1 //===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements an idiom recognizer that transforms simple loops into a 11 // non-loop form. In cases that this kicks in, it can be a significant 12 // performance win. 13 // 14 //===----------------------------------------------------------------------===// 15 // 16 // TODO List: 17 // 18 // Future loop memory idioms to recognize: 19 // memcmp, memmove, strlen, etc. 20 // Future floating point idioms to recognize in -ffast-math mode: 21 // fpowi 22 // Future integer operation idioms to recognize: 23 // ctpop, ctlz, cttz 24 // 25 // Beware that isel's default lowering for ctpop is highly inefficient for 26 // i64 and larger types when i64 is legal and the value has few bits set. It 27 // would be good to enhance isel to emit a loop for ctpop in this case. 28 // 29 // We should enhance the memset/memcpy recognition to handle multiple stores in 30 // the loop. This would handle things like: 31 // void foo(_Complex float *P) 32 // for (i) { __real__(*P) = 0; __imag__(*P) = 0; } 33 // 34 // We should enhance this to handle negative strides through memory. 35 // Alternatively (and perhaps better) we could rely on an earlier pass to force 36 // forward iteration through memory, which is generally better for cache 37 // behavior. Negative strides *do* happen for memset/memcpy loops. 38 // 39 // This could recognize common matrix multiplies and dot product idioms and 40 // replace them with calls to BLAS (if linked in??). 41 // 42 //===----------------------------------------------------------------------===// 43 44 #include "llvm/Transforms/Scalar.h" 45 #include "llvm/ADT/Statistic.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/ScalarEvolutionExpander.h" 49 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 50 #include "llvm/Analysis/TargetTransformInfo.h" 51 #include "llvm/Analysis/ValueTracking.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/IntrinsicInst.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 using namespace llvm; 62 63 #define DEBUG_TYPE "loop-idiom" 64 65 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 66 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 67 68 namespace { 69 70 class LoopIdiomRecognize; 71 72 /// This class defines some utility functions for loop idiom recognization. 73 class LIRUtil { 74 public: 75 /// Return true iff the block contains nothing but an uncondition branch 76 /// (aka goto instruction). 77 static bool isAlmostEmpty(BasicBlock *); 78 79 static BranchInst *getBranch(BasicBlock *BB) { 80 return dyn_cast<BranchInst>(BB->getTerminator()); 81 } 82 83 /// Derive the precondition block (i.e the block that guards the loop 84 /// preheader) from the given preheader. 85 static BasicBlock *getPrecondBb(BasicBlock *PreHead); 86 }; 87 88 /// This class is to recoginize idioms of population-count conducted in 89 /// a noncountable loop. Currently it only recognizes this pattern: 90 /// \code 91 /// while(x) {cnt++; ...; x &= x - 1; ...} 92 /// \endcode 93 class NclPopcountRecognize { 94 LoopIdiomRecognize &LIR; 95 Loop *CurLoop; 96 BasicBlock *PreCondBB; 97 98 typedef IRBuilder<> IRBuilderTy; 99 100 public: 101 explicit NclPopcountRecognize(LoopIdiomRecognize &TheLIR); 102 bool recognize(); 103 104 private: 105 /// Take a glimpse of the loop to see if we need to go ahead recoginizing 106 /// the idiom. 107 bool preliminaryScreen(); 108 109 /// Check if the given conditional branch is based on the comparison 110 /// between a variable and zero, and if the variable is non-zero, the 111 /// control yields to the loop entry. If the branch matches the behavior, 112 /// the variable involved in the comparion is returned. This function will 113 /// be called to see if the precondition and postcondition of the loop 114 /// are in desirable form. 115 Value *matchCondition(BranchInst *Br, BasicBlock *NonZeroTarget) const; 116 117 /// Return true iff the idiom is detected in the loop. and 1) \p CntInst 118 /// is set to the instruction counting the population bit. 2) \p CntPhi 119 /// is set to the corresponding phi node. 3) \p Var is set to the value 120 /// whose population bits are being counted. 121 bool detectIdiom 122 (Instruction *&CntInst, PHINode *&CntPhi, Value *&Var) const; 123 124 /// Insert ctpop intrinsic function and some obviously dead instructions. 125 void transform(Instruction *CntInst, PHINode *CntPhi, Value *Var); 126 127 /// Create llvm.ctpop.* intrinsic function. 128 CallInst *createPopcntIntrinsic(IRBuilderTy &IRB, Value *Val, DebugLoc DL); 129 }; 130 131 class LoopIdiomRecognize : public LoopPass { 132 Loop *CurLoop; 133 DominatorTree *DT; 134 ScalarEvolution *SE; 135 TargetLibraryInfo *TLI; 136 const TargetTransformInfo *TTI; 137 public: 138 static char ID; 139 explicit LoopIdiomRecognize() : LoopPass(ID) { 140 initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); 141 DT = nullptr; 142 SE = nullptr; 143 TLI = nullptr; 144 TTI = nullptr; 145 } 146 147 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 148 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 149 SmallVectorImpl<BasicBlock*> &ExitBlocks); 150 151 bool processLoopStore(StoreInst *SI, const SCEV *BECount); 152 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 153 154 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 155 unsigned StoreAlignment, 156 Value *SplatValue, Instruction *TheStore, 157 const SCEVAddRecExpr *Ev, 158 const SCEV *BECount); 159 bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, 160 const SCEVAddRecExpr *StoreEv, 161 const SCEVAddRecExpr *LoadEv, 162 const SCEV *BECount); 163 164 /// This transformation requires natural loop information & requires that 165 /// loop preheaders be inserted into the CFG. 166 /// 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 AU.addRequired<LoopInfoWrapperPass>(); 169 AU.addPreserved<LoopInfoWrapperPass>(); 170 AU.addRequiredID(LoopSimplifyID); 171 AU.addPreservedID(LoopSimplifyID); 172 AU.addRequiredID(LCSSAID); 173 AU.addPreservedID(LCSSAID); 174 AU.addRequired<AliasAnalysis>(); 175 AU.addPreserved<AliasAnalysis>(); 176 AU.addRequired<ScalarEvolution>(); 177 AU.addPreserved<ScalarEvolution>(); 178 AU.addPreserved<DominatorTreeWrapperPass>(); 179 AU.addRequired<DominatorTreeWrapperPass>(); 180 AU.addRequired<TargetLibraryInfoWrapperPass>(); 181 AU.addRequired<TargetTransformInfoWrapperPass>(); 182 } 183 184 DominatorTree *getDominatorTree() { 185 return DT ? DT 186 : (DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 187 } 188 189 ScalarEvolution *getScalarEvolution() { 190 return SE ? SE : (SE = &getAnalysis<ScalarEvolution>()); 191 } 192 193 TargetLibraryInfo *getTargetLibraryInfo() { 194 if (!TLI) 195 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 196 197 return TLI; 198 } 199 200 const TargetTransformInfo *getTargetTransformInfo() { 201 return TTI ? TTI 202 : (TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 203 *CurLoop->getHeader()->getParent())); 204 } 205 206 Loop *getLoop() const { return CurLoop; } 207 208 private: 209 bool runOnNoncountableLoop(); 210 bool runOnCountableLoop(); 211 }; 212 } 213 214 char LoopIdiomRecognize::ID = 0; 215 INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 216 false, false) 217 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 218 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 219 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 220 INITIALIZE_PASS_DEPENDENCY(LCSSA) 221 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 222 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 223 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 224 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 225 INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", 226 false, false) 227 228 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } 229 230 /// deleteDeadInstruction - Delete this instruction. Before we do, go through 231 /// and zero out all the operands of this instruction. If any of them become 232 /// dead, delete them and the computation tree that feeds them. 233 /// 234 static void deleteDeadInstruction(Instruction *I, 235 const TargetLibraryInfo *TLI) { 236 SmallVector<Value *, 16> Operands(I->value_op_begin(), I->value_op_end()); 237 I->replaceAllUsesWith(UndefValue::get(I->getType())); 238 I->eraseFromParent(); 239 for (Value *Op : Operands) 240 RecursivelyDeleteTriviallyDeadInstructions(Op, TLI); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // 245 // Implementation of LIRUtil 246 // 247 //===----------------------------------------------------------------------===// 248 249 // This function will return true iff the given block contains nothing but goto. 250 // A typical usage of this function is to check if the preheader function is 251 // "almost" empty such that generated intrinsic functions can be moved across 252 // the preheader and be placed at the end of the precondition block without 253 // the concern of breaking data dependence. 254 bool LIRUtil::isAlmostEmpty(BasicBlock *BB) { 255 if (BranchInst *Br = getBranch(BB)) { 256 return Br->isUnconditional() && Br == BB->begin(); 257 } 258 return false; 259 } 260 261 BasicBlock *LIRUtil::getPrecondBb(BasicBlock *PreHead) { 262 if (BasicBlock *BB = PreHead->getSinglePredecessor()) { 263 BranchInst *Br = getBranch(BB); 264 return Br && Br->isConditional() ? BB : nullptr; 265 } 266 return nullptr; 267 } 268 269 //===----------------------------------------------------------------------===// 270 // 271 // Implementation of NclPopcountRecognize 272 // 273 //===----------------------------------------------------------------------===// 274 275 NclPopcountRecognize::NclPopcountRecognize(LoopIdiomRecognize &TheLIR): 276 LIR(TheLIR), CurLoop(TheLIR.getLoop()), PreCondBB(nullptr) { 277 } 278 279 bool NclPopcountRecognize::preliminaryScreen() { 280 const TargetTransformInfo *TTI = LIR.getTargetTransformInfo(); 281 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 282 return false; 283 284 // Counting population are usually conducted by few arithmetic instructions. 285 // Such instructions can be easilly "absorbed" by vacant slots in a 286 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 287 // in a compact loop. 288 289 // Give up if the loop has multiple blocks or multiple backedges. 290 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 291 return false; 292 293 BasicBlock *LoopBody = *(CurLoop->block_begin()); 294 if (LoopBody->size() >= 20) { 295 // The loop is too big, bail out. 296 return false; 297 } 298 299 // It should have a preheader containing nothing but a goto instruction. 300 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 301 if (!PreHead || !LIRUtil::isAlmostEmpty(PreHead)) 302 return false; 303 304 // It should have a precondition block where the generated popcount instrinsic 305 // function will be inserted. 306 PreCondBB = LIRUtil::getPrecondBb(PreHead); 307 if (!PreCondBB) 308 return false; 309 310 return true; 311 } 312 313 Value *NclPopcountRecognize::matchCondition(BranchInst *Br, 314 BasicBlock *LoopEntry) const { 315 if (!Br || !Br->isConditional()) 316 return nullptr; 317 318 ICmpInst *Cond = dyn_cast<ICmpInst>(Br->getCondition()); 319 if (!Cond) 320 return nullptr; 321 322 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 323 if (!CmpZero || !CmpZero->isZero()) 324 return nullptr; 325 326 ICmpInst::Predicate Pred = Cond->getPredicate(); 327 if ((Pred == ICmpInst::ICMP_NE && Br->getSuccessor(0) == LoopEntry) || 328 (Pred == ICmpInst::ICMP_EQ && Br->getSuccessor(1) == LoopEntry)) 329 return Cond->getOperand(0); 330 331 return nullptr; 332 } 333 334 bool NclPopcountRecognize::detectIdiom(Instruction *&CntInst, 335 PHINode *&CntPhi, 336 Value *&Var) const { 337 // Following code tries to detect this idiom: 338 // 339 // if (x0 != 0) 340 // goto loop-exit // the precondition of the loop 341 // cnt0 = init-val; 342 // do { 343 // x1 = phi (x0, x2); 344 // cnt1 = phi(cnt0, cnt2); 345 // 346 // cnt2 = cnt1 + 1; 347 // ... 348 // x2 = x1 & (x1 - 1); 349 // ... 350 // } while(x != 0); 351 // 352 // loop-exit: 353 // 354 355 // step 1: Check to see if the look-back branch match this pattern: 356 // "if (a!=0) goto loop-entry". 357 BasicBlock *LoopEntry; 358 Instruction *DefX2, *CountInst; 359 Value *VarX1, *VarX0; 360 PHINode *PhiX, *CountPhi; 361 362 DefX2 = CountInst = nullptr; 363 VarX1 = VarX0 = nullptr; 364 PhiX = CountPhi = nullptr; 365 LoopEntry = *(CurLoop->block_begin()); 366 367 // step 1: Check if the loop-back branch is in desirable form. 368 { 369 if (Value *T = matchCondition (LIRUtil::getBranch(LoopEntry), LoopEntry)) 370 DefX2 = dyn_cast<Instruction>(T); 371 else 372 return false; 373 } 374 375 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 376 { 377 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 378 return false; 379 380 BinaryOperator *SubOneOp; 381 382 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 383 VarX1 = DefX2->getOperand(1); 384 else { 385 VarX1 = DefX2->getOperand(0); 386 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 387 } 388 if (!SubOneOp) 389 return false; 390 391 Instruction *SubInst = cast<Instruction>(SubOneOp); 392 ConstantInt *Dec = dyn_cast<ConstantInt>(SubInst->getOperand(1)); 393 if (!Dec || 394 !((SubInst->getOpcode() == Instruction::Sub && Dec->isOne()) || 395 (SubInst->getOpcode() == Instruction::Add && Dec->isAllOnesValue()))) { 396 return false; 397 } 398 } 399 400 // step 3: Check the recurrence of variable X 401 { 402 PhiX = dyn_cast<PHINode>(VarX1); 403 if (!PhiX || 404 (PhiX->getOperand(0) != DefX2 && PhiX->getOperand(1) != DefX2)) { 405 return false; 406 } 407 } 408 409 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 410 { 411 CountInst = nullptr; 412 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI(), 413 IterE = LoopEntry->end(); Iter != IterE; Iter++) { 414 Instruction *Inst = Iter; 415 if (Inst->getOpcode() != Instruction::Add) 416 continue; 417 418 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 419 if (!Inc || !Inc->isOne()) 420 continue; 421 422 PHINode *Phi = dyn_cast<PHINode>(Inst->getOperand(0)); 423 if (!Phi || Phi->getParent() != LoopEntry) 424 continue; 425 426 // Check if the result of the instruction is live of the loop. 427 bool LiveOutLoop = false; 428 for (User *U : Inst->users()) { 429 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 430 LiveOutLoop = true; break; 431 } 432 } 433 434 if (LiveOutLoop) { 435 CountInst = Inst; 436 CountPhi = Phi; 437 break; 438 } 439 } 440 441 if (!CountInst) 442 return false; 443 } 444 445 // step 5: check if the precondition is in this form: 446 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 447 { 448 BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); 449 Value *T = matchCondition (PreCondBr, CurLoop->getLoopPreheader()); 450 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 451 return false; 452 453 CntInst = CountInst; 454 CntPhi = CountPhi; 455 Var = T; 456 } 457 458 return true; 459 } 460 461 void NclPopcountRecognize::transform(Instruction *CntInst, 462 PHINode *CntPhi, Value *Var) { 463 464 ScalarEvolution *SE = LIR.getScalarEvolution(); 465 TargetLibraryInfo *TLI = LIR.getTargetLibraryInfo(); 466 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 467 BranchInst *PreCondBr = LIRUtil::getBranch(PreCondBB); 468 const DebugLoc DL = CntInst->getDebugLoc(); 469 470 // Assuming before transformation, the loop is following: 471 // if (x) // the precondition 472 // do { cnt++; x &= x - 1; } while(x); 473 474 // Step 1: Insert the ctpop instruction at the end of the precondition block 475 IRBuilderTy Builder(PreCondBr); 476 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 477 { 478 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 479 NewCount = PopCntZext = 480 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 481 482 if (NewCount != PopCnt) 483 (cast<Instruction>(NewCount))->setDebugLoc(DL); 484 485 // TripCnt is exactly the number of iterations the loop has 486 TripCnt = NewCount; 487 488 // If the population counter's initial value is not zero, insert Add Inst. 489 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 490 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 491 if (!InitConst || !InitConst->isZero()) { 492 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 493 (cast<Instruction>(NewCount))->setDebugLoc(DL); 494 } 495 } 496 497 // Step 2: Replace the precondition from "if(x == 0) goto loop-exit" to 498 // "if(NewCount == 0) loop-exit". Withtout this change, the intrinsic 499 // function would be partial dead code, and downstream passes will drag 500 // it back from the precondition block to the preheader. 501 { 502 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 503 504 Value *Opnd0 = PopCntZext; 505 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 506 if (PreCond->getOperand(0) != Var) 507 std::swap(Opnd0, Opnd1); 508 509 ICmpInst *NewPreCond = 510 cast<ICmpInst>(Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 511 PreCond->replaceAllUsesWith(NewPreCond); 512 513 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 514 } 515 516 // Step 3: Note that the population count is exactly the trip count of the 517 // loop in question, which enble us to to convert the loop from noncountable 518 // loop into a countable one. The benefit is twofold: 519 // 520 // - If the loop only counts population, the entire loop become dead after 521 // the transformation. It is lots easier to prove a countable loop dead 522 // than to prove a noncountable one. (In some C dialects, a infite loop 523 // isn't dead even if it computes nothing useful. In general, DCE needs 524 // to prove a noncountable loop finite before safely delete it.) 525 // 526 // - If the loop also performs something else, it remains alive. 527 // Since it is transformed to countable form, it can be aggressively 528 // optimized by some optimizations which are in general not applicable 529 // to a noncountable loop. 530 // 531 // After this step, this loop (conceptually) would look like following: 532 // newcnt = __builtin_ctpop(x); 533 // t = newcnt; 534 // if (x) 535 // do { cnt++; x &= x-1; t--) } while (t > 0); 536 BasicBlock *Body = *(CurLoop->block_begin()); 537 { 538 BranchInst *LbBr = LIRUtil::getBranch(Body); 539 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 540 Type *Ty = TripCnt->getType(); 541 542 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", Body->begin()); 543 544 Builder.SetInsertPoint(LbCond); 545 Value *Opnd1 = cast<Value>(TcPhi); 546 Value *Opnd2 = cast<Value>(ConstantInt::get(Ty, 1)); 547 Instruction *TcDec = 548 cast<Instruction>(Builder.CreateSub(Opnd1, Opnd2, "tcdec", false, true)); 549 550 TcPhi->addIncoming(TripCnt, PreHead); 551 TcPhi->addIncoming(TcDec, Body); 552 553 CmpInst::Predicate Pred = (LbBr->getSuccessor(0) == Body) ? 554 CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 555 LbCond->setPredicate(Pred); 556 LbCond->setOperand(0, TcDec); 557 LbCond->setOperand(1, cast<Value>(ConstantInt::get(Ty, 0))); 558 } 559 560 // Step 4: All the references to the original population counter outside 561 // the loop are replaced with the NewCount -- the value returned from 562 // __builtin_ctpop(). 563 CntInst->replaceUsesOutsideBlock(NewCount, Body); 564 565 // step 5: Forget the "non-computable" trip-count SCEV associated with the 566 // loop. The loop would otherwise not be deleted even if it becomes empty. 567 SE->forgetLoop(CurLoop); 568 } 569 570 CallInst *NclPopcountRecognize::createPopcntIntrinsic(IRBuilderTy &IRBuilder, 571 Value *Val, DebugLoc DL) { 572 Value *Ops[] = { Val }; 573 Type *Tys[] = { Val->getType() }; 574 575 Module *M = (*(CurLoop->block_begin()))->getParent()->getParent(); 576 Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 577 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 578 CI->setDebugLoc(DL); 579 580 return CI; 581 } 582 583 /// recognize - detect population count idiom in a non-countable loop. If 584 /// detected, transform the relevant code to popcount intrinsic function 585 /// call, and return true; otherwise, return false. 586 bool NclPopcountRecognize::recognize() { 587 588 if (!LIR.getTargetTransformInfo()) 589 return false; 590 591 LIR.getScalarEvolution(); 592 593 if (!preliminaryScreen()) 594 return false; 595 596 Instruction *CntInst; 597 PHINode *CntPhi; 598 Value *Val; 599 if (!detectIdiom(CntInst, CntPhi, Val)) 600 return false; 601 602 transform(CntInst, CntPhi, Val); 603 return true; 604 } 605 606 //===----------------------------------------------------------------------===// 607 // 608 // Implementation of LoopIdiomRecognize 609 // 610 //===----------------------------------------------------------------------===// 611 612 bool LoopIdiomRecognize::runOnCountableLoop() { 613 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 614 if (isa<SCEVCouldNotCompute>(BECount)) return false; 615 616 // If this loop executes exactly one time, then it should be peeled, not 617 // optimized by this pass. 618 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 619 if (BECst->getValue()->getValue() == 0) 620 return false; 621 622 // set DT 623 (void)getDominatorTree(); 624 625 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 626 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 627 628 // set TLI 629 (void)getTargetLibraryInfo(); 630 631 SmallVector<BasicBlock*, 8> ExitBlocks; 632 CurLoop->getUniqueExitBlocks(ExitBlocks); 633 634 DEBUG(dbgs() << "loop-idiom Scanning: F[" 635 << CurLoop->getHeader()->getParent()->getName() 636 << "] Loop %" << CurLoop->getHeader()->getName() << "\n"); 637 638 bool MadeChange = false; 639 // Scan all the blocks in the loop that are not in subloops. 640 for (Loop::block_iterator BI = CurLoop->block_begin(), 641 E = CurLoop->block_end(); BI != E; ++BI) { 642 // Ignore blocks in subloops. 643 if (LI.getLoopFor(*BI) != CurLoop) 644 continue; 645 646 MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks); 647 } 648 return MadeChange; 649 } 650 651 bool LoopIdiomRecognize::runOnNoncountableLoop() { 652 NclPopcountRecognize Popcount(*this); 653 if (Popcount.recognize()) 654 return true; 655 656 return false; 657 } 658 659 bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { 660 if (skipOptnoneFunction(L)) 661 return false; 662 663 CurLoop = L; 664 665 // If the loop could not be converted to canonical form, it must have an 666 // indirectbr in it, just give up. 667 if (!L->getLoopPreheader()) 668 return false; 669 670 // Disable loop idiom recognition if the function's name is a common idiom. 671 StringRef Name = L->getHeader()->getParent()->getName(); 672 if (Name == "memset" || Name == "memcpy") 673 return false; 674 675 SE = &getAnalysis<ScalarEvolution>(); 676 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 677 return runOnCountableLoop(); 678 return runOnNoncountableLoop(); 679 } 680 681 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 682 /// with the specified backedge count. This block is known to be in the current 683 /// loop and not in any subloops. 684 bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 685 SmallVectorImpl<BasicBlock*> &ExitBlocks) { 686 // We can only promote stores in this block if they are unconditionally 687 // executed in the loop. For a block to be unconditionally executed, it has 688 // to dominate all the exit blocks of the loop. Verify this now. 689 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 690 if (!DT->dominates(BB, ExitBlocks[i])) 691 return false; 692 693 bool MadeChange = false; 694 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { 695 Instruction *Inst = I++; 696 // Look for store instructions, which may be optimized to memset/memcpy. 697 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 698 WeakVH InstPtr(I); 699 if (!processLoopStore(SI, BECount)) continue; 700 MadeChange = true; 701 702 // If processing the store invalidated our iterator, start over from the 703 // top of the block. 704 if (!InstPtr) 705 I = BB->begin(); 706 continue; 707 } 708 709 // Look for memset instructions, which may be optimized to a larger memset. 710 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 711 WeakVH InstPtr(I); 712 if (!processLoopMemSet(MSI, BECount)) continue; 713 MadeChange = true; 714 715 // If processing the memset invalidated our iterator, start over from the 716 // top of the block. 717 if (!InstPtr) 718 I = BB->begin(); 719 continue; 720 } 721 } 722 723 return MadeChange; 724 } 725 726 727 /// processLoopStore - See if this store can be promoted to a memset or memcpy. 728 bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { 729 if (!SI->isSimple()) return false; 730 731 Value *StoredVal = SI->getValueOperand(); 732 Value *StorePtr = SI->getPointerOperand(); 733 734 // Reject stores that are so large that they overflow an unsigned. 735 auto &DL = CurLoop->getHeader()->getModule()->getDataLayout(); 736 uint64_t SizeInBits = DL.getTypeSizeInBits(StoredVal->getType()); 737 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) 738 return false; 739 740 // See if the pointer expression is an AddRec like {base,+,1} on the current 741 // loop, which indicates a strided store. If we have something else, it's a 742 // random store we can't handle. 743 const SCEVAddRecExpr *StoreEv = 744 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 745 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 746 return false; 747 748 // Check to see if the stride matches the size of the store. If so, then we 749 // know that every byte is touched in the loop. 750 unsigned StoreSize = (unsigned)SizeInBits >> 3; 751 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 752 753 if (!Stride || StoreSize != Stride->getValue()->getValue()) { 754 // TODO: Could also handle negative stride here someday, that will require 755 // the validity check in mayLoopAccessLocation to be updated though. 756 // Enable this to print exact negative strides. 757 if (0 && Stride && StoreSize == -Stride->getValue()->getValue()) { 758 dbgs() << "NEGATIVE STRIDE: " << *SI << "\n"; 759 dbgs() << "BB: " << *SI->getParent(); 760 } 761 762 return false; 763 } 764 765 // See if we can optimize just this store in isolation. 766 if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(), 767 StoredVal, SI, StoreEv, BECount)) 768 return true; 769 770 // If the stored value is a strided load in the same loop with the same stride 771 // this this may be transformable into a memcpy. This kicks in for stuff like 772 // for (i) A[i] = B[i]; 773 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 774 const SCEVAddRecExpr *LoadEv = 775 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0))); 776 if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() && 777 StoreEv->getOperand(1) == LoadEv->getOperand(1) && LI->isSimple()) 778 if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount)) 779 return true; 780 } 781 //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n"; 782 783 return false; 784 } 785 786 /// processLoopMemSet - See if this memset can be promoted to a large memset. 787 bool LoopIdiomRecognize:: 788 processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { 789 // We can only handle non-volatile memsets with a constant size. 790 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; 791 792 // If we're not allowed to hack on memset, we fail. 793 if (!TLI->has(LibFunc::memset)) 794 return false; 795 796 Value *Pointer = MSI->getDest(); 797 798 // See if the pointer expression is an AddRec like {base,+,1} on the current 799 // loop, which indicates a strided store. If we have something else, it's a 800 // random store we can't handle. 801 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 802 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 803 return false; 804 805 // Reject memsets that are so large that they overflow an unsigned. 806 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 807 if ((SizeInBytes >> 32) != 0) 808 return false; 809 810 // Check to see if the stride matches the size of the memset. If so, then we 811 // know that every byte is touched in the loop. 812 const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 813 814 // TODO: Could also handle negative stride here someday, that will require the 815 // validity check in mayLoopAccessLocation to be updated though. 816 if (!Stride || MSI->getLength() != Stride->getValue()) 817 return false; 818 819 return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, 820 MSI->getAlignment(), MSI->getValue(), 821 MSI, Ev, BECount); 822 } 823 824 825 /// mayLoopAccessLocation - Return true if the specified loop might access the 826 /// specified pointer location, which is a loop-strided access. The 'Access' 827 /// argument specifies what the verboten forms of access are (read or write). 828 static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access, 829 Loop *L, const SCEV *BECount, 830 unsigned StoreSize, AliasAnalysis &AA, 831 Instruction *IgnoredStore) { 832 // Get the location that may be stored across the loop. Since the access is 833 // strided positively through memory, we say that the modified location starts 834 // at the pointer and has infinite size. 835 uint64_t AccessSize = AliasAnalysis::UnknownSize; 836 837 // If the loop iterates a fixed number of times, we can refine the access size 838 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 839 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 840 AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize; 841 842 // TODO: For this to be really effective, we have to dive into the pointer 843 // operand in the store. Store to &A[i] of 100 will always return may alias 844 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 845 // which will then no-alias a store to &A[100]. 846 AliasAnalysis::Location StoreLoc(Ptr, AccessSize); 847 848 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 849 ++BI) 850 for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) 851 if (&*I != IgnoredStore && 852 (AA.getModRefInfo(I, StoreLoc) & Access)) 853 return true; 854 855 return false; 856 } 857 858 /// getMemSetPatternValue - If a strided store of the specified value is safe to 859 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 860 /// be passed in. Otherwise, return null. 861 /// 862 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 863 /// just replicate their input array and then pass on to memset_pattern16. 864 static Constant *getMemSetPatternValue(Value *V, const DataLayout &DL) { 865 // If the value isn't a constant, we can't promote it to being in a constant 866 // array. We could theoretically do a store to an alloca or something, but 867 // that doesn't seem worthwhile. 868 Constant *C = dyn_cast<Constant>(V); 869 if (!C) return nullptr; 870 871 // Only handle simple values that are a power of two bytes in size. 872 uint64_t Size = DL.getTypeSizeInBits(V->getType()); 873 if (Size == 0 || (Size & 7) || (Size & (Size-1))) 874 return nullptr; 875 876 // Don't care enough about darwin/ppc to implement this. 877 if (DL.isBigEndian()) 878 return nullptr; 879 880 // Convert to size in bytes. 881 Size /= 8; 882 883 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 884 // if the top and bottom are the same (e.g. for vectors and large integers). 885 if (Size > 16) return nullptr; 886 887 // If the constant is exactly 16 bytes, just use it. 888 if (Size == 16) return C; 889 890 // Otherwise, we'll use an array of the constants. 891 unsigned ArraySize = 16/Size; 892 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 893 return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C)); 894 } 895 896 897 /// processLoopStridedStore - We see a strided store of some value. If we can 898 /// transform this into a memset or memset_pattern in the loop preheader, do so. 899 bool LoopIdiomRecognize:: 900 processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 901 unsigned StoreAlignment, Value *StoredVal, 902 Instruction *TheStore, const SCEVAddRecExpr *Ev, 903 const SCEV *BECount) { 904 905 // If the stored value is a byte-wise value (like i32 -1), then it may be 906 // turned into a memset of i8 -1, assuming that all the consecutive bytes 907 // are stored. A store of i32 0x01020304 can never be turned into a memset, 908 // but it can be turned into memset_pattern if the target supports it. 909 Value *SplatValue = isBytewiseValue(StoredVal); 910 Constant *PatternValue = nullptr; 911 auto &DL = CurLoop->getHeader()->getModule()->getDataLayout(); 912 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 913 914 // If we're allowed to form a memset, and the stored value would be acceptable 915 // for memset, use it. 916 if (SplatValue && TLI->has(LibFunc::memset) && 917 // Verify that the stored value is loop invariant. If not, we can't 918 // promote the memset. 919 CurLoop->isLoopInvariant(SplatValue)) { 920 // Keep and use SplatValue. 921 PatternValue = nullptr; 922 } else if (DestAS == 0 && TLI->has(LibFunc::memset_pattern16) && 923 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 924 // Don't create memset_pattern16s with address spaces. 925 // It looks like we can use PatternValue! 926 SplatValue = nullptr; 927 } else { 928 // Otherwise, this isn't an idiom we can transform. For example, we can't 929 // do anything with a 3-byte store. 930 return false; 931 } 932 933 // The trip count of the loop and the base pointer of the addrec SCEV is 934 // guaranteed to be loop invariant, which means that it should dominate the 935 // header. This allows us to insert code for it in the preheader. 936 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 937 IRBuilder<> Builder(Preheader->getTerminator()); 938 SCEVExpander Expander(*SE, "loop-idiom"); 939 940 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 941 942 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 943 // this into a memset in the loop preheader now if we want. However, this 944 // would be unsafe to do if there is anything else in the loop that may read 945 // or write to the aliased location. Check for any overlap by generating the 946 // base pointer and checking the region. 947 Value *BasePtr = 948 Expander.expandCodeFor(Ev->getStart(), DestInt8PtrTy, 949 Preheader->getTerminator()); 950 951 if (mayLoopAccessLocation(BasePtr, AliasAnalysis::ModRef, 952 CurLoop, BECount, 953 StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) { 954 Expander.clear(); 955 // If we generated new code for the base pointer, clean up. 956 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI); 957 return false; 958 } 959 960 // Okay, everything looks good, insert the memset. 961 962 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 963 // pointer size if it isn't already. 964 Type *IntPtr = Builder.getIntPtrTy(&DL, DestAS); 965 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); 966 967 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), 968 SCEV::FlagNUW); 969 if (StoreSize != 1) { 970 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 971 SCEV::FlagNUW); 972 } 973 974 Value *NumBytes = 975 Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); 976 977 CallInst *NewCall; 978 if (SplatValue) { 979 NewCall = Builder.CreateMemSet(BasePtr, 980 SplatValue, 981 NumBytes, 982 StoreAlignment); 983 } else { 984 // Everything is emitted in default address space 985 Type *Int8PtrTy = DestInt8PtrTy; 986 987 Module *M = TheStore->getParent()->getParent()->getParent(); 988 Value *MSP = M->getOrInsertFunction("memset_pattern16", 989 Builder.getVoidTy(), 990 Int8PtrTy, 991 Int8PtrTy, 992 IntPtr, 993 (void*)nullptr); 994 995 // Otherwise we should form a memset_pattern16. PatternValue is known to be 996 // an constant array of 16-bytes. Plop the value into a mergable global. 997 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 998 GlobalValue::PrivateLinkage, 999 PatternValue, ".memset_pattern"); 1000 GV->setUnnamedAddr(true); // Ok to merge these. 1001 GV->setAlignment(16); 1002 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1003 NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes); 1004 } 1005 1006 DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1007 << " from store to: " << *Ev << " at: " << *TheStore << "\n"); 1008 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1009 1010 // Okay, the memset has been formed. Zap the original store and anything that 1011 // feeds into it. 1012 deleteDeadInstruction(TheStore, TLI); 1013 ++NumMemSet; 1014 return true; 1015 } 1016 1017 /// processLoopStoreOfLoopLoad - We see a strided store whose value is a 1018 /// same-strided load. 1019 bool LoopIdiomRecognize:: 1020 processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, 1021 const SCEVAddRecExpr *StoreEv, 1022 const SCEVAddRecExpr *LoadEv, 1023 const SCEV *BECount) { 1024 // If we're not allowed to form memcpy, we fail. 1025 if (!TLI->has(LibFunc::memcpy)) 1026 return false; 1027 1028 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1029 1030 // The trip count of the loop and the base pointer of the addrec SCEV is 1031 // guaranteed to be loop invariant, which means that it should dominate the 1032 // header. This allows us to insert code for it in the preheader. 1033 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1034 IRBuilder<> Builder(Preheader->getTerminator()); 1035 SCEVExpander Expander(*SE, "loop-idiom"); 1036 1037 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1038 // this into a memcpy in the loop preheader now if we want. However, this 1039 // would be unsafe to do if there is anything else in the loop that may read 1040 // or write the memory region we're storing to. This includes the load that 1041 // feeds the stores. Check for an alias by generating the base address and 1042 // checking everything. 1043 Value *StoreBasePtr = 1044 Expander.expandCodeFor(StoreEv->getStart(), 1045 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), 1046 Preheader->getTerminator()); 1047 1048 if (mayLoopAccessLocation(StoreBasePtr, AliasAnalysis::ModRef, 1049 CurLoop, BECount, StoreSize, 1050 getAnalysis<AliasAnalysis>(), SI)) { 1051 Expander.clear(); 1052 // If we generated new code for the base pointer, clean up. 1053 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1054 return false; 1055 } 1056 1057 // For a memcpy, we have to make sure that the input array is not being 1058 // mutated by the loop. 1059 Value *LoadBasePtr = 1060 Expander.expandCodeFor(LoadEv->getStart(), 1061 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), 1062 Preheader->getTerminator()); 1063 1064 if (mayLoopAccessLocation(LoadBasePtr, AliasAnalysis::Mod, CurLoop, BECount, 1065 StoreSize, getAnalysis<AliasAnalysis>(), SI)) { 1066 Expander.clear(); 1067 // If we generated new code for the base pointer, clean up. 1068 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI); 1069 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI); 1070 return false; 1071 } 1072 1073 // Okay, everything is safe, we can transform this! 1074 1075 1076 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 1077 // pointer size if it isn't already. 1078 auto &DL = CurLoop->getHeader()->getModule()->getDataLayout(); 1079 Type *IntPtrTy = Builder.getIntPtrTy(&DL, SI->getPointerAddressSpace()); 1080 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy); 1081 1082 const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtrTy, 1), 1083 SCEV::FlagNUW); 1084 if (StoreSize != 1) 1085 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize), 1086 SCEV::FlagNUW); 1087 1088 Value *NumBytes = 1089 Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator()); 1090 1091 CallInst *NewCall = 1092 Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, 1093 std::min(SI->getAlignment(), LI->getAlignment())); 1094 NewCall->setDebugLoc(SI->getDebugLoc()); 1095 1096 DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1097 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1098 << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); 1099 1100 1101 // Okay, the memset has been formed. Zap the original store and anything that 1102 // feeds into it. 1103 deleteDeadInstruction(SI, TLI); 1104 ++NumMemCpy; 1105 return true; 1106 } 1107