1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/LoopAccessAnalysis.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpander.h"
57 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
58 #include "llvm/Analysis/TargetLibraryInfo.h"
59 #include "llvm/Analysis/TargetTransformInfo.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GlobalValue.h"
70 #include "llvm/IR/GlobalVariable.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/LLVMContext.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/IR/ValueHandle.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Scalar.h"
90 #include "llvm/Transforms/Utils/BuildLibCalls.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/LoopUtils.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 
101 #define DEBUG_TYPE "loop-idiom"
102 
103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
105 
106 static cl::opt<bool> UseLIRCodeSizeHeurs(
107     "use-lir-code-size-heurs",
108     cl::desc("Use loop idiom recognition code size heuristics when compiling"
109              "with -Os/-Oz"),
110     cl::init(true), cl::Hidden);
111 
112 namespace {
113 
114 class LoopIdiomRecognize {
115   Loop *CurLoop = nullptr;
116   AliasAnalysis *AA;
117   DominatorTree *DT;
118   LoopInfo *LI;
119   ScalarEvolution *SE;
120   TargetLibraryInfo *TLI;
121   const TargetTransformInfo *TTI;
122   const DataLayout *DL;
123   OptimizationRemarkEmitter &ORE;
124   bool ApplyCodeSizeHeuristics;
125 
126 public:
127   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
128                               LoopInfo *LI, ScalarEvolution *SE,
129                               TargetLibraryInfo *TLI,
130                               const TargetTransformInfo *TTI,
131                               const DataLayout *DL,
132                               OptimizationRemarkEmitter &ORE)
133       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {}
134 
135   bool runOnLoop(Loop *L);
136 
137 private:
138   using StoreList = SmallVector<StoreInst *, 8>;
139   using StoreListMap = MapVector<Value *, StoreList>;
140 
141   StoreListMap StoreRefsForMemset;
142   StoreListMap StoreRefsForMemsetPattern;
143   StoreList StoreRefsForMemcpy;
144   bool HasMemset;
145   bool HasMemsetPattern;
146   bool HasMemcpy;
147 
148   /// Return code for isLegalStore()
149   enum LegalStoreKind {
150     None = 0,
151     Memset,
152     MemsetPattern,
153     Memcpy,
154     UnorderedAtomicMemcpy,
155     DontUse // Dummy retval never to be used. Allows catching errors in retval
156             // handling.
157   };
158 
159   /// \name Countable Loop Idiom Handling
160   /// @{
161 
162   bool runOnCountableLoop();
163   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
164                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
165 
166   void collectStores(BasicBlock *BB);
167   LegalStoreKind isLegalStore(StoreInst *SI);
168   enum class ForMemset { No, Yes };
169   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
170                          ForMemset For);
171   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
172 
173   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
174                                unsigned StoreAlignment, Value *StoredVal,
175                                Instruction *TheStore,
176                                SmallPtrSetImpl<Instruction *> &Stores,
177                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
178                                bool NegStride, bool IsLoopMemset = false);
179   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
180   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
181                                  bool IsLoopMemset = false);
182 
183   /// @}
184   /// \name Noncountable Loop Idiom Handling
185   /// @{
186 
187   bool runOnNoncountableLoop();
188 
189   bool recognizePopcount();
190   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
191                                PHINode *CntPhi, Value *Var);
192   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
193   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
194                                 Instruction *CntInst, PHINode *CntPhi,
195                                 Value *Var, Instruction *DefX,
196                                 const DebugLoc &DL, bool ZeroCheck,
197                                 bool IsCntPhiUsedOutsideLoop);
198 
199   /// @}
200 };
201 
202 class LoopIdiomRecognizeLegacyPass : public LoopPass {
203 public:
204   static char ID;
205 
206   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
207     initializeLoopIdiomRecognizeLegacyPassPass(
208         *PassRegistry::getPassRegistry());
209   }
210 
211   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
212     if (skipLoop(L))
213       return false;
214 
215     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
216     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
217     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
218     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
219     TargetLibraryInfo *TLI =
220         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
221             *L->getHeader()->getParent());
222     const TargetTransformInfo *TTI =
223         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
224             *L->getHeader()->getParent());
225     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
226 
227     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
228     // pass.  Function analyses need to be preserved across loop transformations
229     // but ORE cannot be preserved (see comment before the pass definition).
230     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
231 
232     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE);
233     return LIR.runOnLoop(L);
234   }
235 
236   /// This transformation requires natural loop information & requires that
237   /// loop preheaders be inserted into the CFG.
238   void getAnalysisUsage(AnalysisUsage &AU) const override {
239     AU.addRequired<TargetLibraryInfoWrapperPass>();
240     AU.addRequired<TargetTransformInfoWrapperPass>();
241     getLoopAnalysisUsage(AU);
242   }
243 };
244 
245 } // end anonymous namespace
246 
247 char LoopIdiomRecognizeLegacyPass::ID = 0;
248 
249 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
250                                               LoopStandardAnalysisResults &AR,
251                                               LPMUpdater &) {
252   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
253 
254   const auto &FAM =
255       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
256   Function *F = L.getHeader()->getParent();
257 
258   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
259   // FIXME: This should probably be optional rather than required.
260   if (!ORE)
261     report_fatal_error(
262         "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
263         "at a higher level");
264 
265   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
266                          *ORE);
267   if (!LIR.runOnLoop(&L))
268     return PreservedAnalyses::all();
269 
270   return getLoopPassPreservedAnalyses();
271 }
272 
273 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
274                       "Recognize loop idioms", false, false)
275 INITIALIZE_PASS_DEPENDENCY(LoopPass)
276 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
277 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
278 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
279                     "Recognize loop idioms", false, false)
280 
281 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
282 
283 static void deleteDeadInstruction(Instruction *I) {
284   I->replaceAllUsesWith(UndefValue::get(I->getType()));
285   I->eraseFromParent();
286 }
287 
288 //===----------------------------------------------------------------------===//
289 //
290 //          Implementation of LoopIdiomRecognize
291 //
292 //===----------------------------------------------------------------------===//
293 
294 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
295   CurLoop = L;
296   // If the loop could not be converted to canonical form, it must have an
297   // indirectbr in it, just give up.
298   if (!L->getLoopPreheader())
299     return false;
300 
301   // Disable loop idiom recognition if the function's name is a common idiom.
302   StringRef Name = L->getHeader()->getParent()->getName();
303   if (Name == "memset" || Name == "memcpy")
304     return false;
305 
306   // Determine if code size heuristics need to be applied.
307   ApplyCodeSizeHeuristics =
308       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
309 
310   HasMemset = TLI->has(LibFunc_memset);
311   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
312   HasMemcpy = TLI->has(LibFunc_memcpy);
313 
314   if (HasMemset || HasMemsetPattern || HasMemcpy)
315     if (SE->hasLoopInvariantBackedgeTakenCount(L))
316       return runOnCountableLoop();
317 
318   return runOnNoncountableLoop();
319 }
320 
321 bool LoopIdiomRecognize::runOnCountableLoop() {
322   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
323   assert(!isa<SCEVCouldNotCompute>(BECount) &&
324          "runOnCountableLoop() called on a loop without a predictable"
325          "backedge-taken count");
326 
327   // If this loop executes exactly one time, then it should be peeled, not
328   // optimized by this pass.
329   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
330     if (BECst->getAPInt() == 0)
331       return false;
332 
333   SmallVector<BasicBlock *, 8> ExitBlocks;
334   CurLoop->getUniqueExitBlocks(ExitBlocks);
335 
336   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
337                     << CurLoop->getHeader()->getParent()->getName()
338                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
339                     << "\n");
340 
341   bool MadeChange = false;
342 
343   // The following transforms hoist stores/memsets into the loop pre-header.
344   // Give up if the loop has instructions may throw.
345   SimpleLoopSafetyInfo SafetyInfo;
346   SafetyInfo.computeLoopSafetyInfo(CurLoop);
347   if (SafetyInfo.anyBlockMayThrow())
348     return MadeChange;
349 
350   // Scan all the blocks in the loop that are not in subloops.
351   for (auto *BB : CurLoop->getBlocks()) {
352     // Ignore blocks in subloops.
353     if (LI->getLoopFor(BB) != CurLoop)
354       continue;
355 
356     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
357   }
358   return MadeChange;
359 }
360 
361 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
362   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
363   return ConstStride->getAPInt();
364 }
365 
366 /// getMemSetPatternValue - If a strided store of the specified value is safe to
367 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
368 /// be passed in.  Otherwise, return null.
369 ///
370 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
371 /// just replicate their input array and then pass on to memset_pattern16.
372 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
373   // FIXME: This could check for UndefValue because it can be merged into any
374   // other valid pattern.
375 
376   // If the value isn't a constant, we can't promote it to being in a constant
377   // array.  We could theoretically do a store to an alloca or something, but
378   // that doesn't seem worthwhile.
379   Constant *C = dyn_cast<Constant>(V);
380   if (!C)
381     return nullptr;
382 
383   // Only handle simple values that are a power of two bytes in size.
384   uint64_t Size = DL->getTypeSizeInBits(V->getType());
385   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
386     return nullptr;
387 
388   // Don't care enough about darwin/ppc to implement this.
389   if (DL->isBigEndian())
390     return nullptr;
391 
392   // Convert to size in bytes.
393   Size /= 8;
394 
395   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
396   // if the top and bottom are the same (e.g. for vectors and large integers).
397   if (Size > 16)
398     return nullptr;
399 
400   // If the constant is exactly 16 bytes, just use it.
401   if (Size == 16)
402     return C;
403 
404   // Otherwise, we'll use an array of the constants.
405   unsigned ArraySize = 16 / Size;
406   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
407   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
408 }
409 
410 LoopIdiomRecognize::LegalStoreKind
411 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
412   // Don't touch volatile stores.
413   if (SI->isVolatile())
414     return LegalStoreKind::None;
415   // We only want simple or unordered-atomic stores.
416   if (!SI->isUnordered())
417     return LegalStoreKind::None;
418 
419   // Don't convert stores of non-integral pointer types to memsets (which stores
420   // integers).
421   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
422     return LegalStoreKind::None;
423 
424   // Avoid merging nontemporal stores.
425   if (SI->getMetadata(LLVMContext::MD_nontemporal))
426     return LegalStoreKind::None;
427 
428   Value *StoredVal = SI->getValueOperand();
429   Value *StorePtr = SI->getPointerOperand();
430 
431   // Reject stores that are so large that they overflow an unsigned.
432   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
433   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
434     return LegalStoreKind::None;
435 
436   // See if the pointer expression is an AddRec like {base,+,1} on the current
437   // loop, which indicates a strided store.  If we have something else, it's a
438   // random store we can't handle.
439   const SCEVAddRecExpr *StoreEv =
440       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
441   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
442     return LegalStoreKind::None;
443 
444   // Check to see if we have a constant stride.
445   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
446     return LegalStoreKind::None;
447 
448   // See if the store can be turned into a memset.
449 
450   // If the stored value is a byte-wise value (like i32 -1), then it may be
451   // turned into a memset of i8 -1, assuming that all the consecutive bytes
452   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
453   // but it can be turned into memset_pattern if the target supports it.
454   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
455   Constant *PatternValue = nullptr;
456 
457   // Note: memset and memset_pattern on unordered-atomic is yet not supported
458   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
459 
460   // If we're allowed to form a memset, and the stored value would be
461   // acceptable for memset, use it.
462   if (!UnorderedAtomic && HasMemset && SplatValue &&
463       // Verify that the stored value is loop invariant.  If not, we can't
464       // promote the memset.
465       CurLoop->isLoopInvariant(SplatValue)) {
466     // It looks like we can use SplatValue.
467     return LegalStoreKind::Memset;
468   } else if (!UnorderedAtomic && HasMemsetPattern &&
469              // Don't create memset_pattern16s with address spaces.
470              StorePtr->getType()->getPointerAddressSpace() == 0 &&
471              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
472     // It looks like we can use PatternValue!
473     return LegalStoreKind::MemsetPattern;
474   }
475 
476   // Otherwise, see if the store can be turned into a memcpy.
477   if (HasMemcpy) {
478     // Check to see if the stride matches the size of the store.  If so, then we
479     // know that every byte is touched in the loop.
480     APInt Stride = getStoreStride(StoreEv);
481     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
482     if (StoreSize != Stride && StoreSize != -Stride)
483       return LegalStoreKind::None;
484 
485     // The store must be feeding a non-volatile load.
486     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
487 
488     // Only allow non-volatile loads
489     if (!LI || LI->isVolatile())
490       return LegalStoreKind::None;
491     // Only allow simple or unordered-atomic loads
492     if (!LI->isUnordered())
493       return LegalStoreKind::None;
494 
495     // See if the pointer expression is an AddRec like {base,+,1} on the current
496     // loop, which indicates a strided load.  If we have something else, it's a
497     // random load we can't handle.
498     const SCEVAddRecExpr *LoadEv =
499         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
500     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
501       return LegalStoreKind::None;
502 
503     // The store and load must share the same stride.
504     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
505       return LegalStoreKind::None;
506 
507     // Success.  This store can be converted into a memcpy.
508     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
509     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
510                            : LegalStoreKind::Memcpy;
511   }
512   // This store can't be transformed into a memset/memcpy.
513   return LegalStoreKind::None;
514 }
515 
516 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
517   StoreRefsForMemset.clear();
518   StoreRefsForMemsetPattern.clear();
519   StoreRefsForMemcpy.clear();
520   for (Instruction &I : *BB) {
521     StoreInst *SI = dyn_cast<StoreInst>(&I);
522     if (!SI)
523       continue;
524 
525     // Make sure this is a strided store with a constant stride.
526     switch (isLegalStore(SI)) {
527     case LegalStoreKind::None:
528       // Nothing to do
529       break;
530     case LegalStoreKind::Memset: {
531       // Find the base pointer.
532       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
533       StoreRefsForMemset[Ptr].push_back(SI);
534     } break;
535     case LegalStoreKind::MemsetPattern: {
536       // Find the base pointer.
537       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
538       StoreRefsForMemsetPattern[Ptr].push_back(SI);
539     } break;
540     case LegalStoreKind::Memcpy:
541     case LegalStoreKind::UnorderedAtomicMemcpy:
542       StoreRefsForMemcpy.push_back(SI);
543       break;
544     default:
545       assert(false && "unhandled return value");
546       break;
547     }
548   }
549 }
550 
551 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
552 /// with the specified backedge count.  This block is known to be in the current
553 /// loop and not in any subloops.
554 bool LoopIdiomRecognize::runOnLoopBlock(
555     BasicBlock *BB, const SCEV *BECount,
556     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
557   // We can only promote stores in this block if they are unconditionally
558   // executed in the loop.  For a block to be unconditionally executed, it has
559   // to dominate all the exit blocks of the loop.  Verify this now.
560   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
561     if (!DT->dominates(BB, ExitBlocks[i]))
562       return false;
563 
564   bool MadeChange = false;
565   // Look for store instructions, which may be optimized to memset/memcpy.
566   collectStores(BB);
567 
568   // Look for a single store or sets of stores with a common base, which can be
569   // optimized into a memset (memset_pattern).  The latter most commonly happens
570   // with structs and handunrolled loops.
571   for (auto &SL : StoreRefsForMemset)
572     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
573 
574   for (auto &SL : StoreRefsForMemsetPattern)
575     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
576 
577   // Optimize the store into a memcpy, if it feeds an similarly strided load.
578   for (auto &SI : StoreRefsForMemcpy)
579     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
580 
581   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
582     Instruction *Inst = &*I++;
583     // Look for memset instructions, which may be optimized to a larger memset.
584     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
585       WeakTrackingVH InstPtr(&*I);
586       if (!processLoopMemSet(MSI, BECount))
587         continue;
588       MadeChange = true;
589 
590       // If processing the memset invalidated our iterator, start over from the
591       // top of the block.
592       if (!InstPtr)
593         I = BB->begin();
594       continue;
595     }
596   }
597 
598   return MadeChange;
599 }
600 
601 /// See if this store(s) can be promoted to a memset.
602 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
603                                            const SCEV *BECount, ForMemset For) {
604   // Try to find consecutive stores that can be transformed into memsets.
605   SetVector<StoreInst *> Heads, Tails;
606   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
607 
608   // Do a quadratic search on all of the given stores and find
609   // all of the pairs of stores that follow each other.
610   SmallVector<unsigned, 16> IndexQueue;
611   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
612     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
613 
614     Value *FirstStoredVal = SL[i]->getValueOperand();
615     Value *FirstStorePtr = SL[i]->getPointerOperand();
616     const SCEVAddRecExpr *FirstStoreEv =
617         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
618     APInt FirstStride = getStoreStride(FirstStoreEv);
619     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
620 
621     // See if we can optimize just this store in isolation.
622     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
623       Heads.insert(SL[i]);
624       continue;
625     }
626 
627     Value *FirstSplatValue = nullptr;
628     Constant *FirstPatternValue = nullptr;
629 
630     if (For == ForMemset::Yes)
631       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
632     else
633       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
634 
635     assert((FirstSplatValue || FirstPatternValue) &&
636            "Expected either splat value or pattern value.");
637 
638     IndexQueue.clear();
639     // If a store has multiple consecutive store candidates, search Stores
640     // array according to the sequence: from i+1 to e, then from i-1 to 0.
641     // This is because usually pairing with immediate succeeding or preceding
642     // candidate create the best chance to find memset opportunity.
643     unsigned j = 0;
644     for (j = i + 1; j < e; ++j)
645       IndexQueue.push_back(j);
646     for (j = i; j > 0; --j)
647       IndexQueue.push_back(j - 1);
648 
649     for (auto &k : IndexQueue) {
650       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
651       Value *SecondStorePtr = SL[k]->getPointerOperand();
652       const SCEVAddRecExpr *SecondStoreEv =
653           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
654       APInt SecondStride = getStoreStride(SecondStoreEv);
655 
656       if (FirstStride != SecondStride)
657         continue;
658 
659       Value *SecondStoredVal = SL[k]->getValueOperand();
660       Value *SecondSplatValue = nullptr;
661       Constant *SecondPatternValue = nullptr;
662 
663       if (For == ForMemset::Yes)
664         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
665       else
666         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
667 
668       assert((SecondSplatValue || SecondPatternValue) &&
669              "Expected either splat value or pattern value.");
670 
671       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
672         if (For == ForMemset::Yes) {
673           if (isa<UndefValue>(FirstSplatValue))
674             FirstSplatValue = SecondSplatValue;
675           if (FirstSplatValue != SecondSplatValue)
676             continue;
677         } else {
678           if (isa<UndefValue>(FirstPatternValue))
679             FirstPatternValue = SecondPatternValue;
680           if (FirstPatternValue != SecondPatternValue)
681             continue;
682         }
683         Tails.insert(SL[k]);
684         Heads.insert(SL[i]);
685         ConsecutiveChain[SL[i]] = SL[k];
686         break;
687       }
688     }
689   }
690 
691   // We may run into multiple chains that merge into a single chain. We mark the
692   // stores that we transformed so that we don't visit the same store twice.
693   SmallPtrSet<Value *, 16> TransformedStores;
694   bool Changed = false;
695 
696   // For stores that start but don't end a link in the chain:
697   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
698        it != e; ++it) {
699     if (Tails.count(*it))
700       continue;
701 
702     // We found a store instr that starts a chain. Now follow the chain and try
703     // to transform it.
704     SmallPtrSet<Instruction *, 8> AdjacentStores;
705     StoreInst *I = *it;
706 
707     StoreInst *HeadStore = I;
708     unsigned StoreSize = 0;
709 
710     // Collect the chain into a list.
711     while (Tails.count(I) || Heads.count(I)) {
712       if (TransformedStores.count(I))
713         break;
714       AdjacentStores.insert(I);
715 
716       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
717       // Move to the next value in the chain.
718       I = ConsecutiveChain[I];
719     }
720 
721     Value *StoredVal = HeadStore->getValueOperand();
722     Value *StorePtr = HeadStore->getPointerOperand();
723     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
724     APInt Stride = getStoreStride(StoreEv);
725 
726     // Check to see if the stride matches the size of the stores.  If so, then
727     // we know that every byte is touched in the loop.
728     if (StoreSize != Stride && StoreSize != -Stride)
729       continue;
730 
731     bool NegStride = StoreSize == -Stride;
732 
733     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
734                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
735                                 BECount, NegStride)) {
736       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
737       Changed = true;
738     }
739   }
740 
741   return Changed;
742 }
743 
744 /// processLoopMemSet - See if this memset can be promoted to a large memset.
745 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
746                                            const SCEV *BECount) {
747   // We can only handle non-volatile memsets with a constant size.
748   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
749     return false;
750 
751   // If we're not allowed to hack on memset, we fail.
752   if (!HasMemset)
753     return false;
754 
755   Value *Pointer = MSI->getDest();
756 
757   // See if the pointer expression is an AddRec like {base,+,1} on the current
758   // loop, which indicates a strided store.  If we have something else, it's a
759   // random store we can't handle.
760   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
761   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
762     return false;
763 
764   // Reject memsets that are so large that they overflow an unsigned.
765   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
766   if ((SizeInBytes >> 32) != 0)
767     return false;
768 
769   // Check to see if the stride matches the size of the memset.  If so, then we
770   // know that every byte is touched in the loop.
771   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
772   if (!ConstStride)
773     return false;
774 
775   APInt Stride = ConstStride->getAPInt();
776   if (SizeInBytes != Stride && SizeInBytes != -Stride)
777     return false;
778 
779   // Verify that the memset value is loop invariant.  If not, we can't promote
780   // the memset.
781   Value *SplatValue = MSI->getValue();
782   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
783     return false;
784 
785   SmallPtrSet<Instruction *, 1> MSIs;
786   MSIs.insert(MSI);
787   bool NegStride = SizeInBytes == -Stride;
788   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
789                                  MSI->getDestAlignment(), SplatValue, MSI, MSIs,
790                                  Ev, BECount, NegStride, /*IsLoopMemset=*/true);
791 }
792 
793 /// mayLoopAccessLocation - Return true if the specified loop might access the
794 /// specified pointer location, which is a loop-strided access.  The 'Access'
795 /// argument specifies what the verboten forms of access are (read or write).
796 static bool
797 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
798                       const SCEV *BECount, unsigned StoreSize,
799                       AliasAnalysis &AA,
800                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
801   // Get the location that may be stored across the loop.  Since the access is
802   // strided positively through memory, we say that the modified location starts
803   // at the pointer and has infinite size.
804   LocationSize AccessSize = LocationSize::unknown();
805 
806   // If the loop iterates a fixed number of times, we can refine the access size
807   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
808   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
809     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
810                                        StoreSize);
811 
812   // TODO: For this to be really effective, we have to dive into the pointer
813   // operand in the store.  Store to &A[i] of 100 will always return may alias
814   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
815   // which will then no-alias a store to &A[100].
816   MemoryLocation StoreLoc(Ptr, AccessSize);
817 
818   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
819        ++BI)
820     for (Instruction &I : **BI)
821       if (IgnoredStores.count(&I) == 0 &&
822           isModOrRefSet(
823               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
824         return true;
825 
826   return false;
827 }
828 
829 // If we have a negative stride, Start refers to the end of the memory location
830 // we're trying to memset.  Therefore, we need to recompute the base pointer,
831 // which is just Start - BECount*Size.
832 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
833                                         Type *IntPtr, unsigned StoreSize,
834                                         ScalarEvolution *SE) {
835   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
836   if (StoreSize != 1)
837     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
838                            SCEV::FlagNUW);
839   return SE->getMinusSCEV(Start, Index);
840 }
841 
842 /// Compute the number of bytes as a SCEV from the backedge taken count.
843 ///
844 /// This also maps the SCEV into the provided type and tries to handle the
845 /// computation in a way that will fold cleanly.
846 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
847                                unsigned StoreSize, Loop *CurLoop,
848                                const DataLayout *DL, ScalarEvolution *SE) {
849   const SCEV *NumBytesS;
850   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
851   // pointer size if it isn't already.
852   //
853   // If we're going to need to zero extend the BE count, check if we can add
854   // one to it prior to zero extending without overflow. Provided this is safe,
855   // it allows better simplification of the +1.
856   if (DL->getTypeSizeInBits(BECount->getType()) <
857           DL->getTypeSizeInBits(IntPtr) &&
858       SE->isLoopEntryGuardedByCond(
859           CurLoop, ICmpInst::ICMP_NE, BECount,
860           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
861     NumBytesS = SE->getZeroExtendExpr(
862         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
863         IntPtr);
864   } else {
865     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
866                                SE->getOne(IntPtr), SCEV::FlagNUW);
867   }
868 
869   // And scale it based on the store size.
870   if (StoreSize != 1) {
871     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
872                                SCEV::FlagNUW);
873   }
874   return NumBytesS;
875 }
876 
877 /// processLoopStridedStore - We see a strided store of some value.  If we can
878 /// transform this into a memset or memset_pattern in the loop preheader, do so.
879 bool LoopIdiomRecognize::processLoopStridedStore(
880     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
881     Value *StoredVal, Instruction *TheStore,
882     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
883     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
884   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
885   Constant *PatternValue = nullptr;
886 
887   if (!SplatValue)
888     PatternValue = getMemSetPatternValue(StoredVal, DL);
889 
890   assert((SplatValue || PatternValue) &&
891          "Expected either splat value or pattern value.");
892 
893   // The trip count of the loop and the base pointer of the addrec SCEV is
894   // guaranteed to be loop invariant, which means that it should dominate the
895   // header.  This allows us to insert code for it in the preheader.
896   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
897   BasicBlock *Preheader = CurLoop->getLoopPreheader();
898   IRBuilder<> Builder(Preheader->getTerminator());
899   SCEVExpander Expander(*SE, *DL, "loop-idiom");
900 
901   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
902   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
903 
904   const SCEV *Start = Ev->getStart();
905   // Handle negative strided loops.
906   if (NegStride)
907     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
908 
909   // TODO: ideally we should still be able to generate memset if SCEV expander
910   // is taught to generate the dependencies at the latest point.
911   if (!isSafeToExpand(Start, *SE))
912     return false;
913 
914   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
915   // this into a memset in the loop preheader now if we want.  However, this
916   // would be unsafe to do if there is anything else in the loop that may read
917   // or write to the aliased location.  Check for any overlap by generating the
918   // base pointer and checking the region.
919   Value *BasePtr =
920       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
921   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
922                             StoreSize, *AA, Stores)) {
923     Expander.clear();
924     // If we generated new code for the base pointer, clean up.
925     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
926     return false;
927   }
928 
929   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
930     return false;
931 
932   // Okay, everything looks good, insert the memset.
933 
934   const SCEV *NumBytesS =
935       getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
936 
937   // TODO: ideally we should still be able to generate memset if SCEV expander
938   // is taught to generate the dependencies at the latest point.
939   if (!isSafeToExpand(NumBytesS, *SE))
940     return false;
941 
942   Value *NumBytes =
943       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
944 
945   CallInst *NewCall;
946   if (SplatValue) {
947     NewCall =
948         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
949   } else {
950     // Everything is emitted in default address space
951     Type *Int8PtrTy = DestInt8PtrTy;
952 
953     Module *M = TheStore->getModule();
954     StringRef FuncName = "memset_pattern16";
955     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
956                                                 Int8PtrTy, Int8PtrTy, IntPtr);
957     inferLibFuncAttributes(M, FuncName, *TLI);
958 
959     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
960     // an constant array of 16-bytes.  Plop the value into a mergable global.
961     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
962                                             GlobalValue::PrivateLinkage,
963                                             PatternValue, ".memset_pattern");
964     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
965     GV->setAlignment(16);
966     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
967     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
968   }
969 
970   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
971                     << "    from store to: " << *Ev << " at: " << *TheStore
972                     << "\n");
973   NewCall->setDebugLoc(TheStore->getDebugLoc());
974 
975   ORE.emit([&]() {
976     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
977                               NewCall->getDebugLoc(), Preheader)
978            << "Transformed loop-strided store into a call to "
979            << ore::NV("NewFunction", NewCall->getCalledFunction())
980            << "() function";
981   });
982 
983   // Okay, the memset has been formed.  Zap the original store and anything that
984   // feeds into it.
985   for (auto *I : Stores)
986     deleteDeadInstruction(I);
987   ++NumMemSet;
988   return true;
989 }
990 
991 /// If the stored value is a strided load in the same loop with the same stride
992 /// this may be transformable into a memcpy.  This kicks in for stuff like
993 /// for (i) A[i] = B[i];
994 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
995                                                     const SCEV *BECount) {
996   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
997 
998   Value *StorePtr = SI->getPointerOperand();
999   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1000   APInt Stride = getStoreStride(StoreEv);
1001   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1002   bool NegStride = StoreSize == -Stride;
1003 
1004   // The store must be feeding a non-volatile load.
1005   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1006   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1007 
1008   // See if the pointer expression is an AddRec like {base,+,1} on the current
1009   // loop, which indicates a strided load.  If we have something else, it's a
1010   // random load we can't handle.
1011   const SCEVAddRecExpr *LoadEv =
1012       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1013 
1014   // The trip count of the loop and the base pointer of the addrec SCEV is
1015   // guaranteed to be loop invariant, which means that it should dominate the
1016   // header.  This allows us to insert code for it in the preheader.
1017   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1018   IRBuilder<> Builder(Preheader->getTerminator());
1019   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1020 
1021   const SCEV *StrStart = StoreEv->getStart();
1022   unsigned StrAS = SI->getPointerAddressSpace();
1023   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
1024 
1025   // Handle negative strided loops.
1026   if (NegStride)
1027     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
1028 
1029   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1030   // this into a memcpy in the loop preheader now if we want.  However, this
1031   // would be unsafe to do if there is anything else in the loop that may read
1032   // or write the memory region we're storing to.  This includes the load that
1033   // feeds the stores.  Check for an alias by generating the base address and
1034   // checking everything.
1035   Value *StoreBasePtr = Expander.expandCodeFor(
1036       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1037 
1038   SmallPtrSet<Instruction *, 1> Stores;
1039   Stores.insert(SI);
1040   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1041                             StoreSize, *AA, Stores)) {
1042     Expander.clear();
1043     // If we generated new code for the base pointer, clean up.
1044     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1045     return false;
1046   }
1047 
1048   const SCEV *LdStart = LoadEv->getStart();
1049   unsigned LdAS = LI->getPointerAddressSpace();
1050 
1051   // Handle negative strided loops.
1052   if (NegStride)
1053     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
1054 
1055   // For a memcpy, we have to make sure that the input array is not being
1056   // mutated by the loop.
1057   Value *LoadBasePtr = Expander.expandCodeFor(
1058       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1059 
1060   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1061                             StoreSize, *AA, Stores)) {
1062     Expander.clear();
1063     // If we generated new code for the base pointer, clean up.
1064     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1065     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1066     return false;
1067   }
1068 
1069   if (avoidLIRForMultiBlockLoop())
1070     return false;
1071 
1072   // Okay, everything is safe, we can transform this!
1073 
1074   const SCEV *NumBytesS =
1075       getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
1076 
1077   Value *NumBytes =
1078       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1079 
1080   CallInst *NewCall = nullptr;
1081   // Check whether to generate an unordered atomic memcpy:
1082   //  If the load or store are atomic, then they must necessarily be unordered
1083   //  by previous checks.
1084   if (!SI->isAtomic() && !LI->isAtomic())
1085     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
1086                                    LoadBasePtr, LI->getAlignment(), NumBytes);
1087   else {
1088     // We cannot allow unaligned ops for unordered load/store, so reject
1089     // anything where the alignment isn't at least the element size.
1090     unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
1091     if (Align < StoreSize)
1092       return false;
1093 
1094     // If the element.atomic memcpy is not lowered into explicit
1095     // loads/stores later, then it will be lowered into an element-size
1096     // specific lib call. If the lib call doesn't exist for our store size, then
1097     // we shouldn't generate the memcpy.
1098     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1099       return false;
1100 
1101     // Create the call.
1102     // Note that unordered atomic loads/stores are *required* by the spec to
1103     // have an alignment but non-atomic loads/stores may not.
1104     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1105         StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
1106         NumBytes, StoreSize);
1107   }
1108   NewCall->setDebugLoc(SI->getDebugLoc());
1109 
1110   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1111                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1112                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1113                     << "\n");
1114 
1115   ORE.emit([&]() {
1116     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1117                               NewCall->getDebugLoc(), Preheader)
1118            << "Formed a call to "
1119            << ore::NV("NewFunction", NewCall->getCalledFunction())
1120            << "() function";
1121   });
1122 
1123   // Okay, the memcpy has been formed.  Zap the original store and anything that
1124   // feeds into it.
1125   deleteDeadInstruction(SI);
1126   ++NumMemCpy;
1127   return true;
1128 }
1129 
1130 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1131 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1132 //
1133 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1134                                                    bool IsLoopMemset) {
1135   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1136     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1137       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1138                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1139                         << " avoided: multi-block top-level loop\n");
1140       return true;
1141     }
1142   }
1143 
1144   return false;
1145 }
1146 
1147 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1148   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1149                     << CurLoop->getHeader()->getParent()->getName()
1150                     << "] Noncountable Loop %"
1151                     << CurLoop->getHeader()->getName() << "\n");
1152 
1153   return recognizePopcount() || recognizeAndInsertFFS();
1154 }
1155 
1156 /// Check if the given conditional branch is based on the comparison between
1157 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1158 /// true), the control yields to the loop entry. If the branch matches the
1159 /// behavior, the variable involved in the comparison is returned. This function
1160 /// will be called to see if the precondition and postcondition of the loop are
1161 /// in desirable form.
1162 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1163                              bool JmpOnZero = false) {
1164   if (!BI || !BI->isConditional())
1165     return nullptr;
1166 
1167   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1168   if (!Cond)
1169     return nullptr;
1170 
1171   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1172   if (!CmpZero || !CmpZero->isZero())
1173     return nullptr;
1174 
1175   BasicBlock *TrueSucc = BI->getSuccessor(0);
1176   BasicBlock *FalseSucc = BI->getSuccessor(1);
1177   if (JmpOnZero)
1178     std::swap(TrueSucc, FalseSucc);
1179 
1180   ICmpInst::Predicate Pred = Cond->getPredicate();
1181   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1182       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1183     return Cond->getOperand(0);
1184 
1185   return nullptr;
1186 }
1187 
1188 // Check if the recurrence variable `VarX` is in the right form to create
1189 // the idiom. Returns the value coerced to a PHINode if so.
1190 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1191                                  BasicBlock *LoopEntry) {
1192   auto *PhiX = dyn_cast<PHINode>(VarX);
1193   if (PhiX && PhiX->getParent() == LoopEntry &&
1194       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1195     return PhiX;
1196   return nullptr;
1197 }
1198 
1199 /// Return true iff the idiom is detected in the loop.
1200 ///
1201 /// Additionally:
1202 /// 1) \p CntInst is set to the instruction counting the population bit.
1203 /// 2) \p CntPhi is set to the corresponding phi node.
1204 /// 3) \p Var is set to the value whose population bits are being counted.
1205 ///
1206 /// The core idiom we are trying to detect is:
1207 /// \code
1208 ///    if (x0 != 0)
1209 ///      goto loop-exit // the precondition of the loop
1210 ///    cnt0 = init-val;
1211 ///    do {
1212 ///       x1 = phi (x0, x2);
1213 ///       cnt1 = phi(cnt0, cnt2);
1214 ///
1215 ///       cnt2 = cnt1 + 1;
1216 ///        ...
1217 ///       x2 = x1 & (x1 - 1);
1218 ///        ...
1219 ///    } while(x != 0);
1220 ///
1221 /// loop-exit:
1222 /// \endcode
1223 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1224                                 Instruction *&CntInst, PHINode *&CntPhi,
1225                                 Value *&Var) {
1226   // step 1: Check to see if the look-back branch match this pattern:
1227   //    "if (a!=0) goto loop-entry".
1228   BasicBlock *LoopEntry;
1229   Instruction *DefX2, *CountInst;
1230   Value *VarX1, *VarX0;
1231   PHINode *PhiX, *CountPhi;
1232 
1233   DefX2 = CountInst = nullptr;
1234   VarX1 = VarX0 = nullptr;
1235   PhiX = CountPhi = nullptr;
1236   LoopEntry = *(CurLoop->block_begin());
1237 
1238   // step 1: Check if the loop-back branch is in desirable form.
1239   {
1240     if (Value *T = matchCondition(
1241             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1242       DefX2 = dyn_cast<Instruction>(T);
1243     else
1244       return false;
1245   }
1246 
1247   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1248   {
1249     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1250       return false;
1251 
1252     BinaryOperator *SubOneOp;
1253 
1254     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1255       VarX1 = DefX2->getOperand(1);
1256     else {
1257       VarX1 = DefX2->getOperand(0);
1258       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1259     }
1260     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1261       return false;
1262 
1263     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1264     if (!Dec ||
1265         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1266           (SubOneOp->getOpcode() == Instruction::Add &&
1267            Dec->isMinusOne()))) {
1268       return false;
1269     }
1270   }
1271 
1272   // step 3: Check the recurrence of variable X
1273   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1274   if (!PhiX)
1275     return false;
1276 
1277   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1278   {
1279     CountInst = nullptr;
1280     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1281                               IterE = LoopEntry->end();
1282          Iter != IterE; Iter++) {
1283       Instruction *Inst = &*Iter;
1284       if (Inst->getOpcode() != Instruction::Add)
1285         continue;
1286 
1287       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1288       if (!Inc || !Inc->isOne())
1289         continue;
1290 
1291       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1292       if (!Phi)
1293         continue;
1294 
1295       // Check if the result of the instruction is live of the loop.
1296       bool LiveOutLoop = false;
1297       for (User *U : Inst->users()) {
1298         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1299           LiveOutLoop = true;
1300           break;
1301         }
1302       }
1303 
1304       if (LiveOutLoop) {
1305         CountInst = Inst;
1306         CountPhi = Phi;
1307         break;
1308       }
1309     }
1310 
1311     if (!CountInst)
1312       return false;
1313   }
1314 
1315   // step 5: check if the precondition is in this form:
1316   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1317   {
1318     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1319     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1320     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1321       return false;
1322 
1323     CntInst = CountInst;
1324     CntPhi = CountPhi;
1325     Var = T;
1326   }
1327 
1328   return true;
1329 }
1330 
1331 /// Return true if the idiom is detected in the loop.
1332 ///
1333 /// Additionally:
1334 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1335 ///       or nullptr if there is no such.
1336 /// 2) \p CntPhi is set to the corresponding phi node
1337 ///       or nullptr if there is no such.
1338 /// 3) \p Var is set to the value whose CTLZ could be used.
1339 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1340 ///
1341 /// The core idiom we are trying to detect is:
1342 /// \code
1343 ///    if (x0 == 0)
1344 ///      goto loop-exit // the precondition of the loop
1345 ///    cnt0 = init-val;
1346 ///    do {
1347 ///       x = phi (x0, x.next);   //PhiX
1348 ///       cnt = phi(cnt0, cnt.next);
1349 ///
1350 ///       cnt.next = cnt + 1;
1351 ///        ...
1352 ///       x.next = x >> 1;   // DefX
1353 ///        ...
1354 ///    } while(x.next != 0);
1355 ///
1356 /// loop-exit:
1357 /// \endcode
1358 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1359                                       Intrinsic::ID &IntrinID, Value *&InitX,
1360                                       Instruction *&CntInst, PHINode *&CntPhi,
1361                                       Instruction *&DefX) {
1362   BasicBlock *LoopEntry;
1363   Value *VarX = nullptr;
1364 
1365   DefX = nullptr;
1366   CntInst = nullptr;
1367   CntPhi = nullptr;
1368   LoopEntry = *(CurLoop->block_begin());
1369 
1370   // step 1: Check if the loop-back branch is in desirable form.
1371   if (Value *T = matchCondition(
1372           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1373     DefX = dyn_cast<Instruction>(T);
1374   else
1375     return false;
1376 
1377   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1378   if (!DefX || !DefX->isShift())
1379     return false;
1380   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1381                                                      Intrinsic::ctlz;
1382   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1383   if (!Shft || !Shft->isOne())
1384     return false;
1385   VarX = DefX->getOperand(0);
1386 
1387   // step 3: Check the recurrence of variable X
1388   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1389   if (!PhiX)
1390     return false;
1391 
1392   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1393 
1394   // Make sure the initial value can't be negative otherwise the ashr in the
1395   // loop might never reach zero which would make the loop infinite.
1396   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1397     return false;
1398 
1399   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1400   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1401   //       then all uses of "cnt.next" could be optimized to the trip count
1402   //       plus "cnt0". Currently it is not optimized.
1403   //       This step could be used to detect POPCNT instruction:
1404   //       cnt.next = cnt + (x.next & 1)
1405   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1406                             IterE = LoopEntry->end();
1407        Iter != IterE; Iter++) {
1408     Instruction *Inst = &*Iter;
1409     if (Inst->getOpcode() != Instruction::Add)
1410       continue;
1411 
1412     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1413     if (!Inc || !Inc->isOne())
1414       continue;
1415 
1416     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1417     if (!Phi)
1418       continue;
1419 
1420     CntInst = Inst;
1421     CntPhi = Phi;
1422     break;
1423   }
1424   if (!CntInst)
1425     return false;
1426 
1427   return true;
1428 }
1429 
1430 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1431 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1432 /// trip count returns true; otherwise, returns false.
1433 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1434   // Give up if the loop has multiple blocks or multiple backedges.
1435   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1436     return false;
1437 
1438   Intrinsic::ID IntrinID;
1439   Value *InitX;
1440   Instruction *DefX = nullptr;
1441   PHINode *CntPhi = nullptr;
1442   Instruction *CntInst = nullptr;
1443   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1444   // this is always 6.
1445   size_t IdiomCanonicalSize = 6;
1446 
1447   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1448                                  CntInst, CntPhi, DefX))
1449     return false;
1450 
1451   bool IsCntPhiUsedOutsideLoop = false;
1452   for (User *U : CntPhi->users())
1453     if (!CurLoop->contains(cast<Instruction>(U))) {
1454       IsCntPhiUsedOutsideLoop = true;
1455       break;
1456     }
1457   bool IsCntInstUsedOutsideLoop = false;
1458   for (User *U : CntInst->users())
1459     if (!CurLoop->contains(cast<Instruction>(U))) {
1460       IsCntInstUsedOutsideLoop = true;
1461       break;
1462     }
1463   // If both CntInst and CntPhi are used outside the loop the profitability
1464   // is questionable.
1465   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1466     return false;
1467 
1468   // For some CPUs result of CTLZ(X) intrinsic is undefined
1469   // when X is 0. If we can not guarantee X != 0, we need to check this
1470   // when expand.
1471   bool ZeroCheck = false;
1472   // It is safe to assume Preheader exist as it was checked in
1473   // parent function RunOnLoop.
1474   BasicBlock *PH = CurLoop->getLoopPreheader();
1475 
1476   // If we are using the count instruction outside the loop, make sure we
1477   // have a zero check as a precondition. Without the check the loop would run
1478   // one iteration for before any check of the input value. This means 0 and 1
1479   // would have identical behavior in the original loop and thus
1480   if (!IsCntPhiUsedOutsideLoop) {
1481     auto *PreCondBB = PH->getSinglePredecessor();
1482     if (!PreCondBB)
1483       return false;
1484     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1485     if (!PreCondBI)
1486       return false;
1487     if (matchCondition(PreCondBI, PH) != InitX)
1488       return false;
1489     ZeroCheck = true;
1490   }
1491 
1492   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1493   // profitable if we delete the loop.
1494 
1495   // the loop has only 6 instructions:
1496   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1497   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1498   //  %shr = ashr %n.addr.0, 1
1499   //  %tobool = icmp eq %shr, 0
1500   //  %inc = add nsw %i.0, 1
1501   //  br i1 %tobool
1502 
1503   const Value *Args[] =
1504       {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1505                         : ConstantInt::getFalse(InitX->getContext())};
1506 
1507   // @llvm.dbg doesn't count as they have no semantic effect.
1508   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1509   uint32_t HeaderSize =
1510       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1511 
1512   if (HeaderSize != IdiomCanonicalSize &&
1513       TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1514           TargetTransformInfo::TCC_Basic)
1515     return false;
1516 
1517   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1518                            DefX->getDebugLoc(), ZeroCheck,
1519                            IsCntPhiUsedOutsideLoop);
1520   return true;
1521 }
1522 
1523 /// Recognizes a population count idiom in a non-countable loop.
1524 ///
1525 /// If detected, transforms the relevant code to issue the popcount intrinsic
1526 /// function call, and returns true; otherwise, returns false.
1527 bool LoopIdiomRecognize::recognizePopcount() {
1528   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1529     return false;
1530 
1531   // Counting population are usually conducted by few arithmetic instructions.
1532   // Such instructions can be easily "absorbed" by vacant slots in a
1533   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1534   // in a compact loop.
1535 
1536   // Give up if the loop has multiple blocks or multiple backedges.
1537   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1538     return false;
1539 
1540   BasicBlock *LoopBody = *(CurLoop->block_begin());
1541   if (LoopBody->size() >= 20) {
1542     // The loop is too big, bail out.
1543     return false;
1544   }
1545 
1546   // It should have a preheader containing nothing but an unconditional branch.
1547   BasicBlock *PH = CurLoop->getLoopPreheader();
1548   if (!PH || &PH->front() != PH->getTerminator())
1549     return false;
1550   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1551   if (!EntryBI || EntryBI->isConditional())
1552     return false;
1553 
1554   // It should have a precondition block where the generated popcount intrinsic
1555   // function can be inserted.
1556   auto *PreCondBB = PH->getSinglePredecessor();
1557   if (!PreCondBB)
1558     return false;
1559   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1560   if (!PreCondBI || PreCondBI->isUnconditional())
1561     return false;
1562 
1563   Instruction *CntInst;
1564   PHINode *CntPhi;
1565   Value *Val;
1566   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1567     return false;
1568 
1569   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1570   return true;
1571 }
1572 
1573 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1574                                        const DebugLoc &DL) {
1575   Value *Ops[] = {Val};
1576   Type *Tys[] = {Val->getType()};
1577 
1578   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1579   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1580   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1581   CI->setDebugLoc(DL);
1582 
1583   return CI;
1584 }
1585 
1586 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1587                                     const DebugLoc &DL, bool ZeroCheck,
1588                                     Intrinsic::ID IID) {
1589   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1590   Type *Tys[] = {Val->getType()};
1591 
1592   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1593   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1594   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1595   CI->setDebugLoc(DL);
1596 
1597   return CI;
1598 }
1599 
1600 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1601 /// loop:
1602 ///   CntPhi = PHI [Cnt0, CntInst]
1603 ///   PhiX = PHI [InitX, DefX]
1604 ///   CntInst = CntPhi + 1
1605 ///   DefX = PhiX >> 1
1606 ///   LOOP_BODY
1607 ///   Br: loop if (DefX != 0)
1608 /// Use(CntPhi) or Use(CntInst)
1609 ///
1610 /// Into:
1611 /// If CntPhi used outside the loop:
1612 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1613 ///   Count = CountPrev + 1
1614 /// else
1615 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1616 /// loop:
1617 ///   CntPhi = PHI [Cnt0, CntInst]
1618 ///   PhiX = PHI [InitX, DefX]
1619 ///   PhiCount = PHI [Count, Dec]
1620 ///   CntInst = CntPhi + 1
1621 ///   DefX = PhiX >> 1
1622 ///   Dec = PhiCount - 1
1623 ///   LOOP_BODY
1624 ///   Br: loop if (Dec != 0)
1625 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1626 /// or
1627 /// Use(Count + Cnt0) // Use(CntInst)
1628 ///
1629 /// If LOOP_BODY is empty the loop will be deleted.
1630 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1631 void LoopIdiomRecognize::transformLoopToCountable(
1632     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1633     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1634     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1635   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1636 
1637   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1638   IRBuilder<> Builder(PreheaderBr);
1639   Builder.SetCurrentDebugLocation(DL);
1640   Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1641 
1642   //   Count = BitWidth - CTLZ(InitX);
1643   // If there are uses of CntPhi create:
1644   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1645   if (IsCntPhiUsedOutsideLoop) {
1646     if (DefX->getOpcode() == Instruction::AShr)
1647       InitXNext =
1648           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1649     else if (DefX->getOpcode() == Instruction::LShr)
1650       InitXNext =
1651           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1652     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1653       InitXNext =
1654           Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1655     else
1656       llvm_unreachable("Unexpected opcode!");
1657   } else
1658     InitXNext = InitX;
1659   FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1660   Count = Builder.CreateSub(
1661       ConstantInt::get(FFS->getType(),
1662                        FFS->getType()->getIntegerBitWidth()),
1663       FFS);
1664   if (IsCntPhiUsedOutsideLoop) {
1665     CountPrev = Count;
1666     Count = Builder.CreateAdd(
1667         CountPrev,
1668         ConstantInt::get(CountPrev->getType(), 1));
1669   }
1670 
1671   NewCount = Builder.CreateZExtOrTrunc(
1672                       IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1673                       cast<IntegerType>(CntInst->getType()));
1674 
1675   // If the counter's initial value is not zero, insert Add Inst.
1676   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1677   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1678   if (!InitConst || !InitConst->isZero())
1679     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1680 
1681   // Step 2: Insert new IV and loop condition:
1682   // loop:
1683   //   ...
1684   //   PhiCount = PHI [Count, Dec]
1685   //   ...
1686   //   Dec = PhiCount - 1
1687   //   ...
1688   //   Br: loop if (Dec != 0)
1689   BasicBlock *Body = *(CurLoop->block_begin());
1690   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1691   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1692   Type *Ty = Count->getType();
1693 
1694   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1695 
1696   Builder.SetInsertPoint(LbCond);
1697   Instruction *TcDec = cast<Instruction>(
1698       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1699                         "tcdec", false, true));
1700 
1701   TcPhi->addIncoming(Count, Preheader);
1702   TcPhi->addIncoming(TcDec, Body);
1703 
1704   CmpInst::Predicate Pred =
1705       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1706   LbCond->setPredicate(Pred);
1707   LbCond->setOperand(0, TcDec);
1708   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1709 
1710   // Step 3: All the references to the original counter outside
1711   //  the loop are replaced with the NewCount
1712   if (IsCntPhiUsedOutsideLoop)
1713     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1714   else
1715     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1716 
1717   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1718   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1719   SE->forgetLoop(CurLoop);
1720 }
1721 
1722 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1723                                                  Instruction *CntInst,
1724                                                  PHINode *CntPhi, Value *Var) {
1725   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1726   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1727   const DebugLoc &DL = CntInst->getDebugLoc();
1728 
1729   // Assuming before transformation, the loop is following:
1730   //  if (x) // the precondition
1731   //     do { cnt++; x &= x - 1; } while(x);
1732 
1733   // Step 1: Insert the ctpop instruction at the end of the precondition block
1734   IRBuilder<> Builder(PreCondBr);
1735   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1736   {
1737     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1738     NewCount = PopCntZext =
1739         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1740 
1741     if (NewCount != PopCnt)
1742       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1743 
1744     // TripCnt is exactly the number of iterations the loop has
1745     TripCnt = NewCount;
1746 
1747     // If the population counter's initial value is not zero, insert Add Inst.
1748     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1749     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1750     if (!InitConst || !InitConst->isZero()) {
1751       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1752       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1753     }
1754   }
1755 
1756   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1757   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1758   //   function would be partial dead code, and downstream passes will drag
1759   //   it back from the precondition block to the preheader.
1760   {
1761     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1762 
1763     Value *Opnd0 = PopCntZext;
1764     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1765     if (PreCond->getOperand(0) != Var)
1766       std::swap(Opnd0, Opnd1);
1767 
1768     ICmpInst *NewPreCond = cast<ICmpInst>(
1769         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1770     PreCondBr->setCondition(NewPreCond);
1771 
1772     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1773   }
1774 
1775   // Step 3: Note that the population count is exactly the trip count of the
1776   // loop in question, which enable us to convert the loop from noncountable
1777   // loop into a countable one. The benefit is twofold:
1778   //
1779   //  - If the loop only counts population, the entire loop becomes dead after
1780   //    the transformation. It is a lot easier to prove a countable loop dead
1781   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1782   //    isn't dead even if it computes nothing useful. In general, DCE needs
1783   //    to prove a noncountable loop finite before safely delete it.)
1784   //
1785   //  - If the loop also performs something else, it remains alive.
1786   //    Since it is transformed to countable form, it can be aggressively
1787   //    optimized by some optimizations which are in general not applicable
1788   //    to a noncountable loop.
1789   //
1790   // After this step, this loop (conceptually) would look like following:
1791   //   newcnt = __builtin_ctpop(x);
1792   //   t = newcnt;
1793   //   if (x)
1794   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1795   BasicBlock *Body = *(CurLoop->block_begin());
1796   {
1797     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1798     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1799     Type *Ty = TripCnt->getType();
1800 
1801     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1802 
1803     Builder.SetInsertPoint(LbCond);
1804     Instruction *TcDec = cast<Instruction>(
1805         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1806                           "tcdec", false, true));
1807 
1808     TcPhi->addIncoming(TripCnt, PreHead);
1809     TcPhi->addIncoming(TcDec, Body);
1810 
1811     CmpInst::Predicate Pred =
1812         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1813     LbCond->setPredicate(Pred);
1814     LbCond->setOperand(0, TcDec);
1815     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1816   }
1817 
1818   // Step 4: All the references to the original population counter outside
1819   //  the loop are replaced with the NewCount -- the value returned from
1820   //  __builtin_ctpop().
1821   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1822 
1823   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1824   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1825   SE->forgetLoop(CurLoop);
1826 }
1827