CntInst = nullptr; 1445 CntPhi = nullptr; 1446 LoopEntry = *(CurLoop->block_begin()); 1447 1448 // step 1: Check if the loop-back branch is in desirable form. 1449 if (Value *T = matchCondition( 1450 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1451 DefX = dyn_cast<Instruction>(T); 1452 else 1453 return false; 1454 1455 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1456 if (!DefX || !DefX->isShift()) 1457 return false; 1458 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1459 Intrinsic::ctlz; 1460 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1461 if (!Shft || !Shft->isOne()) 1462 return false; 1463 VarX = DefX->getOperand(0); 1464 1465 // step 3: Check the recurrence of variable X 1466 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1467 if (!PhiX) 1468 return false; 1469 1470 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1471 1472 // Make sure the initial value can't be negative otherwise the ashr in the 1473 // loop might never reach zero which would make the loop infinite. 1474 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1475 return false; 1476 1477 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1478 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1479 // then all uses of "cnt.next" could be optimized to the trip count 1480 // plus "cnt0". Currently it is not optimized. 1481 // This step could be used to detect POPCNT instruction: 1482 // cnt.next = cnt + (x.next & 1) 1483 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1484 IterE = LoopEntry->end(); 1485 Iter != IterE; Iter++) { 1486 Instruction *Inst = &*Iter; 1487 if (Inst->getOpcode() != Instruction::Add) 1488 continue; 1489 1490 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1491 if (!Inc || !Inc->isOne()) 1492 continue; 1493 1494 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1495 if (!Phi) 1496 continue; 1497 1498 CntInst = Inst; 1499 CntPhi = Phi; 1500 break; 1501 } 1502 if (!CntInst) 1503 return false; 1504 1505 return true; 1506 } 1507 1508 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1509 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1510 /// trip count returns true; otherwise, returns false. 1511 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1512 // Give up if the loop has multiple blocks or multiple backedges. 1513 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1514 return false; 1515 1516 Intrinsic::ID IntrinID; 1517 Value *InitX; 1518 Instruction *DefX = nullptr; 1519 PHINode *CntPhi = nullptr; 1520 Instruction *CntInst = nullptr; 1521 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1522 // this is always 6. 1523 size_t IdiomCanonicalSize = 6; 1524 1525 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1526 CntInst, CntPhi, DefX)) 1527 return false; 1528 1529 bool IsCntPhiUsedOutsideLoop = false; 1530 for (User *U : CntPhi->users()) 1531 if (!CurLoop->contains(cast<Instruction>(U))) { 1532 IsCntPhiUsedOutsideLoop = true; 1533 break; 1534 } 1535 bool IsCntInstUsedOutsideLoop = false; 1536 for (User *U : CntInst->users()) 1537 if (!CurLoop->contains(cast<Instruction>(U))) { 1538 IsCntInstUsedOutsideLoop = true; 1539 break; 1540 } 1541 // If both CntInst and CntPhi are used outside the loop the profitability 1542 // is questionable. 1543 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1544 return false; 1545 1546 // For some CPUs result of CTLZ(X) intrinsic is undefined 1547 // when X is 0. If we can not guarantee X != 0, we need to check this 1548 // when expand. 1549 bool ZeroCheck = false; 1550 // It is safe to assume Preheader exist as it was checked in 1551 // parent function RunOnLoop. 1552 BasicBlock *PH = CurLoop->getLoopPreheader(); 1553 1554 // If we are using the count instruction outside the loop, make sure we 1555 // have a zero check as a precondition. Without the check the loop would run 1556 // one iteration for before any check of the input value. This means 0 and 1 1557 // would have identical behavior in the original loop and thus 1558 if (!IsCntPhiUsedOutsideLoop) { 1559 auto *PreCondBB = PH->getSinglePredecessor(); 1560 if (!PreCondBB) 1561 return false; 1562 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1563 if (!PreCondBI) 1564 return false; 1565 if (matchCondition(PreCondBI, PH) != InitX) 1566 return false; 1567 ZeroCheck = true; 1568 } 1569 1570 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1571 // profitable if we delete the loop. 1572 1573 // the loop has only 6 instructions: 1574 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1575 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1576 // %shr = ashr %n.addr.0, 1 1577 // %tobool = icmp eq %shr, 0 1578 // %inc = add nsw %i.0, 1 1579 // br i1 %tobool 1580 1581 const Value *Args[] = { 1582 InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) 1583 : ConstantInt::getFalse(InitX->getContext())}; 1584 1585 // @llvm.dbg doesn't count as they have no semantic effect. 1586 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1587 uint32_t HeaderSize = 1588 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1589 1590 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1591 int Cost = 1592 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1593 if (HeaderSize != IdiomCanonicalSize && 1594 Cost > TargetTransformInfo::TCC_Basic) 1595 return false; 1596 1597 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1598 DefX->getDebugLoc(), ZeroCheck, 1599 IsCntPhiUsedOutsideLoop); 1600 return true; 1601 } 1602 1603 /// Recognizes a population count idiom in a non-countable loop. 1604 /// 1605 /// If detected, transforms the relevant code to issue the popcount intrinsic 1606 /// function call, and returns true; otherwise, returns false. 1607 bool LoopIdiomRecognize::recognizePopcount() { 1608 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1609 return false; 1610 1611 // Counting population are usually conducted by few arithmetic instructions. 1612 // Such instructions can be easily "absorbed" by vacant slots in a 1613 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1614 // in a compact loop. 1615 1616 // Give up if the loop has multiple blocks or multiple backedges. 1617 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1618 return false; 1619 1620 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1621 if (LoopBody->size() >= 20) { 1622 // The loop is too big, bail out. 1623 return false; 1624 } 1625 1626 // It should have a preheader containing nothing but an unconditional branch. 1627 BasicBlock *PH = CurLoop->getLoopPreheader(); 1628 if (!PH || &PH->front() != PH->getTerminator()) 1629 return false; 1630 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1631 if (!EntryBI || EntryBI->isConditional()) 1632 return false; 1633 1634 // It should have a precondition block where the generated popcount intrinsic 1635 // function can be inserted. 1636 auto *PreCondBB = PH->getSinglePredecessor(); 1637 if (!PreCondBB) 1638 return false; 1639 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1640 if (!PreCondBI || PreCondBI->isUnconditional()) 1641 return false; 1642 1643 Instruction *CntInst; 1644 PHINode *CntPhi; 1645 Value *Val; 1646 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1647 return false; 1648 1649 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1650 return true; 1651 } 1652 1653 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1654 const DebugLoc &DL) { 1655 Value *Ops[] = {Val}; 1656 Type *Tys[] = {Val->getType()}; 1657 1658 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1659 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1660 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1661 CI->setDebugLoc(DL); 1662 1663 return CI; 1664 } 1665 1666 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1667 const DebugLoc &DL, bool ZeroCheck, 1668 Intrinsic::ID IID) { 1669 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1670 Type *Tys[] = {Val->getType()}; 1671 1672 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1673 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1674 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1675 CI->setDebugLoc(DL); 1676 1677 return CI; 1678 } 1679 1680 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1681 /// loop: 1682 /// CntPhi = PHI [Cnt0, CntInst] 1683 /// PhiX = PHI [InitX, DefX] 1684 /// CntInst = CntPhi + 1 1685 /// DefX = PhiX >> 1 1686 /// LOOP_BODY 1687 /// Br: loop if (DefX != 0) 1688 /// Use(CntPhi) or Use(CntInst) 1689 /// 1690 /// Into: 1691 /// If CntPhi used outside the loop: 1692 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1693 /// Count = CountPrev + 1 1694 /// else 1695 /// Count = BitWidth(InitX) - CTLZ(InitX) 1696 /// loop: 1697 /// CntPhi = PHI [Cnt0, CntInst] 1698 /// PhiX = PHI [InitX, DefX] 1699 /// PhiCount = PHI [Count, Dec] 1700 /// CntInst = CntPhi + 1 1701 /// DefX = PhiX >> 1 1702 /// Dec = PhiCount - 1 1703 /// LOOP_BODY 1704 /// Br: loop if (Dec != 0) 1705 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1706 /// or 1707 /// Use(Count + Cnt0) // Use(CntInst) 1708 /// 1709 /// If LOOP_BODY is empty the loop will be deleted. 1710 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1711 void LoopIdiomRecognize::transformLoopToCountable( 1712 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1713 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1714 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1715 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1716 1717 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1718 IRBuilder<> Builder(PreheaderBr); 1719 Builder.SetCurrentDebugLocation(DL); 1720 Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; 1721 1722 // Count = BitWidth - CTLZ(InitX); 1723 // If there are uses of CntPhi create: 1724 // CountPrev = BitWidth - CTLZ(InitX >> 1); 1725 if (IsCntPhiUsedOutsideLoop) { 1726 if (DefX->getOpcode() == Instruction::AShr) 1727 InitXNext = 1728 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1729 else if (DefX->getOpcode() == Instruction::LShr) 1730 InitXNext = 1731 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1732 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1733 InitXNext = 1734 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); 1735 else 1736 llvm_unreachable("Unexpected opcode!"); 1737 } else 1738 InitXNext = InitX; 1739 FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1740 Count = Builder.CreateSub( 1741 ConstantInt::get(FFS->getType(), 1742 FFS->getType()->getIntegerBitWidth()), 1743 FFS); 1744 if (IsCntPhiUsedOutsideLoop) { 1745 CountPrev = Count; 1746 Count = Builder.CreateAdd( 1747 CountPrev, 1748 ConstantInt::get(CountPrev->getType(), 1)); 1749 } 1750 1751 NewCount = Builder.CreateZExtOrTrunc( 1752 IsCntPhiUsedOutsideLoop ? CountPrev : Count, 1753 cast<IntegerType>(CntInst->getType())); 1754 1755 // If the counter's initial value is not zero, insert Add Inst. 1756 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1757 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1758 if (!InitConst || !InitConst->isZero()) 1759 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1760 1761 // Step 2: Insert new IV and loop condition: 1762 // loop: 1763 // ... 1764 // PhiCount = PHI [Count, Dec] 1765 // ... 1766 // Dec = PhiCount - 1 1767 // ... 1768 // Br: loop if (Dec != 0) 1769 BasicBlock *Body = *(CurLoop->block_begin()); 1770 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1771 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1772 Type *Ty = Count->getType(); 1773 1774 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1775 1776 Builder.SetInsertPoint(LbCond); 1777 Instruction *TcDec = cast<Instruction>( 1778 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1779 "tcdec", false, true)); 1780 1781 TcPhi->addIncoming(Count, Preheader); 1782 TcPhi->addIncoming(TcDec, Body); 1783 1784 CmpInst::Predicate Pred = 1785 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1786 LbCond->setPredicate(Pred); 1787 LbCond->setOperand(0, TcDec); 1788 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1789 1790 // Step 3: All the references to the original counter outside 1791 // the loop are replaced with the NewCount 1792 if (IsCntPhiUsedOutsideLoop) 1793 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1794 else 1795 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1796 1797 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1798 // loop. The loop would otherwise not be deleted even if it becomes empty. 1799 SE->forgetLoop(CurLoop); 1800 } 1801 1802 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1803 Instruction *CntInst, 1804 PHINode *CntPhi, Value *Var) { 1805 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1806 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1807 const DebugLoc &DL = CntInst->getDebugLoc(); 1808 1809 // Assuming before transformation, the loop is following: 1810 // if (x) // the precondition 1811 // do { cnt++; x &= x - 1; } while(x); 1812 1813 // Step 1: Insert the ctpop instruction at the end of the precondition block 1814 IRBuilder<> Builder(PreCondBr); 1815 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1816 { 1817 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1818 NewCount = PopCntZext = 1819 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1820 1821 if (NewCount != PopCnt) 1822 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1823 1824 // TripCnt is exactly the number of iterations the loop has 1825 TripCnt = NewCount; 1826 1827 // If the population counter's initial value is not zero, insert Add Inst. 1828 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1829 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1830 if (!InitConst || !InitConst->isZero()) { 1831 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1832 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1833 } 1834 } 1835 1836 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1837 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1838 // function would be partial dead code, and downstream passes will drag 1839 // it back from the precondition block to the preheader. 1840 { 1841 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1842 1843 Value *Opnd0 = PopCntZext; 1844 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1845 if (PreCond->getOperand(0) != Var) 1846 std::swap(Opnd0, Opnd1); 1847 1848 ICmpInst *NewPreCond = cast<ICmpInst>( 1849 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1850 PreCondBr->setCondition(NewPreCond); 1851 1852 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1853 } 1854 1855 // Step 3: Note that the population count is exactly the trip count of the 1856 // loop in question, which enable us to convert the loop from noncountable 1857 // loop into a countable one. The benefit is twofold: 1858 // 1859 // - If the loop only counts population, the entire loop becomes dead after 1860 // the transformation. It is a lot easier to prove a countable loop dead 1861 // than to prove a noncountable one. (In some C dialects, an infinite loop 1862 // isn't dead even if it computes nothing useful. In general, DCE needs 1863 // to prove a noncountable loop finite before safely delete it.) 1864 // 1865 // - If the loop also performs something else, it remains alive. 1866 // Since it is transformed to countable form, it can be aggressively 1867 // optimized by some optimizations which are in general not applicable 1868 // to a noncountable loop. 1869 // 1870 // After this step, this loop (conceptually) would look like following: 1871 // newcnt = __builtin_ctpop(x); 1872 // t = newcnt; 1873 // if (x) 1874 // do { cnt++; x &= x-1; t--) } while (t > 0); 1875 BasicBlock *Body = *(CurLoop->block_begin()); 1876 { 1877 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1878 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1879 Type *Ty = TripCnt->getType(); 1880 1881 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1882 1883 Builder.SetInsertPoint(LbCond); 1884 Instruction *TcDec = cast<Instruction>( 1885 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1886 "tcdec", false, true)); 1887 1888 TcPhi->addIncoming(TripCnt, PreHead); 1889 TcPhi->addIncoming(TcDec, Body); 1890 1891 CmpInst::Predicate Pred = 1892 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1893 LbCond->setPredicate(Pred); 1894 LbCond->setOperand(0, TcDec); 1895 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1896 } 1897 1898 // Step 4: All the references to the original population counter outside 1899 // the loop are replaced with the NewCount -- the value returned from 1900 // __builtin_ctpop(). 1901 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1902 1903 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1904 // loop. The loop would otherwise not be deleted even if it becomes empty. 1905 SE->forgetLoop(CurLoop); 1906 } 1907