1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, memmove, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/LoopAccessAnalysis.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/LoopPass.h" 53 #include "llvm/Analysis/MemoryLocation.h" 54 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionExpander.h" 57 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 58 #include "llvm/Analysis/TargetLibraryInfo.h" 59 #include "llvm/Analysis/TargetTransformInfo.h" 60 #include "llvm/Analysis/ValueTracking.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugLoc.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GlobalValue.h" 70 #include "llvm/IR/GlobalVariable.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instruction.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PassManager.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/User.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/IR/ValueHandle.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Utils/BuildLibCalls.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/LoopUtils.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "loop-idiom" 102 103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 105 106 static cl::opt<bool> UseLIRCodeSizeHeurs( 107 "use-lir-code-size-heurs", 108 cl::desc("Use loop idiom recognition code size heuristics when compiling" 109 "with -Os/-Oz"), 110 cl::init(true), cl::Hidden); 111 112 namespace { 113 114 class LoopIdiomRecognize { 115 Loop *CurLoop = nullptr; 116 AliasAnalysis *AA; 117 DominatorTree *DT; 118 LoopInfo *LI; 119 ScalarEvolution *SE; 120 TargetLibraryInfo *TLI; 121 const TargetTransformInfo *TTI; 122 const DataLayout *DL; 123 OptimizationRemarkEmitter &ORE; 124 bool ApplyCodeSizeHeuristics; 125 126 public: 127 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 128 LoopInfo *LI, ScalarEvolution *SE, 129 TargetLibraryInfo *TLI, 130 const TargetTransformInfo *TTI, 131 const DataLayout *DL, 132 OptimizationRemarkEmitter &ORE) 133 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {} 134 135 bool runOnLoop(Loop *L); 136 137 private: 138 using StoreList = SmallVector<StoreInst *, 8>; 139 using StoreListMap = MapVector<Value *, StoreList>; 140 141 StoreListMap StoreRefsForMemset; 142 StoreListMap StoreRefsForMemsetPattern; 143 StoreList StoreRefsForMemcpy; 144 bool HasMemset; 145 bool HasMemsetPattern; 146 bool HasMemcpy; 147 148 /// Return code for isLegalStore() 149 enum LegalStoreKind { 150 None = 0, 151 Memset, 152 MemsetPattern, 153 Memcpy, 154 UnorderedAtomicMemcpy, 155 DontUse // Dummy retval never to be used. Allows catching errors in retval 156 // handling. 157 }; 158 159 /// \name Countable Loop Idiom Handling 160 /// @{ 161 162 bool runOnCountableLoop(); 163 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 164 SmallVectorImpl<BasicBlock *> &ExitBlocks); 165 166 void collectStores(BasicBlock *BB); 167 LegalStoreKind isLegalStore(StoreInst *SI); 168 enum class ForMemset { No, Yes }; 169 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 170 ForMemset For); 171 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 172 173 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 174 unsigned StoreAlignment, Value *StoredVal, 175 Instruction *TheStore, 176 SmallPtrSetImpl<Instruction *> &Stores, 177 const SCEVAddRecExpr *Ev, const SCEV *BECount, 178 bool NegStride, bool IsLoopMemset = false); 179 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 180 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 181 bool IsLoopMemset = false); 182 183 /// @} 184 /// \name Noncountable Loop Idiom Handling 185 /// @{ 186 187 bool runOnNoncountableLoop(); 188 189 bool recognizePopcount(); 190 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 191 PHINode *CntPhi, Value *Var); 192 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 193 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 194 Instruction *CntInst, PHINode *CntPhi, 195 Value *Var, Instruction *DefX, 196 const DebugLoc &DL, bool ZeroCheck, 197 bool IsCntPhiUsedOutsideLoop); 198 199 /// @} 200 }; 201 202 class LoopIdiomRecognizeLegacyPass : public LoopPass { 203 public: 204 static char ID; 205 206 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 207 initializeLoopIdiomRecognizeLegacyPassPass( 208 *PassRegistry::getPassRegistry()); 209 } 210 211 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 212 if (skipLoop(L)) 213 return false; 214 215 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 216 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 217 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 218 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 219 TargetLibraryInfo *TLI = 220 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 221 *L->getHeader()->getParent()); 222 const TargetTransformInfo *TTI = 223 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 224 *L->getHeader()->getParent()); 225 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 226 227 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 228 // pass. Function analyses need to be preserved across loop transformations 229 // but ORE cannot be preserved (see comment before the pass definition). 230 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 231 232 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE); 233 return LIR.runOnLoop(L); 234 } 235 236 /// This transformation requires natural loop information & requires that 237 /// loop preheaders be inserted into the CFG. 238 void getAnalysisUsage(AnalysisUsage &AU) const override { 239 AU.addRequired<TargetLibraryInfoWrapperPass>(); 240 AU.addRequired<TargetTransformInfoWrapperPass>(); 241 getLoopAnalysisUsage(AU); 242 } 243 }; 244 245 } // end anonymous namespace 246 247 char LoopIdiomRecognizeLegacyPass::ID = 0; 248 249 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 250 LoopStandardAnalysisResults &AR, 251 LPMUpdater &) { 252 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 253 254 const auto &FAM = 255 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 256 Function *F = L.getHeader()->getParent(); 257 258 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 259 // FIXME: This should probably be optional rather than required. 260 if (!ORE) 261 report_fatal_error( 262 "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached " 263 "at a higher level"); 264 265 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL, 266 *ORE); 267 if (!LIR.runOnLoop(&L)) 268 return PreservedAnalyses::all(); 269 270 return getLoopPassPreservedAnalyses(); 271 } 272 273 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 274 "Recognize loop idioms", false, false) 275 INITIALIZE_PASS_DEPENDENCY(LoopPass) 276 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 277 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 278 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 279 "Recognize loop idioms", false, false) 280 281 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 282 283 static void deleteDeadInstruction(Instruction *I) { 284 I->replaceAllUsesWith(UndefValue::get(I->getType())); 285 I->eraseFromParent(); 286 } 287 288 //===----------------------------------------------------------------------===// 289 // 290 // Implementation of LoopIdiomRecognize 291 // 292 //===----------------------------------------------------------------------===// 293 294 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 295 CurLoop = L; 296 // If the loop could not be converted to canonical form, it must have an 297 // indirectbr in it, just give up. 298 if (!L->getLoopPreheader()) 299 return false; 300 301 // Disable loop idiom recognition if the function's name is a common idiom. 302 StringRef Name = L->getHeader()->getParent()->getName(); 303 if (Name == "memset" || Name == "memcpy") 304 return false; 305 306 // Determine if code size heuristics need to be applied. 307 ApplyCodeSizeHeuristics = 308 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 309 310 HasMemset = TLI->has(LibFunc_memset); 311 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 312 HasMemcpy = TLI->has(LibFunc_memcpy); 313 314 if (HasMemset || HasMemsetPattern || HasMemcpy) 315 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 316 return runOnCountableLoop(); 317 318 return runOnNoncountableLoop(); 319 } 320 321 bool LoopIdiomRecognize::runOnCountableLoop() { 322 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 323 assert(!isa<SCEVCouldNotCompute>(BECount) && 324 "runOnCountableLoop() called on a loop without a predictable" 325 "backedge-taken count"); 326 327 // If this loop executes exactly one time, then it should be peeled, not 328 // optimized by this pass. 329 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 330 if (BECst->getAPInt() == 0) 331 return false; 332 333 SmallVector<BasicBlock *, 8> ExitBlocks; 334 CurLoop->getUniqueExitBlocks(ExitBlocks); 335 336 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 337 << CurLoop->getHeader()->getParent()->getName() 338 << "] Countable Loop %" << CurLoop->getHeader()->getName() 339 << "\n"); 340 341 bool MadeChange = false; 342 343 // The following transforms hoist stores/memsets into the loop pre-header. 344 // Give up if the loop has instructions may throw. 345 SimpleLoopSafetyInfo SafetyInfo; 346 SafetyInfo.computeLoopSafetyInfo(CurLoop); 347 if (SafetyInfo.anyBlockMayThrow()) 348 return MadeChange; 349 350 // Scan all the blocks in the loop that are not in subloops. 351 for (auto *BB : CurLoop->getBlocks()) { 352 // Ignore blocks in subloops. 353 if (LI->getLoopFor(BB) != CurLoop) 354 continue; 355 356 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 357 } 358 return MadeChange; 359 } 360 361 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 362 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 363 return ConstStride->getAPInt(); 364 } 365 366 /// getMemSetPatternValue - If a strided store of the specified value is safe to 367 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 368 /// be passed in. Otherwise, return null. 369 /// 370 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 371 /// just replicate their input array and then pass on to memset_pattern16. 372 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 373 // FIXME: This could check for UndefValue because it can be merged into any 374 // other valid pattern. 375 376 // If the value isn't a constant, we can't promote it to being in a constant 377 // array. We could theoretically do a store to an alloca or something, but 378 // that doesn't seem worthwhile. 379 Constant *C = dyn_cast<Constant>(V); 380 if (!C) 381 return nullptr; 382 383 // Only handle simple values that are a power of two bytes in size. 384 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 385 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 386 return nullptr; 387 388 // Don't care enough about darwin/ppc to implement this. 389 if (DL->isBigEndian()) 390 return nullptr; 391 392 // Convert to size in bytes. 393 Size /= 8; 394 395 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 396 // if the top and bottom are the same (e.g. for vectors and large integers). 397 if (Size > 16) 398 return nullptr; 399 400 // If the constant is exactly 16 bytes, just use it. 401 if (Size == 16) 402 return C; 403 404 // Otherwise, we'll use an array of the constants. 405 unsigned ArraySize = 16 / Size; 406 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 407 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 408 } 409 410 LoopIdiomRecognize::LegalStoreKind 411 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 412 // Don't touch volatile stores. 413 if (SI->isVolatile()) 414 return LegalStoreKind::None; 415 // We only want simple or unordered-atomic stores. 416 if (!SI->isUnordered()) 417 return LegalStoreKind::None; 418 419 // Don't convert stores of non-integral pointer types to memsets (which stores 420 // integers). 421 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) 422 return LegalStoreKind::None; 423 424 // Avoid merging nontemporal stores. 425 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 426 return LegalStoreKind::None; 427 428 Value *StoredVal = SI->getValueOperand(); 429 Value *StorePtr = SI->getPointerOperand(); 430 431 // Reject stores that are so large that they overflow an unsigned. 432 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 433 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 434 return LegalStoreKind::None; 435 436 // See if the pointer expression is an AddRec like {base,+,1} on the current 437 // loop, which indicates a strided store. If we have something else, it's a 438 // random store we can't handle. 439 const SCEVAddRecExpr *StoreEv = 440 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 441 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 442 return LegalStoreKind::None; 443 444 // Check to see if we have a constant stride. 445 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 446 return LegalStoreKind::None; 447 448 // See if the store can be turned into a memset. 449 450 // If the stored value is a byte-wise value (like i32 -1), then it may be 451 // turned into a memset of i8 -1, assuming that all the consecutive bytes 452 // are stored. A store of i32 0x01020304 can never be turned into a memset, 453 // but it can be turned into memset_pattern if the target supports it. 454 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 455 Constant *PatternValue = nullptr; 456 457 // Note: memset and memset_pattern on unordered-atomic is yet not supported 458 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 459 460 // If we're allowed to form a memset, and the stored value would be 461 // acceptable for memset, use it. 462 if (!UnorderedAtomic && HasMemset && SplatValue && 463 // Verify that the stored value is loop invariant. If not, we can't 464 // promote the memset. 465 CurLoop->isLoopInvariant(SplatValue)) { 466 // It looks like we can use SplatValue. 467 return LegalStoreKind::Memset; 468 } else if (!UnorderedAtomic && HasMemsetPattern && 469 // Don't create memset_pattern16s with address spaces. 470 StorePtr->getType()->getPointerAddressSpace() == 0 && 471 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 472 // It looks like we can use PatternValue! 473 return LegalStoreKind::MemsetPattern; 474 } 475 476 // Otherwise, see if the store can be turned into a memcpy. 477 if (HasMemcpy) { 478 // Check to see if the stride matches the size of the store. If so, then we 479 // know that every byte is touched in the loop. 480 APInt Stride = getStoreStride(StoreEv); 481 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 482 if (StoreSize != Stride && StoreSize != -Stride) 483 return LegalStoreKind::None; 484 485 // The store must be feeding a non-volatile load. 486 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 487 488 // Only allow non-volatile loads 489 if (!LI || LI->isVolatile()) 490 return LegalStoreKind::None; 491 // Only allow simple or unordered-atomic loads 492 if (!LI->isUnordered()) 493 return LegalStoreKind::None; 494 495 // See if the pointer expression is an AddRec like {base,+,1} on the current 496 // loop, which indicates a strided load. If we have something else, it's a 497 // random load we can't handle. 498 const SCEVAddRecExpr *LoadEv = 499 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 500 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 501 return LegalStoreKind::None; 502 503 // The store and load must share the same stride. 504 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 505 return LegalStoreKind::None; 506 507 // Success. This store can be converted into a memcpy. 508 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 509 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 510 : LegalStoreKind::Memcpy; 511 } 512 // This store can't be transformed into a memset/memcpy. 513 return LegalStoreKind::None; 514 } 515 516 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 517 StoreRefsForMemset.clear(); 518 StoreRefsForMemsetPattern.clear(); 519 StoreRefsForMemcpy.clear(); 520 for (Instruction &I : *BB) { 521 StoreInst *SI = dyn_cast<StoreInst>(&I); 522 if (!SI) 523 continue; 524 525 // Make sure this is a strided store with a constant stride. 526 switch (isLegalStore(SI)) { 527 case LegalStoreKind::None: 528 // Nothing to do 529 break; 530 case LegalStoreKind::Memset: { 531 // Find the base pointer. 532 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 533 StoreRefsForMemset[Ptr].push_back(SI); 534 } break; 535 case LegalStoreKind::MemsetPattern: { 536 // Find the base pointer. 537 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 538 StoreRefsForMemsetPattern[Ptr].push_back(SI); 539 } break; 540 case LegalStoreKind::Memcpy: 541 case LegalStoreKind::UnorderedAtomicMemcpy: 542 StoreRefsForMemcpy.push_back(SI); 543 break; 544 default: 545 assert(false && "unhandled return value"); 546 break; 547 } 548 } 549 } 550 551 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 552 /// with the specified backedge count. This block is known to be in the current 553 /// loop and not in any subloops. 554 bool LoopIdiomRecognize::runOnLoopBlock( 555 BasicBlock *BB, const SCEV *BECount, 556 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 557 // We can only promote stores in this block if they are unconditionally 558 // executed in the loop. For a block to be unconditionally executed, it has 559 // to dominate all the exit blocks of the loop. Verify this now. 560 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 561 if (!DT->dominates(BB, ExitBlocks[i])) 562 return false; 563 564 bool MadeChange = false; 565 // Look for store instructions, which may be optimized to memset/memcpy. 566 collectStores(BB); 567 568 // Look for a single store or sets of stores with a common base, which can be 569 // optimized into a memset (memset_pattern). The latter most commonly happens 570 // with structs and handunrolled loops. 571 for (auto &SL : StoreRefsForMemset) 572 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 573 574 for (auto &SL : StoreRefsForMemsetPattern) 575 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 576 577 // Optimize the store into a memcpy, if it feeds an similarly strided load. 578 for (auto &SI : StoreRefsForMemcpy) 579 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 580 581 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 582 Instruction *Inst = &*I++; 583 // Look for memset instructions, which may be optimized to a larger memset. 584 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 585 WeakTrackingVH InstPtr(&*I); 586 if (!processLoopMemSet(MSI, BECount)) 587 continue; 588 MadeChange = true; 589 590 // If processing the memset invalidated our iterator, start over from the 591 // top of the block. 592 if (!InstPtr) 593 I = BB->begin(); 594 continue; 595 } 596 } 597 598 return MadeChange; 599 } 600 601 /// See if this store(s) can be promoted to a memset. 602 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 603 const SCEV *BECount, ForMemset For) { 604 // Try to find consecutive stores that can be transformed into memsets. 605 SetVector<StoreInst *> Heads, Tails; 606 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 607 608 // Do a quadratic search on all of the given stores and find 609 // all of the pairs of stores that follow each other. 610 SmallVector<unsigned, 16> IndexQueue; 611 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 612 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 613 614 Value *FirstStoredVal = SL[i]->getValueOperand(); 615 Value *FirstStorePtr = SL[i]->getPointerOperand(); 616 const SCEVAddRecExpr *FirstStoreEv = 617 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 618 APInt FirstStride = getStoreStride(FirstStoreEv); 619 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 620 621 // See if we can optimize just this store in isolation. 622 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 623 Heads.insert(SL[i]); 624 continue; 625 } 626 627 Value *FirstSplatValue = nullptr; 628 Constant *FirstPatternValue = nullptr; 629 630 if (For == ForMemset::Yes) 631 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 632 else 633 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 634 635 assert((FirstSplatValue || FirstPatternValue) && 636 "Expected either splat value or pattern value."); 637 638 IndexQueue.clear(); 639 // If a store has multiple consecutive store candidates, search Stores 640 // array according to the sequence: from i+1 to e, then from i-1 to 0. 641 // This is because usually pairing with immediate succeeding or preceding 642 // candidate create the best chance to find memset opportunity. 643 unsigned j = 0; 644 for (j = i + 1; j < e; ++j) 645 IndexQueue.push_back(j); 646 for (j = i; j > 0; --j) 647 IndexQueue.push_back(j - 1); 648 649 for (auto &k : IndexQueue) { 650 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 651 Value *SecondStorePtr = SL[k]->getPointerOperand(); 652 const SCEVAddRecExpr *SecondStoreEv = 653 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 654 APInt SecondStride = getStoreStride(SecondStoreEv); 655 656 if (FirstStride != SecondStride) 657 continue; 658 659 Value *SecondStoredVal = SL[k]->getValueOperand(); 660 Value *SecondSplatValue = nullptr; 661 Constant *SecondPatternValue = nullptr; 662 663 if (For == ForMemset::Yes) 664 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 665 else 666 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 667 668 assert((SecondSplatValue || SecondPatternValue) && 669 "Expected either splat value or pattern value."); 670 671 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 672 if (For == ForMemset::Yes) { 673 if (isa<UndefValue>(FirstSplatValue)) 674 FirstSplatValue = SecondSplatValue; 675 if (FirstSplatValue != SecondSplatValue) 676 continue; 677 } else { 678 if (isa<UndefValue>(FirstPatternValue)) 679 FirstPatternValue = SecondPatternValue; 680 if (FirstPatternValue != SecondPatternValue) 681 continue; 682 } 683 Tails.insert(SL[k]); 684 Heads.insert(SL[i]); 685 ConsecutiveChain[SL[i]] = SL[k]; 686 break; 687 } 688 } 689 } 690 691 // We may run into multiple chains that merge into a single chain. We mark the 692 // stores that we transformed so that we don't visit the same store twice. 693 SmallPtrSet<Value *, 16> TransformedStores; 694 bool Changed = false; 695 696 // For stores that start but don't end a link in the chain: 697 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 698 it != e; ++it) { 699 if (Tails.count(*it)) 700 continue; 701 702 // We found a store instr that starts a chain. Now follow the chain and try 703 // to transform it. 704 SmallPtrSet<Instruction *, 8> AdjacentStores; 705 StoreInst *I = *it; 706 707 StoreInst *HeadStore = I; 708 unsigned StoreSize = 0; 709 710 // Collect the chain into a list. 711 while (Tails.count(I) || Heads.count(I)) { 712 if (TransformedStores.count(I)) 713 break; 714 AdjacentStores.insert(I); 715 716 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 717 // Move to the next value in the chain. 718 I = ConsecutiveChain[I]; 719 } 720 721 Value *StoredVal = HeadStore->getValueOperand(); 722 Value *StorePtr = HeadStore->getPointerOperand(); 723 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 724 APInt Stride = getStoreStride(StoreEv); 725 726 // Check to see if the stride matches the size of the stores. If so, then 727 // we know that every byte is touched in the loop. 728 if (StoreSize != Stride && StoreSize != -Stride) 729 continue; 730 731 bool NegStride = StoreSize == -Stride; 732 733 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 734 StoredVal, HeadStore, AdjacentStores, StoreEv, 735 BECount, NegStride)) { 736 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 737 Changed = true; 738 } 739 } 740 741 return Changed; 742 } 743 744 /// processLoopMemSet - See if this memset can be promoted to a large memset. 745 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 746 const SCEV *BECount) { 747 // We can only handle non-volatile memsets with a constant size. 748 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 749 return false; 750 751 // If we're not allowed to hack on memset, we fail. 752 if (!HasMemset) 753 return false; 754 755 Value *Pointer = MSI->getDest(); 756 757 // See if the pointer expression is an AddRec like {base,+,1} on the current 758 // loop, which indicates a strided store. If we have something else, it's a 759 // random store we can't handle. 760 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 761 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 762 return false; 763 764 // Reject memsets that are so large that they overflow an unsigned. 765 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 766 if ((SizeInBytes >> 32) != 0) 767 return false; 768 769 // Check to see if the stride matches the size of the memset. If so, then we 770 // know that every byte is touched in the loop. 771 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 772 if (!ConstStride) 773 return false; 774 775 APInt Stride = ConstStride->getAPInt(); 776 if (SizeInBytes != Stride && SizeInBytes != -Stride) 777 return false; 778 779 // Verify that the memset value is loop invariant. If not, we can't promote 780 // the memset. 781 Value *SplatValue = MSI->getValue(); 782 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 783 return false; 784 785 SmallPtrSet<Instruction *, 1> MSIs; 786 MSIs.insert(MSI); 787 bool NegStride = SizeInBytes == -Stride; 788 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 789 MSI->getDestAlignment(), SplatValue, MSI, MSIs, 790 Ev, BECount, NegStride, /*IsLoopMemset=*/true); 791 } 792 793 /// mayLoopAccessLocation - Return true if the specified loop might access the 794 /// specified pointer location, which is a loop-strided access. The 'Access' 795 /// argument specifies what the verboten forms of access are (read or write). 796 static bool 797 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 798 const SCEV *BECount, unsigned StoreSize, 799 AliasAnalysis &AA, 800 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 801 // Get the location that may be stored across the loop. Since the access is 802 // strided positively through memory, we say that the modified location starts 803 // at the pointer and has infinite size. 804 LocationSize AccessSize = LocationSize::unknown(); 805 806 // If the loop iterates a fixed number of times, we can refine the access size 807 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 808 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 809 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 810 StoreSize); 811 812 // TODO: For this to be really effective, we have to dive into the pointer 813 // operand in the store. Store to &A[i] of 100 will always return may alias 814 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 815 // which will then no-alias a store to &A[100]. 816 MemoryLocation StoreLoc(Ptr, AccessSize); 817 818 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 819 ++BI) 820 for (Instruction &I : **BI) 821 if (IgnoredStores.count(&I) == 0 && 822 isModOrRefSet( 823 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 824 return true; 825 826 return false; 827 } 828 829 // If we have a negative stride, Start refers to the end of the memory location 830 // we're trying to memset. Therefore, we need to recompute the base pointer, 831 // which is just Start - BECount*Size. 832 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 833 Type *IntPtr, unsigned StoreSize, 834 ScalarEvolution *SE) { 835 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 836 if (StoreSize != 1) 837 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 838 SCEV::FlagNUW); 839 return SE->getMinusSCEV(Start, Index); 840 } 841 842 /// Compute the number of bytes as a SCEV from the backedge taken count. 843 /// 844 /// This also maps the SCEV into the provided type and tries to handle the 845 /// computation in a way that will fold cleanly. 846 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 847 unsigned StoreSize, Loop *CurLoop, 848 const DataLayout *DL, ScalarEvolution *SE) { 849 const SCEV *NumBytesS; 850 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 851 // pointer size if it isn't already. 852 // 853 // If we're going to need to zero extend the BE count, check if we can add 854 // one to it prior to zero extending without overflow. Provided this is safe, 855 // it allows better simplification of the +1. 856 if (DL->getTypeSizeInBits(BECount->getType()) < 857 DL->getTypeSizeInBits(IntPtr) && 858 SE->isLoopEntryGuardedByCond( 859 CurLoop, ICmpInst::ICMP_NE, BECount, 860 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 861 NumBytesS = SE->getZeroExtendExpr( 862 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 863 IntPtr); 864 } else { 865 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 866 SE->getOne(IntPtr), SCEV::FlagNUW); 867 } 868 869 // And scale it based on the store size. 870 if (StoreSize != 1) { 871 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 872 SCEV::FlagNUW); 873 } 874 return NumBytesS; 875 } 876 877 /// processLoopStridedStore - We see a strided store of some value. If we can 878 /// transform this into a memset or memset_pattern in the loop preheader, do so. 879 bool LoopIdiomRecognize::processLoopStridedStore( 880 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 881 Value *StoredVal, Instruction *TheStore, 882 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 883 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 884 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 885 Constant *PatternValue = nullptr; 886 887 if (!SplatValue) 888 PatternValue = getMemSetPatternValue(StoredVal, DL); 889 890 assert((SplatValue || PatternValue) && 891 "Expected either splat value or pattern value."); 892 893 // The trip count of the loop and the base pointer of the addrec SCEV is 894 // guaranteed to be loop invariant, which means that it should dominate the 895 // header. This allows us to insert code for it in the preheader. 896 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 897 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 898 IRBuilder<> Builder(Preheader->getTerminator()); 899 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 900 901 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 902 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 903 904 const SCEV *Start = Ev->getStart(); 905 // Handle negative strided loops. 906 if (NegStride) 907 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 908 909 // TODO: ideally we should still be able to generate memset if SCEV expander 910 // is taught to generate the dependencies at the latest point. 911 if (!isSafeToExpand(Start, *SE)) 912 return false; 913 914 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 915 // this into a memset in the loop preheader now if we want. However, this 916 // would be unsafe to do if there is anything else in the loop that may read 917 // or write to the aliased location. Check for any overlap by generating the 918 // base pointer and checking the region. 919 Value *BasePtr = 920 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 921 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 922 StoreSize, *AA, Stores)) { 923 Expander.clear(); 924 // If we generated new code for the base pointer, clean up. 925 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 926 return false; 927 } 928 929 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 930 return false; 931 932 // Okay, everything looks good, insert the memset. 933 934 const SCEV *NumBytesS = 935 getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); 936 937 // TODO: ideally we should still be able to generate memset if SCEV expander 938 // is taught to generate the dependencies at the latest point. 939 if (!isSafeToExpand(NumBytesS, *SE)) 940 return false; 941 942 Value *NumBytes = 943 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 944 945 CallInst *NewCall; 946 if (SplatValue) { 947 NewCall = 948 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 949 } else { 950 // Everything is emitted in default address space 951 Type *Int8PtrTy = DestInt8PtrTy; 952 953 Module *M = TheStore->getModule(); 954 StringRef FuncName = "memset_pattern16"; 955 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 956 Int8PtrTy, Int8PtrTy, IntPtr); 957 inferLibFuncAttributes(M, FuncName, *TLI); 958 959 // Otherwise we should form a memset_pattern16. PatternValue is known to be 960 // an constant array of 16-bytes. Plop the value into a mergable global. 961 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 962 GlobalValue::PrivateLinkage, 963 PatternValue, ".memset_pattern"); 964 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 965 GV->setAlignment(16); 966 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 967 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 968 } 969 970 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 971 << " from store to: " << *Ev << " at: " << *TheStore 972 << "\n"); 973 NewCall->setDebugLoc(TheStore->getDebugLoc()); 974 975 ORE.emit([&]() { 976 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 977 NewCall->getDebugLoc(), Preheader) 978 << "Transformed loop-strided store into a call to " 979 << ore::NV("NewFunction", NewCall->getCalledFunction()) 980 << "() function"; 981 }); 982 983 // Okay, the memset has been formed. Zap the original store and anything that 984 // feeds into it. 985 for (auto *I : Stores) 986 deleteDeadInstruction(I); 987 ++NumMemSet; 988 return true; 989 } 990 991 /// If the stored value is a strided load in the same loop with the same stride 992 /// this may be transformable into a memcpy. This kicks in for stuff like 993 /// for (i) A[i] = B[i]; 994 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 995 const SCEV *BECount) { 996 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 997 998 Value *StorePtr = SI->getPointerOperand(); 999 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1000 APInt Stride = getStoreStride(StoreEv); 1001 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1002 bool NegStride = StoreSize == -Stride; 1003 1004 // The store must be feeding a non-volatile load. 1005 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1006 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1007 1008 // See if the pointer expression is an AddRec like {base,+,1} on the current 1009 // loop, which indicates a strided load. If we have something else, it's a 1010 // random load we can't handle. 1011 const SCEVAddRecExpr *LoadEv = 1012 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 1013 1014 // The trip count of the loop and the base pointer of the addrec SCEV is 1015 // guaranteed to be loop invariant, which means that it should dominate the 1016 // header. This allows us to insert code for it in the preheader. 1017 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1018 IRBuilder<> Builder(Preheader->getTerminator()); 1019 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1020 1021 const SCEV *StrStart = StoreEv->getStart(); 1022 unsigned StrAS = SI->getPointerAddressSpace(); 1023 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 1024 1025 // Handle negative strided loops. 1026 if (NegStride) 1027 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 1028 1029 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1030 // this into a memcpy in the loop preheader now if we want. However, this 1031 // would be unsafe to do if there is anything else in the loop that may read 1032 // or write the memory region we're storing to. This includes the load that 1033 // feeds the stores. Check for an alias by generating the base address and 1034 // checking everything. 1035 Value *StoreBasePtr = Expander.expandCodeFor( 1036 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1037 1038 SmallPtrSet<Instruction *, 1> Stores; 1039 Stores.insert(SI); 1040 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1041 StoreSize, *AA, Stores)) { 1042 Expander.clear(); 1043 // If we generated new code for the base pointer, clean up. 1044 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1045 return false; 1046 } 1047 1048 const SCEV *LdStart = LoadEv->getStart(); 1049 unsigned LdAS = LI->getPointerAddressSpace(); 1050 1051 // Handle negative strided loops. 1052 if (NegStride) 1053 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 1054 1055 // For a memcpy, we have to make sure that the input array is not being 1056 // mutated by the loop. 1057 Value *LoadBasePtr = Expander.expandCodeFor( 1058 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1059 1060 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1061 StoreSize, *AA, Stores)) { 1062 Expander.clear(); 1063 // If we generated new code for the base pointer, clean up. 1064 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 1065 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1066 return false; 1067 } 1068 1069 if (avoidLIRForMultiBlockLoop()) 1070 return false; 1071 1072 // Okay, everything is safe, we can transform this! 1073 1074 const SCEV *NumBytesS = 1075 getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); 1076 1077 Value *NumBytes = 1078 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 1079 1080 CallInst *NewCall = nullptr; 1081 // Check whether to generate an unordered atomic memcpy: 1082 // If the load or store are atomic, then they must necessarily be unordered 1083 // by previous checks. 1084 if (!SI->isAtomic() && !LI->isAtomic()) 1085 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), 1086 LoadBasePtr, LI->getAlignment(), NumBytes); 1087 else { 1088 // We cannot allow unaligned ops for unordered load/store, so reject 1089 // anything where the alignment isn't at least the element size. 1090 unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); 1091 if (Align < StoreSize) 1092 return false; 1093 1094 // If the element.atomic memcpy is not lowered into explicit 1095 // loads/stores later, then it will be lowered into an element-size 1096 // specific lib call. If the lib call doesn't exist for our store size, then 1097 // we shouldn't generate the memcpy. 1098 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1099 return false; 1100 1101 // Create the call. 1102 // Note that unordered atomic loads/stores are *required* by the spec to 1103 // have an alignment but non-atomic loads/stores may not. 1104 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1105 StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), 1106 NumBytes, StoreSize); 1107 } 1108 NewCall->setDebugLoc(SI->getDebugLoc()); 1109 1110 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1111 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1112 << " from store ptr=" << *StoreEv << " at: " << *SI 1113 << "\n"); 1114 1115 ORE.emit([&]() { 1116 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1117 NewCall->getDebugLoc(), Preheader) 1118 << "Formed a call to " 1119 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1120 << "() function"; 1121 }); 1122 1123 // Okay, the memcpy has been formed. Zap the original store and anything that 1124 // feeds into it. 1125 deleteDeadInstruction(SI); 1126 ++NumMemCpy; 1127 return true; 1128 } 1129 1130 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1131 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1132 // 1133 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1134 bool IsLoopMemset) { 1135 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1136 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { 1137 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1138 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1139 << " avoided: multi-block top-level loop\n"); 1140 return true; 1141 } 1142 } 1143 1144 return false; 1145 } 1146 1147 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1148 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1149 << CurLoop->getHeader()->getParent()->getName() 1150 << "] Noncountable Loop %" 1151 << CurLoop->getHeader()->getName() << "\n"); 1152 1153 return recognizePopcount() || recognizeAndInsertFFS(); 1154 } 1155 1156 /// Check if the given conditional branch is based on the comparison between 1157 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1158 /// true), the control yields to the loop entry. If the branch matches the 1159 /// behavior, the variable involved in the comparison is returned. This function 1160 /// will be called to see if the precondition and postcondition of the loop are 1161 /// in desirable form. 1162 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1163 bool JmpOnZero = false) { 1164 if (!BI || !BI->isConditional()) 1165 return nullptr; 1166 1167 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1168 if (!Cond) 1169 return nullptr; 1170 1171 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1172 if (!CmpZero || !CmpZero->isZero()) 1173 return nullptr; 1174 1175 BasicBlock *TrueSucc = BI->getSuccessor(0); 1176 BasicBlock *FalseSucc = BI->getSuccessor(1); 1177 if (JmpOnZero) 1178 std::swap(TrueSucc, FalseSucc); 1179 1180 ICmpInst::Predicate Pred = Cond->getPredicate(); 1181 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1182 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1183 return Cond->getOperand(0); 1184 1185 return nullptr; 1186 } 1187 1188 // Check if the recurrence variable `VarX` is in the right form to create 1189 // the idiom. Returns the value coerced to a PHINode if so. 1190 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1191 BasicBlock *LoopEntry) { 1192 auto *PhiX = dyn_cast<PHINode>(VarX); 1193 if (PhiX && PhiX->getParent() == LoopEntry && 1194 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1195 return PhiX; 1196 return nullptr; 1197 } 1198 1199 /// Return true iff the idiom is detected in the loop. 1200 /// 1201 /// Additionally: 1202 /// 1) \p CntInst is set to the instruction counting the population bit. 1203 /// 2) \p CntPhi is set to the corresponding phi node. 1204 /// 3) \p Var is set to the value whose population bits are being counted. 1205 /// 1206 /// The core idiom we are trying to detect is: 1207 /// \code 1208 /// if (x0 != 0) 1209 /// goto loop-exit // the precondition of the loop 1210 /// cnt0 = init-val; 1211 /// do { 1212 /// x1 = phi (x0, x2); 1213 /// cnt1 = phi(cnt0, cnt2); 1214 /// 1215 /// cnt2 = cnt1 + 1; 1216 /// ... 1217 /// x2 = x1 & (x1 - 1); 1218 /// ... 1219 /// } while(x != 0); 1220 /// 1221 /// loop-exit: 1222 /// \endcode 1223 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1224 Instruction *&CntInst, PHINode *&CntPhi, 1225 Value *&Var) { 1226 // step 1: Check to see if the look-back branch match this pattern: 1227 // "if (a!=0) goto loop-entry". 1228 BasicBlock *LoopEntry; 1229 Instruction *DefX2, *CountInst; 1230 Value *VarX1, *VarX0; 1231 PHINode *PhiX, *CountPhi; 1232 1233 DefX2 = CountInst = nullptr; 1234 VarX1 = VarX0 = nullptr; 1235 PhiX = CountPhi = nullptr; 1236 LoopEntry = *(CurLoop->block_begin()); 1237 1238 // step 1: Check if the loop-back branch is in desirable form. 1239 { 1240 if (Value *T = matchCondition( 1241 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1242 DefX2 = dyn_cast<Instruction>(T); 1243 else 1244 return false; 1245 } 1246 1247 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1248 { 1249 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1250 return false; 1251 1252 BinaryOperator *SubOneOp; 1253 1254 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1255 VarX1 = DefX2->getOperand(1); 1256 else { 1257 VarX1 = DefX2->getOperand(0); 1258 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1259 } 1260 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1261 return false; 1262 1263 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1264 if (!Dec || 1265 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1266 (SubOneOp->getOpcode() == Instruction::Add && 1267 Dec->isMinusOne()))) { 1268 return false; 1269 } 1270 } 1271 1272 // step 3: Check the recurrence of variable X 1273 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1274 if (!PhiX) 1275 return false; 1276 1277 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1278 { 1279 CountInst = nullptr; 1280 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1281 IterE = LoopEntry->end(); 1282 Iter != IterE; Iter++) { 1283 Instruction *Inst = &*Iter; 1284 if (Inst->getOpcode() != Instruction::Add) 1285 continue; 1286 1287 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1288 if (!Inc || !Inc->isOne()) 1289 continue; 1290 1291 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1292 if (!Phi) 1293 continue; 1294 1295 // Check if the result of the instruction is live of the loop. 1296 bool LiveOutLoop = false; 1297 for (User *U : Inst->users()) { 1298 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1299 LiveOutLoop = true; 1300 break; 1301 } 1302 } 1303 1304 if (LiveOutLoop) { 1305 CountInst = Inst; 1306 CountPhi = Phi; 1307 break; 1308 } 1309 } 1310 1311 if (!CountInst) 1312 return false; 1313 } 1314 1315 // step 5: check if the precondition is in this form: 1316 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1317 { 1318 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1319 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1320 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1321 return false; 1322 1323 CntInst = CountInst; 1324 CntPhi = CountPhi; 1325 Var = T; 1326 } 1327 1328 return true; 1329 } 1330 1331 /// Return true if the idiom is detected in the loop. 1332 /// 1333 /// Additionally: 1334 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1335 /// or nullptr if there is no such. 1336 /// 2) \p CntPhi is set to the corresponding phi node 1337 /// or nullptr if there is no such. 1338 /// 3) \p Var is set to the value whose CTLZ could be used. 1339 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1340 /// 1341 /// The core idiom we are trying to detect is: 1342 /// \code 1343 /// if (x0 == 0) 1344 /// goto loop-exit // the precondition of the loop 1345 /// cnt0 = init-val; 1346 /// do { 1347 /// x = phi (x0, x.next); //PhiX 1348 /// cnt = phi(cnt0, cnt.next); 1349 /// 1350 /// cnt.next = cnt + 1; 1351 /// ... 1352 /// x.next = x >> 1; // DefX 1353 /// ... 1354 /// } while(x.next != 0); 1355 /// 1356 /// loop-exit: 1357 /// \endcode 1358 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1359 Intrinsic::ID &IntrinID, Value *&InitX, 1360 Instruction *&CntInst, PHINode *&CntPhi, 1361 Instruction *&DefX) { 1362 BasicBlock *LoopEntry; 1363 Value *VarX = nullptr; 1364 1365 DefX = nullptr; 1366 CntInst = nullptr; 1367 CntPhi = nullptr; 1368 LoopEntry = *(CurLoop->block_begin()); 1369 1370 // step 1: Check if the loop-back branch is in desirable form. 1371 if (Value *T = matchCondition( 1372 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1373 DefX = dyn_cast<Instruction>(T); 1374 else 1375 return false; 1376 1377 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1378 if (!DefX || !DefX->isShift()) 1379 return false; 1380 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1381 Intrinsic::ctlz; 1382 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1383 if (!Shft || !Shft->isOne()) 1384 return false; 1385 VarX = DefX->getOperand(0); 1386 1387 // step 3: Check the recurrence of variable X 1388 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1389 if (!PhiX) 1390 return false; 1391 1392 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1393 1394 // Make sure the initial value can't be negative otherwise the ashr in the 1395 // loop might never reach zero which would make the loop infinite. 1396 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1397 return false; 1398 1399 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1400 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1401 // then all uses of "cnt.next" could be optimized to the trip count 1402 // plus "cnt0". Currently it is not optimized. 1403 // This step could be used to detect POPCNT instruction: 1404 // cnt.next = cnt + (x.next & 1) 1405 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1406 IterE = LoopEntry->end(); 1407 Iter != IterE; Iter++) { 1408 Instruction *Inst = &*Iter; 1409 if (Inst->getOpcode() != Instruction::Add) 1410 continue; 1411 1412 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1413 if (!Inc || !Inc->isOne()) 1414 continue; 1415 1416 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1417 if (!Phi) 1418 continue; 1419 1420 CntInst = Inst; 1421 CntPhi = Phi; 1422 break; 1423 } 1424 if (!CntInst) 1425 return false; 1426 1427 return true; 1428 } 1429 1430 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1431 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1432 /// trip count returns true; otherwise, returns false. 1433 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1434 // Give up if the loop has multiple blocks or multiple backedges. 1435 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1436 return false; 1437 1438 Intrinsic::ID IntrinID; 1439 Value *InitX; 1440 Instruction *DefX = nullptr; 1441 PHINode *CntPhi = nullptr; 1442 Instruction *CntInst = nullptr; 1443 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1444 // this is always 6. 1445 size_t IdiomCanonicalSize = 6; 1446 1447 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1448 CntInst, CntPhi, DefX)) 1449 return false; 1450 1451 bool IsCntPhiUsedOutsideLoop = false; 1452 for (User *U : CntPhi->users()) 1453 if (!CurLoop->contains(cast<Instruction>(U))) { 1454 IsCntPhiUsedOutsideLoop = true; 1455 break; 1456 } 1457 bool IsCntInstUsedOutsideLoop = false; 1458 for (User *U : CntInst->users()) 1459 if (!CurLoop->contains(cast<Instruction>(U))) { 1460 IsCntInstUsedOutsideLoop = true; 1461 break; 1462 } 1463 // If both CntInst and CntPhi are used outside the loop the profitability 1464 // is questionable. 1465 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1466 return false; 1467 1468 // For some CPUs result of CTLZ(X) intrinsic is undefined 1469 // when X is 0. If we can not guarantee X != 0, we need to check this 1470 // when expand. 1471 bool ZeroCheck = false; 1472 // It is safe to assume Preheader exist as it was checked in 1473 // parent function RunOnLoop. 1474 BasicBlock *PH = CurLoop->getLoopPreheader(); 1475 1476 // If we are using the count instruction outside the loop, make sure we 1477 // have a zero check as a precondition. Without the check the loop would run 1478 // one iteration for before any check of the input value. This means 0 and 1 1479 // would have identical behavior in the original loop and thus 1480 if (!IsCntPhiUsedOutsideLoop) { 1481 auto *PreCondBB = PH->getSinglePredecessor(); 1482 if (!PreCondBB) 1483 return false; 1484 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1485 if (!PreCondBI) 1486 return false; 1487 if (matchCondition(PreCondBI, PH) != InitX) 1488 return false; 1489 ZeroCheck = true; 1490 } 1491 1492 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1493 // profitable if we delete the loop. 1494 1495 // the loop has only 6 instructions: 1496 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1497 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1498 // %shr = ashr %n.addr.0, 1 1499 // %tobool = icmp eq %shr, 0 1500 // %inc = add nsw %i.0, 1 1501 // br i1 %tobool 1502 1503 const Value *Args[] = 1504 {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) 1505 : ConstantInt::getFalse(InitX->getContext())}; 1506 1507 // @llvm.dbg doesn't count as they have no semantic effect. 1508 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1509 uint32_t HeaderSize = 1510 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1511 1512 if (HeaderSize != IdiomCanonicalSize && 1513 TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) > 1514 TargetTransformInfo::TCC_Basic) 1515 return false; 1516 1517 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1518 DefX->getDebugLoc(), ZeroCheck, 1519 IsCntPhiUsedOutsideLoop); 1520 return true; 1521 } 1522 1523 /// Recognizes a population count idiom in a non-countable loop. 1524 /// 1525 /// If detected, transforms the relevant code to issue the popcount intrinsic 1526 /// function call, and returns true; otherwise, returns false. 1527 bool LoopIdiomRecognize::recognizePopcount() { 1528 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1529 return false; 1530 1531 // Counting population are usually conducted by few arithmetic instructions. 1532 // Such instructions can be easily "absorbed" by vacant slots in a 1533 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1534 // in a compact loop. 1535 1536 // Give up if the loop has multiple blocks or multiple backedges. 1537 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1538 return false; 1539 1540 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1541 if (LoopBody->size() >= 20) { 1542 // The loop is too big, bail out. 1543 return false; 1544 } 1545 1546 // It should have a preheader containing nothing but an unconditional branch. 1547 BasicBlock *PH = CurLoop->getLoopPreheader(); 1548 if (!PH || &PH->front() != PH->getTerminator()) 1549 return false; 1550 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1551 if (!EntryBI || EntryBI->isConditional()) 1552 return false; 1553 1554 // It should have a precondition block where the generated popcount intrinsic 1555 // function can be inserted. 1556 auto *PreCondBB = PH->getSinglePredecessor(); 1557 if (!PreCondBB) 1558 return false; 1559 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1560 if (!PreCondBI || PreCondBI->isUnconditional()) 1561 return false; 1562 1563 Instruction *CntInst; 1564 PHINode *CntPhi; 1565 Value *Val; 1566 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1567 return false; 1568 1569 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1570 return true; 1571 } 1572 1573 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1574 const DebugLoc &DL) { 1575 Value *Ops[] = {Val}; 1576 Type *Tys[] = {Val->getType()}; 1577 1578 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1579 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1580 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1581 CI->setDebugLoc(DL); 1582 1583 return CI; 1584 } 1585 1586 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1587 const DebugLoc &DL, bool ZeroCheck, 1588 Intrinsic::ID IID) { 1589 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1590 Type *Tys[] = {Val->getType()}; 1591 1592 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1593 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1594 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1595 CI->setDebugLoc(DL); 1596 1597 return CI; 1598 } 1599 1600 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1601 /// loop: 1602 /// CntPhi = PHI [Cnt0, CntInst] 1603 /// PhiX = PHI [InitX, DefX] 1604 /// CntInst = CntPhi + 1 1605 /// DefX = PhiX >> 1 1606 /// LOOP_BODY 1607 /// Br: loop if (DefX != 0) 1608 /// Use(CntPhi) or Use(CntInst) 1609 /// 1610 /// Into: 1611 /// If CntPhi used outside the loop: 1612 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1613 /// Count = CountPrev + 1 1614 /// else 1615 /// Count = BitWidth(InitX) - CTLZ(InitX) 1616 /// loop: 1617 /// CntPhi = PHI [Cnt0, CntInst] 1618 /// PhiX = PHI [InitX, DefX] 1619 /// PhiCount = PHI [Count, Dec] 1620 /// CntInst = CntPhi + 1 1621 /// DefX = PhiX >> 1 1622 /// Dec = PhiCount - 1 1623 /// LOOP_BODY 1624 /// Br: loop if (Dec != 0) 1625 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1626 /// or 1627 /// Use(Count + Cnt0) // Use(CntInst) 1628 /// 1629 /// If LOOP_BODY is empty the loop will be deleted. 1630 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1631 void LoopIdiomRecognize::transformLoopToCountable( 1632 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1633 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1634 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1635 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1636 1637 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1638 IRBuilder<> Builder(PreheaderBr); 1639 Builder.SetCurrentDebugLocation(DL); 1640 Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext; 1641 1642 // Count = BitWidth - CTLZ(InitX); 1643 // If there are uses of CntPhi create: 1644 // CountPrev = BitWidth - CTLZ(InitX >> 1); 1645 if (IsCntPhiUsedOutsideLoop) { 1646 if (DefX->getOpcode() == Instruction::AShr) 1647 InitXNext = 1648 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1649 else if (DefX->getOpcode() == Instruction::LShr) 1650 InitXNext = 1651 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1652 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1653 InitXNext = 1654 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); 1655 else 1656 llvm_unreachable("Unexpected opcode!"); 1657 } else 1658 InitXNext = InitX; 1659 FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1660 Count = Builder.CreateSub( 1661 ConstantInt::get(FFS->getType(), 1662 FFS->getType()->getIntegerBitWidth()), 1663 FFS); 1664 if (IsCntPhiUsedOutsideLoop) { 1665 CountPrev = Count; 1666 Count = Builder.CreateAdd( 1667 CountPrev, 1668 ConstantInt::get(CountPrev->getType(), 1)); 1669 } 1670 1671 NewCount = Builder.CreateZExtOrTrunc( 1672 IsCntPhiUsedOutsideLoop ? CountPrev : Count, 1673 cast<IntegerType>(CntInst->getType())); 1674 1675 // If the counter's initial value is not zero, insert Add Inst. 1676 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1677 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1678 if (!InitConst || !InitConst->isZero()) 1679 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1680 1681 // Step 2: Insert new IV and loop condition: 1682 // loop: 1683 // ... 1684 // PhiCount = PHI [Count, Dec] 1685 // ... 1686 // Dec = PhiCount - 1 1687 // ... 1688 // Br: loop if (Dec != 0) 1689 BasicBlock *Body = *(CurLoop->block_begin()); 1690 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1691 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1692 Type *Ty = Count->getType(); 1693 1694 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1695 1696 Builder.SetInsertPoint(LbCond); 1697 Instruction *TcDec = cast<Instruction>( 1698 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1699 "tcdec", false, true)); 1700 1701 TcPhi->addIncoming(Count, Preheader); 1702 TcPhi->addIncoming(TcDec, Body); 1703 1704 CmpInst::Predicate Pred = 1705 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1706 LbCond->setPredicate(Pred); 1707 LbCond->setOperand(0, TcDec); 1708 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1709 1710 // Step 3: All the references to the original counter outside 1711 // the loop are replaced with the NewCount 1712 if (IsCntPhiUsedOutsideLoop) 1713 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1714 else 1715 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1716 1717 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1718 // loop. The loop would otherwise not be deleted even if it becomes empty. 1719 SE->forgetLoop(CurLoop); 1720 } 1721 1722 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1723 Instruction *CntInst, 1724 PHINode *CntPhi, Value *Var) { 1725 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1726 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1727 const DebugLoc &DL = CntInst->getDebugLoc(); 1728 1729 // Assuming before transformation, the loop is following: 1730 // if (x) // the precondition 1731 // do { cnt++; x &= x - 1; } while(x); 1732 1733 // Step 1: Insert the ctpop instruction at the end of the precondition block 1734 IRBuilder<> Builder(PreCondBr); 1735 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1736 { 1737 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1738 NewCount = PopCntZext = 1739 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1740 1741 if (NewCount != PopCnt) 1742 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1743 1744 // TripCnt is exactly the number of iterations the loop has 1745 TripCnt = NewCount; 1746 1747 // If the population counter's initial value is not zero, insert Add Inst. 1748 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1749 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1750 if (!InitConst || !InitConst->isZero()) { 1751 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1752 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1753 } 1754 } 1755 1756 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1757 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1758 // function would be partial dead code, and downstream passes will drag 1759 // it back from the precondition block to the preheader. 1760 { 1761 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1762 1763 Value *Opnd0 = PopCntZext; 1764 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1765 if (PreCond->getOperand(0) != Var) 1766 std::swap(Opnd0, Opnd1); 1767 1768 ICmpInst *NewPreCond = cast<ICmpInst>( 1769 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1770 PreCondBr->setCondition(NewPreCond); 1771 1772 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1773 } 1774 1775 // Step 3: Note that the population count is exactly the trip count of the 1776 // loop in question, which enable us to convert the loop from noncountable 1777 // loop into a countable one. The benefit is twofold: 1778 // 1779 // - If the loop only counts population, the entire loop becomes dead after 1780 // the transformation. It is a lot easier to prove a countable loop dead 1781 // than to prove a noncountable one. (In some C dialects, an infinite loop 1782 // isn't dead even if it computes nothing useful. In general, DCE needs 1783 // to prove a noncountable loop finite before safely delete it.) 1784 // 1785 // - If the loop also performs something else, it remains alive. 1786 // Since it is transformed to countable form, it can be aggressively 1787 // optimized by some optimizations which are in general not applicable 1788 // to a noncountable loop. 1789 // 1790 // After this step, this loop (conceptually) would look like following: 1791 // newcnt = __builtin_ctpop(x); 1792 // t = newcnt; 1793 // if (x) 1794 // do { cnt++; x &= x-1; t--) } while (t > 0); 1795 BasicBlock *Body = *(CurLoop->block_begin()); 1796 { 1797 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1798 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1799 Type *Ty = TripCnt->getType(); 1800 1801 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1802 1803 Builder.SetInsertPoint(LbCond); 1804 Instruction *TcDec = cast<Instruction>( 1805 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1806 "tcdec", false, true)); 1807 1808 TcPhi->addIncoming(TripCnt, PreHead); 1809 TcPhi->addIncoming(TcDec, Body); 1810 1811 CmpInst::Predicate Pred = 1812 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1813 LbCond->setPredicate(Pred); 1814 LbCond->setOperand(0, TcDec); 1815 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1816 } 1817 1818 // Step 4: All the references to the original population counter outside 1819 // the loop are replaced with the NewCount -- the value returned from 1820 // __builtin_ctpop(). 1821 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1822 1823 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1824 // loop. The loop would otherwise not be deleted even if it becomes empty. 1825 SE->forgetLoop(CurLoop); 1826 } 1827