1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 // If compiling for code size we avoid idiom recognition if the resulting 15 // code could be larger than the code for the original loop. One way this could 16 // happen is if the loop is not removable after idiom recognition due to the 17 // presence of non-idiom instructions. The initial implementation of the 18 // heuristics applies to idioms in multi-block loops. 19 // 20 //===----------------------------------------------------------------------===// 21 // 22 // TODO List: 23 // 24 // Future loop memory idioms to recognize: 25 // memcmp, memmove, strlen, etc. 26 // Future floating point idioms to recognize in -ffast-math mode: 27 // fpowi 28 // Future integer operation idioms to recognize: 29 // ctpop, ctlz, cttz 30 // 31 // Beware that isel's default lowering for ctpop is highly inefficient for 32 // i64 and larger types when i64 is legal and the value has few bits set. It 33 // would be good to enhance isel to emit a loop for ctpop in this case. 34 // 35 // This could recognize common matrix multiplies and dot product idioms and 36 // replace them with calls to BLAS (if linked in??). 37 // 38 //===----------------------------------------------------------------------===// 39 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/LoopAccessAnalysis.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/LoopPass.h" 53 #include "llvm/Analysis/MemoryLocation.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpander.h" 56 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Analysis/TargetTransformInfo.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Analysis/ValueTracking.h" 61 #include "llvm/IR/Attributes.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugLoc.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/GlobalValue.h" 70 #include "llvm/IR/GlobalVariable.h" 71 #include "llvm/IR/IRBuilder.h" 72 #include "llvm/IR/InstrTypes.h" 73 #include "llvm/IR/Instruction.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Intrinsics.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PassManager.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/User.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/IR/ValueHandle.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 91 #include "llvm/Transforms/Utils/BuildLibCalls.h" 92 #include "llvm/Transforms/Utils/LoopUtils.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 101 #define DEBUG_TYPE "loop-idiom" 102 103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 105 106 static cl::opt<bool> UseLIRCodeSizeHeurs( 107 "use-lir-code-size-heurs", 108 cl::desc("Use loop idiom recognition code size heuristics when compiling" 109 "with -Os/-Oz"), 110 cl::init(true), cl::Hidden); 111 112 namespace { 113 114 class LoopIdiomRecognize { 115 Loop *CurLoop = nullptr; 116 AliasAnalysis *AA; 117 DominatorTree *DT; 118 LoopInfo *LI; 119 ScalarEvolution *SE; 120 TargetLibraryInfo *TLI; 121 const TargetTransformInfo *TTI; 122 const DataLayout *DL; 123 bool ApplyCodeSizeHeuristics; 124 125 public: 126 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 127 LoopInfo *LI, ScalarEvolution *SE, 128 TargetLibraryInfo *TLI, 129 const TargetTransformInfo *TTI, 130 const DataLayout *DL) 131 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {} 132 133 bool runOnLoop(Loop *L); 134 135 private: 136 using StoreList = SmallVector<StoreInst *, 8>; 137 using StoreListMap = MapVector<Value *, StoreList>; 138 139 StoreListMap StoreRefsForMemset; 140 StoreListMap StoreRefsForMemsetPattern; 141 StoreList StoreRefsForMemcpy; 142 bool HasMemset; 143 bool HasMemsetPattern; 144 bool HasMemcpy; 145 146 /// Return code for isLegalStore() 147 enum LegalStoreKind { 148 None = 0, 149 Memset, 150 MemsetPattern, 151 Memcpy, 152 UnorderedAtomicMemcpy, 153 DontUse // Dummy retval never to be used. Allows catching errors in retval 154 // handling. 155 }; 156 157 /// \name Countable Loop Idiom Handling 158 /// @{ 159 160 bool runOnCountableLoop(); 161 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 162 SmallVectorImpl<BasicBlock *> &ExitBlocks); 163 164 void collectStores(BasicBlock *BB); 165 LegalStoreKind isLegalStore(StoreInst *SI); 166 enum class ForMemset { No, Yes }; 167 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 168 ForMemset For); 169 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 170 171 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 172 unsigned StoreAlignment, Value *StoredVal, 173 Instruction *TheStore, 174 SmallPtrSetImpl<Instruction *> &Stores, 175 const SCEVAddRecExpr *Ev, const SCEV *BECount, 176 bool NegStride, bool IsLoopMemset = false); 177 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 178 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 179 bool IsLoopMemset = false); 180 181 /// @} 182 /// \name Noncountable Loop Idiom Handling 183 /// @{ 184 185 bool runOnNoncountableLoop(); 186 187 bool recognizePopcount(); 188 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 189 PHINode *CntPhi, Value *Var); 190 bool recognizeAndInsertCTLZ(); 191 void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst, 192 PHINode *CntPhi, Value *Var, Instruction *DefX, 193 const DebugLoc &DL, bool ZeroCheck, 194 bool IsCntPhiUsedOutsideLoop); 195 196 /// @} 197 }; 198 199 class LoopIdiomRecognizeLegacyPass : public LoopPass { 200 public: 201 static char ID; 202 203 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 204 initializeLoopIdiomRecognizeLegacyPassPass( 205 *PassRegistry::getPassRegistry()); 206 } 207 208 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 209 if (skipLoop(L)) 210 return false; 211 212 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 213 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 214 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 215 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 216 TargetLibraryInfo *TLI = 217 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 218 const TargetTransformInfo *TTI = 219 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 220 *L->getHeader()->getParent()); 221 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 222 223 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL); 224 return LIR.runOnLoop(L); 225 } 226 227 /// This transformation requires natural loop information & requires that 228 /// loop preheaders be inserted into the CFG. 229 void getAnalysisUsage(AnalysisUsage &AU) const override { 230 AU.addRequired<TargetLibraryInfoWrapperPass>(); 231 AU.addRequired<TargetTransformInfoWrapperPass>(); 232 getLoopAnalysisUsage(AU); 233 } 234 }; 235 236 } // end anonymous namespace 237 238 char LoopIdiomRecognizeLegacyPass::ID = 0; 239 240 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 241 LoopStandardAnalysisResults &AR, 242 LPMUpdater &) { 243 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 244 245 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL); 246 if (!LIR.runOnLoop(&L)) 247 return PreservedAnalyses::all(); 248 249 return getLoopPassPreservedAnalyses(); 250 } 251 252 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 253 "Recognize loop idioms", false, false) 254 INITIALIZE_PASS_DEPENDENCY(LoopPass) 255 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 256 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 257 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 258 "Recognize loop idioms", false, false) 259 260 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 261 262 static void deleteDeadInstruction(Instruction *I) { 263 I->replaceAllUsesWith(UndefValue::get(I->getType())); 264 I->eraseFromParent(); 265 } 266 267 //===----------------------------------------------------------------------===// 268 // 269 // Implementation of LoopIdiomRecognize 270 // 271 //===----------------------------------------------------------------------===// 272 273 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 274 CurLoop = L; 275 // If the loop could not be converted to canonical form, it must have an 276 // indirectbr in it, just give up. 277 if (!L->getLoopPreheader()) 278 return false; 279 280 // Disable loop idiom recognition if the function's name is a common idiom. 281 StringRef Name = L->getHeader()->getParent()->getName(); 282 if (Name == "memset" || Name == "memcpy") 283 return false; 284 285 // Determine if code size heuristics need to be applied. 286 ApplyCodeSizeHeuristics = 287 L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs; 288 289 HasMemset = TLI->has(LibFunc_memset); 290 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 291 HasMemcpy = TLI->has(LibFunc_memcpy); 292 293 if (HasMemset || HasMemsetPattern || HasMemcpy) 294 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 295 return runOnCountableLoop(); 296 297 return runOnNoncountableLoop(); 298 } 299 300 bool LoopIdiomRecognize::runOnCountableLoop() { 301 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 302 assert(!isa<SCEVCouldNotCompute>(BECount) && 303 "runOnCountableLoop() called on a loop without a predictable" 304 "backedge-taken count"); 305 306 // If this loop executes exactly one time, then it should be peeled, not 307 // optimized by this pass. 308 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 309 if (BECst->getAPInt() == 0) 310 return false; 311 312 SmallVector<BasicBlock *, 8> ExitBlocks; 313 CurLoop->getUniqueExitBlocks(ExitBlocks); 314 315 LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F[" 316 << CurLoop->getHeader()->getParent()->getName() 317 << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); 318 319 bool MadeChange = false; 320 321 // The following transforms hoist stores/memsets into the loop pre-header. 322 // Give up if the loop has instructions may throw. 323 SimpleLoopSafetyInfo SafetyInfo; 324 SafetyInfo.computeLoopSafetyInfo(CurLoop); 325 if (SafetyInfo.anyBlockMayThrow()) 326 return MadeChange; 327 328 // Scan all the blocks in the loop that are not in subloops. 329 for (auto *BB : CurLoop->getBlocks()) { 330 // Ignore blocks in subloops. 331 if (LI->getLoopFor(BB) != CurLoop) 332 continue; 333 334 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 335 } 336 return MadeChange; 337 } 338 339 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 340 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 341 return ConstStride->getAPInt(); 342 } 343 344 /// getMemSetPatternValue - If a strided store of the specified value is safe to 345 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 346 /// be passed in. Otherwise, return null. 347 /// 348 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 349 /// just replicate their input array and then pass on to memset_pattern16. 350 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 351 // FIXME: This could check for UndefValue because it can be merged into any 352 // other valid pattern. 353 354 // If the value isn't a constant, we can't promote it to being in a constant 355 // array. We could theoretically do a store to an alloca or something, but 356 // that doesn't seem worthwhile. 357 Constant *C = dyn_cast<Constant>(V); 358 if (!C) 359 return nullptr; 360 361 // Only handle simple values that are a power of two bytes in size. 362 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 363 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 364 return nullptr; 365 366 // Don't care enough about darwin/ppc to implement this. 367 if (DL->isBigEndian()) 368 return nullptr; 369 370 // Convert to size in bytes. 371 Size /= 8; 372 373 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 374 // if the top and bottom are the same (e.g. for vectors and large integers). 375 if (Size > 16) 376 return nullptr; 377 378 // If the constant is exactly 16 bytes, just use it. 379 if (Size == 16) 380 return C; 381 382 // Otherwise, we'll use an array of the constants. 383 unsigned ArraySize = 16 / Size; 384 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 385 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 386 } 387 388 LoopIdiomRecognize::LegalStoreKind 389 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 390 // Don't touch volatile stores. 391 if (SI->isVolatile()) 392 return LegalStoreKind::None; 393 // We only want simple or unordered-atomic stores. 394 if (!SI->isUnordered()) 395 return LegalStoreKind::None; 396 397 // Don't convert stores of non-integral pointer types to memsets (which stores 398 // integers). 399 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType())) 400 return LegalStoreKind::None; 401 402 // Avoid merging nontemporal stores. 403 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 404 return LegalStoreKind::None; 405 406 Value *StoredVal = SI->getValueOperand(); 407 Value *StorePtr = SI->getPointerOperand(); 408 409 // Reject stores that are so large that they overflow an unsigned. 410 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 411 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 412 return LegalStoreKind::None; 413 414 // See if the pointer expression is an AddRec like {base,+,1} on the current 415 // loop, which indicates a strided store. If we have something else, it's a 416 // random store we can't handle. 417 const SCEVAddRecExpr *StoreEv = 418 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 419 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 420 return LegalStoreKind::None; 421 422 // Check to see if we have a constant stride. 423 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 424 return LegalStoreKind::None; 425 426 // See if the store can be turned into a memset. 427 428 // If the stored value is a byte-wise value (like i32 -1), then it may be 429 // turned into a memset of i8 -1, assuming that all the consecutive bytes 430 // are stored. A store of i32 0x01020304 can never be turned into a memset, 431 // but it can be turned into memset_pattern if the target supports it. 432 Value *SplatValue = isBytewiseValue(StoredVal); 433 Constant *PatternValue = nullptr; 434 435 // Note: memset and memset_pattern on unordered-atomic is yet not supported 436 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 437 438 // If we're allowed to form a memset, and the stored value would be 439 // acceptable for memset, use it. 440 if (!UnorderedAtomic && HasMemset && SplatValue && 441 // Verify that the stored value is loop invariant. If not, we can't 442 // promote the memset. 443 CurLoop->isLoopInvariant(SplatValue)) { 444 // It looks like we can use SplatValue. 445 return LegalStoreKind::Memset; 446 } else if (!UnorderedAtomic && HasMemsetPattern && 447 // Don't create memset_pattern16s with address spaces. 448 StorePtr->getType()->getPointerAddressSpace() == 0 && 449 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 450 // It looks like we can use PatternValue! 451 return LegalStoreKind::MemsetPattern; 452 } 453 454 // Otherwise, see if the store can be turned into a memcpy. 455 if (HasMemcpy) { 456 // Check to see if the stride matches the size of the store. If so, then we 457 // know that every byte is touched in the loop. 458 APInt Stride = getStoreStride(StoreEv); 459 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 460 if (StoreSize != Stride && StoreSize != -Stride) 461 return LegalStoreKind::None; 462 463 // The store must be feeding a non-volatile load. 464 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 465 466 // Only allow non-volatile loads 467 if (!LI || LI->isVolatile()) 468 return LegalStoreKind::None; 469 // Only allow simple or unordered-atomic loads 470 if (!LI->isUnordered()) 471 return LegalStoreKind::None; 472 473 // See if the pointer expression is an AddRec like {base,+,1} on the current 474 // loop, which indicates a strided load. If we have something else, it's a 475 // random load we can't handle. 476 const SCEVAddRecExpr *LoadEv = 477 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 478 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 479 return LegalStoreKind::None; 480 481 // The store and load must share the same stride. 482 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 483 return LegalStoreKind::None; 484 485 // Success. This store can be converted into a memcpy. 486 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 487 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 488 : LegalStoreKind::Memcpy; 489 } 490 // This store can't be transformed into a memset/memcpy. 491 return LegalStoreKind::None; 492 } 493 494 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 495 StoreRefsForMemset.clear(); 496 StoreRefsForMemsetPattern.clear(); 497 StoreRefsForMemcpy.clear(); 498 for (Instruction &I : *BB) { 499 StoreInst *SI = dyn_cast<StoreInst>(&I); 500 if (!SI) 501 continue; 502 503 // Make sure this is a strided store with a constant stride. 504 switch (isLegalStore(SI)) { 505 case LegalStoreKind::None: 506 // Nothing to do 507 break; 508 case LegalStoreKind::Memset: { 509 // Find the base pointer. 510 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 511 StoreRefsForMemset[Ptr].push_back(SI); 512 } break; 513 case LegalStoreKind::MemsetPattern: { 514 // Find the base pointer. 515 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL); 516 StoreRefsForMemsetPattern[Ptr].push_back(SI); 517 } break; 518 case LegalStoreKind::Memcpy: 519 case LegalStoreKind::UnorderedAtomicMemcpy: 520 StoreRefsForMemcpy.push_back(SI); 521 break; 522 default: 523 assert(false && "unhandled return value"); 524 break; 525 } 526 } 527 } 528 529 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 530 /// with the specified backedge count. This block is known to be in the current 531 /// loop and not in any subloops. 532 bool LoopIdiomRecognize::runOnLoopBlock( 533 BasicBlock *BB, const SCEV *BECount, 534 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 535 // We can only promote stores in this block if they are unconditionally 536 // executed in the loop. For a block to be unconditionally executed, it has 537 // to dominate all the exit blocks of the loop. Verify this now. 538 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 539 if (!DT->dominates(BB, ExitBlocks[i])) 540 return false; 541 542 bool MadeChange = false; 543 // Look for store instructions, which may be optimized to memset/memcpy. 544 collectStores(BB); 545 546 // Look for a single store or sets of stores with a common base, which can be 547 // optimized into a memset (memset_pattern). The latter most commonly happens 548 // with structs and handunrolled loops. 549 for (auto &SL : StoreRefsForMemset) 550 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 551 552 for (auto &SL : StoreRefsForMemsetPattern) 553 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 554 555 // Optimize the store into a memcpy, if it feeds an similarly strided load. 556 for (auto &SI : StoreRefsForMemcpy) 557 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 558 559 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 560 Instruction *Inst = &*I++; 561 // Look for memset instructions, which may be optimized to a larger memset. 562 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 563 WeakTrackingVH InstPtr(&*I); 564 if (!processLoopMemSet(MSI, BECount)) 565 continue; 566 MadeChange = true; 567 568 // If processing the memset invalidated our iterator, start over from the 569 // top of the block. 570 if (!InstPtr) 571 I = BB->begin(); 572 continue; 573 } 574 } 575 576 return MadeChange; 577 } 578 579 /// See if this store(s) can be promoted to a memset. 580 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 581 const SCEV *BECount, ForMemset For) { 582 // Try to find consecutive stores that can be transformed into memsets. 583 SetVector<StoreInst *> Heads, Tails; 584 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 585 586 // Do a quadratic search on all of the given stores and find 587 // all of the pairs of stores that follow each other. 588 SmallVector<unsigned, 16> IndexQueue; 589 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 590 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 591 592 Value *FirstStoredVal = SL[i]->getValueOperand(); 593 Value *FirstStorePtr = SL[i]->getPointerOperand(); 594 const SCEVAddRecExpr *FirstStoreEv = 595 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 596 APInt FirstStride = getStoreStride(FirstStoreEv); 597 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 598 599 // See if we can optimize just this store in isolation. 600 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 601 Heads.insert(SL[i]); 602 continue; 603 } 604 605 Value *FirstSplatValue = nullptr; 606 Constant *FirstPatternValue = nullptr; 607 608 if (For == ForMemset::Yes) 609 FirstSplatValue = isBytewiseValue(FirstStoredVal); 610 else 611 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 612 613 assert((FirstSplatValue || FirstPatternValue) && 614 "Expected either splat value or pattern value."); 615 616 IndexQueue.clear(); 617 // If a store has multiple consecutive store candidates, search Stores 618 // array according to the sequence: from i+1 to e, then from i-1 to 0. 619 // This is because usually pairing with immediate succeeding or preceding 620 // candidate create the best chance to find memset opportunity. 621 unsigned j = 0; 622 for (j = i + 1; j < e; ++j) 623 IndexQueue.push_back(j); 624 for (j = i; j > 0; --j) 625 IndexQueue.push_back(j - 1); 626 627 for (auto &k : IndexQueue) { 628 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 629 Value *SecondStorePtr = SL[k]->getPointerOperand(); 630 const SCEVAddRecExpr *SecondStoreEv = 631 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 632 APInt SecondStride = getStoreStride(SecondStoreEv); 633 634 if (FirstStride != SecondStride) 635 continue; 636 637 Value *SecondStoredVal = SL[k]->getValueOperand(); 638 Value *SecondSplatValue = nullptr; 639 Constant *SecondPatternValue = nullptr; 640 641 if (For == ForMemset::Yes) 642 SecondSplatValue = isBytewiseValue(SecondStoredVal); 643 else 644 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 645 646 assert((SecondSplatValue || SecondPatternValue) && 647 "Expected either splat value or pattern value."); 648 649 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 650 if (For == ForMemset::Yes) { 651 if (isa<UndefValue>(FirstSplatValue)) 652 FirstSplatValue = SecondSplatValue; 653 if (FirstSplatValue != SecondSplatValue) 654 continue; 655 } else { 656 if (isa<UndefValue>(FirstPatternValue)) 657 FirstPatternValue = SecondPatternValue; 658 if (FirstPatternValue != SecondPatternValue) 659 continue; 660 } 661 Tails.insert(SL[k]); 662 Heads.insert(SL[i]); 663 ConsecutiveChain[SL[i]] = SL[k]; 664 break; 665 } 666 } 667 } 668 669 // We may run into multiple chains that merge into a single chain. We mark the 670 // stores that we transformed so that we don't visit the same store twice. 671 SmallPtrSet<Value *, 16> TransformedStores; 672 bool Changed = false; 673 674 // For stores that start but don't end a link in the chain: 675 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 676 it != e; ++it) { 677 if (Tails.count(*it)) 678 continue; 679 680 // We found a store instr that starts a chain. Now follow the chain and try 681 // to transform it. 682 SmallPtrSet<Instruction *, 8> AdjacentStores; 683 StoreInst *I = *it; 684 685 StoreInst *HeadStore = I; 686 unsigned StoreSize = 0; 687 688 // Collect the chain into a list. 689 while (Tails.count(I) || Heads.count(I)) { 690 if (TransformedStores.count(I)) 691 break; 692 AdjacentStores.insert(I); 693 694 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 695 // Move to the next value in the chain. 696 I = ConsecutiveChain[I]; 697 } 698 699 Value *StoredVal = HeadStore->getValueOperand(); 700 Value *StorePtr = HeadStore->getPointerOperand(); 701 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 702 APInt Stride = getStoreStride(StoreEv); 703 704 // Check to see if the stride matches the size of the stores. If so, then 705 // we know that every byte is touched in the loop. 706 if (StoreSize != Stride && StoreSize != -Stride) 707 continue; 708 709 bool NegStride = StoreSize == -Stride; 710 711 if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(), 712 StoredVal, HeadStore, AdjacentStores, StoreEv, 713 BECount, NegStride)) { 714 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 715 Changed = true; 716 } 717 } 718 719 return Changed; 720 } 721 722 /// processLoopMemSet - See if this memset can be promoted to a large memset. 723 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 724 const SCEV *BECount) { 725 // We can only handle non-volatile memsets with a constant size. 726 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 727 return false; 728 729 // If we're not allowed to hack on memset, we fail. 730 if (!HasMemset) 731 return false; 732 733 Value *Pointer = MSI->getDest(); 734 735 // See if the pointer expression is an AddRec like {base,+,1} on the current 736 // loop, which indicates a strided store. If we have something else, it's a 737 // random store we can't handle. 738 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 739 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 740 return false; 741 742 // Reject memsets that are so large that they overflow an unsigned. 743 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 744 if ((SizeInBytes >> 32) != 0) 745 return false; 746 747 // Check to see if the stride matches the size of the memset. If so, then we 748 // know that every byte is touched in the loop. 749 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 750 if (!ConstStride) 751 return false; 752 753 APInt Stride = ConstStride->getAPInt(); 754 if (SizeInBytes != Stride && SizeInBytes != -Stride) 755 return false; 756 757 // Verify that the memset value is loop invariant. If not, we can't promote 758 // the memset. 759 Value *SplatValue = MSI->getValue(); 760 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 761 return false; 762 763 SmallPtrSet<Instruction *, 1> MSIs; 764 MSIs.insert(MSI); 765 bool NegStride = SizeInBytes == -Stride; 766 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 767 MSI->getDestAlignment(), SplatValue, MSI, MSIs, 768 Ev, BECount, NegStride, /*IsLoopMemset=*/true); 769 } 770 771 /// mayLoopAccessLocation - Return true if the specified loop might access the 772 /// specified pointer location, which is a loop-strided access. The 'Access' 773 /// argument specifies what the verboten forms of access are (read or write). 774 static bool 775 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 776 const SCEV *BECount, unsigned StoreSize, 777 AliasAnalysis &AA, 778 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 779 // Get the location that may be stored across the loop. Since the access is 780 // strided positively through memory, we say that the modified location starts 781 // at the pointer and has infinite size. 782 uint64_t AccessSize = MemoryLocation::UnknownSize; 783 784 // If the loop iterates a fixed number of times, we can refine the access size 785 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 786 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 787 AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize; 788 789 // TODO: For this to be really effective, we have to dive into the pointer 790 // operand in the store. Store to &A[i] of 100 will always return may alias 791 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 792 // which will then no-alias a store to &A[100]. 793 MemoryLocation StoreLoc(Ptr, AccessSize); 794 795 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 796 ++BI) 797 for (Instruction &I : **BI) 798 if (IgnoredStores.count(&I) == 0 && 799 isModOrRefSet( 800 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 801 return true; 802 803 return false; 804 } 805 806 // If we have a negative stride, Start refers to the end of the memory location 807 // we're trying to memset. Therefore, we need to recompute the base pointer, 808 // which is just Start - BECount*Size. 809 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 810 Type *IntPtr, unsigned StoreSize, 811 ScalarEvolution *SE) { 812 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 813 if (StoreSize != 1) 814 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 815 SCEV::FlagNUW); 816 return SE->getMinusSCEV(Start, Index); 817 } 818 819 /// Compute the number of bytes as a SCEV from the backedge taken count. 820 /// 821 /// This also maps the SCEV into the provided type and tries to handle the 822 /// computation in a way that will fold cleanly. 823 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 824 unsigned StoreSize, Loop *CurLoop, 825 const DataLayout *DL, ScalarEvolution *SE) { 826 const SCEV *NumBytesS; 827 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 828 // pointer size if it isn't already. 829 // 830 // If we're going to need to zero extend the BE count, check if we can add 831 // one to it prior to zero extending without overflow. Provided this is safe, 832 // it allows better simplification of the +1. 833 if (DL->getTypeSizeInBits(BECount->getType()) < 834 DL->getTypeSizeInBits(IntPtr) && 835 SE->isLoopEntryGuardedByCond( 836 CurLoop, ICmpInst::ICMP_NE, BECount, 837 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 838 NumBytesS = SE->getZeroExtendExpr( 839 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 840 IntPtr); 841 } else { 842 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 843 SE->getOne(IntPtr), SCEV::FlagNUW); 844 } 845 846 // And scale it based on the store size. 847 if (StoreSize != 1) { 848 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 849 SCEV::FlagNUW); 850 } 851 return NumBytesS; 852 } 853 854 /// processLoopStridedStore - We see a strided store of some value. If we can 855 /// transform this into a memset or memset_pattern in the loop preheader, do so. 856 bool LoopIdiomRecognize::processLoopStridedStore( 857 Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment, 858 Value *StoredVal, Instruction *TheStore, 859 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 860 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 861 Value *SplatValue = isBytewiseValue(StoredVal); 862 Constant *PatternValue = nullptr; 863 864 if (!SplatValue) 865 PatternValue = getMemSetPatternValue(StoredVal, DL); 866 867 assert((SplatValue || PatternValue) && 868 "Expected either splat value or pattern value."); 869 870 // The trip count of the loop and the base pointer of the addrec SCEV is 871 // guaranteed to be loop invariant, which means that it should dominate the 872 // header. This allows us to insert code for it in the preheader. 873 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 874 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 875 IRBuilder<> Builder(Preheader->getTerminator()); 876 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 877 878 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 879 Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS); 880 881 const SCEV *Start = Ev->getStart(); 882 // Handle negative strided loops. 883 if (NegStride) 884 Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE); 885 886 // TODO: ideally we should still be able to generate memset if SCEV expander 887 // is taught to generate the dependencies at the latest point. 888 if (!isSafeToExpand(Start, *SE)) 889 return false; 890 891 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 892 // this into a memset in the loop preheader now if we want. However, this 893 // would be unsafe to do if there is anything else in the loop that may read 894 // or write to the aliased location. Check for any overlap by generating the 895 // base pointer and checking the region. 896 Value *BasePtr = 897 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 898 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 899 StoreSize, *AA, Stores)) { 900 Expander.clear(); 901 // If we generated new code for the base pointer, clean up. 902 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 903 return false; 904 } 905 906 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 907 return false; 908 909 // Okay, everything looks good, insert the memset. 910 911 const SCEV *NumBytesS = 912 getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE); 913 914 // TODO: ideally we should still be able to generate memset if SCEV expander 915 // is taught to generate the dependencies at the latest point. 916 if (!isSafeToExpand(NumBytesS, *SE)) 917 return false; 918 919 Value *NumBytes = 920 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 921 922 CallInst *NewCall; 923 if (SplatValue) { 924 NewCall = 925 Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment); 926 } else { 927 // Everything is emitted in default address space 928 Type *Int8PtrTy = DestInt8PtrTy; 929 930 Module *M = TheStore->getModule(); 931 StringRef FuncName = "memset_pattern16"; 932 Value *MSP = 933 M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 934 Int8PtrTy, Int8PtrTy, IntPtr); 935 inferLibFuncAttributes(M, FuncName, *TLI); 936 937 // Otherwise we should form a memset_pattern16. PatternValue is known to be 938 // an constant array of 16-bytes. Plop the value into a mergable global. 939 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 940 GlobalValue::PrivateLinkage, 941 PatternValue, ".memset_pattern"); 942 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 943 GV->setAlignment(16); 944 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 945 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 946 } 947 948 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 949 << " from store to: " << *Ev << " at: " << *TheStore 950 << "\n"); 951 NewCall->setDebugLoc(TheStore->getDebugLoc()); 952 953 // Okay, the memset has been formed. Zap the original store and anything that 954 // feeds into it. 955 for (auto *I : Stores) 956 deleteDeadInstruction(I); 957 ++NumMemSet; 958 return true; 959 } 960 961 /// If the stored value is a strided load in the same loop with the same stride 962 /// this may be transformable into a memcpy. This kicks in for stuff like 963 /// for (i) A[i] = B[i]; 964 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 965 const SCEV *BECount) { 966 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 967 968 Value *StorePtr = SI->getPointerOperand(); 969 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 970 APInt Stride = getStoreStride(StoreEv); 971 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 972 bool NegStride = StoreSize == -Stride; 973 974 // The store must be feeding a non-volatile load. 975 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 976 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 977 978 // See if the pointer expression is an AddRec like {base,+,1} on the current 979 // loop, which indicates a strided load. If we have something else, it's a 980 // random load we can't handle. 981 const SCEVAddRecExpr *LoadEv = 982 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 983 984 // The trip count of the loop and the base pointer of the addrec SCEV is 985 // guaranteed to be loop invariant, which means that it should dominate the 986 // header. This allows us to insert code for it in the preheader. 987 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 988 IRBuilder<> Builder(Preheader->getTerminator()); 989 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 990 991 const SCEV *StrStart = StoreEv->getStart(); 992 unsigned StrAS = SI->getPointerAddressSpace(); 993 Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS); 994 995 // Handle negative strided loops. 996 if (NegStride) 997 StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE); 998 999 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1000 // this into a memcpy in the loop preheader now if we want. However, this 1001 // would be unsafe to do if there is anything else in the loop that may read 1002 // or write the memory region we're storing to. This includes the load that 1003 // feeds the stores. Check for an alias by generating the base address and 1004 // checking everything. 1005 Value *StoreBasePtr = Expander.expandCodeFor( 1006 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1007 1008 SmallPtrSet<Instruction *, 1> Stores; 1009 Stores.insert(SI); 1010 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1011 StoreSize, *AA, Stores)) { 1012 Expander.clear(); 1013 // If we generated new code for the base pointer, clean up. 1014 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1015 return false; 1016 } 1017 1018 const SCEV *LdStart = LoadEv->getStart(); 1019 unsigned LdAS = LI->getPointerAddressSpace(); 1020 1021 // Handle negative strided loops. 1022 if (NegStride) 1023 LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE); 1024 1025 // For a memcpy, we have to make sure that the input array is not being 1026 // mutated by the loop. 1027 Value *LoadBasePtr = Expander.expandCodeFor( 1028 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1029 1030 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1031 StoreSize, *AA, Stores)) { 1032 Expander.clear(); 1033 // If we generated new code for the base pointer, clean up. 1034 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 1035 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1036 return false; 1037 } 1038 1039 if (avoidLIRForMultiBlockLoop()) 1040 return false; 1041 1042 // Okay, everything is safe, we can transform this! 1043 1044 const SCEV *NumBytesS = 1045 getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE); 1046 1047 Value *NumBytes = 1048 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 1049 1050 CallInst *NewCall = nullptr; 1051 // Check whether to generate an unordered atomic memcpy: 1052 // If the load or store are atomic, then they must necessarily be unordered 1053 // by previous checks. 1054 if (!SI->isAtomic() && !LI->isAtomic()) 1055 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(), 1056 LoadBasePtr, LI->getAlignment(), NumBytes); 1057 else { 1058 // We cannot allow unaligned ops for unordered load/store, so reject 1059 // anything where the alignment isn't at least the element size. 1060 unsigned Align = std::min(SI->getAlignment(), LI->getAlignment()); 1061 if (Align < StoreSize) 1062 return false; 1063 1064 // If the element.atomic memcpy is not lowered into explicit 1065 // loads/stores later, then it will be lowered into an element-size 1066 // specific lib call. If the lib call doesn't exist for our store size, then 1067 // we shouldn't generate the memcpy. 1068 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1069 return false; 1070 1071 // Create the call. 1072 // Note that unordered atomic loads/stores are *required* by the spec to 1073 // have an alignment but non-atomic loads/stores may not. 1074 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1075 StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(), 1076 NumBytes, StoreSize); 1077 } 1078 NewCall->setDebugLoc(SI->getDebugLoc()); 1079 1080 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1081 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1082 << " from store ptr=" << *StoreEv << " at: " << *SI 1083 << "\n"); 1084 1085 // Okay, the memcpy has been formed. Zap the original store and anything that 1086 // feeds into it. 1087 deleteDeadInstruction(SI); 1088 ++NumMemCpy; 1089 return true; 1090 } 1091 1092 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1093 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1094 // 1095 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1096 bool IsLoopMemset) { 1097 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1098 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) { 1099 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1100 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1101 << " avoided: multi-block top-level loop\n"); 1102 return true; 1103 } 1104 } 1105 1106 return false; 1107 } 1108 1109 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1110 return recognizePopcount() || recognizeAndInsertCTLZ(); 1111 } 1112 1113 /// Check if the given conditional branch is based on the comparison between 1114 /// a variable and zero, and if the variable is non-zero, the control yields to 1115 /// the loop entry. If the branch matches the behavior, the variable involved 1116 /// in the comparison is returned. This function will be called to see if the 1117 /// precondition and postcondition of the loop are in desirable form. 1118 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) { 1119 if (!BI || !BI->isConditional()) 1120 return nullptr; 1121 1122 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1123 if (!Cond) 1124 return nullptr; 1125 1126 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1127 if (!CmpZero || !CmpZero->isZero()) 1128 return nullptr; 1129 1130 ICmpInst::Predicate Pred = Cond->getPredicate(); 1131 if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) || 1132 (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry)) 1133 return Cond->getOperand(0); 1134 1135 return nullptr; 1136 } 1137 1138 // Check if the recurrence variable `VarX` is in the right form to create 1139 // the idiom. Returns the value coerced to a PHINode if so. 1140 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1141 BasicBlock *LoopEntry) { 1142 auto *PhiX = dyn_cast<PHINode>(VarX); 1143 if (PhiX && PhiX->getParent() == LoopEntry && 1144 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1145 return PhiX; 1146 return nullptr; 1147 } 1148 1149 /// Return true iff the idiom is detected in the loop. 1150 /// 1151 /// Additionally: 1152 /// 1) \p CntInst is set to the instruction counting the population bit. 1153 /// 2) \p CntPhi is set to the corresponding phi node. 1154 /// 3) \p Var is set to the value whose population bits are being counted. 1155 /// 1156 /// The core idiom we are trying to detect is: 1157 /// \code 1158 /// if (x0 != 0) 1159 /// goto loop-exit // the precondition of the loop 1160 /// cnt0 = init-val; 1161 /// do { 1162 /// x1 = phi (x0, x2); 1163 /// cnt1 = phi(cnt0, cnt2); 1164 /// 1165 /// cnt2 = cnt1 + 1; 1166 /// ... 1167 /// x2 = x1 & (x1 - 1); 1168 /// ... 1169 /// } while(x != 0); 1170 /// 1171 /// loop-exit: 1172 /// \endcode 1173 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1174 Instruction *&CntInst, PHINode *&CntPhi, 1175 Value *&Var) { 1176 // step 1: Check to see if the look-back branch match this pattern: 1177 // "if (a!=0) goto loop-entry". 1178 BasicBlock *LoopEntry; 1179 Instruction *DefX2, *CountInst; 1180 Value *VarX1, *VarX0; 1181 PHINode *PhiX, *CountPhi; 1182 1183 DefX2 = CountInst = nullptr; 1184 VarX1 = VarX0 = nullptr; 1185 PhiX = CountPhi = nullptr; 1186 LoopEntry = *(CurLoop->block_begin()); 1187 1188 // step 1: Check if the loop-back branch is in desirable form. 1189 { 1190 if (Value *T = matchCondition( 1191 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1192 DefX2 = dyn_cast<Instruction>(T); 1193 else 1194 return false; 1195 } 1196 1197 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1198 { 1199 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1200 return false; 1201 1202 BinaryOperator *SubOneOp; 1203 1204 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1205 VarX1 = DefX2->getOperand(1); 1206 else { 1207 VarX1 = DefX2->getOperand(0); 1208 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1209 } 1210 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1211 return false; 1212 1213 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1214 if (!Dec || 1215 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1216 (SubOneOp->getOpcode() == Instruction::Add && 1217 Dec->isMinusOne()))) { 1218 return false; 1219 } 1220 } 1221 1222 // step 3: Check the recurrence of variable X 1223 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1224 if (!PhiX) 1225 return false; 1226 1227 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1228 { 1229 CountInst = nullptr; 1230 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1231 IterE = LoopEntry->end(); 1232 Iter != IterE; Iter++) { 1233 Instruction *Inst = &*Iter; 1234 if (Inst->getOpcode() != Instruction::Add) 1235 continue; 1236 1237 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1238 if (!Inc || !Inc->isOne()) 1239 continue; 1240 1241 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1242 if (!Phi) 1243 continue; 1244 1245 // Check if the result of the instruction is live of the loop. 1246 bool LiveOutLoop = false; 1247 for (User *U : Inst->users()) { 1248 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1249 LiveOutLoop = true; 1250 break; 1251 } 1252 } 1253 1254 if (LiveOutLoop) { 1255 CountInst = Inst; 1256 CountPhi = Phi; 1257 break; 1258 } 1259 } 1260 1261 if (!CountInst) 1262 return false; 1263 } 1264 1265 // step 5: check if the precondition is in this form: 1266 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1267 { 1268 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1269 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1270 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1271 return false; 1272 1273 CntInst = CountInst; 1274 CntPhi = CountPhi; 1275 Var = T; 1276 } 1277 1278 return true; 1279 } 1280 1281 /// Return true if the idiom is detected in the loop. 1282 /// 1283 /// Additionally: 1284 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1285 /// or nullptr if there is no such. 1286 /// 2) \p CntPhi is set to the corresponding phi node 1287 /// or nullptr if there is no such. 1288 /// 3) \p Var is set to the value whose CTLZ could be used. 1289 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1290 /// 1291 /// The core idiom we are trying to detect is: 1292 /// \code 1293 /// if (x0 == 0) 1294 /// goto loop-exit // the precondition of the loop 1295 /// cnt0 = init-val; 1296 /// do { 1297 /// x = phi (x0, x.next); //PhiX 1298 /// cnt = phi(cnt0, cnt.next); 1299 /// 1300 /// cnt.next = cnt + 1; 1301 /// ... 1302 /// x.next = x >> 1; // DefX 1303 /// ... 1304 /// } while(x.next != 0); 1305 /// 1306 /// loop-exit: 1307 /// \endcode 1308 static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX, 1309 Instruction *&CntInst, PHINode *&CntPhi, 1310 Instruction *&DefX) { 1311 BasicBlock *LoopEntry; 1312 Value *VarX = nullptr; 1313 1314 DefX = nullptr; 1315 PhiX = nullptr; 1316 CntInst = nullptr; 1317 CntPhi = nullptr; 1318 LoopEntry = *(CurLoop->block_begin()); 1319 1320 // step 1: Check if the loop-back branch is in desirable form. 1321 if (Value *T = matchCondition( 1322 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1323 DefX = dyn_cast<Instruction>(T); 1324 else 1325 return false; 1326 1327 // step 2: detect instructions corresponding to "x.next = x >> 1" 1328 if (!DefX || (DefX->getOpcode() != Instruction::AShr && 1329 DefX->getOpcode() != Instruction::LShr)) 1330 return false; 1331 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1332 if (!Shft || !Shft->isOne()) 1333 return false; 1334 VarX = DefX->getOperand(0); 1335 1336 // step 3: Check the recurrence of variable X 1337 PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1338 if (!PhiX) 1339 return false; 1340 1341 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1342 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1343 // then all uses of "cnt.next" could be optimized to the trip count 1344 // plus "cnt0". Currently it is not optimized. 1345 // This step could be used to detect POPCNT instruction: 1346 // cnt.next = cnt + (x.next & 1) 1347 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1348 IterE = LoopEntry->end(); 1349 Iter != IterE; Iter++) { 1350 Instruction *Inst = &*Iter; 1351 if (Inst->getOpcode() != Instruction::Add) 1352 continue; 1353 1354 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1355 if (!Inc || !Inc->isOne()) 1356 continue; 1357 1358 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1359 if (!Phi) 1360 continue; 1361 1362 CntInst = Inst; 1363 CntPhi = Phi; 1364 break; 1365 } 1366 if (!CntInst) 1367 return false; 1368 1369 return true; 1370 } 1371 1372 /// Recognize CTLZ idiom in a non-countable loop and convert the loop 1373 /// to countable (with CTLZ trip count). 1374 /// If CTLZ inserted as a new trip count returns true; otherwise, returns false. 1375 bool LoopIdiomRecognize::recognizeAndInsertCTLZ() { 1376 // Give up if the loop has multiple blocks or multiple backedges. 1377 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1378 return false; 1379 1380 Instruction *CntInst, *DefX; 1381 PHINode *CntPhi, *PhiX; 1382 if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX)) 1383 return false; 1384 1385 bool IsCntPhiUsedOutsideLoop = false; 1386 for (User *U : CntPhi->users()) 1387 if (!CurLoop->contains(cast<Instruction>(U))) { 1388 IsCntPhiUsedOutsideLoop = true; 1389 break; 1390 } 1391 bool IsCntInstUsedOutsideLoop = false; 1392 for (User *U : CntInst->users()) 1393 if (!CurLoop->contains(cast<Instruction>(U))) { 1394 IsCntInstUsedOutsideLoop = true; 1395 break; 1396 } 1397 // If both CntInst and CntPhi are used outside the loop the profitability 1398 // is questionable. 1399 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1400 return false; 1401 1402 // For some CPUs result of CTLZ(X) intrinsic is undefined 1403 // when X is 0. If we can not guarantee X != 0, we need to check this 1404 // when expand. 1405 bool ZeroCheck = false; 1406 // It is safe to assume Preheader exist as it was checked in 1407 // parent function RunOnLoop. 1408 BasicBlock *PH = CurLoop->getLoopPreheader(); 1409 Value *InitX = PhiX->getIncomingValueForBlock(PH); 1410 1411 // Make sure the initial value can't be negative otherwise the ashr in the 1412 // loop might never reach zero which would make the loop infinite. 1413 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, *DL)) 1414 return false; 1415 1416 // If we are using the count instruction outside the loop, make sure we 1417 // have a zero check as a precondition. Without the check the loop would run 1418 // one iteration for before any check of the input value. This means 0 and 1 1419 // would have identical behavior in the original loop and thus 1420 if (!IsCntPhiUsedOutsideLoop) { 1421 auto *PreCondBB = PH->getSinglePredecessor(); 1422 if (!PreCondBB) 1423 return false; 1424 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1425 if (!PreCondBI) 1426 return false; 1427 if (matchCondition(PreCondBI, PH) != InitX) 1428 return false; 1429 ZeroCheck = true; 1430 } 1431 1432 // Check if CTLZ intrinsic is profitable. Assume it is always profitable 1433 // if we delete the loop (the loop has only 6 instructions): 1434 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1435 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1436 // %shr = ashr %n.addr.0, 1 1437 // %tobool = icmp eq %shr, 0 1438 // %inc = add nsw %i.0, 1 1439 // br i1 %tobool 1440 1441 const Value *Args[] = 1442 {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) 1443 : ConstantInt::getFalse(InitX->getContext())}; 1444 if (CurLoop->getHeader()->size() != 6 && 1445 TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) > 1446 TargetTransformInfo::TCC_Basic) 1447 return false; 1448 1449 transformLoopToCountable(PH, CntInst, CntPhi, InitX, DefX, 1450 DefX->getDebugLoc(), ZeroCheck, 1451 IsCntPhiUsedOutsideLoop); 1452 return true; 1453 } 1454 1455 /// Recognizes a population count idiom in a non-countable loop. 1456 /// 1457 /// If detected, transforms the relevant code to issue the popcount intrinsic 1458 /// function call, and returns true; otherwise, returns false. 1459 bool LoopIdiomRecognize::recognizePopcount() { 1460 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1461 return false; 1462 1463 // Counting population are usually conducted by few arithmetic instructions. 1464 // Such instructions can be easily "absorbed" by vacant slots in a 1465 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1466 // in a compact loop. 1467 1468 // Give up if the loop has multiple blocks or multiple backedges. 1469 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1470 return false; 1471 1472 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1473 if (LoopBody->size() >= 20) { 1474 // The loop is too big, bail out. 1475 return false; 1476 } 1477 1478 // It should have a preheader containing nothing but an unconditional branch. 1479 BasicBlock *PH = CurLoop->getLoopPreheader(); 1480 if (!PH || &PH->front() != PH->getTerminator()) 1481 return false; 1482 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1483 if (!EntryBI || EntryBI->isConditional()) 1484 return false; 1485 1486 // It should have a precondition block where the generated popcount intrinsic 1487 // function can be inserted. 1488 auto *PreCondBB = PH->getSinglePredecessor(); 1489 if (!PreCondBB) 1490 return false; 1491 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1492 if (!PreCondBI || PreCondBI->isUnconditional()) 1493 return false; 1494 1495 Instruction *CntInst; 1496 PHINode *CntPhi; 1497 Value *Val; 1498 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1499 return false; 1500 1501 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1502 return true; 1503 } 1504 1505 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1506 const DebugLoc &DL) { 1507 Value *Ops[] = {Val}; 1508 Type *Tys[] = {Val->getType()}; 1509 1510 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1511 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1512 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1513 CI->setDebugLoc(DL); 1514 1515 return CI; 1516 } 1517 1518 static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1519 const DebugLoc &DL, bool ZeroCheck) { 1520 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1521 Type *Tys[] = {Val->getType()}; 1522 1523 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1524 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys); 1525 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1526 CI->setDebugLoc(DL); 1527 1528 return CI; 1529 } 1530 1531 /// Transform the following loop: 1532 /// loop: 1533 /// CntPhi = PHI [Cnt0, CntInst] 1534 /// PhiX = PHI [InitX, DefX] 1535 /// CntInst = CntPhi + 1 1536 /// DefX = PhiX >> 1 1537 /// LOOP_BODY 1538 /// Br: loop if (DefX != 0) 1539 /// Use(CntPhi) or Use(CntInst) 1540 /// 1541 /// Into: 1542 /// If CntPhi used outside the loop: 1543 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1544 /// Count = CountPrev + 1 1545 /// else 1546 /// Count = BitWidth(InitX) - CTLZ(InitX) 1547 /// loop: 1548 /// CntPhi = PHI [Cnt0, CntInst] 1549 /// PhiX = PHI [InitX, DefX] 1550 /// PhiCount = PHI [Count, Dec] 1551 /// CntInst = CntPhi + 1 1552 /// DefX = PhiX >> 1 1553 /// Dec = PhiCount - 1 1554 /// LOOP_BODY 1555 /// Br: loop if (Dec != 0) 1556 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1557 /// or 1558 /// Use(Count + Cnt0) // Use(CntInst) 1559 /// 1560 /// If LOOP_BODY is empty the loop will be deleted. 1561 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1562 void LoopIdiomRecognize::transformLoopToCountable( 1563 BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX, 1564 Instruction *DefX, const DebugLoc &DL, bool ZeroCheck, 1565 bool IsCntPhiUsedOutsideLoop) { 1566 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1567 1568 // Step 1: Insert the CTLZ instruction at the end of the preheader block 1569 // Count = BitWidth - CTLZ(InitX); 1570 // If there are uses of CntPhi create: 1571 // CountPrev = BitWidth - CTLZ(InitX >> 1); 1572 IRBuilder<> Builder(PreheaderBr); 1573 Builder.SetCurrentDebugLocation(DL); 1574 Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext; 1575 1576 if (IsCntPhiUsedOutsideLoop) { 1577 if (DefX->getOpcode() == Instruction::AShr) 1578 InitXNext = 1579 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1580 else if (DefX->getOpcode() == Instruction::LShr) 1581 InitXNext = 1582 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1583 else 1584 llvm_unreachable("Unexpected opcode!"); 1585 } else 1586 InitXNext = InitX; 1587 CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck); 1588 Count = Builder.CreateSub( 1589 ConstantInt::get(CTLZ->getType(), 1590 CTLZ->getType()->getIntegerBitWidth()), 1591 CTLZ); 1592 if (IsCntPhiUsedOutsideLoop) { 1593 CountPrev = Count; 1594 Count = Builder.CreateAdd( 1595 CountPrev, 1596 ConstantInt::get(CountPrev->getType(), 1)); 1597 } 1598 if (IsCntPhiUsedOutsideLoop) 1599 NewCount = Builder.CreateZExtOrTrunc(CountPrev, 1600 cast<IntegerType>(CntInst->getType())); 1601 else 1602 NewCount = Builder.CreateZExtOrTrunc(Count, 1603 cast<IntegerType>(CntInst->getType())); 1604 1605 // If the CTLZ counter's initial value is not zero, insert Add Inst. 1606 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1607 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1608 if (!InitConst || !InitConst->isZero()) 1609 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1610 1611 // Step 2: Insert new IV and loop condition: 1612 // loop: 1613 // ... 1614 // PhiCount = PHI [Count, Dec] 1615 // ... 1616 // Dec = PhiCount - 1 1617 // ... 1618 // Br: loop if (Dec != 0) 1619 BasicBlock *Body = *(CurLoop->block_begin()); 1620 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1621 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1622 Type *Ty = Count->getType(); 1623 1624 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1625 1626 Builder.SetInsertPoint(LbCond); 1627 Instruction *TcDec = cast<Instruction>( 1628 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1629 "tcdec", false, true)); 1630 1631 TcPhi->addIncoming(Count, Preheader); 1632 TcPhi->addIncoming(TcDec, Body); 1633 1634 CmpInst::Predicate Pred = 1635 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1636 LbCond->setPredicate(Pred); 1637 LbCond->setOperand(0, TcDec); 1638 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1639 1640 // Step 3: All the references to the original counter outside 1641 // the loop are replaced with the NewCount -- the value returned from 1642 // __builtin_ctlz(x). 1643 if (IsCntPhiUsedOutsideLoop) 1644 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1645 else 1646 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1647 1648 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1649 // loop. The loop would otherwise not be deleted even if it becomes empty. 1650 SE->forgetLoop(CurLoop); 1651 } 1652 1653 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1654 Instruction *CntInst, 1655 PHINode *CntPhi, Value *Var) { 1656 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1657 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1658 const DebugLoc &DL = CntInst->getDebugLoc(); 1659 1660 // Assuming before transformation, the loop is following: 1661 // if (x) // the precondition 1662 // do { cnt++; x &= x - 1; } while(x); 1663 1664 // Step 1: Insert the ctpop instruction at the end of the precondition block 1665 IRBuilder<> Builder(PreCondBr); 1666 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1667 { 1668 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1669 NewCount = PopCntZext = 1670 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1671 1672 if (NewCount != PopCnt) 1673 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1674 1675 // TripCnt is exactly the number of iterations the loop has 1676 TripCnt = NewCount; 1677 1678 // If the population counter's initial value is not zero, insert Add Inst. 1679 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1680 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1681 if (!InitConst || !InitConst->isZero()) { 1682 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1683 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1684 } 1685 } 1686 1687 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1688 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1689 // function would be partial dead code, and downstream passes will drag 1690 // it back from the precondition block to the preheader. 1691 { 1692 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1693 1694 Value *Opnd0 = PopCntZext; 1695 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1696 if (PreCond->getOperand(0) != Var) 1697 std::swap(Opnd0, Opnd1); 1698 1699 ICmpInst *NewPreCond = cast<ICmpInst>( 1700 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1701 PreCondBr->setCondition(NewPreCond); 1702 1703 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1704 } 1705 1706 // Step 3: Note that the population count is exactly the trip count of the 1707 // loop in question, which enable us to convert the loop from noncountable 1708 // loop into a countable one. The benefit is twofold: 1709 // 1710 // - If the loop only counts population, the entire loop becomes dead after 1711 // the transformation. It is a lot easier to prove a countable loop dead 1712 // than to prove a noncountable one. (In some C dialects, an infinite loop 1713 // isn't dead even if it computes nothing useful. In general, DCE needs 1714 // to prove a noncountable loop finite before safely delete it.) 1715 // 1716 // - If the loop also performs something else, it remains alive. 1717 // Since it is transformed to countable form, it can be aggressively 1718 // optimized by some optimizations which are in general not applicable 1719 // to a noncountable loop. 1720 // 1721 // After this step, this loop (conceptually) would look like following: 1722 // newcnt = __builtin_ctpop(x); 1723 // t = newcnt; 1724 // if (x) 1725 // do { cnt++; x &= x-1; t--) } while (t > 0); 1726 BasicBlock *Body = *(CurLoop->block_begin()); 1727 { 1728 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1729 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1730 Type *Ty = TripCnt->getType(); 1731 1732 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1733 1734 Builder.SetInsertPoint(LbCond); 1735 Instruction *TcDec = cast<Instruction>( 1736 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1737 "tcdec", false, true)); 1738 1739 TcPhi->addIncoming(TripCnt, PreHead); 1740 TcPhi->addIncoming(TcDec, Body); 1741 1742 CmpInst::Predicate Pred = 1743 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1744 LbCond->setPredicate(Pred); 1745 LbCond->setOperand(0, TcDec); 1746 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1747 } 1748 1749 // Step 4: All the references to the original population counter outside 1750 // the loop are replaced with the NewCount -- the value returned from 1751 // __builtin_ctpop(). 1752 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1753 1754 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1755 // loop. The loop would otherwise not be deleted even if it becomes empty. 1756 SE->forgetLoop(CurLoop); 1757 } 1758