1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/InstructionCost.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include "llvm/Transforms/Scalar.h" 96 #include "llvm/Transforms/Utils/BuildLibCalls.h" 97 #include "llvm/Transforms/Utils/Local.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 108 #define DEBUG_TYPE "loop-idiom" 109 110 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 111 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 112 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 113 STATISTIC( 114 NumShiftUntilBitTest, 115 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 116 STATISTIC(NumShiftUntilZero, 117 "Number of uncountable loops recognized as 'shift until zero' idiom"); 118 119 bool DisableLIRP::All; 120 static cl::opt<bool, true> 121 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 122 cl::desc("Options to disable Loop Idiom Recognize Pass."), 123 cl::location(DisableLIRP::All), cl::init(false), 124 cl::ReallyHidden); 125 126 bool DisableLIRP::Memset; 127 static cl::opt<bool, true> 128 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 129 cl::desc("Proceed with loop idiom recognize pass, but do " 130 "not convert loop(s) to memset."), 131 cl::location(DisableLIRP::Memset), cl::init(false), 132 cl::ReallyHidden); 133 134 bool DisableLIRP::Memcpy; 135 static cl::opt<bool, true> 136 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 137 cl::desc("Proceed with loop idiom recognize pass, but do " 138 "not convert loop(s) to memcpy."), 139 cl::location(DisableLIRP::Memcpy), cl::init(false), 140 cl::ReallyHidden); 141 142 static cl::opt<bool> UseLIRCodeSizeHeurs( 143 "use-lir-code-size-heurs", 144 cl::desc("Use loop idiom recognition code size heuristics when compiling" 145 "with -Os/-Oz"), 146 cl::init(true), cl::Hidden); 147 148 namespace { 149 150 class LoopIdiomRecognize { 151 Loop *CurLoop = nullptr; 152 AliasAnalysis *AA; 153 DominatorTree *DT; 154 LoopInfo *LI; 155 ScalarEvolution *SE; 156 TargetLibraryInfo *TLI; 157 const TargetTransformInfo *TTI; 158 const DataLayout *DL; 159 OptimizationRemarkEmitter &ORE; 160 bool ApplyCodeSizeHeuristics; 161 std::unique_ptr<MemorySSAUpdater> MSSAU; 162 163 public: 164 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 165 LoopInfo *LI, ScalarEvolution *SE, 166 TargetLibraryInfo *TLI, 167 const TargetTransformInfo *TTI, MemorySSA *MSSA, 168 const DataLayout *DL, 169 OptimizationRemarkEmitter &ORE) 170 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 171 if (MSSA) 172 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 173 } 174 175 bool runOnLoop(Loop *L); 176 177 private: 178 using StoreList = SmallVector<StoreInst *, 8>; 179 using StoreListMap = MapVector<Value *, StoreList>; 180 181 StoreListMap StoreRefsForMemset; 182 StoreListMap StoreRefsForMemsetPattern; 183 StoreList StoreRefsForMemcpy; 184 bool HasMemset; 185 bool HasMemsetPattern; 186 bool HasMemcpy; 187 188 /// Return code for isLegalStore() 189 enum LegalStoreKind { 190 None = 0, 191 Memset, 192 MemsetPattern, 193 Memcpy, 194 UnorderedAtomicMemcpy, 195 DontUse // Dummy retval never to be used. Allows catching errors in retval 196 // handling. 197 }; 198 199 /// \name Countable Loop Idiom Handling 200 /// @{ 201 202 bool runOnCountableLoop(); 203 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 204 SmallVectorImpl<BasicBlock *> &ExitBlocks); 205 206 void collectStores(BasicBlock *BB); 207 LegalStoreKind isLegalStore(StoreInst *SI); 208 enum class ForMemset { No, Yes }; 209 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 210 ForMemset For); 211 212 template <typename MemInst> 213 bool processLoopMemIntrinsic( 214 BasicBlock *BB, 215 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 216 const SCEV *BECount); 217 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 218 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 219 220 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 221 MaybeAlign StoreAlignment, Value *StoredVal, 222 Instruction *TheStore, 223 SmallPtrSetImpl<Instruction *> &Stores, 224 const SCEVAddRecExpr *Ev, const SCEV *BECount, 225 bool IsNegStride, bool IsLoopMemset = false); 226 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 227 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 228 const SCEV *StoreSize, MaybeAlign StoreAlign, 229 MaybeAlign LoadAlign, Instruction *TheStore, 230 Instruction *TheLoad, 231 const SCEVAddRecExpr *StoreEv, 232 const SCEVAddRecExpr *LoadEv, 233 const SCEV *BECount); 234 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 235 bool IsLoopMemset = false); 236 237 /// @} 238 /// \name Noncountable Loop Idiom Handling 239 /// @{ 240 241 bool runOnNoncountableLoop(); 242 243 bool recognizePopcount(); 244 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 245 PHINode *CntPhi, Value *Var); 246 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 247 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 248 Instruction *CntInst, PHINode *CntPhi, 249 Value *Var, Instruction *DefX, 250 const DebugLoc &DL, bool ZeroCheck, 251 bool IsCntPhiUsedOutsideLoop); 252 253 bool recognizeShiftUntilBitTest(); 254 bool recognizeShiftUntilZero(); 255 256 /// @} 257 }; 258 259 class LoopIdiomRecognizeLegacyPass : public LoopPass { 260 public: 261 static char ID; 262 263 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 264 initializeLoopIdiomRecognizeLegacyPassPass( 265 *PassRegistry::getPassRegistry()); 266 } 267 268 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 269 if (DisableLIRP::All) 270 return false; 271 272 if (skipLoop(L)) 273 return false; 274 275 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 276 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 277 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 278 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 279 TargetLibraryInfo *TLI = 280 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 281 *L->getHeader()->getParent()); 282 const TargetTransformInfo *TTI = 283 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 284 *L->getHeader()->getParent()); 285 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 286 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 287 MemorySSA *MSSA = nullptr; 288 if (MSSAAnalysis) 289 MSSA = &MSSAAnalysis->getMSSA(); 290 291 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 292 // pass. Function analyses need to be preserved across loop transformations 293 // but ORE cannot be preserved (see comment before the pass definition). 294 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 295 296 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 297 return LIR.runOnLoop(L); 298 } 299 300 /// This transformation requires natural loop information & requires that 301 /// loop preheaders be inserted into the CFG. 302 void getAnalysisUsage(AnalysisUsage &AU) const override { 303 AU.addRequired<TargetLibraryInfoWrapperPass>(); 304 AU.addRequired<TargetTransformInfoWrapperPass>(); 305 AU.addPreserved<MemorySSAWrapperPass>(); 306 getLoopAnalysisUsage(AU); 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char LoopIdiomRecognizeLegacyPass::ID = 0; 313 314 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 315 LoopStandardAnalysisResults &AR, 316 LPMUpdater &) { 317 if (DisableLIRP::All) 318 return PreservedAnalyses::all(); 319 320 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 321 322 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 323 // pass. Function analyses need to be preserved across loop transformations 324 // but ORE cannot be preserved (see comment before the pass definition). 325 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 326 327 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 328 AR.MSSA, DL, ORE); 329 if (!LIR.runOnLoop(&L)) 330 return PreservedAnalyses::all(); 331 332 auto PA = getLoopPassPreservedAnalyses(); 333 if (AR.MSSA) 334 PA.preserve<MemorySSAAnalysis>(); 335 return PA; 336 } 337 338 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 339 "Recognize loop idioms", false, false) 340 INITIALIZE_PASS_DEPENDENCY(LoopPass) 341 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 342 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 343 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 344 "Recognize loop idioms", false, false) 345 346 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 347 348 static void deleteDeadInstruction(Instruction *I) { 349 I->replaceAllUsesWith(UndefValue::get(I->getType())); 350 I->eraseFromParent(); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // 355 // Implementation of LoopIdiomRecognize 356 // 357 //===----------------------------------------------------------------------===// 358 359 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 360 CurLoop = L; 361 // If the loop could not be converted to canonical form, it must have an 362 // indirectbr in it, just give up. 363 if (!L->getLoopPreheader()) 364 return false; 365 366 // Disable loop idiom recognition if the function's name is a common idiom. 367 StringRef Name = L->getHeader()->getParent()->getName(); 368 if (Name == "memset" || Name == "memcpy") 369 return false; 370 371 // Determine if code size heuristics need to be applied. 372 ApplyCodeSizeHeuristics = 373 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 374 375 HasMemset = TLI->has(LibFunc_memset); 376 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 377 HasMemcpy = TLI->has(LibFunc_memcpy); 378 379 if (HasMemset || HasMemsetPattern || HasMemcpy) 380 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 381 return runOnCountableLoop(); 382 383 return runOnNoncountableLoop(); 384 } 385 386 bool LoopIdiomRecognize::runOnCountableLoop() { 387 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 388 assert(!isa<SCEVCouldNotCompute>(BECount) && 389 "runOnCountableLoop() called on a loop without a predictable" 390 "backedge-taken count"); 391 392 // If this loop executes exactly one time, then it should be peeled, not 393 // optimized by this pass. 394 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 395 if (BECst->getAPInt() == 0) 396 return false; 397 398 SmallVector<BasicBlock *, 8> ExitBlocks; 399 CurLoop->getUniqueExitBlocks(ExitBlocks); 400 401 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 402 << CurLoop->getHeader()->getParent()->getName() 403 << "] Countable Loop %" << CurLoop->getHeader()->getName() 404 << "\n"); 405 406 // The following transforms hoist stores/memsets into the loop pre-header. 407 // Give up if the loop has instructions that may throw. 408 SimpleLoopSafetyInfo SafetyInfo; 409 SafetyInfo.computeLoopSafetyInfo(CurLoop); 410 if (SafetyInfo.anyBlockMayThrow()) 411 return false; 412 413 bool MadeChange = false; 414 415 // Scan all the blocks in the loop that are not in subloops. 416 for (auto *BB : CurLoop->getBlocks()) { 417 // Ignore blocks in subloops. 418 if (LI->getLoopFor(BB) != CurLoop) 419 continue; 420 421 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 422 } 423 return MadeChange; 424 } 425 426 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 427 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 428 return ConstStride->getAPInt(); 429 } 430 431 /// getMemSetPatternValue - If a strided store of the specified value is safe to 432 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 433 /// be passed in. Otherwise, return null. 434 /// 435 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 436 /// just replicate their input array and then pass on to memset_pattern16. 437 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 438 // FIXME: This could check for UndefValue because it can be merged into any 439 // other valid pattern. 440 441 // If the value isn't a constant, we can't promote it to being in a constant 442 // array. We could theoretically do a store to an alloca or something, but 443 // that doesn't seem worthwhile. 444 Constant *C = dyn_cast<Constant>(V); 445 if (!C) 446 return nullptr; 447 448 // Only handle simple values that are a power of two bytes in size. 449 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 450 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 451 return nullptr; 452 453 // Don't care enough about darwin/ppc to implement this. 454 if (DL->isBigEndian()) 455 return nullptr; 456 457 // Convert to size in bytes. 458 Size /= 8; 459 460 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 461 // if the top and bottom are the same (e.g. for vectors and large integers). 462 if (Size > 16) 463 return nullptr; 464 465 // If the constant is exactly 16 bytes, just use it. 466 if (Size == 16) 467 return C; 468 469 // Otherwise, we'll use an array of the constants. 470 unsigned ArraySize = 16 / Size; 471 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 472 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 473 } 474 475 LoopIdiomRecognize::LegalStoreKind 476 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 477 // Don't touch volatile stores. 478 if (SI->isVolatile()) 479 return LegalStoreKind::None; 480 // We only want simple or unordered-atomic stores. 481 if (!SI->isUnordered()) 482 return LegalStoreKind::None; 483 484 // Avoid merging nontemporal stores. 485 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 486 return LegalStoreKind::None; 487 488 Value *StoredVal = SI->getValueOperand(); 489 Value *StorePtr = SI->getPointerOperand(); 490 491 // Don't convert stores of non-integral pointer types to memsets (which stores 492 // integers). 493 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 494 return LegalStoreKind::None; 495 496 // Reject stores that are so large that they overflow an unsigned. 497 // When storing out scalable vectors we bail out for now, since the code 498 // below currently only works for constant strides. 499 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 500 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 501 (SizeInBits.getFixedSize() >> 32) != 0) 502 return LegalStoreKind::None; 503 504 // See if the pointer expression is an AddRec like {base,+,1} on the current 505 // loop, which indicates a strided store. If we have something else, it's a 506 // random store we can't handle. 507 const SCEVAddRecExpr *StoreEv = 508 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 509 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 510 return LegalStoreKind::None; 511 512 // Check to see if we have a constant stride. 513 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 514 return LegalStoreKind::None; 515 516 // See if the store can be turned into a memset. 517 518 // If the stored value is a byte-wise value (like i32 -1), then it may be 519 // turned into a memset of i8 -1, assuming that all the consecutive bytes 520 // are stored. A store of i32 0x01020304 can never be turned into a memset, 521 // but it can be turned into memset_pattern if the target supports it. 522 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 523 524 // Note: memset and memset_pattern on unordered-atomic is yet not supported 525 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 526 527 // If we're allowed to form a memset, and the stored value would be 528 // acceptable for memset, use it. 529 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 530 // Verify that the stored value is loop invariant. If not, we can't 531 // promote the memset. 532 CurLoop->isLoopInvariant(SplatValue)) { 533 // It looks like we can use SplatValue. 534 return LegalStoreKind::Memset; 535 } 536 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 537 // Don't create memset_pattern16s with address spaces. 538 StorePtr->getType()->getPointerAddressSpace() == 0 && 539 getMemSetPatternValue(StoredVal, DL)) { 540 // It looks like we can use PatternValue! 541 return LegalStoreKind::MemsetPattern; 542 } 543 544 // Otherwise, see if the store can be turned into a memcpy. 545 if (HasMemcpy && !DisableLIRP::Memcpy) { 546 // Check to see if the stride matches the size of the store. If so, then we 547 // know that every byte is touched in the loop. 548 APInt Stride = getStoreStride(StoreEv); 549 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 550 if (StoreSize != Stride && StoreSize != -Stride) 551 return LegalStoreKind::None; 552 553 // The store must be feeding a non-volatile load. 554 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 555 556 // Only allow non-volatile loads 557 if (!LI || LI->isVolatile()) 558 return LegalStoreKind::None; 559 // Only allow simple or unordered-atomic loads 560 if (!LI->isUnordered()) 561 return LegalStoreKind::None; 562 563 // See if the pointer expression is an AddRec like {base,+,1} on the current 564 // loop, which indicates a strided load. If we have something else, it's a 565 // random load we can't handle. 566 const SCEVAddRecExpr *LoadEv = 567 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 568 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 569 return LegalStoreKind::None; 570 571 // The store and load must share the same stride. 572 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 573 return LegalStoreKind::None; 574 575 // Success. This store can be converted into a memcpy. 576 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 577 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 578 : LegalStoreKind::Memcpy; 579 } 580 // This store can't be transformed into a memset/memcpy. 581 return LegalStoreKind::None; 582 } 583 584 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 585 StoreRefsForMemset.clear(); 586 StoreRefsForMemsetPattern.clear(); 587 StoreRefsForMemcpy.clear(); 588 for (Instruction &I : *BB) { 589 StoreInst *SI = dyn_cast<StoreInst>(&I); 590 if (!SI) 591 continue; 592 593 // Make sure this is a strided store with a constant stride. 594 switch (isLegalStore(SI)) { 595 case LegalStoreKind::None: 596 // Nothing to do 597 break; 598 case LegalStoreKind::Memset: { 599 // Find the base pointer. 600 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 601 StoreRefsForMemset[Ptr].push_back(SI); 602 } break; 603 case LegalStoreKind::MemsetPattern: { 604 // Find the base pointer. 605 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 606 StoreRefsForMemsetPattern[Ptr].push_back(SI); 607 } break; 608 case LegalStoreKind::Memcpy: 609 case LegalStoreKind::UnorderedAtomicMemcpy: 610 StoreRefsForMemcpy.push_back(SI); 611 break; 612 default: 613 assert(false && "unhandled return value"); 614 break; 615 } 616 } 617 } 618 619 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 620 /// with the specified backedge count. This block is known to be in the current 621 /// loop and not in any subloops. 622 bool LoopIdiomRecognize::runOnLoopBlock( 623 BasicBlock *BB, const SCEV *BECount, 624 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 625 // We can only promote stores in this block if they are unconditionally 626 // executed in the loop. For a block to be unconditionally executed, it has 627 // to dominate all the exit blocks of the loop. Verify this now. 628 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 629 if (!DT->dominates(BB, ExitBlocks[i])) 630 return false; 631 632 bool MadeChange = false; 633 // Look for store instructions, which may be optimized to memset/memcpy. 634 collectStores(BB); 635 636 // Look for a single store or sets of stores with a common base, which can be 637 // optimized into a memset (memset_pattern). The latter most commonly happens 638 // with structs and handunrolled loops. 639 for (auto &SL : StoreRefsForMemset) 640 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 641 642 for (auto &SL : StoreRefsForMemsetPattern) 643 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 644 645 // Optimize the store into a memcpy, if it feeds an similarly strided load. 646 for (auto &SI : StoreRefsForMemcpy) 647 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 648 649 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 650 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 651 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 652 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 653 654 return MadeChange; 655 } 656 657 /// See if this store(s) can be promoted to a memset. 658 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 659 const SCEV *BECount, ForMemset For) { 660 // Try to find consecutive stores that can be transformed into memsets. 661 SetVector<StoreInst *> Heads, Tails; 662 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 663 664 // Do a quadratic search on all of the given stores and find 665 // all of the pairs of stores that follow each other. 666 SmallVector<unsigned, 16> IndexQueue; 667 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 668 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 669 670 Value *FirstStoredVal = SL[i]->getValueOperand(); 671 Value *FirstStorePtr = SL[i]->getPointerOperand(); 672 const SCEVAddRecExpr *FirstStoreEv = 673 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 674 APInt FirstStride = getStoreStride(FirstStoreEv); 675 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 676 677 // See if we can optimize just this store in isolation. 678 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 679 Heads.insert(SL[i]); 680 continue; 681 } 682 683 Value *FirstSplatValue = nullptr; 684 Constant *FirstPatternValue = nullptr; 685 686 if (For == ForMemset::Yes) 687 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 688 else 689 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 690 691 assert((FirstSplatValue || FirstPatternValue) && 692 "Expected either splat value or pattern value."); 693 694 IndexQueue.clear(); 695 // If a store has multiple consecutive store candidates, search Stores 696 // array according to the sequence: from i+1 to e, then from i-1 to 0. 697 // This is because usually pairing with immediate succeeding or preceding 698 // candidate create the best chance to find memset opportunity. 699 unsigned j = 0; 700 for (j = i + 1; j < e; ++j) 701 IndexQueue.push_back(j); 702 for (j = i; j > 0; --j) 703 IndexQueue.push_back(j - 1); 704 705 for (auto &k : IndexQueue) { 706 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 707 Value *SecondStorePtr = SL[k]->getPointerOperand(); 708 const SCEVAddRecExpr *SecondStoreEv = 709 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 710 APInt SecondStride = getStoreStride(SecondStoreEv); 711 712 if (FirstStride != SecondStride) 713 continue; 714 715 Value *SecondStoredVal = SL[k]->getValueOperand(); 716 Value *SecondSplatValue = nullptr; 717 Constant *SecondPatternValue = nullptr; 718 719 if (For == ForMemset::Yes) 720 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 721 else 722 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 723 724 assert((SecondSplatValue || SecondPatternValue) && 725 "Expected either splat value or pattern value."); 726 727 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 728 if (For == ForMemset::Yes) { 729 if (isa<UndefValue>(FirstSplatValue)) 730 FirstSplatValue = SecondSplatValue; 731 if (FirstSplatValue != SecondSplatValue) 732 continue; 733 } else { 734 if (isa<UndefValue>(FirstPatternValue)) 735 FirstPatternValue = SecondPatternValue; 736 if (FirstPatternValue != SecondPatternValue) 737 continue; 738 } 739 Tails.insert(SL[k]); 740 Heads.insert(SL[i]); 741 ConsecutiveChain[SL[i]] = SL[k]; 742 break; 743 } 744 } 745 } 746 747 // We may run into multiple chains that merge into a single chain. We mark the 748 // stores that we transformed so that we don't visit the same store twice. 749 SmallPtrSet<Value *, 16> TransformedStores; 750 bool Changed = false; 751 752 // For stores that start but don't end a link in the chain: 753 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 754 it != e; ++it) { 755 if (Tails.count(*it)) 756 continue; 757 758 // We found a store instr that starts a chain. Now follow the chain and try 759 // to transform it. 760 SmallPtrSet<Instruction *, 8> AdjacentStores; 761 StoreInst *I = *it; 762 763 StoreInst *HeadStore = I; 764 unsigned StoreSize = 0; 765 766 // Collect the chain into a list. 767 while (Tails.count(I) || Heads.count(I)) { 768 if (TransformedStores.count(I)) 769 break; 770 AdjacentStores.insert(I); 771 772 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 773 // Move to the next value in the chain. 774 I = ConsecutiveChain[I]; 775 } 776 777 Value *StoredVal = HeadStore->getValueOperand(); 778 Value *StorePtr = HeadStore->getPointerOperand(); 779 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 780 APInt Stride = getStoreStride(StoreEv); 781 782 // Check to see if the stride matches the size of the stores. If so, then 783 // we know that every byte is touched in the loop. 784 if (StoreSize != Stride && StoreSize != -Stride) 785 continue; 786 787 bool IsNegStride = StoreSize == -Stride; 788 789 const SCEV *StoreSizeSCEV = SE->getConstant(BECount->getType(), StoreSize); 790 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 791 MaybeAlign(HeadStore->getAlignment()), 792 StoredVal, HeadStore, AdjacentStores, StoreEv, 793 BECount, IsNegStride)) { 794 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 795 Changed = true; 796 } 797 } 798 799 return Changed; 800 } 801 802 /// processLoopMemIntrinsic - Template function for calling different processor 803 /// functions based on mem instrinsic type. 804 template <typename MemInst> 805 bool LoopIdiomRecognize::processLoopMemIntrinsic( 806 BasicBlock *BB, 807 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 808 const SCEV *BECount) { 809 bool MadeChange = false; 810 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 811 Instruction *Inst = &*I++; 812 // Look for memory instructions, which may be optimized to a larger one. 813 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 814 WeakTrackingVH InstPtr(&*I); 815 if (!(this->*Processor)(MI, BECount)) 816 continue; 817 MadeChange = true; 818 819 // If processing the instruction invalidated our iterator, start over from 820 // the top of the block. 821 if (!InstPtr) 822 I = BB->begin(); 823 } 824 } 825 return MadeChange; 826 } 827 828 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 829 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 830 const SCEV *BECount) { 831 // We can only handle non-volatile memcpys with a constant size. 832 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 833 return false; 834 835 // If we're not allowed to hack on memcpy, we fail. 836 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 837 return false; 838 839 Value *Dest = MCI->getDest(); 840 Value *Source = MCI->getSource(); 841 if (!Dest || !Source) 842 return false; 843 844 // See if the load and store pointer expressions are AddRec like {base,+,1} on 845 // the current loop, which indicates a strided load and store. If we have 846 // something else, it's a random load or store we can't handle. 847 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 848 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 849 return false; 850 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 851 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 852 return false; 853 854 // Reject memcpys that are so large that they overflow an unsigned. 855 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 856 if ((SizeInBytes >> 32) != 0) 857 return false; 858 859 // Check if the stride matches the size of the memcpy. If so, then we know 860 // that every byte is touched in the loop. 861 const SCEVConstant *ConstStoreStride = 862 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 863 const SCEVConstant *ConstLoadStride = 864 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 865 if (!ConstStoreStride || !ConstLoadStride) 866 return false; 867 868 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 869 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 870 // Huge stride value - give up 871 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 872 return false; 873 874 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 875 ORE.emit([&]() { 876 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 877 << ore::NV("Inst", "memcpy") << " in " 878 << ore::NV("Function", MCI->getFunction()) 879 << " function will not be hoisted: " 880 << ore::NV("Reason", "memcpy size is not equal to stride"); 881 }); 882 return false; 883 } 884 885 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 886 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 887 // Check if the load stride matches the store stride. 888 if (StoreStrideInt != LoadStrideInt) 889 return false; 890 891 return processLoopStoreOfLoopLoad( 892 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 893 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 894 BECount); 895 } 896 897 /// processLoopMemSet - See if this memset can be promoted to a large memset. 898 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 899 const SCEV *BECount) { 900 // We can only handle non-volatile memsets. 901 if (MSI->isVolatile()) 902 return false; 903 904 // If we're not allowed to hack on memset, we fail. 905 if (!HasMemset || DisableLIRP::Memset) 906 return false; 907 908 Value *Pointer = MSI->getDest(); 909 910 // See if the pointer expression is an AddRec like {base,+,1} on the current 911 // loop, which indicates a strided store. If we have something else, it's a 912 // random store we can't handle. 913 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 914 if (!Ev || Ev->getLoop() != CurLoop) 915 return false; 916 if (!Ev->isAffine()) { 917 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 918 return false; 919 } 920 921 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 922 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 923 if (!PointerStrideSCEV || !MemsetSizeSCEV) 924 return false; 925 926 bool IsNegStride = false; 927 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 928 929 if (IsConstantSize) { 930 // Memset size is constant. 931 // Check if the pointer stride matches the memset size. If so, then 932 // we know that every byte is touched in the loop. 933 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 934 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 935 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 936 if (!ConstStride) 937 return false; 938 939 APInt Stride = ConstStride->getAPInt(); 940 if (SizeInBytes != Stride && SizeInBytes != -Stride) 941 return false; 942 943 IsNegStride = SizeInBytes == -Stride; 944 } else { 945 // Memset size is non-constant. 946 // Check if the pointer stride matches the memset size. 947 // To be conservative, the pass would not promote pointers that aren't in 948 // address space zero. Also, the pass only handles memset length and stride 949 // that are invariant for the top level loop. 950 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 951 if (Pointer->getType()->getPointerAddressSpace() != 0) { 952 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 953 << "abort\n"); 954 return false; 955 } 956 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 957 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 958 << "abort\n"); 959 return false; 960 } 961 962 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 963 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 964 const SCEV *PositiveStrideSCEV = 965 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 966 : PointerStrideSCEV; 967 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 968 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 969 << "\n"); 970 971 if (PositiveStrideSCEV != MemsetSizeSCEV) { 972 // TODO: folding can be done to the SCEVs 973 // The folding is to fold expressions that is covered by the loop guard 974 // at loop entry. After the folding, compare again and proceed 975 // optimization if equal. 976 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 977 return false; 978 } 979 } 980 981 // Verify that the memset value is loop invariant. If not, we can't promote 982 // the memset. 983 Value *SplatValue = MSI->getValue(); 984 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 985 return false; 986 987 SmallPtrSet<Instruction *, 1> MSIs; 988 MSIs.insert(MSI); 989 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 990 MaybeAlign(MSI->getDestAlignment()), 991 SplatValue, MSI, MSIs, Ev, BECount, 992 IsNegStride, /*IsLoopMemset=*/true); 993 } 994 995 /// mayLoopAccessLocation - Return true if the specified loop might access the 996 /// specified pointer location, which is a loop-strided access. The 'Access' 997 /// argument specifies what the verboten forms of access are (read or write). 998 static bool 999 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 1000 const SCEV *BECount, const SCEV *StoreSizeSCEV, 1001 AliasAnalysis &AA, 1002 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 1003 // Get the location that may be stored across the loop. Since the access is 1004 // strided positively through memory, we say that the modified location starts 1005 // at the pointer and has infinite size. 1006 LocationSize AccessSize = LocationSize::afterPointer(); 1007 1008 // If the loop iterates a fixed number of times, we can refine the access size 1009 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 1010 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 1011 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1012 if (BECst && ConstSize) 1013 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 1014 ConstSize->getValue()->getZExtValue()); 1015 1016 // TODO: For this to be really effective, we have to dive into the pointer 1017 // operand in the store. Store to &A[i] of 100 will always return may alias 1018 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 1019 // which will then no-alias a store to &A[100]. 1020 MemoryLocation StoreLoc(Ptr, AccessSize); 1021 1022 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 1023 ++BI) 1024 for (Instruction &I : **BI) 1025 if (IgnoredInsts.count(&I) == 0 && 1026 isModOrRefSet( 1027 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 1028 return true; 1029 return false; 1030 } 1031 1032 // If we have a negative stride, Start refers to the end of the memory location 1033 // we're trying to memset. Therefore, we need to recompute the base pointer, 1034 // which is just Start - BECount*Size. 1035 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 1036 Type *IntPtr, const SCEV *StoreSizeSCEV, 1037 ScalarEvolution *SE) { 1038 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 1039 if (!StoreSizeSCEV->isOne()) { 1040 // index = back edge count * store size 1041 Index = SE->getMulExpr(Index, 1042 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1043 SCEV::FlagNUW); 1044 } 1045 // base pointer = start - index * store size 1046 return SE->getMinusSCEV(Start, Index); 1047 } 1048 1049 /// Compute trip count from the backedge taken count. 1050 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr, 1051 Loop *CurLoop, const DataLayout *DL, 1052 ScalarEvolution *SE) { 1053 const SCEV *TripCountS = nullptr; 1054 // The # stored bytes is (BECount+1). Expand the trip count out to 1055 // pointer size if it isn't already. 1056 // 1057 // If we're going to need to zero extend the BE count, check if we can add 1058 // one to it prior to zero extending without overflow. Provided this is safe, 1059 // it allows better simplification of the +1. 1060 if (DL->getTypeSizeInBits(BECount->getType()) < 1061 DL->getTypeSizeInBits(IntPtr) && 1062 SE->isLoopEntryGuardedByCond( 1063 CurLoop, ICmpInst::ICMP_NE, BECount, 1064 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 1065 TripCountS = SE->getZeroExtendExpr( 1066 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 1067 IntPtr); 1068 } else { 1069 TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 1070 SE->getOne(IntPtr), SCEV::FlagNUW); 1071 } 1072 1073 return TripCountS; 1074 } 1075 1076 /// Compute the number of bytes as a SCEV from the backedge taken count. 1077 /// 1078 /// This also maps the SCEV into the provided type and tries to handle the 1079 /// computation in a way that will fold cleanly. 1080 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 1081 const SCEV *StoreSizeSCEV, Loop *CurLoop, 1082 const DataLayout *DL, ScalarEvolution *SE) { 1083 const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE); 1084 1085 return SE->getMulExpr(TripCountSCEV, 1086 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1087 SCEV::FlagNUW); 1088 } 1089 1090 /// processLoopStridedStore - We see a strided store of some value. If we can 1091 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1092 bool LoopIdiomRecognize::processLoopStridedStore( 1093 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1094 Value *StoredVal, Instruction *TheStore, 1095 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1096 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1097 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1098 Constant *PatternValue = nullptr; 1099 1100 if (!SplatValue) 1101 PatternValue = getMemSetPatternValue(StoredVal, DL); 1102 1103 assert((SplatValue || PatternValue) && 1104 "Expected either splat value or pattern value."); 1105 1106 // The trip count of the loop and the base pointer of the addrec SCEV is 1107 // guaranteed to be loop invariant, which means that it should dominate the 1108 // header. This allows us to insert code for it in the preheader. 1109 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1110 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1111 IRBuilder<> Builder(Preheader->getTerminator()); 1112 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1113 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1114 1115 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 1116 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1117 1118 bool Changed = false; 1119 const SCEV *Start = Ev->getStart(); 1120 // Handle negative strided loops. 1121 if (IsNegStride) 1122 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1123 1124 // TODO: ideally we should still be able to generate memset if SCEV expander 1125 // is taught to generate the dependencies at the latest point. 1126 if (!isSafeToExpand(Start, *SE)) 1127 return Changed; 1128 1129 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1130 // this into a memset in the loop preheader now if we want. However, this 1131 // would be unsafe to do if there is anything else in the loop that may read 1132 // or write to the aliased location. Check for any overlap by generating the 1133 // base pointer and checking the region. 1134 Value *BasePtr = 1135 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1136 1137 // From here on out, conservatively report to the pass manager that we've 1138 // changed the IR, even if we later clean up these added instructions. There 1139 // may be structural differences e.g. in the order of use lists not accounted 1140 // for in just a textual dump of the IR. This is written as a variable, even 1141 // though statically all the places this dominates could be replaced with 1142 // 'true', with the hope that anyone trying to be clever / "more precise" with 1143 // the return value will read this comment, and leave them alone. 1144 Changed = true; 1145 1146 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1147 StoreSizeSCEV, *AA, Stores)) 1148 return Changed; 1149 1150 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1151 return Changed; 1152 1153 // Okay, everything looks good, insert the memset. 1154 1155 const SCEV *NumBytesS = 1156 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1157 1158 // TODO: ideally we should still be able to generate memset if SCEV expander 1159 // is taught to generate the dependencies at the latest point. 1160 if (!isSafeToExpand(NumBytesS, *SE)) 1161 return Changed; 1162 1163 Value *NumBytes = 1164 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1165 1166 CallInst *NewCall; 1167 if (SplatValue) { 1168 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 1169 MaybeAlign(StoreAlignment)); 1170 } else { 1171 // Everything is emitted in default address space 1172 Type *Int8PtrTy = DestInt8PtrTy; 1173 1174 Module *M = TheStore->getModule(); 1175 StringRef FuncName = "memset_pattern16"; 1176 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1177 Int8PtrTy, Int8PtrTy, IntIdxTy); 1178 inferLibFuncAttributes(M, FuncName, *TLI); 1179 1180 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1181 // an constant array of 16-bytes. Plop the value into a mergable global. 1182 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1183 GlobalValue::PrivateLinkage, 1184 PatternValue, ".memset_pattern"); 1185 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1186 GV->setAlignment(Align(16)); 1187 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1188 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1189 } 1190 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1191 1192 if (MSSAU) { 1193 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1194 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1195 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1196 } 1197 1198 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1199 << " from store to: " << *Ev << " at: " << *TheStore 1200 << "\n"); 1201 1202 ORE.emit([&]() { 1203 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 1204 NewCall->getDebugLoc(), Preheader) 1205 << "Transformed loop-strided store in " 1206 << ore::NV("Function", TheStore->getFunction()) 1207 << " function into a call to " 1208 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1209 << "() intrinsic"; 1210 }); 1211 1212 // Okay, the memset has been formed. Zap the original store and anything that 1213 // feeds into it. 1214 for (auto *I : Stores) { 1215 if (MSSAU) 1216 MSSAU->removeMemoryAccess(I, true); 1217 deleteDeadInstruction(I); 1218 } 1219 if (MSSAU && VerifyMemorySSA) 1220 MSSAU->getMemorySSA()->verifyMemorySSA(); 1221 ++NumMemSet; 1222 ExpCleaner.markResultUsed(); 1223 return true; 1224 } 1225 1226 /// If the stored value is a strided load in the same loop with the same stride 1227 /// this may be transformable into a memcpy. This kicks in for stuff like 1228 /// for (i) A[i] = B[i]; 1229 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1230 const SCEV *BECount) { 1231 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1232 1233 Value *StorePtr = SI->getPointerOperand(); 1234 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1235 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1236 1237 // The store must be feeding a non-volatile load. 1238 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1239 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1240 1241 // See if the pointer expression is an AddRec like {base,+,1} on the current 1242 // loop, which indicates a strided load. If we have something else, it's a 1243 // random load we can't handle. 1244 Value *LoadPtr = LI->getPointerOperand(); 1245 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1246 1247 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1248 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1249 SI->getAlign(), LI->getAlign(), SI, LI, 1250 StoreEv, LoadEv, BECount); 1251 } 1252 1253 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1254 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1255 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1256 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1257 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1258 1259 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1260 // conservatively bail here, since otherwise we may have to transform 1261 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1262 if (isa<MemCpyInlineInst>(TheStore)) 1263 return false; 1264 1265 // The trip count of the loop and the base pointer of the addrec SCEV is 1266 // guaranteed to be loop invariant, which means that it should dominate the 1267 // header. This allows us to insert code for it in the preheader. 1268 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1269 IRBuilder<> Builder(Preheader->getTerminator()); 1270 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1271 1272 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1273 1274 bool Changed = false; 1275 const SCEV *StrStart = StoreEv->getStart(); 1276 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1277 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1278 1279 APInt Stride = getStoreStride(StoreEv); 1280 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1281 1282 // TODO: Deal with non-constant size; Currently expect constant store size 1283 assert(ConstStoreSize && "store size is expected to be a constant"); 1284 1285 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1286 bool IsNegStride = StoreSize == -Stride; 1287 1288 // Handle negative strided loops. 1289 if (IsNegStride) 1290 StrStart = 1291 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1292 1293 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1294 // this into a memcpy in the loop preheader now if we want. However, this 1295 // would be unsafe to do if there is anything else in the loop that may read 1296 // or write the memory region we're storing to. This includes the load that 1297 // feeds the stores. Check for an alias by generating the base address and 1298 // checking everything. 1299 Value *StoreBasePtr = Expander.expandCodeFor( 1300 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1301 1302 // From here on out, conservatively report to the pass manager that we've 1303 // changed the IR, even if we later clean up these added instructions. There 1304 // may be structural differences e.g. in the order of use lists not accounted 1305 // for in just a textual dump of the IR. This is written as a variable, even 1306 // though statically all the places this dominates could be replaced with 1307 // 'true', with the hope that anyone trying to be clever / "more precise" with 1308 // the return value will read this comment, and leave them alone. 1309 Changed = true; 1310 1311 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1312 IgnoredInsts.insert(TheStore); 1313 1314 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1315 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1316 1317 bool UseMemMove = 1318 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1319 StoreSizeSCEV, *AA, IgnoredInsts); 1320 if (UseMemMove) { 1321 // For memmove case it's not enough to guarantee that loop doesn't access 1322 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1323 // the only user of TheLoad. 1324 if (!TheLoad->hasOneUse()) 1325 return Changed; 1326 IgnoredInsts.insert(TheLoad); 1327 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1328 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1329 ORE.emit([&]() { 1330 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1331 TheStore) 1332 << ore::NV("Inst", InstRemark) << " in " 1333 << ore::NV("Function", TheStore->getFunction()) 1334 << " function will not be hoisted: " 1335 << ore::NV("Reason", "The loop may access store location"); 1336 }); 1337 return Changed; 1338 } 1339 IgnoredInsts.erase(TheLoad); 1340 } 1341 1342 const SCEV *LdStart = LoadEv->getStart(); 1343 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1344 1345 // Handle negative strided loops. 1346 if (IsNegStride) 1347 LdStart = 1348 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1349 1350 // For a memcpy, we have to make sure that the input array is not being 1351 // mutated by the loop. 1352 Value *LoadBasePtr = Expander.expandCodeFor( 1353 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1354 1355 // If the store is a memcpy instruction, we must check if it will write to 1356 // the load memory locations. So remove it from the ignored stores. 1357 if (IsMemCpy) 1358 IgnoredInsts.erase(TheStore); 1359 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1360 StoreSizeSCEV, *AA, IgnoredInsts)) { 1361 ORE.emit([&]() { 1362 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1363 << ore::NV("Inst", InstRemark) << " in " 1364 << ore::NV("Function", TheStore->getFunction()) 1365 << " function will not be hoisted: " 1366 << ore::NV("Reason", "The loop may access load location"); 1367 }); 1368 return Changed; 1369 } 1370 if (UseMemMove) { 1371 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr for 1372 // negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1373 int64_t LoadOff = 0, StoreOff = 0; 1374 const Value *BP1 = llvm::GetPointerBaseWithConstantOffset( 1375 LoadBasePtr->stripPointerCasts(), LoadOff, *DL); 1376 const Value *BP2 = llvm::GetPointerBaseWithConstantOffset( 1377 StoreBasePtr->stripPointerCasts(), StoreOff, *DL); 1378 int64_t LoadSize = 1379 DL->getTypeSizeInBits(TheLoad->getType()).getFixedSize() / 8; 1380 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1381 return Changed; 1382 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1383 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1384 return Changed; 1385 } 1386 1387 if (avoidLIRForMultiBlockLoop()) 1388 return Changed; 1389 1390 // Okay, everything is safe, we can transform this! 1391 1392 const SCEV *NumBytesS = 1393 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1394 1395 Value *NumBytes = 1396 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1397 1398 CallInst *NewCall = nullptr; 1399 // Check whether to generate an unordered atomic memcpy: 1400 // If the load or store are atomic, then they must necessarily be unordered 1401 // by previous checks. 1402 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1403 if (UseMemMove) 1404 NewCall = Builder.CreateMemMove(StoreBasePtr, StoreAlign, LoadBasePtr, 1405 LoadAlign, NumBytes); 1406 else 1407 NewCall = Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, 1408 LoadAlign, NumBytes); 1409 } else { 1410 // For now don't support unordered atomic memmove. 1411 if (UseMemMove) 1412 return Changed; 1413 // We cannot allow unaligned ops for unordered load/store, so reject 1414 // anything where the alignment isn't at least the element size. 1415 assert((StoreAlign.hasValue() && LoadAlign.hasValue()) && 1416 "Expect unordered load/store to have align."); 1417 if (StoreAlign.getValue() < StoreSize || LoadAlign.getValue() < StoreSize) 1418 return Changed; 1419 1420 // If the element.atomic memcpy is not lowered into explicit 1421 // loads/stores later, then it will be lowered into an element-size 1422 // specific lib call. If the lib call doesn't exist for our store size, then 1423 // we shouldn't generate the memcpy. 1424 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1425 return Changed; 1426 1427 // Create the call. 1428 // Note that unordered atomic loads/stores are *required* by the spec to 1429 // have an alignment but non-atomic loads/stores may not. 1430 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1431 StoreBasePtr, StoreAlign.getValue(), LoadBasePtr, LoadAlign.getValue(), 1432 NumBytes, StoreSize); 1433 } 1434 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1435 1436 if (MSSAU) { 1437 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1438 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1439 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1440 } 1441 1442 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1443 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1444 << "\n" 1445 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1446 << "\n"); 1447 1448 ORE.emit([&]() { 1449 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1450 NewCall->getDebugLoc(), Preheader) 1451 << "Formed a call to " 1452 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1453 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1454 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1455 << " function"; 1456 }); 1457 1458 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1459 // and anything that feeds into it. 1460 if (MSSAU) 1461 MSSAU->removeMemoryAccess(TheStore, true); 1462 deleteDeadInstruction(TheStore); 1463 if (MSSAU && VerifyMemorySSA) 1464 MSSAU->getMemorySSA()->verifyMemorySSA(); 1465 if (UseMemMove) 1466 ++NumMemMove; 1467 else 1468 ++NumMemCpy; 1469 ExpCleaner.markResultUsed(); 1470 return true; 1471 } 1472 1473 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1474 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1475 // 1476 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1477 bool IsLoopMemset) { 1478 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1479 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1480 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1481 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1482 << " avoided: multi-block top-level loop\n"); 1483 return true; 1484 } 1485 } 1486 1487 return false; 1488 } 1489 1490 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1491 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1492 << CurLoop->getHeader()->getParent()->getName() 1493 << "] Noncountable Loop %" 1494 << CurLoop->getHeader()->getName() << "\n"); 1495 1496 return recognizePopcount() || recognizeAndInsertFFS() || 1497 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1498 } 1499 1500 /// Check if the given conditional branch is based on the comparison between 1501 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1502 /// true), the control yields to the loop entry. If the branch matches the 1503 /// behavior, the variable involved in the comparison is returned. This function 1504 /// will be called to see if the precondition and postcondition of the loop are 1505 /// in desirable form. 1506 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1507 bool JmpOnZero = false) { 1508 if (!BI || !BI->isConditional()) 1509 return nullptr; 1510 1511 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1512 if (!Cond) 1513 return nullptr; 1514 1515 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1516 if (!CmpZero || !CmpZero->isZero()) 1517 return nullptr; 1518 1519 BasicBlock *TrueSucc = BI->getSuccessor(0); 1520 BasicBlock *FalseSucc = BI->getSuccessor(1); 1521 if (JmpOnZero) 1522 std::swap(TrueSucc, FalseSucc); 1523 1524 ICmpInst::Predicate Pred = Cond->getPredicate(); 1525 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1526 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1527 return Cond->getOperand(0); 1528 1529 return nullptr; 1530 } 1531 1532 // Check if the recurrence variable `VarX` is in the right form to create 1533 // the idiom. Returns the value coerced to a PHINode if so. 1534 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1535 BasicBlock *LoopEntry) { 1536 auto *PhiX = dyn_cast<PHINode>(VarX); 1537 if (PhiX && PhiX->getParent() == LoopEntry && 1538 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1539 return PhiX; 1540 return nullptr; 1541 } 1542 1543 /// Return true iff the idiom is detected in the loop. 1544 /// 1545 /// Additionally: 1546 /// 1) \p CntInst is set to the instruction counting the population bit. 1547 /// 2) \p CntPhi is set to the corresponding phi node. 1548 /// 3) \p Var is set to the value whose population bits are being counted. 1549 /// 1550 /// The core idiom we are trying to detect is: 1551 /// \code 1552 /// if (x0 != 0) 1553 /// goto loop-exit // the precondition of the loop 1554 /// cnt0 = init-val; 1555 /// do { 1556 /// x1 = phi (x0, x2); 1557 /// cnt1 = phi(cnt0, cnt2); 1558 /// 1559 /// cnt2 = cnt1 + 1; 1560 /// ... 1561 /// x2 = x1 & (x1 - 1); 1562 /// ... 1563 /// } while(x != 0); 1564 /// 1565 /// loop-exit: 1566 /// \endcode 1567 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1568 Instruction *&CntInst, PHINode *&CntPhi, 1569 Value *&Var) { 1570 // step 1: Check to see if the look-back branch match this pattern: 1571 // "if (a!=0) goto loop-entry". 1572 BasicBlock *LoopEntry; 1573 Instruction *DefX2, *CountInst; 1574 Value *VarX1, *VarX0; 1575 PHINode *PhiX, *CountPhi; 1576 1577 DefX2 = CountInst = nullptr; 1578 VarX1 = VarX0 = nullptr; 1579 PhiX = CountPhi = nullptr; 1580 LoopEntry = *(CurLoop->block_begin()); 1581 1582 // step 1: Check if the loop-back branch is in desirable form. 1583 { 1584 if (Value *T = matchCondition( 1585 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1586 DefX2 = dyn_cast<Instruction>(T); 1587 else 1588 return false; 1589 } 1590 1591 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1592 { 1593 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1594 return false; 1595 1596 BinaryOperator *SubOneOp; 1597 1598 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1599 VarX1 = DefX2->getOperand(1); 1600 else { 1601 VarX1 = DefX2->getOperand(0); 1602 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1603 } 1604 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1605 return false; 1606 1607 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1608 if (!Dec || 1609 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1610 (SubOneOp->getOpcode() == Instruction::Add && 1611 Dec->isMinusOne()))) { 1612 return false; 1613 } 1614 } 1615 1616 // step 3: Check the recurrence of variable X 1617 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1618 if (!PhiX) 1619 return false; 1620 1621 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1622 { 1623 CountInst = nullptr; 1624 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1625 IterE = LoopEntry->end(); 1626 Iter != IterE; Iter++) { 1627 Instruction *Inst = &*Iter; 1628 if (Inst->getOpcode() != Instruction::Add) 1629 continue; 1630 1631 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1632 if (!Inc || !Inc->isOne()) 1633 continue; 1634 1635 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1636 if (!Phi) 1637 continue; 1638 1639 // Check if the result of the instruction is live of the loop. 1640 bool LiveOutLoop = false; 1641 for (User *U : Inst->users()) { 1642 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1643 LiveOutLoop = true; 1644 break; 1645 } 1646 } 1647 1648 if (LiveOutLoop) { 1649 CountInst = Inst; 1650 CountPhi = Phi; 1651 break; 1652 } 1653 } 1654 1655 if (!CountInst) 1656 return false; 1657 } 1658 1659 // step 5: check if the precondition is in this form: 1660 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1661 { 1662 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1663 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1664 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1665 return false; 1666 1667 CntInst = CountInst; 1668 CntPhi = CountPhi; 1669 Var = T; 1670 } 1671 1672 return true; 1673 } 1674 1675 /// Return true if the idiom is detected in the loop. 1676 /// 1677 /// Additionally: 1678 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1679 /// or nullptr if there is no such. 1680 /// 2) \p CntPhi is set to the corresponding phi node 1681 /// or nullptr if there is no such. 1682 /// 3) \p Var is set to the value whose CTLZ could be used. 1683 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1684 /// 1685 /// The core idiom we are trying to detect is: 1686 /// \code 1687 /// if (x0 == 0) 1688 /// goto loop-exit // the precondition of the loop 1689 /// cnt0 = init-val; 1690 /// do { 1691 /// x = phi (x0, x.next); //PhiX 1692 /// cnt = phi(cnt0, cnt.next); 1693 /// 1694 /// cnt.next = cnt + 1; 1695 /// ... 1696 /// x.next = x >> 1; // DefX 1697 /// ... 1698 /// } while(x.next != 0); 1699 /// 1700 /// loop-exit: 1701 /// \endcode 1702 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1703 Intrinsic::ID &IntrinID, Value *&InitX, 1704 Instruction *&CntInst, PHINode *&CntPhi, 1705 Instruction *&DefX) { 1706 BasicBlock *LoopEntry; 1707 Value *VarX = nullptr; 1708 1709 DefX = nullptr; 1710 CntInst = nullptr; 1711 CntPhi = nullptr; 1712 LoopEntry = *(CurLoop->block_begin()); 1713 1714 // step 1: Check if the loop-back branch is in desirable form. 1715 if (Value *T = matchCondition( 1716 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1717 DefX = dyn_cast<Instruction>(T); 1718 else 1719 return false; 1720 1721 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1722 if (!DefX || !DefX->isShift()) 1723 return false; 1724 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1725 Intrinsic::ctlz; 1726 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1727 if (!Shft || !Shft->isOne()) 1728 return false; 1729 VarX = DefX->getOperand(0); 1730 1731 // step 3: Check the recurrence of variable X 1732 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1733 if (!PhiX) 1734 return false; 1735 1736 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1737 1738 // Make sure the initial value can't be negative otherwise the ashr in the 1739 // loop might never reach zero which would make the loop infinite. 1740 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1741 return false; 1742 1743 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1744 // or cnt.next = cnt + -1. 1745 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1746 // then all uses of "cnt.next" could be optimized to the trip count 1747 // plus "cnt0". Currently it is not optimized. 1748 // This step could be used to detect POPCNT instruction: 1749 // cnt.next = cnt + (x.next & 1) 1750 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1751 IterE = LoopEntry->end(); 1752 Iter != IterE; Iter++) { 1753 Instruction *Inst = &*Iter; 1754 if (Inst->getOpcode() != Instruction::Add) 1755 continue; 1756 1757 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1758 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1759 continue; 1760 1761 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1762 if (!Phi) 1763 continue; 1764 1765 CntInst = Inst; 1766 CntPhi = Phi; 1767 break; 1768 } 1769 if (!CntInst) 1770 return false; 1771 1772 return true; 1773 } 1774 1775 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1776 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1777 /// trip count returns true; otherwise, returns false. 1778 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1779 // Give up if the loop has multiple blocks or multiple backedges. 1780 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1781 return false; 1782 1783 Intrinsic::ID IntrinID; 1784 Value *InitX; 1785 Instruction *DefX = nullptr; 1786 PHINode *CntPhi = nullptr; 1787 Instruction *CntInst = nullptr; 1788 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1789 // this is always 6. 1790 size_t IdiomCanonicalSize = 6; 1791 1792 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1793 CntInst, CntPhi, DefX)) 1794 return false; 1795 1796 bool IsCntPhiUsedOutsideLoop = false; 1797 for (User *U : CntPhi->users()) 1798 if (!CurLoop->contains(cast<Instruction>(U))) { 1799 IsCntPhiUsedOutsideLoop = true; 1800 break; 1801 } 1802 bool IsCntInstUsedOutsideLoop = false; 1803 for (User *U : CntInst->users()) 1804 if (!CurLoop->contains(cast<Instruction>(U))) { 1805 IsCntInstUsedOutsideLoop = true; 1806 break; 1807 } 1808 // If both CntInst and CntPhi are used outside the loop the profitability 1809 // is questionable. 1810 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1811 return false; 1812 1813 // For some CPUs result of CTLZ(X) intrinsic is undefined 1814 // when X is 0. If we can not guarantee X != 0, we need to check this 1815 // when expand. 1816 bool ZeroCheck = false; 1817 // It is safe to assume Preheader exist as it was checked in 1818 // parent function RunOnLoop. 1819 BasicBlock *PH = CurLoop->getLoopPreheader(); 1820 1821 // If we are using the count instruction outside the loop, make sure we 1822 // have a zero check as a precondition. Without the check the loop would run 1823 // one iteration for before any check of the input value. This means 0 and 1 1824 // would have identical behavior in the original loop and thus 1825 if (!IsCntPhiUsedOutsideLoop) { 1826 auto *PreCondBB = PH->getSinglePredecessor(); 1827 if (!PreCondBB) 1828 return false; 1829 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1830 if (!PreCondBI) 1831 return false; 1832 if (matchCondition(PreCondBI, PH) != InitX) 1833 return false; 1834 ZeroCheck = true; 1835 } 1836 1837 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1838 // profitable if we delete the loop. 1839 1840 // the loop has only 6 instructions: 1841 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1842 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1843 // %shr = ashr %n.addr.0, 1 1844 // %tobool = icmp eq %shr, 0 1845 // %inc = add nsw %i.0, 1 1846 // br i1 %tobool 1847 1848 const Value *Args[] = {InitX, 1849 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1850 1851 // @llvm.dbg doesn't count as they have no semantic effect. 1852 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1853 uint32_t HeaderSize = 1854 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1855 1856 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1857 InstructionCost Cost = 1858 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1859 if (HeaderSize != IdiomCanonicalSize && 1860 Cost > TargetTransformInfo::TCC_Basic) 1861 return false; 1862 1863 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1864 DefX->getDebugLoc(), ZeroCheck, 1865 IsCntPhiUsedOutsideLoop); 1866 return true; 1867 } 1868 1869 /// Recognizes a population count idiom in a non-countable loop. 1870 /// 1871 /// If detected, transforms the relevant code to issue the popcount intrinsic 1872 /// function call, and returns true; otherwise, returns false. 1873 bool LoopIdiomRecognize::recognizePopcount() { 1874 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1875 return false; 1876 1877 // Counting population are usually conducted by few arithmetic instructions. 1878 // Such instructions can be easily "absorbed" by vacant slots in a 1879 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1880 // in a compact loop. 1881 1882 // Give up if the loop has multiple blocks or multiple backedges. 1883 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1884 return false; 1885 1886 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1887 if (LoopBody->size() >= 20) { 1888 // The loop is too big, bail out. 1889 return false; 1890 } 1891 1892 // It should have a preheader containing nothing but an unconditional branch. 1893 BasicBlock *PH = CurLoop->getLoopPreheader(); 1894 if (!PH || &PH->front() != PH->getTerminator()) 1895 return false; 1896 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1897 if (!EntryBI || EntryBI->isConditional()) 1898 return false; 1899 1900 // It should have a precondition block where the generated popcount intrinsic 1901 // function can be inserted. 1902 auto *PreCondBB = PH->getSinglePredecessor(); 1903 if (!PreCondBB) 1904 return false; 1905 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1906 if (!PreCondBI || PreCondBI->isUnconditional()) 1907 return false; 1908 1909 Instruction *CntInst; 1910 PHINode *CntPhi; 1911 Value *Val; 1912 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1913 return false; 1914 1915 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1916 return true; 1917 } 1918 1919 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1920 const DebugLoc &DL) { 1921 Value *Ops[] = {Val}; 1922 Type *Tys[] = {Val->getType()}; 1923 1924 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1925 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1926 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1927 CI->setDebugLoc(DL); 1928 1929 return CI; 1930 } 1931 1932 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1933 const DebugLoc &DL, bool ZeroCheck, 1934 Intrinsic::ID IID) { 1935 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 1936 Type *Tys[] = {Val->getType()}; 1937 1938 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1939 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1940 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1941 CI->setDebugLoc(DL); 1942 1943 return CI; 1944 } 1945 1946 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1947 /// loop: 1948 /// CntPhi = PHI [Cnt0, CntInst] 1949 /// PhiX = PHI [InitX, DefX] 1950 /// CntInst = CntPhi + 1 1951 /// DefX = PhiX >> 1 1952 /// LOOP_BODY 1953 /// Br: loop if (DefX != 0) 1954 /// Use(CntPhi) or Use(CntInst) 1955 /// 1956 /// Into: 1957 /// If CntPhi used outside the loop: 1958 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1959 /// Count = CountPrev + 1 1960 /// else 1961 /// Count = BitWidth(InitX) - CTLZ(InitX) 1962 /// loop: 1963 /// CntPhi = PHI [Cnt0, CntInst] 1964 /// PhiX = PHI [InitX, DefX] 1965 /// PhiCount = PHI [Count, Dec] 1966 /// CntInst = CntPhi + 1 1967 /// DefX = PhiX >> 1 1968 /// Dec = PhiCount - 1 1969 /// LOOP_BODY 1970 /// Br: loop if (Dec != 0) 1971 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1972 /// or 1973 /// Use(Count + Cnt0) // Use(CntInst) 1974 /// 1975 /// If LOOP_BODY is empty the loop will be deleted. 1976 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1977 void LoopIdiomRecognize::transformLoopToCountable( 1978 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1979 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1980 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1981 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1982 1983 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1984 IRBuilder<> Builder(PreheaderBr); 1985 Builder.SetCurrentDebugLocation(DL); 1986 1987 // If there are no uses of CntPhi crate: 1988 // Count = BitWidth - CTLZ(InitX); 1989 // NewCount = Count; 1990 // If there are uses of CntPhi create: 1991 // NewCount = BitWidth - CTLZ(InitX >> 1); 1992 // Count = NewCount + 1; 1993 Value *InitXNext; 1994 if (IsCntPhiUsedOutsideLoop) { 1995 if (DefX->getOpcode() == Instruction::AShr) 1996 InitXNext = Builder.CreateAShr(InitX, 1); 1997 else if (DefX->getOpcode() == Instruction::LShr) 1998 InitXNext = Builder.CreateLShr(InitX, 1); 1999 else if (DefX->getOpcode() == Instruction::Shl) // cttz 2000 InitXNext = Builder.CreateShl(InitX, 1); 2001 else 2002 llvm_unreachable("Unexpected opcode!"); 2003 } else 2004 InitXNext = InitX; 2005 Value *Count = 2006 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 2007 Type *CountTy = Count->getType(); 2008 Count = Builder.CreateSub( 2009 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 2010 Value *NewCount = Count; 2011 if (IsCntPhiUsedOutsideLoop) 2012 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2013 2014 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2015 2016 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2017 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2018 // If the counter was being incremented in the loop, add NewCount to the 2019 // counter's initial value, but only if the initial value is not zero. 2020 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2021 if (!InitConst || !InitConst->isZero()) 2022 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2023 } else { 2024 // If the count was being decremented in the loop, subtract NewCount from 2025 // the counter's initial value. 2026 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2027 } 2028 2029 // Step 2: Insert new IV and loop condition: 2030 // loop: 2031 // ... 2032 // PhiCount = PHI [Count, Dec] 2033 // ... 2034 // Dec = PhiCount - 1 2035 // ... 2036 // Br: loop if (Dec != 0) 2037 BasicBlock *Body = *(CurLoop->block_begin()); 2038 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2039 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2040 2041 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 2042 2043 Builder.SetInsertPoint(LbCond); 2044 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2045 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2046 2047 TcPhi->addIncoming(Count, Preheader); 2048 TcPhi->addIncoming(TcDec, Body); 2049 2050 CmpInst::Predicate Pred = 2051 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2052 LbCond->setPredicate(Pred); 2053 LbCond->setOperand(0, TcDec); 2054 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2055 2056 // Step 3: All the references to the original counter outside 2057 // the loop are replaced with the NewCount 2058 if (IsCntPhiUsedOutsideLoop) 2059 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2060 else 2061 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2062 2063 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2064 // loop. The loop would otherwise not be deleted even if it becomes empty. 2065 SE->forgetLoop(CurLoop); 2066 } 2067 2068 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2069 Instruction *CntInst, 2070 PHINode *CntPhi, Value *Var) { 2071 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2072 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2073 const DebugLoc &DL = CntInst->getDebugLoc(); 2074 2075 // Assuming before transformation, the loop is following: 2076 // if (x) // the precondition 2077 // do { cnt++; x &= x - 1; } while(x); 2078 2079 // Step 1: Insert the ctpop instruction at the end of the precondition block 2080 IRBuilder<> Builder(PreCondBr); 2081 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2082 { 2083 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2084 NewCount = PopCntZext = 2085 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2086 2087 if (NewCount != PopCnt) 2088 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2089 2090 // TripCnt is exactly the number of iterations the loop has 2091 TripCnt = NewCount; 2092 2093 // If the population counter's initial value is not zero, insert Add Inst. 2094 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2095 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2096 if (!InitConst || !InitConst->isZero()) { 2097 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2098 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2099 } 2100 } 2101 2102 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2103 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2104 // function would be partial dead code, and downstream passes will drag 2105 // it back from the precondition block to the preheader. 2106 { 2107 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2108 2109 Value *Opnd0 = PopCntZext; 2110 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2111 if (PreCond->getOperand(0) != Var) 2112 std::swap(Opnd0, Opnd1); 2113 2114 ICmpInst *NewPreCond = cast<ICmpInst>( 2115 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2116 PreCondBr->setCondition(NewPreCond); 2117 2118 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2119 } 2120 2121 // Step 3: Note that the population count is exactly the trip count of the 2122 // loop in question, which enable us to convert the loop from noncountable 2123 // loop into a countable one. The benefit is twofold: 2124 // 2125 // - If the loop only counts population, the entire loop becomes dead after 2126 // the transformation. It is a lot easier to prove a countable loop dead 2127 // than to prove a noncountable one. (In some C dialects, an infinite loop 2128 // isn't dead even if it computes nothing useful. In general, DCE needs 2129 // to prove a noncountable loop finite before safely delete it.) 2130 // 2131 // - If the loop also performs something else, it remains alive. 2132 // Since it is transformed to countable form, it can be aggressively 2133 // optimized by some optimizations which are in general not applicable 2134 // to a noncountable loop. 2135 // 2136 // After this step, this loop (conceptually) would look like following: 2137 // newcnt = __builtin_ctpop(x); 2138 // t = newcnt; 2139 // if (x) 2140 // do { cnt++; x &= x-1; t--) } while (t > 0); 2141 BasicBlock *Body = *(CurLoop->block_begin()); 2142 { 2143 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2144 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2145 Type *Ty = TripCnt->getType(); 2146 2147 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 2148 2149 Builder.SetInsertPoint(LbCond); 2150 Instruction *TcDec = cast<Instruction>( 2151 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2152 "tcdec", false, true)); 2153 2154 TcPhi->addIncoming(TripCnt, PreHead); 2155 TcPhi->addIncoming(TcDec, Body); 2156 2157 CmpInst::Predicate Pred = 2158 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2159 LbCond->setPredicate(Pred); 2160 LbCond->setOperand(0, TcDec); 2161 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2162 } 2163 2164 // Step 4: All the references to the original population counter outside 2165 // the loop are replaced with the NewCount -- the value returned from 2166 // __builtin_ctpop(). 2167 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2168 2169 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2170 // loop. The loop would otherwise not be deleted even if it becomes empty. 2171 SE->forgetLoop(CurLoop); 2172 } 2173 2174 /// Match loop-invariant value. 2175 template <typename SubPattern_t> struct match_LoopInvariant { 2176 SubPattern_t SubPattern; 2177 const Loop *L; 2178 2179 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2180 : SubPattern(SP), L(L) {} 2181 2182 template <typename ITy> bool match(ITy *V) { 2183 return L->isLoopInvariant(V) && SubPattern.match(V); 2184 } 2185 }; 2186 2187 /// Matches if the value is loop-invariant. 2188 template <typename Ty> 2189 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2190 return match_LoopInvariant<Ty>(M, L); 2191 } 2192 2193 /// Return true if the idiom is detected in the loop. 2194 /// 2195 /// The core idiom we are trying to detect is: 2196 /// \code 2197 /// entry: 2198 /// <...> 2199 /// %bitmask = shl i32 1, %bitpos 2200 /// br label %loop 2201 /// 2202 /// loop: 2203 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2204 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2205 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2206 /// %x.next = shl i32 %x.curr, 1 2207 /// <...> 2208 /// br i1 %x.curr.isbitunset, label %loop, label %end 2209 /// 2210 /// end: 2211 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2212 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2213 /// <...> 2214 /// \endcode 2215 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2216 Value *&BitMask, Value *&BitPos, 2217 Value *&CurrX, Instruction *&NextX) { 2218 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2219 " Performing shift-until-bittest idiom detection.\n"); 2220 2221 // Give up if the loop has multiple blocks or multiple backedges. 2222 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2223 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2224 return false; 2225 } 2226 2227 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2228 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2229 assert(LoopPreheaderBB && "There is always a loop preheader."); 2230 2231 using namespace PatternMatch; 2232 2233 // Step 1: Check if the loop backedge is in desirable form. 2234 2235 ICmpInst::Predicate Pred; 2236 Value *CmpLHS, *CmpRHS; 2237 BasicBlock *TrueBB, *FalseBB; 2238 if (!match(LoopHeaderBB->getTerminator(), 2239 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2240 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2241 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2242 return false; 2243 } 2244 2245 // Step 2: Check if the backedge's condition is in desirable form. 2246 2247 auto MatchVariableBitMask = [&]() { 2248 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2249 match(CmpLHS, 2250 m_c_And(m_Value(CurrX), 2251 m_CombineAnd( 2252 m_Value(BitMask), 2253 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2254 CurLoop)))); 2255 }; 2256 auto MatchConstantBitMask = [&]() { 2257 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2258 match(CmpLHS, m_And(m_Value(CurrX), 2259 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2260 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2261 }; 2262 auto MatchDecomposableConstantBitMask = [&]() { 2263 APInt Mask; 2264 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2265 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2266 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2267 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2268 }; 2269 2270 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2271 !MatchDecomposableConstantBitMask()) { 2272 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2273 return false; 2274 } 2275 2276 // Step 3: Check if the recurrence is in desirable form. 2277 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2278 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2279 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2280 return false; 2281 } 2282 2283 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2284 NextX = 2285 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2286 2287 assert(CurLoop->isLoopInvariant(BaseX) && 2288 "Expected BaseX to be avaliable in the preheader!"); 2289 2290 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2291 // FIXME: support right-shift? 2292 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2293 return false; 2294 } 2295 2296 // Step 4: Check if the backedge's destinations are in desirable form. 2297 2298 assert(ICmpInst::isEquality(Pred) && 2299 "Should only get equality predicates here."); 2300 2301 // cmp-br is commutative, so canonicalize to a single variant. 2302 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2303 Pred = ICmpInst::getInversePredicate(Pred); 2304 std::swap(TrueBB, FalseBB); 2305 } 2306 2307 // We expect to exit loop when comparison yields false, 2308 // so when it yields true we should branch back to loop header. 2309 if (TrueBB != LoopHeaderBB) { 2310 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2311 return false; 2312 } 2313 2314 // Okay, idiom checks out. 2315 return true; 2316 } 2317 2318 /// Look for the following loop: 2319 /// \code 2320 /// entry: 2321 /// <...> 2322 /// %bitmask = shl i32 1, %bitpos 2323 /// br label %loop 2324 /// 2325 /// loop: 2326 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2327 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2328 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2329 /// %x.next = shl i32 %x.curr, 1 2330 /// <...> 2331 /// br i1 %x.curr.isbitunset, label %loop, label %end 2332 /// 2333 /// end: 2334 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2335 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2336 /// <...> 2337 /// \endcode 2338 /// 2339 /// And transform it into: 2340 /// \code 2341 /// entry: 2342 /// %bitmask = shl i32 1, %bitpos 2343 /// %lowbitmask = add i32 %bitmask, -1 2344 /// %mask = or i32 %lowbitmask, %bitmask 2345 /// %x.masked = and i32 %x, %mask 2346 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2347 /// i1 true) 2348 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2349 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2350 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2351 /// %tripcount = add i32 %backedgetakencount, 1 2352 /// %x.curr = shl i32 %x, %backedgetakencount 2353 /// %x.next = shl i32 %x, %tripcount 2354 /// br label %loop 2355 /// 2356 /// loop: 2357 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2358 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2359 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2360 /// <...> 2361 /// br i1 %loop.ivcheck, label %end, label %loop 2362 /// 2363 /// end: 2364 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2365 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2366 /// <...> 2367 /// \endcode 2368 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2369 bool MadeChange = false; 2370 2371 Value *X, *BitMask, *BitPos, *XCurr; 2372 Instruction *XNext; 2373 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2374 XNext)) { 2375 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2376 " shift-until-bittest idiom detection failed.\n"); 2377 return MadeChange; 2378 } 2379 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2380 2381 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2382 // but is it profitable to transform? 2383 2384 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2385 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2386 assert(LoopPreheaderBB && "There is always a loop preheader."); 2387 2388 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2389 assert(SuccessorBB && "There is only a single successor."); 2390 2391 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2392 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2393 2394 Intrinsic::ID IntrID = Intrinsic::ctlz; 2395 Type *Ty = X->getType(); 2396 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2397 2398 TargetTransformInfo::TargetCostKind CostKind = 2399 TargetTransformInfo::TCK_SizeAndLatency; 2400 2401 // The rewrite is considered to be unprofitable iff and only iff the 2402 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2403 // making the loop countable, even if nothing else changes. 2404 IntrinsicCostAttributes Attrs( 2405 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2406 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2407 if (Cost > TargetTransformInfo::TCC_Basic) { 2408 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2409 " Intrinsic is too costly, not beneficial\n"); 2410 return MadeChange; 2411 } 2412 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2413 TargetTransformInfo::TCC_Basic) { 2414 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2415 return MadeChange; 2416 } 2417 2418 // Ok, transform appears worthwhile. 2419 MadeChange = true; 2420 2421 // Step 1: Compute the loop trip count. 2422 2423 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2424 BitPos->getName() + ".lowbitmask"); 2425 Value *Mask = 2426 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2427 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2428 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2429 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2430 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2431 Value *XMaskedNumActiveBits = Builder.CreateSub( 2432 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2433 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2434 /*HasNSW=*/Bitwidth != 2); 2435 Value *XMaskedLeadingOnePos = 2436 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2437 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2438 /*HasNSW=*/Bitwidth > 2); 2439 2440 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2441 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2442 /*HasNUW=*/true, /*HasNSW=*/true); 2443 // We know loop's backedge-taken count, but what's loop's trip count? 2444 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2445 Value *LoopTripCount = 2446 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2447 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2448 /*HasNSW=*/Bitwidth != 2); 2449 2450 // Step 2: Compute the recurrence's final value without a loop. 2451 2452 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2453 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2454 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2455 NewX->takeName(XCurr); 2456 if (auto *I = dyn_cast<Instruction>(NewX)) 2457 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2458 2459 Value *NewXNext; 2460 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2461 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2462 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2463 // that isn't the case, we'll need to emit an alternative, safe IR. 2464 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2465 PatternMatch::match( 2466 BitPos, PatternMatch::m_SpecificInt_ICMP( 2467 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2468 Ty->getScalarSizeInBits() - 1)))) 2469 NewXNext = Builder.CreateShl(X, LoopTripCount); 2470 else { 2471 // Otherwise, just additionally shift by one. It's the smallest solution, 2472 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2473 // and select 0 instead. 2474 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2475 } 2476 2477 NewXNext->takeName(XNext); 2478 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2479 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2480 2481 // Step 3: Adjust the successor basic block to recieve the computed 2482 // recurrence's final value instead of the recurrence itself. 2483 2484 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2485 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2486 2487 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2488 2489 // The new canonical induction variable. 2490 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2491 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2492 2493 // The induction itself. 2494 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2495 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2496 auto *IVNext = 2497 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2498 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2499 2500 // The loop trip count check. 2501 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2502 CurLoop->getName() + ".ivcheck"); 2503 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2504 LoopHeaderBB->getTerminator()->eraseFromParent(); 2505 2506 // Populate the IV PHI. 2507 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2508 IV->addIncoming(IVNext, LoopHeaderBB); 2509 2510 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2511 // loop. The loop would otherwise not be deleted even if it becomes empty. 2512 2513 SE->forgetLoop(CurLoop); 2514 2515 // Other passes will take care of actually deleting the loop if possible. 2516 2517 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2518 2519 ++NumShiftUntilBitTest; 2520 return MadeChange; 2521 } 2522 2523 /// Return true if the idiom is detected in the loop. 2524 /// 2525 /// The core idiom we are trying to detect is: 2526 /// \code 2527 /// entry: 2528 /// <...> 2529 /// %start = <...> 2530 /// %extraoffset = <...> 2531 /// <...> 2532 /// br label %for.cond 2533 /// 2534 /// loop: 2535 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2536 /// %nbits = add nsw i8 %iv, %extraoffset 2537 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2538 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2539 /// %iv.next = add i8 %iv, 1 2540 /// <...> 2541 /// br i1 %val.shifted.iszero, label %end, label %loop 2542 /// 2543 /// end: 2544 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2545 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2546 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2547 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2548 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2549 /// <...> 2550 /// \endcode 2551 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2552 Instruction *&ValShiftedIsZero, 2553 Intrinsic::ID &IntrinID, Instruction *&IV, 2554 Value *&Start, Value *&Val, 2555 const SCEV *&ExtraOffsetExpr, 2556 bool &InvertedCond) { 2557 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2558 " Performing shift-until-zero idiom detection.\n"); 2559 2560 // Give up if the loop has multiple blocks or multiple backedges. 2561 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2562 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2563 return false; 2564 } 2565 2566 Instruction *ValShifted, *NBits, *IVNext; 2567 Value *ExtraOffset; 2568 2569 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2570 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2571 assert(LoopPreheaderBB && "There is always a loop preheader."); 2572 2573 using namespace PatternMatch; 2574 2575 // Step 1: Check if the loop backedge, condition is in desirable form. 2576 2577 ICmpInst::Predicate Pred; 2578 BasicBlock *TrueBB, *FalseBB; 2579 if (!match(LoopHeaderBB->getTerminator(), 2580 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2581 m_BasicBlock(FalseBB))) || 2582 !match(ValShiftedIsZero, 2583 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2584 !ICmpInst::isEquality(Pred)) { 2585 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2586 return false; 2587 } 2588 2589 // Step 2: Check if the comparison's operand is in desirable form. 2590 // FIXME: Val could be a one-input PHI node, which we should look past. 2591 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2592 m_Instruction(NBits)))) { 2593 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2594 return false; 2595 } 2596 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2597 : Intrinsic::ctlz; 2598 2599 // Step 3: Check if the shift amount is in desirable form. 2600 2601 if (match(NBits, m_c_Add(m_Instruction(IV), 2602 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2603 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2604 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2605 else if (match(NBits, 2606 m_Sub(m_Instruction(IV), 2607 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2608 NBits->hasNoSignedWrap()) 2609 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2610 else { 2611 IV = NBits; 2612 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2613 } 2614 2615 // Step 4: Check if the recurrence is in desirable form. 2616 auto *IVPN = dyn_cast<PHINode>(IV); 2617 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2618 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2619 return false; 2620 } 2621 2622 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2623 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2624 2625 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2626 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2627 return false; 2628 } 2629 2630 // Step 4: Check if the backedge's destinations are in desirable form. 2631 2632 assert(ICmpInst::isEquality(Pred) && 2633 "Should only get equality predicates here."); 2634 2635 // cmp-br is commutative, so canonicalize to a single variant. 2636 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2637 if (InvertedCond) { 2638 Pred = ICmpInst::getInversePredicate(Pred); 2639 std::swap(TrueBB, FalseBB); 2640 } 2641 2642 // We expect to exit loop when comparison yields true, 2643 // so when it yields false we should branch back to loop header. 2644 if (FalseBB != LoopHeaderBB) { 2645 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2646 return false; 2647 } 2648 2649 // The new, countable, loop will certainly only run a known number of 2650 // iterations, It won't be infinite. But the old loop might be infinite 2651 // under certain conditions. For logical shifts, the value will become zero 2652 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2653 // right-shift, iff the sign bit was set, the value will never become zero, 2654 // and the loop may never finish. 2655 if (ValShifted->getOpcode() == Instruction::AShr && 2656 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2657 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2658 return false; 2659 } 2660 2661 // Okay, idiom checks out. 2662 return true; 2663 } 2664 2665 /// Look for the following loop: 2666 /// \code 2667 /// entry: 2668 /// <...> 2669 /// %start = <...> 2670 /// %extraoffset = <...> 2671 /// <...> 2672 /// br label %for.cond 2673 /// 2674 /// loop: 2675 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2676 /// %nbits = add nsw i8 %iv, %extraoffset 2677 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2678 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2679 /// %iv.next = add i8 %iv, 1 2680 /// <...> 2681 /// br i1 %val.shifted.iszero, label %end, label %loop 2682 /// 2683 /// end: 2684 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2685 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2686 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2687 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2688 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2689 /// <...> 2690 /// \endcode 2691 /// 2692 /// And transform it into: 2693 /// \code 2694 /// entry: 2695 /// <...> 2696 /// %start = <...> 2697 /// %extraoffset = <...> 2698 /// <...> 2699 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2700 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2701 /// %extraoffset.neg = sub i8 0, %extraoffset 2702 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2703 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2704 /// %loop.tripcount = sub i8 %iv.final, %start 2705 /// br label %loop 2706 /// 2707 /// loop: 2708 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2709 /// %loop.iv.next = add i8 %loop.iv, 1 2710 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2711 /// %iv = add i8 %loop.iv, %start 2712 /// <...> 2713 /// br i1 %loop.ivcheck, label %end, label %loop 2714 /// 2715 /// end: 2716 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2717 /// <...> 2718 /// \endcode 2719 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2720 bool MadeChange = false; 2721 2722 Instruction *ValShiftedIsZero; 2723 Intrinsic::ID IntrID; 2724 Instruction *IV; 2725 Value *Start, *Val; 2726 const SCEV *ExtraOffsetExpr; 2727 bool InvertedCond; 2728 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2729 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2730 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2731 " shift-until-zero idiom detection failed.\n"); 2732 return MadeChange; 2733 } 2734 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2735 2736 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2737 // but is it profitable to transform? 2738 2739 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2740 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2741 assert(LoopPreheaderBB && "There is always a loop preheader."); 2742 2743 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2744 assert(SuccessorBB && "There is only a single successor."); 2745 2746 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2747 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2748 2749 Type *Ty = Val->getType(); 2750 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2751 2752 TargetTransformInfo::TargetCostKind CostKind = 2753 TargetTransformInfo::TCK_SizeAndLatency; 2754 2755 // The rewrite is considered to be unprofitable iff and only iff the 2756 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2757 // making the loop countable, even if nothing else changes. 2758 IntrinsicCostAttributes Attrs( 2759 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); 2760 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2761 if (Cost > TargetTransformInfo::TCC_Basic) { 2762 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2763 " Intrinsic is too costly, not beneficial\n"); 2764 return MadeChange; 2765 } 2766 2767 // Ok, transform appears worthwhile. 2768 MadeChange = true; 2769 2770 bool OffsetIsZero = false; 2771 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2772 OffsetIsZero = ExtraOffsetExprC->isZero(); 2773 2774 // Step 1: Compute the loop's final IV value / trip count. 2775 2776 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2777 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, 2778 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2779 Value *ValNumActiveBits = Builder.CreateSub( 2780 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2781 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2782 /*HasNSW=*/Bitwidth != 2); 2783 2784 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2785 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2786 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2787 2788 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2789 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2790 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2791 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2792 {ValNumActiveBitsOffset, Start}, 2793 /*FMFSource=*/nullptr, "iv.final"); 2794 2795 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2796 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2797 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2798 // FIXME: or when the offset was `add nuw` 2799 2800 // We know loop's backedge-taken count, but what's loop's trip count? 2801 Value *LoopTripCount = 2802 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2803 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2804 /*HasNSW=*/Bitwidth != 2); 2805 2806 // Step 2: Adjust the successor basic block to recieve the original 2807 // induction variable's final value instead of the orig. IV itself. 2808 2809 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2810 2811 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2812 2813 // The new canonical induction variable. 2814 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2815 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2816 2817 // The induction itself. 2818 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); 2819 auto *CIVNext = 2820 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2821 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2822 2823 // The loop trip count check. 2824 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2825 CurLoop->getName() + ".ivcheck"); 2826 auto *NewIVCheck = CIVCheck; 2827 if (InvertedCond) { 2828 NewIVCheck = Builder.CreateNot(CIVCheck); 2829 NewIVCheck->takeName(ValShiftedIsZero); 2830 } 2831 2832 // The original IV, but rebased to be an offset to the CIV. 2833 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2834 /*HasNSW=*/true); // FIXME: what about NUW? 2835 IVDePHId->takeName(IV); 2836 2837 // The loop terminator. 2838 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2839 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2840 LoopHeaderBB->getTerminator()->eraseFromParent(); 2841 2842 // Populate the IV PHI. 2843 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2844 CIV->addIncoming(CIVNext, LoopHeaderBB); 2845 2846 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2847 // loop. The loop would otherwise not be deleted even if it becomes empty. 2848 2849 SE->forgetLoop(CurLoop); 2850 2851 // Step 5: Try to cleanup the loop's body somewhat. 2852 IV->replaceAllUsesWith(IVDePHId); 2853 IV->eraseFromParent(); 2854 2855 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2856 ValShiftedIsZero->eraseFromParent(); 2857 2858 // Other passes will take care of actually deleting the loop if possible. 2859 2860 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2861 2862 ++NumShiftUntilZero; 2863 return MadeChange; 2864 } 2865