1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/LoopAccessAnalysis.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/MustExecute.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Attributes.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/GlobalValue.h"
72 #include "llvm/IR/GlobalVariable.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/User.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/Pass.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/Transforms/Utils/BuildLibCalls.h"
94 #include "llvm/Transforms/Utils/Local.h"
95 #include "llvm/Transforms/Utils/LoopUtils.h"
96 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
97 #include <algorithm>
98 #include <cassert>
99 #include <cstdint>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 
105 #define DEBUG_TYPE "loop-idiom"
106 
107 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
108 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
109 
110 static cl::opt<bool> UseLIRCodeSizeHeurs(
111     "use-lir-code-size-heurs",
112     cl::desc("Use loop idiom recognition code size heuristics when compiling"
113              "with -Os/-Oz"),
114     cl::init(true), cl::Hidden);
115 
116 namespace {
117 
118 class LoopIdiomRecognize {
119   Loop *CurLoop = nullptr;
120   AliasAnalysis *AA;
121   DominatorTree *DT;
122   LoopInfo *LI;
123   ScalarEvolution *SE;
124   TargetLibraryInfo *TLI;
125   const TargetTransformInfo *TTI;
126   const DataLayout *DL;
127   OptimizationRemarkEmitter &ORE;
128   bool ApplyCodeSizeHeuristics;
129   std::unique_ptr<MemorySSAUpdater> MSSAU;
130 
131 public:
132   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
133                               LoopInfo *LI, ScalarEvolution *SE,
134                               TargetLibraryInfo *TLI,
135                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
136                               const DataLayout *DL,
137                               OptimizationRemarkEmitter &ORE)
138       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
139     if (MSSA)
140       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
141   }
142 
143   bool runOnLoop(Loop *L);
144 
145 private:
146   using StoreList = SmallVector<StoreInst *, 8>;
147   using StoreListMap = MapVector<Value *, StoreList>;
148 
149   StoreListMap StoreRefsForMemset;
150   StoreListMap StoreRefsForMemsetPattern;
151   StoreList StoreRefsForMemcpy;
152   bool HasMemset;
153   bool HasMemsetPattern;
154   bool HasMemcpy;
155 
156   /// Return code for isLegalStore()
157   enum LegalStoreKind {
158     None = 0,
159     Memset,
160     MemsetPattern,
161     Memcpy,
162     UnorderedAtomicMemcpy,
163     DontUse // Dummy retval never to be used. Allows catching errors in retval
164             // handling.
165   };
166 
167   /// \name Countable Loop Idiom Handling
168   /// @{
169 
170   bool runOnCountableLoop();
171   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
172                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
173 
174   void collectStores(BasicBlock *BB);
175   LegalStoreKind isLegalStore(StoreInst *SI);
176   enum class ForMemset { No, Yes };
177   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
178                          ForMemset For);
179   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
180 
181   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
182                                MaybeAlign StoreAlignment, Value *StoredVal,
183                                Instruction *TheStore,
184                                SmallPtrSetImpl<Instruction *> &Stores,
185                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
186                                bool NegStride, bool IsLoopMemset = false);
187   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
188   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
189                                  bool IsLoopMemset = false);
190 
191   /// @}
192   /// \name Noncountable Loop Idiom Handling
193   /// @{
194 
195   bool runOnNoncountableLoop();
196 
197   bool recognizePopcount();
198   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
199                                PHINode *CntPhi, Value *Var);
200   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
201   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
202                                 Instruction *CntInst, PHINode *CntPhi,
203                                 Value *Var, Instruction *DefX,
204                                 const DebugLoc &DL, bool ZeroCheck,
205                                 bool IsCntPhiUsedOutsideLoop);
206 
207   /// @}
208 };
209 
210 class LoopIdiomRecognizeLegacyPass : public LoopPass {
211 public:
212   static char ID;
213 
214   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
215     initializeLoopIdiomRecognizeLegacyPassPass(
216         *PassRegistry::getPassRegistry());
217   }
218 
219   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
220     if (skipLoop(L))
221       return false;
222 
223     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
224     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
225     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
226     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
227     TargetLibraryInfo *TLI =
228         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
229             *L->getHeader()->getParent());
230     const TargetTransformInfo *TTI =
231         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
232             *L->getHeader()->getParent());
233     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
234     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
235     MemorySSA *MSSA = nullptr;
236     if (MSSAAnalysis)
237       MSSA = &MSSAAnalysis->getMSSA();
238 
239     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
240     // pass.  Function analyses need to be preserved across loop transformations
241     // but ORE cannot be preserved (see comment before the pass definition).
242     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
243 
244     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
245     return LIR.runOnLoop(L);
246   }
247 
248   /// This transformation requires natural loop information & requires that
249   /// loop preheaders be inserted into the CFG.
250   void getAnalysisUsage(AnalysisUsage &AU) const override {
251     AU.addRequired<TargetLibraryInfoWrapperPass>();
252     AU.addRequired<TargetTransformInfoWrapperPass>();
253     AU.addPreserved<MemorySSAWrapperPass>();
254     getLoopAnalysisUsage(AU);
255   }
256 };
257 
258 } // end anonymous namespace
259 
260 char LoopIdiomRecognizeLegacyPass::ID = 0;
261 
262 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
263                                               LoopStandardAnalysisResults &AR,
264                                               LPMUpdater &) {
265   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
266 
267   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
268   // pass.  Function analyses need to be preserved across loop transformations
269   // but ORE cannot be preserved (see comment before the pass definition).
270   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
271 
272   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
273                          AR.MSSA, DL, ORE);
274   if (!LIR.runOnLoop(&L))
275     return PreservedAnalyses::all();
276 
277   auto PA = getLoopPassPreservedAnalyses();
278   if (AR.MSSA)
279     PA.preserve<MemorySSAAnalysis>();
280   return PA;
281 }
282 
283 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
284                       "Recognize loop idioms", false, false)
285 INITIALIZE_PASS_DEPENDENCY(LoopPass)
286 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
287 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
288 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
289                     "Recognize loop idioms", false, false)
290 
291 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
292 
293 static void deleteDeadInstruction(Instruction *I) {
294   I->replaceAllUsesWith(UndefValue::get(I->getType()));
295   I->eraseFromParent();
296 }
297 
298 namespace {
299 class ExpandedValuesCleaner {
300   SCEVExpander &Expander;
301   TargetLibraryInfo *TLI;
302   SmallVector<Value *, 4> ExpandedValues;
303   bool Commit = false;
304 
305 public:
306   ExpandedValuesCleaner(SCEVExpander &Expander, TargetLibraryInfo *TLI)
307       : Expander(Expander), TLI(TLI) {}
308 
309   void add(Value *V) { ExpandedValues.push_back(V); }
310 
311   void commit() { Commit = true; }
312 
313   ~ExpandedValuesCleaner() {
314     if (!Commit) {
315       Expander.clear();
316       for (auto *V : ExpandedValues)
317         RecursivelyDeleteTriviallyDeadInstructions(V, TLI);
318     }
319   }
320 };
321 } // namespace
322 
323 //===----------------------------------------------------------------------===//
324 //
325 //          Implementation of LoopIdiomRecognize
326 //
327 //===----------------------------------------------------------------------===//
328 
329 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
330   CurLoop = L;
331   // If the loop could not be converted to canonical form, it must have an
332   // indirectbr in it, just give up.
333   if (!L->getLoopPreheader())
334     return false;
335 
336   // Disable loop idiom recognition if the function's name is a common idiom.
337   StringRef Name = L->getHeader()->getParent()->getName();
338   if (Name == "memset" || Name == "memcpy")
339     return false;
340 
341   // Determine if code size heuristics need to be applied.
342   ApplyCodeSizeHeuristics =
343       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
344 
345   HasMemset = TLI->has(LibFunc_memset);
346   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
347   HasMemcpy = TLI->has(LibFunc_memcpy);
348 
349   if (HasMemset || HasMemsetPattern || HasMemcpy)
350     if (SE->hasLoopInvariantBackedgeTakenCount(L))
351       return runOnCountableLoop();
352 
353   return runOnNoncountableLoop();
354 }
355 
356 bool LoopIdiomRecognize::runOnCountableLoop() {
357   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
358   assert(!isa<SCEVCouldNotCompute>(BECount) &&
359          "runOnCountableLoop() called on a loop without a predictable"
360          "backedge-taken count");
361 
362   // If this loop executes exactly one time, then it should be peeled, not
363   // optimized by this pass.
364   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
365     if (BECst->getAPInt() == 0)
366       return false;
367 
368   SmallVector<BasicBlock *, 8> ExitBlocks;
369   CurLoop->getUniqueExitBlocks(ExitBlocks);
370 
371   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
372                     << CurLoop->getHeader()->getParent()->getName()
373                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
374                     << "\n");
375 
376   // The following transforms hoist stores/memsets into the loop pre-header.
377   // Give up if the loop has instructions that may throw.
378   SimpleLoopSafetyInfo SafetyInfo;
379   SafetyInfo.computeLoopSafetyInfo(CurLoop);
380   if (SafetyInfo.anyBlockMayThrow())
381     return false;
382 
383   bool MadeChange = false;
384 
385   // Scan all the blocks in the loop that are not in subloops.
386   for (auto *BB : CurLoop->getBlocks()) {
387     // Ignore blocks in subloops.
388     if (LI->getLoopFor(BB) != CurLoop)
389       continue;
390 
391     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
392   }
393   return MadeChange;
394 }
395 
396 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
397   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
398   return ConstStride->getAPInt();
399 }
400 
401 /// getMemSetPatternValue - If a strided store of the specified value is safe to
402 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
403 /// be passed in.  Otherwise, return null.
404 ///
405 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
406 /// just replicate their input array and then pass on to memset_pattern16.
407 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
408   // FIXME: This could check for UndefValue because it can be merged into any
409   // other valid pattern.
410 
411   // If the value isn't a constant, we can't promote it to being in a constant
412   // array.  We could theoretically do a store to an alloca or something, but
413   // that doesn't seem worthwhile.
414   Constant *C = dyn_cast<Constant>(V);
415   if (!C)
416     return nullptr;
417 
418   // Only handle simple values that are a power of two bytes in size.
419   uint64_t Size = DL->getTypeSizeInBits(V->getType());
420   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
421     return nullptr;
422 
423   // Don't care enough about darwin/ppc to implement this.
424   if (DL->isBigEndian())
425     return nullptr;
426 
427   // Convert to size in bytes.
428   Size /= 8;
429 
430   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
431   // if the top and bottom are the same (e.g. for vectors and large integers).
432   if (Size > 16)
433     return nullptr;
434 
435   // If the constant is exactly 16 bytes, just use it.
436   if (Size == 16)
437     return C;
438 
439   // Otherwise, we'll use an array of the constants.
440   unsigned ArraySize = 16 / Size;
441   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
442   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
443 }
444 
445 LoopIdiomRecognize::LegalStoreKind
446 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
447   // Don't touch volatile stores.
448   if (SI->isVolatile())
449     return LegalStoreKind::None;
450   // We only want simple or unordered-atomic stores.
451   if (!SI->isUnordered())
452     return LegalStoreKind::None;
453 
454   // Don't convert stores of non-integral pointer types to memsets (which stores
455   // integers).
456   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
457     return LegalStoreKind::None;
458 
459   // Avoid merging nontemporal stores.
460   if (SI->getMetadata(LLVMContext::MD_nontemporal))
461     return LegalStoreKind::None;
462 
463   Value *StoredVal = SI->getValueOperand();
464   Value *StorePtr = SI->getPointerOperand();
465 
466   // Reject stores that are so large that they overflow an unsigned.
467   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
468   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
469     return LegalStoreKind::None;
470 
471   // See if the pointer expression is an AddRec like {base,+,1} on the current
472   // loop, which indicates a strided store.  If we have something else, it's a
473   // random store we can't handle.
474   const SCEVAddRecExpr *StoreEv =
475       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
476   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
477     return LegalStoreKind::None;
478 
479   // Check to see if we have a constant stride.
480   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
481     return LegalStoreKind::None;
482 
483   // See if the store can be turned into a memset.
484 
485   // If the stored value is a byte-wise value (like i32 -1), then it may be
486   // turned into a memset of i8 -1, assuming that all the consecutive bytes
487   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
488   // but it can be turned into memset_pattern if the target supports it.
489   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
490   Constant *PatternValue = nullptr;
491 
492   // Note: memset and memset_pattern on unordered-atomic is yet not supported
493   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
494 
495   // If we're allowed to form a memset, and the stored value would be
496   // acceptable for memset, use it.
497   if (!UnorderedAtomic && HasMemset && SplatValue &&
498       // Verify that the stored value is loop invariant.  If not, we can't
499       // promote the memset.
500       CurLoop->isLoopInvariant(SplatValue)) {
501     // It looks like we can use SplatValue.
502     return LegalStoreKind::Memset;
503   } else if (!UnorderedAtomic && HasMemsetPattern &&
504              // Don't create memset_pattern16s with address spaces.
505              StorePtr->getType()->getPointerAddressSpace() == 0 &&
506              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
507     // It looks like we can use PatternValue!
508     return LegalStoreKind::MemsetPattern;
509   }
510 
511   // Otherwise, see if the store can be turned into a memcpy.
512   if (HasMemcpy) {
513     // Check to see if the stride matches the size of the store.  If so, then we
514     // know that every byte is touched in the loop.
515     APInt Stride = getStoreStride(StoreEv);
516     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
517     if (StoreSize != Stride && StoreSize != -Stride)
518       return LegalStoreKind::None;
519 
520     // The store must be feeding a non-volatile load.
521     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
522 
523     // Only allow non-volatile loads
524     if (!LI || LI->isVolatile())
525       return LegalStoreKind::None;
526     // Only allow simple or unordered-atomic loads
527     if (!LI->isUnordered())
528       return LegalStoreKind::None;
529 
530     // See if the pointer expression is an AddRec like {base,+,1} on the current
531     // loop, which indicates a strided load.  If we have something else, it's a
532     // random load we can't handle.
533     const SCEVAddRecExpr *LoadEv =
534         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
535     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
536       return LegalStoreKind::None;
537 
538     // The store and load must share the same stride.
539     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
540       return LegalStoreKind::None;
541 
542     // Success.  This store can be converted into a memcpy.
543     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
544     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
545                            : LegalStoreKind::Memcpy;
546   }
547   // This store can't be transformed into a memset/memcpy.
548   return LegalStoreKind::None;
549 }
550 
551 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
552   StoreRefsForMemset.clear();
553   StoreRefsForMemsetPattern.clear();
554   StoreRefsForMemcpy.clear();
555   for (Instruction &I : *BB) {
556     StoreInst *SI = dyn_cast<StoreInst>(&I);
557     if (!SI)
558       continue;
559 
560     // Make sure this is a strided store with a constant stride.
561     switch (isLegalStore(SI)) {
562     case LegalStoreKind::None:
563       // Nothing to do
564       break;
565     case LegalStoreKind::Memset: {
566       // Find the base pointer.
567       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
568       StoreRefsForMemset[Ptr].push_back(SI);
569     } break;
570     case LegalStoreKind::MemsetPattern: {
571       // Find the base pointer.
572       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
573       StoreRefsForMemsetPattern[Ptr].push_back(SI);
574     } break;
575     case LegalStoreKind::Memcpy:
576     case LegalStoreKind::UnorderedAtomicMemcpy:
577       StoreRefsForMemcpy.push_back(SI);
578       break;
579     default:
580       assert(false && "unhandled return value");
581       break;
582     }
583   }
584 }
585 
586 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
587 /// with the specified backedge count.  This block is known to be in the current
588 /// loop and not in any subloops.
589 bool LoopIdiomRecognize::runOnLoopBlock(
590     BasicBlock *BB, const SCEV *BECount,
591     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
592   // We can only promote stores in this block if they are unconditionally
593   // executed in the loop.  For a block to be unconditionally executed, it has
594   // to dominate all the exit blocks of the loop.  Verify this now.
595   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
596     if (!DT->dominates(BB, ExitBlocks[i]))
597       return false;
598 
599   bool MadeChange = false;
600   // Look for store instructions, which may be optimized to memset/memcpy.
601   collectStores(BB);
602 
603   // Look for a single store or sets of stores with a common base, which can be
604   // optimized into a memset (memset_pattern).  The latter most commonly happens
605   // with structs and handunrolled loops.
606   for (auto &SL : StoreRefsForMemset)
607     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
608 
609   for (auto &SL : StoreRefsForMemsetPattern)
610     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
611 
612   // Optimize the store into a memcpy, if it feeds an similarly strided load.
613   for (auto &SI : StoreRefsForMemcpy)
614     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
615 
616   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
617     Instruction *Inst = &*I++;
618     // Look for memset instructions, which may be optimized to a larger memset.
619     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
620       WeakTrackingVH InstPtr(&*I);
621       if (!processLoopMemSet(MSI, BECount))
622         continue;
623       MadeChange = true;
624 
625       // If processing the memset invalidated our iterator, start over from the
626       // top of the block.
627       if (!InstPtr)
628         I = BB->begin();
629       continue;
630     }
631   }
632 
633   return MadeChange;
634 }
635 
636 /// See if this store(s) can be promoted to a memset.
637 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
638                                            const SCEV *BECount, ForMemset For) {
639   // Try to find consecutive stores that can be transformed into memsets.
640   SetVector<StoreInst *> Heads, Tails;
641   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
642 
643   // Do a quadratic search on all of the given stores and find
644   // all of the pairs of stores that follow each other.
645   SmallVector<unsigned, 16> IndexQueue;
646   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
647     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
648 
649     Value *FirstStoredVal = SL[i]->getValueOperand();
650     Value *FirstStorePtr = SL[i]->getPointerOperand();
651     const SCEVAddRecExpr *FirstStoreEv =
652         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
653     APInt FirstStride = getStoreStride(FirstStoreEv);
654     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
655 
656     // See if we can optimize just this store in isolation.
657     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
658       Heads.insert(SL[i]);
659       continue;
660     }
661 
662     Value *FirstSplatValue = nullptr;
663     Constant *FirstPatternValue = nullptr;
664 
665     if (For == ForMemset::Yes)
666       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
667     else
668       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
669 
670     assert((FirstSplatValue || FirstPatternValue) &&
671            "Expected either splat value or pattern value.");
672 
673     IndexQueue.clear();
674     // If a store has multiple consecutive store candidates, search Stores
675     // array according to the sequence: from i+1 to e, then from i-1 to 0.
676     // This is because usually pairing with immediate succeeding or preceding
677     // candidate create the best chance to find memset opportunity.
678     unsigned j = 0;
679     for (j = i + 1; j < e; ++j)
680       IndexQueue.push_back(j);
681     for (j = i; j > 0; --j)
682       IndexQueue.push_back(j - 1);
683 
684     for (auto &k : IndexQueue) {
685       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
686       Value *SecondStorePtr = SL[k]->getPointerOperand();
687       const SCEVAddRecExpr *SecondStoreEv =
688           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
689       APInt SecondStride = getStoreStride(SecondStoreEv);
690 
691       if (FirstStride != SecondStride)
692         continue;
693 
694       Value *SecondStoredVal = SL[k]->getValueOperand();
695       Value *SecondSplatValue = nullptr;
696       Constant *SecondPatternValue = nullptr;
697 
698       if (For == ForMemset::Yes)
699         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
700       else
701         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
702 
703       assert((SecondSplatValue || SecondPatternValue) &&
704              "Expected either splat value or pattern value.");
705 
706       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
707         if (For == ForMemset::Yes) {
708           if (isa<UndefValue>(FirstSplatValue))
709             FirstSplatValue = SecondSplatValue;
710           if (FirstSplatValue != SecondSplatValue)
711             continue;
712         } else {
713           if (isa<UndefValue>(FirstPatternValue))
714             FirstPatternValue = SecondPatternValue;
715           if (FirstPatternValue != SecondPatternValue)
716             continue;
717         }
718         Tails.insert(SL[k]);
719         Heads.insert(SL[i]);
720         ConsecutiveChain[SL[i]] = SL[k];
721         break;
722       }
723     }
724   }
725 
726   // We may run into multiple chains that merge into a single chain. We mark the
727   // stores that we transformed so that we don't visit the same store twice.
728   SmallPtrSet<Value *, 16> TransformedStores;
729   bool Changed = false;
730 
731   // For stores that start but don't end a link in the chain:
732   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
733        it != e; ++it) {
734     if (Tails.count(*it))
735       continue;
736 
737     // We found a store instr that starts a chain. Now follow the chain and try
738     // to transform it.
739     SmallPtrSet<Instruction *, 8> AdjacentStores;
740     StoreInst *I = *it;
741 
742     StoreInst *HeadStore = I;
743     unsigned StoreSize = 0;
744 
745     // Collect the chain into a list.
746     while (Tails.count(I) || Heads.count(I)) {
747       if (TransformedStores.count(I))
748         break;
749       AdjacentStores.insert(I);
750 
751       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
752       // Move to the next value in the chain.
753       I = ConsecutiveChain[I];
754     }
755 
756     Value *StoredVal = HeadStore->getValueOperand();
757     Value *StorePtr = HeadStore->getPointerOperand();
758     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
759     APInt Stride = getStoreStride(StoreEv);
760 
761     // Check to see if the stride matches the size of the stores.  If so, then
762     // we know that every byte is touched in the loop.
763     if (StoreSize != Stride && StoreSize != -Stride)
764       continue;
765 
766     bool NegStride = StoreSize == -Stride;
767 
768     if (processLoopStridedStore(StorePtr, StoreSize,
769                                 MaybeAlign(HeadStore->getAlignment()),
770                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
771                                 BECount, NegStride)) {
772       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
773       Changed = true;
774     }
775   }
776 
777   return Changed;
778 }
779 
780 /// processLoopMemSet - See if this memset can be promoted to a large memset.
781 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
782                                            const SCEV *BECount) {
783   // We can only handle non-volatile memsets with a constant size.
784   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
785     return false;
786 
787   // If we're not allowed to hack on memset, we fail.
788   if (!HasMemset)
789     return false;
790 
791   Value *Pointer = MSI->getDest();
792 
793   // See if the pointer expression is an AddRec like {base,+,1} on the current
794   // loop, which indicates a strided store.  If we have something else, it's a
795   // random store we can't handle.
796   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
797   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
798     return false;
799 
800   // Reject memsets that are so large that they overflow an unsigned.
801   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
802   if ((SizeInBytes >> 32) != 0)
803     return false;
804 
805   // Check to see if the stride matches the size of the memset.  If so, then we
806   // know that every byte is touched in the loop.
807   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
808   if (!ConstStride)
809     return false;
810 
811   APInt Stride = ConstStride->getAPInt();
812   if (SizeInBytes != Stride && SizeInBytes != -Stride)
813     return false;
814 
815   // Verify that the memset value is loop invariant.  If not, we can't promote
816   // the memset.
817   Value *SplatValue = MSI->getValue();
818   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
819     return false;
820 
821   SmallPtrSet<Instruction *, 1> MSIs;
822   MSIs.insert(MSI);
823   bool NegStride = SizeInBytes == -Stride;
824   return processLoopStridedStore(
825       Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
826       SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
827 }
828 
829 /// mayLoopAccessLocation - Return true if the specified loop might access the
830 /// specified pointer location, which is a loop-strided access.  The 'Access'
831 /// argument specifies what the verboten forms of access are (read or write).
832 static bool
833 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
834                       const SCEV *BECount, unsigned StoreSize,
835                       AliasAnalysis &AA,
836                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
837   // Get the location that may be stored across the loop.  Since the access is
838   // strided positively through memory, we say that the modified location starts
839   // at the pointer and has infinite size.
840   LocationSize AccessSize = LocationSize::unknown();
841 
842   // If the loop iterates a fixed number of times, we can refine the access size
843   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
844   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
845     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
846                                        StoreSize);
847 
848   // TODO: For this to be really effective, we have to dive into the pointer
849   // operand in the store.  Store to &A[i] of 100 will always return may alias
850   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
851   // which will then no-alias a store to &A[100].
852   MemoryLocation StoreLoc(Ptr, AccessSize);
853 
854   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
855        ++BI)
856     for (Instruction &I : **BI)
857       if (IgnoredStores.count(&I) == 0 &&
858           isModOrRefSet(
859               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
860         return true;
861 
862   return false;
863 }
864 
865 // If we have a negative stride, Start refers to the end of the memory location
866 // we're trying to memset.  Therefore, we need to recompute the base pointer,
867 // which is just Start - BECount*Size.
868 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
869                                         Type *IntPtr, unsigned StoreSize,
870                                         ScalarEvolution *SE) {
871   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
872   if (StoreSize != 1)
873     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
874                            SCEV::FlagNUW);
875   return SE->getMinusSCEV(Start, Index);
876 }
877 
878 /// Compute the number of bytes as a SCEV from the backedge taken count.
879 ///
880 /// This also maps the SCEV into the provided type and tries to handle the
881 /// computation in a way that will fold cleanly.
882 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
883                                unsigned StoreSize, Loop *CurLoop,
884                                const DataLayout *DL, ScalarEvolution *SE) {
885   const SCEV *NumBytesS;
886   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
887   // pointer size if it isn't already.
888   //
889   // If we're going to need to zero extend the BE count, check if we can add
890   // one to it prior to zero extending without overflow. Provided this is safe,
891   // it allows better simplification of the +1.
892   if (DL->getTypeSizeInBits(BECount->getType()) <
893           DL->getTypeSizeInBits(IntPtr) &&
894       SE->isLoopEntryGuardedByCond(
895           CurLoop, ICmpInst::ICMP_NE, BECount,
896           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
897     NumBytesS = SE->getZeroExtendExpr(
898         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
899         IntPtr);
900   } else {
901     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
902                                SE->getOne(IntPtr), SCEV::FlagNUW);
903   }
904 
905   // And scale it based on the store size.
906   if (StoreSize != 1) {
907     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
908                                SCEV::FlagNUW);
909   }
910   return NumBytesS;
911 }
912 
913 /// processLoopStridedStore - We see a strided store of some value.  If we can
914 /// transform this into a memset or memset_pattern in the loop preheader, do so.
915 bool LoopIdiomRecognize::processLoopStridedStore(
916     Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
917     Value *StoredVal, Instruction *TheStore,
918     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
919     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
920   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
921   Constant *PatternValue = nullptr;
922 
923   if (!SplatValue)
924     PatternValue = getMemSetPatternValue(StoredVal, DL);
925 
926   assert((SplatValue || PatternValue) &&
927          "Expected either splat value or pattern value.");
928 
929   // The trip count of the loop and the base pointer of the addrec SCEV is
930   // guaranteed to be loop invariant, which means that it should dominate the
931   // header.  This allows us to insert code for it in the preheader.
932   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
933   BasicBlock *Preheader = CurLoop->getLoopPreheader();
934   IRBuilder<> Builder(Preheader->getTerminator());
935   SCEVExpander Expander(*SE, *DL, "loop-idiom");
936   ExpandedValuesCleaner EVC(Expander, TLI);
937 
938   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
939   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
940 
941   bool Changed = false;
942   const SCEV *Start = Ev->getStart();
943   // Handle negative strided loops.
944   if (NegStride)
945     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
946 
947   // TODO: ideally we should still be able to generate memset if SCEV expander
948   // is taught to generate the dependencies at the latest point.
949   if (!isSafeToExpand(Start, *SE))
950     return Changed;
951 
952   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
953   // this into a memset in the loop preheader now if we want.  However, this
954   // would be unsafe to do if there is anything else in the loop that may read
955   // or write to the aliased location.  Check for any overlap by generating the
956   // base pointer and checking the region.
957   Value *BasePtr =
958       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
959   EVC.add(BasePtr);
960 
961   // From here on out, conservatively report to the pass manager that we've
962   // changed the IR, even if we later clean up these added instructions. There
963   // may be structural differences e.g. in the order of use lists not accounted
964   // for in just a textual dump of the IR. This is written as a variable, even
965   // though statically all the places this dominates could be replaced with
966   // 'true', with the hope that anyone trying to be clever / "more precise" with
967   // the return value will read this comment, and leave them alone.
968   Changed = true;
969 
970   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
971                             StoreSize, *AA, Stores))
972     return Changed;
973 
974   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
975     return Changed;
976 
977   // Okay, everything looks good, insert the memset.
978 
979   const SCEV *NumBytesS =
980       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
981 
982   // TODO: ideally we should still be able to generate memset if SCEV expander
983   // is taught to generate the dependencies at the latest point.
984   if (!isSafeToExpand(NumBytesS, *SE))
985     return Changed;
986 
987   Value *NumBytes =
988       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
989 
990   CallInst *NewCall;
991   if (SplatValue) {
992     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
993                                    MaybeAlign(StoreAlignment));
994   } else {
995     // Everything is emitted in default address space
996     Type *Int8PtrTy = DestInt8PtrTy;
997 
998     Module *M = TheStore->getModule();
999     StringRef FuncName = "memset_pattern16";
1000     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1001                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1002     inferLibFuncAttributes(M, FuncName, *TLI);
1003 
1004     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1005     // an constant array of 16-bytes.  Plop the value into a mergable global.
1006     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1007                                             GlobalValue::PrivateLinkage,
1008                                             PatternValue, ".memset_pattern");
1009     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1010     GV->setAlignment(Align(16));
1011     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1012     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1013   }
1014   NewCall->setDebugLoc(TheStore->getDebugLoc());
1015 
1016   if (MSSAU) {
1017     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1018         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1019     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1020   }
1021 
1022   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1023                     << "    from store to: " << *Ev << " at: " << *TheStore
1024                     << "\n");
1025 
1026   ORE.emit([&]() {
1027     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
1028                               NewCall->getDebugLoc(), Preheader)
1029            << "Transformed loop-strided store into a call to "
1030            << ore::NV("NewFunction", NewCall->getCalledFunction())
1031            << "() function";
1032   });
1033 
1034   // Okay, the memset has been formed.  Zap the original store and anything that
1035   // feeds into it.
1036   for (auto *I : Stores) {
1037     if (MSSAU)
1038       MSSAU->removeMemoryAccess(I, true);
1039     deleteDeadInstruction(I);
1040   }
1041   if (MSSAU && VerifyMemorySSA)
1042     MSSAU->getMemorySSA()->verifyMemorySSA();
1043   ++NumMemSet;
1044   EVC.commit();
1045   return true;
1046 }
1047 
1048 /// If the stored value is a strided load in the same loop with the same stride
1049 /// this may be transformable into a memcpy.  This kicks in for stuff like
1050 /// for (i) A[i] = B[i];
1051 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1052                                                     const SCEV *BECount) {
1053   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1054 
1055   Value *StorePtr = SI->getPointerOperand();
1056   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1057   APInt Stride = getStoreStride(StoreEv);
1058   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1059   bool NegStride = StoreSize == -Stride;
1060 
1061   // The store must be feeding a non-volatile load.
1062   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1063   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1064 
1065   // See if the pointer expression is an AddRec like {base,+,1} on the current
1066   // loop, which indicates a strided load.  If we have something else, it's a
1067   // random load we can't handle.
1068   const SCEVAddRecExpr *LoadEv =
1069       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1070 
1071   // The trip count of the loop and the base pointer of the addrec SCEV is
1072   // guaranteed to be loop invariant, which means that it should dominate the
1073   // header.  This allows us to insert code for it in the preheader.
1074   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1075   IRBuilder<> Builder(Preheader->getTerminator());
1076   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1077 
1078   ExpandedValuesCleaner EVC(Expander, TLI);
1079 
1080   bool Changed = false;
1081   const SCEV *StrStart = StoreEv->getStart();
1082   unsigned StrAS = SI->getPointerAddressSpace();
1083   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1084 
1085   // Handle negative strided loops.
1086   if (NegStride)
1087     StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1088 
1089   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1090   // this into a memcpy in the loop preheader now if we want.  However, this
1091   // would be unsafe to do if there is anything else in the loop that may read
1092   // or write the memory region we're storing to.  This includes the load that
1093   // feeds the stores.  Check for an alias by generating the base address and
1094   // checking everything.
1095   Value *StoreBasePtr = Expander.expandCodeFor(
1096       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1097   EVC.add(StoreBasePtr);
1098 
1099   // From here on out, conservatively report to the pass manager that we've
1100   // changed the IR, even if we later clean up these added instructions. There
1101   // may be structural differences e.g. in the order of use lists not accounted
1102   // for in just a textual dump of the IR. This is written as a variable, even
1103   // though statically all the places this dominates could be replaced with
1104   // 'true', with the hope that anyone trying to be clever / "more precise" with
1105   // the return value will read this comment, and leave them alone.
1106   Changed = true;
1107 
1108   SmallPtrSet<Instruction *, 1> Stores;
1109   Stores.insert(SI);
1110   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1111                             StoreSize, *AA, Stores))
1112     return Changed;
1113 
1114   const SCEV *LdStart = LoadEv->getStart();
1115   unsigned LdAS = LI->getPointerAddressSpace();
1116 
1117   // Handle negative strided loops.
1118   if (NegStride)
1119     LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1120 
1121   // For a memcpy, we have to make sure that the input array is not being
1122   // mutated by the loop.
1123   Value *LoadBasePtr = Expander.expandCodeFor(
1124       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1125   EVC.add(LoadBasePtr);
1126 
1127   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1128                             StoreSize, *AA, Stores))
1129     return Changed;
1130 
1131   if (avoidLIRForMultiBlockLoop())
1132     return Changed;
1133 
1134   // Okay, everything is safe, we can transform this!
1135 
1136   const SCEV *NumBytesS =
1137       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1138 
1139   Value *NumBytes =
1140       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1141   EVC.add(NumBytes);
1142 
1143   CallInst *NewCall = nullptr;
1144   // Check whether to generate an unordered atomic memcpy:
1145   //  If the load or store are atomic, then they must necessarily be unordered
1146   //  by previous checks.
1147   if (!SI->isAtomic() && !LI->isAtomic())
1148     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1149                                    LI->getAlign(), NumBytes);
1150   else {
1151     // We cannot allow unaligned ops for unordered load/store, so reject
1152     // anything where the alignment isn't at least the element size.
1153     const Align StoreAlign = SI->getAlign();
1154     const Align LoadAlign = LI->getAlign();
1155     if (StoreAlign < StoreSize || LoadAlign < StoreSize)
1156       return Changed;
1157 
1158     // If the element.atomic memcpy is not lowered into explicit
1159     // loads/stores later, then it will be lowered into an element-size
1160     // specific lib call. If the lib call doesn't exist for our store size, then
1161     // we shouldn't generate the memcpy.
1162     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1163       return Changed;
1164 
1165     // Create the call.
1166     // Note that unordered atomic loads/stores are *required* by the spec to
1167     // have an alignment but non-atomic loads/stores may not.
1168     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1169         StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1170         StoreSize);
1171   }
1172   NewCall->setDebugLoc(SI->getDebugLoc());
1173 
1174   if (MSSAU) {
1175     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1176         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1177     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1178   }
1179 
1180   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1181                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1182                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1183                     << "\n");
1184 
1185   ORE.emit([&]() {
1186     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1187                               NewCall->getDebugLoc(), Preheader)
1188            << "Formed a call to "
1189            << ore::NV("NewFunction", NewCall->getCalledFunction())
1190            << "() function";
1191   });
1192 
1193   // Okay, the memcpy has been formed.  Zap the original store and anything that
1194   // feeds into it.
1195   if (MSSAU)
1196     MSSAU->removeMemoryAccess(SI, true);
1197   deleteDeadInstruction(SI);
1198   if (MSSAU && VerifyMemorySSA)
1199     MSSAU->getMemorySSA()->verifyMemorySSA();
1200   ++NumMemCpy;
1201   EVC.commit();
1202   return true;
1203 }
1204 
1205 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1206 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1207 //
1208 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1209                                                    bool IsLoopMemset) {
1210   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1211     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1212       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1213                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1214                         << " avoided: multi-block top-level loop\n");
1215       return true;
1216     }
1217   }
1218 
1219   return false;
1220 }
1221 
1222 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1223   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1224                     << CurLoop->getHeader()->getParent()->getName()
1225                     << "] Noncountable Loop %"
1226                     << CurLoop->getHeader()->getName() << "\n");
1227 
1228   return recognizePopcount() || recognizeAndInsertFFS();
1229 }
1230 
1231 /// Check if the given conditional branch is based on the comparison between
1232 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1233 /// true), the control yields to the loop entry. If the branch matches the
1234 /// behavior, the variable involved in the comparison is returned. This function
1235 /// will be called to see if the precondition and postcondition of the loop are
1236 /// in desirable form.
1237 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1238                              bool JmpOnZero = false) {
1239   if (!BI || !BI->isConditional())
1240     return nullptr;
1241 
1242   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1243   if (!Cond)
1244     return nullptr;
1245 
1246   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1247   if (!CmpZero || !CmpZero->isZero())
1248     return nullptr;
1249 
1250   BasicBlock *TrueSucc = BI->getSuccessor(0);
1251   BasicBlock *FalseSucc = BI->getSuccessor(1);
1252   if (JmpOnZero)
1253     std::swap(TrueSucc, FalseSucc);
1254 
1255   ICmpInst::Predicate Pred = Cond->getPredicate();
1256   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1257       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1258     return Cond->getOperand(0);
1259 
1260   return nullptr;
1261 }
1262 
1263 // Check if the recurrence variable `VarX` is in the right form to create
1264 // the idiom. Returns the value coerced to a PHINode if so.
1265 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1266                                  BasicBlock *LoopEntry) {
1267   auto *PhiX = dyn_cast<PHINode>(VarX);
1268   if (PhiX && PhiX->getParent() == LoopEntry &&
1269       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1270     return PhiX;
1271   return nullptr;
1272 }
1273 
1274 /// Return true iff the idiom is detected in the loop.
1275 ///
1276 /// Additionally:
1277 /// 1) \p CntInst is set to the instruction counting the population bit.
1278 /// 2) \p CntPhi is set to the corresponding phi node.
1279 /// 3) \p Var is set to the value whose population bits are being counted.
1280 ///
1281 /// The core idiom we are trying to detect is:
1282 /// \code
1283 ///    if (x0 != 0)
1284 ///      goto loop-exit // the precondition of the loop
1285 ///    cnt0 = init-val;
1286 ///    do {
1287 ///       x1 = phi (x0, x2);
1288 ///       cnt1 = phi(cnt0, cnt2);
1289 ///
1290 ///       cnt2 = cnt1 + 1;
1291 ///        ...
1292 ///       x2 = x1 & (x1 - 1);
1293 ///        ...
1294 ///    } while(x != 0);
1295 ///
1296 /// loop-exit:
1297 /// \endcode
1298 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1299                                 Instruction *&CntInst, PHINode *&CntPhi,
1300                                 Value *&Var) {
1301   // step 1: Check to see if the look-back branch match this pattern:
1302   //    "if (a!=0) goto loop-entry".
1303   BasicBlock *LoopEntry;
1304   Instruction *DefX2, *CountInst;
1305   Value *VarX1, *VarX0;
1306   PHINode *PhiX, *CountPhi;
1307 
1308   DefX2 = CountInst = nullptr;
1309   VarX1 = VarX0 = nullptr;
1310   PhiX = CountPhi = nullptr;
1311   LoopEntry = *(CurLoop->block_begin());
1312 
1313   // step 1: Check if the loop-back branch is in desirable form.
1314   {
1315     if (Value *T = matchCondition(
1316             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1317       DefX2 = dyn_cast<Instruction>(T);
1318     else
1319       return false;
1320   }
1321 
1322   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1323   {
1324     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1325       return false;
1326 
1327     BinaryOperator *SubOneOp;
1328 
1329     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1330       VarX1 = DefX2->getOperand(1);
1331     else {
1332       VarX1 = DefX2->getOperand(0);
1333       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1334     }
1335     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1336       return false;
1337 
1338     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1339     if (!Dec ||
1340         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1341           (SubOneOp->getOpcode() == Instruction::Add &&
1342            Dec->isMinusOne()))) {
1343       return false;
1344     }
1345   }
1346 
1347   // step 3: Check the recurrence of variable X
1348   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1349   if (!PhiX)
1350     return false;
1351 
1352   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1353   {
1354     CountInst = nullptr;
1355     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1356                               IterE = LoopEntry->end();
1357          Iter != IterE; Iter++) {
1358       Instruction *Inst = &*Iter;
1359       if (Inst->getOpcode() != Instruction::Add)
1360         continue;
1361 
1362       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1363       if (!Inc || !Inc->isOne())
1364         continue;
1365 
1366       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1367       if (!Phi)
1368         continue;
1369 
1370       // Check if the result of the instruction is live of the loop.
1371       bool LiveOutLoop = false;
1372       for (User *U : Inst->users()) {
1373         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1374           LiveOutLoop = true;
1375           break;
1376         }
1377       }
1378 
1379       if (LiveOutLoop) {
1380         CountInst = Inst;
1381         CountPhi = Phi;
1382         break;
1383       }
1384     }
1385 
1386     if (!CountInst)
1387       return false;
1388   }
1389 
1390   // step 5: check if the precondition is in this form:
1391   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1392   {
1393     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1394     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1395     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1396       return false;
1397 
1398     CntInst = CountInst;
1399     CntPhi = CountPhi;
1400     Var = T;
1401   }
1402 
1403   return true;
1404 }
1405 
1406 /// Return true if the idiom is detected in the loop.
1407 ///
1408 /// Additionally:
1409 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1410 ///       or nullptr if there is no such.
1411 /// 2) \p CntPhi is set to the corresponding phi node
1412 ///       or nullptr if there is no such.
1413 /// 3) \p Var is set to the value whose CTLZ could be used.
1414 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1415 ///
1416 /// The core idiom we are trying to detect is:
1417 /// \code
1418 ///    if (x0 == 0)
1419 ///      goto loop-exit // the precondition of the loop
1420 ///    cnt0 = init-val;
1421 ///    do {
1422 ///       x = phi (x0, x.next);   //PhiX
1423 ///       cnt = phi(cnt0, cnt.next);
1424 ///
1425 ///       cnt.next = cnt + 1;
1426 ///        ...
1427 ///       x.next = x >> 1;   // DefX
1428 ///        ...
1429 ///    } while(x.next != 0);
1430 ///
1431 /// loop-exit:
1432 /// \endcode
1433 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1434                                       Intrinsic::ID &IntrinID, Value *&InitX,
1435                                       Instruction *&CntInst, PHINode *&CntPhi,
1436                                       Instruction *&DefX) {
1437   BasicBlock *LoopEntry;
1438   Value *VarX = nullptr;
1439 
1440   DefX = nullptr;
1441   CntInst = nullptr;
1442   CntPhi = nullptr;
1443   LoopEntry = *(CurLoop->block_begin());
1444 
1445   // step 1: Check if the loop-back branch is in desirable form.
1446   if (Value *T = matchCondition(
1447           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1448     DefX = dyn_cast<Instruction>(T);
1449   else
1450     return false;
1451 
1452   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1453   if (!DefX || !DefX->isShift())
1454     return false;
1455   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1456                                                      Intrinsic::ctlz;
1457   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1458   if (!Shft || !Shft->isOne())
1459     return false;
1460   VarX = DefX->getOperand(0);
1461 
1462   // step 3: Check the recurrence of variable X
1463   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1464   if (!PhiX)
1465     return false;
1466 
1467   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1468 
1469   // Make sure the initial value can't be negative otherwise the ashr in the
1470   // loop might never reach zero which would make the loop infinite.
1471   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1472     return false;
1473 
1474   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1475   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1476   //       then all uses of "cnt.next" could be optimized to the trip count
1477   //       plus "cnt0". Currently it is not optimized.
1478   //       This step could be used to detect POPCNT instruction:
1479   //       cnt.next = cnt + (x.next & 1)
1480   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1481                             IterE = LoopEntry->end();
1482        Iter != IterE; Iter++) {
1483     Instruction *Inst = &*Iter;
1484     if (Inst->getOpcode() != Instruction::Add)
1485       continue;
1486 
1487     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1488     if (!Inc || !Inc->isOne())
1489       continue;
1490 
1491     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1492     if (!Phi)
1493       continue;
1494 
1495     CntInst = Inst;
1496     CntPhi = Phi;
1497     break;
1498   }
1499   if (!CntInst)
1500     return false;
1501 
1502   return true;
1503 }
1504 
1505 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1506 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1507 /// trip count returns true; otherwise, returns false.
1508 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1509   // Give up if the loop has multiple blocks or multiple backedges.
1510   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1511     return false;
1512 
1513   Intrinsic::ID IntrinID;
1514   Value *InitX;
1515   Instruction *DefX = nullptr;
1516   PHINode *CntPhi = nullptr;
1517   Instruction *CntInst = nullptr;
1518   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1519   // this is always 6.
1520   size_t IdiomCanonicalSize = 6;
1521 
1522   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1523                                  CntInst, CntPhi, DefX))
1524     return false;
1525 
1526   bool IsCntPhiUsedOutsideLoop = false;
1527   for (User *U : CntPhi->users())
1528     if (!CurLoop->contains(cast<Instruction>(U))) {
1529       IsCntPhiUsedOutsideLoop = true;
1530       break;
1531     }
1532   bool IsCntInstUsedOutsideLoop = false;
1533   for (User *U : CntInst->users())
1534     if (!CurLoop->contains(cast<Instruction>(U))) {
1535       IsCntInstUsedOutsideLoop = true;
1536       break;
1537     }
1538   // If both CntInst and CntPhi are used outside the loop the profitability
1539   // is questionable.
1540   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1541     return false;
1542 
1543   // For some CPUs result of CTLZ(X) intrinsic is undefined
1544   // when X is 0. If we can not guarantee X != 0, we need to check this
1545   // when expand.
1546   bool ZeroCheck = false;
1547   // It is safe to assume Preheader exist as it was checked in
1548   // parent function RunOnLoop.
1549   BasicBlock *PH = CurLoop->getLoopPreheader();
1550 
1551   // If we are using the count instruction outside the loop, make sure we
1552   // have a zero check as a precondition. Without the check the loop would run
1553   // one iteration for before any check of the input value. This means 0 and 1
1554   // would have identical behavior in the original loop and thus
1555   if (!IsCntPhiUsedOutsideLoop) {
1556     auto *PreCondBB = PH->getSinglePredecessor();
1557     if (!PreCondBB)
1558       return false;
1559     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1560     if (!PreCondBI)
1561       return false;
1562     if (matchCondition(PreCondBI, PH) != InitX)
1563       return false;
1564     ZeroCheck = true;
1565   }
1566 
1567   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1568   // profitable if we delete the loop.
1569 
1570   // the loop has only 6 instructions:
1571   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1572   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1573   //  %shr = ashr %n.addr.0, 1
1574   //  %tobool = icmp eq %shr, 0
1575   //  %inc = add nsw %i.0, 1
1576   //  br i1 %tobool
1577 
1578   const Value *Args[] = {
1579       InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1580                        : ConstantInt::getFalse(InitX->getContext())};
1581 
1582   // @llvm.dbg doesn't count as they have no semantic effect.
1583   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1584   uint32_t HeaderSize =
1585       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1586 
1587   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1588   int Cost =
1589     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1590   if (HeaderSize != IdiomCanonicalSize &&
1591       Cost > TargetTransformInfo::TCC_Basic)
1592     return false;
1593 
1594   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1595                            DefX->getDebugLoc(), ZeroCheck,
1596                            IsCntPhiUsedOutsideLoop);
1597   return true;
1598 }
1599 
1600 /// Recognizes a population count idiom in a non-countable loop.
1601 ///
1602 /// If detected, transforms the relevant code to issue the popcount intrinsic
1603 /// function call, and returns true; otherwise, returns false.
1604 bool LoopIdiomRecognize::recognizePopcount() {
1605   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1606     return false;
1607 
1608   // Counting population are usually conducted by few arithmetic instructions.
1609   // Such instructions can be easily "absorbed" by vacant slots in a
1610   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1611   // in a compact loop.
1612 
1613   // Give up if the loop has multiple blocks or multiple backedges.
1614   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1615     return false;
1616 
1617   BasicBlock *LoopBody = *(CurLoop->block_begin());
1618   if (LoopBody->size() >= 20) {
1619     // The loop is too big, bail out.
1620     return false;
1621   }
1622 
1623   // It should have a preheader containing nothing but an unconditional branch.
1624   BasicBlock *PH = CurLoop->getLoopPreheader();
1625   if (!PH || &PH->front() != PH->getTerminator())
1626     return false;
1627   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1628   if (!EntryBI || EntryBI->isConditional())
1629     return false;
1630 
1631   // It should have a precondition block where the generated popcount intrinsic
1632   // function can be inserted.
1633   auto *PreCondBB = PH->getSinglePredecessor();
1634   if (!PreCondBB)
1635     return false;
1636   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1637   if (!PreCondBI || PreCondBI->isUnconditional())
1638     return false;
1639 
1640   Instruction *CntInst;
1641   PHINode *CntPhi;
1642   Value *Val;
1643   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1644     return false;
1645 
1646   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1647   return true;
1648 }
1649 
1650 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1651                                        const DebugLoc &DL) {
1652   Value *Ops[] = {Val};
1653   Type *Tys[] = {Val->getType()};
1654 
1655   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1656   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1657   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1658   CI->setDebugLoc(DL);
1659 
1660   return CI;
1661 }
1662 
1663 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1664                                     const DebugLoc &DL, bool ZeroCheck,
1665                                     Intrinsic::ID IID) {
1666   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1667   Type *Tys[] = {Val->getType()};
1668 
1669   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1670   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1671   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1672   CI->setDebugLoc(DL);
1673 
1674   return CI;
1675 }
1676 
1677 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1678 /// loop:
1679 ///   CntPhi = PHI [Cnt0, CntInst]
1680 ///   PhiX = PHI [InitX, DefX]
1681 ///   CntInst = CntPhi + 1
1682 ///   DefX = PhiX >> 1
1683 ///   LOOP_BODY
1684 ///   Br: loop if (DefX != 0)
1685 /// Use(CntPhi) or Use(CntInst)
1686 ///
1687 /// Into:
1688 /// If CntPhi used outside the loop:
1689 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1690 ///   Count = CountPrev + 1
1691 /// else
1692 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1693 /// loop:
1694 ///   CntPhi = PHI [Cnt0, CntInst]
1695 ///   PhiX = PHI [InitX, DefX]
1696 ///   PhiCount = PHI [Count, Dec]
1697 ///   CntInst = CntPhi + 1
1698 ///   DefX = PhiX >> 1
1699 ///   Dec = PhiCount - 1
1700 ///   LOOP_BODY
1701 ///   Br: loop if (Dec != 0)
1702 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1703 /// or
1704 /// Use(Count + Cnt0) // Use(CntInst)
1705 ///
1706 /// If LOOP_BODY is empty the loop will be deleted.
1707 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1708 void LoopIdiomRecognize::transformLoopToCountable(
1709     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1710     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1711     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1712   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1713 
1714   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1715   IRBuilder<> Builder(PreheaderBr);
1716   Builder.SetCurrentDebugLocation(DL);
1717   Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1718 
1719   //   Count = BitWidth - CTLZ(InitX);
1720   // If there are uses of CntPhi create:
1721   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1722   if (IsCntPhiUsedOutsideLoop) {
1723     if (DefX->getOpcode() == Instruction::AShr)
1724       InitXNext =
1725           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1726     else if (DefX->getOpcode() == Instruction::LShr)
1727       InitXNext =
1728           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1729     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1730       InitXNext =
1731           Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1732     else
1733       llvm_unreachable("Unexpected opcode!");
1734   } else
1735     InitXNext = InitX;
1736   FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1737   Count = Builder.CreateSub(
1738       ConstantInt::get(FFS->getType(),
1739                        FFS->getType()->getIntegerBitWidth()),
1740       FFS);
1741   if (IsCntPhiUsedOutsideLoop) {
1742     CountPrev = Count;
1743     Count = Builder.CreateAdd(
1744         CountPrev,
1745         ConstantInt::get(CountPrev->getType(), 1));
1746   }
1747 
1748   NewCount = Builder.CreateZExtOrTrunc(
1749                       IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1750                       cast<IntegerType>(CntInst->getType()));
1751 
1752   // If the counter's initial value is not zero, insert Add Inst.
1753   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1754   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1755   if (!InitConst || !InitConst->isZero())
1756     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1757 
1758   // Step 2: Insert new IV and loop condition:
1759   // loop:
1760   //   ...
1761   //   PhiCount = PHI [Count, Dec]
1762   //   ...
1763   //   Dec = PhiCount - 1
1764   //   ...
1765   //   Br: loop if (Dec != 0)
1766   BasicBlock *Body = *(CurLoop->block_begin());
1767   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1768   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1769   Type *Ty = Count->getType();
1770 
1771   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1772 
1773   Builder.SetInsertPoint(LbCond);
1774   Instruction *TcDec = cast<Instruction>(
1775       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1776                         "tcdec", false, true));
1777 
1778   TcPhi->addIncoming(Count, Preheader);
1779   TcPhi->addIncoming(TcDec, Body);
1780 
1781   CmpInst::Predicate Pred =
1782       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1783   LbCond->setPredicate(Pred);
1784   LbCond->setOperand(0, TcDec);
1785   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1786 
1787   // Step 3: All the references to the original counter outside
1788   //  the loop are replaced with the NewCount
1789   if (IsCntPhiUsedOutsideLoop)
1790     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1791   else
1792     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1793 
1794   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1795   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1796   SE->forgetLoop(CurLoop);
1797 }
1798 
1799 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1800                                                  Instruction *CntInst,
1801                                                  PHINode *CntPhi, Value *Var) {
1802   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1803   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1804   const DebugLoc &DL = CntInst->getDebugLoc();
1805 
1806   // Assuming before transformation, the loop is following:
1807   //  if (x) // the precondition
1808   //     do { cnt++; x &= x - 1; } while(x);
1809 
1810   // Step 1: Insert the ctpop instruction at the end of the precondition block
1811   IRBuilder<> Builder(PreCondBr);
1812   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1813   {
1814     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1815     NewCount = PopCntZext =
1816         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1817 
1818     if (NewCount != PopCnt)
1819       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1820 
1821     // TripCnt is exactly the number of iterations the loop has
1822     TripCnt = NewCount;
1823 
1824     // If the population counter's initial value is not zero, insert Add Inst.
1825     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1826     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1827     if (!InitConst || !InitConst->isZero()) {
1828       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1829       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1830     }
1831   }
1832 
1833   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1834   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1835   //   function would be partial dead code, and downstream passes will drag
1836   //   it back from the precondition block to the preheader.
1837   {
1838     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1839 
1840     Value *Opnd0 = PopCntZext;
1841     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1842     if (PreCond->getOperand(0) != Var)
1843       std::swap(Opnd0, Opnd1);
1844 
1845     ICmpInst *NewPreCond = cast<ICmpInst>(
1846         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1847     PreCondBr->setCondition(NewPreCond);
1848 
1849     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1850   }
1851 
1852   // Step 3: Note that the population count is exactly the trip count of the
1853   // loop in question, which enable us to convert the loop from noncountable
1854   // loop into a countable one. The benefit is twofold:
1855   //
1856   //  - If the loop only counts population, the entire loop becomes dead after
1857   //    the transformation. It is a lot easier to prove a countable loop dead
1858   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1859   //    isn't dead even if it computes nothing useful. In general, DCE needs
1860   //    to prove a noncountable loop finite before safely delete it.)
1861   //
1862   //  - If the loop also performs something else, it remains alive.
1863   //    Since it is transformed to countable form, it can be aggressively
1864   //    optimized by some optimizations which are in general not applicable
1865   //    to a noncountable loop.
1866   //
1867   // After this step, this loop (conceptually) would look like following:
1868   //   newcnt = __builtin_ctpop(x);
1869   //   t = newcnt;
1870   //   if (x)
1871   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1872   BasicBlock *Body = *(CurLoop->block_begin());
1873   {
1874     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1875     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1876     Type *Ty = TripCnt->getType();
1877 
1878     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1879 
1880     Builder.SetInsertPoint(LbCond);
1881     Instruction *TcDec = cast<Instruction>(
1882         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1883                           "tcdec", false, true));
1884 
1885     TcPhi->addIncoming(TripCnt, PreHead);
1886     TcPhi->addIncoming(TcDec, Body);
1887 
1888     CmpInst::Predicate Pred =
1889         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1890     LbCond->setPredicate(Pred);
1891     LbCond->setOperand(0, TcDec);
1892     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1893   }
1894 
1895   // Step 4: All the references to the original population counter outside
1896   //  the loop are replaced with the NewCount -- the value returned from
1897   //  __builtin_ctpop().
1898   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1899 
1900   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1901   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1902   SE->forgetLoop(CurLoop);
1903 }
1904